Survey on mining subjective data on the web
In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for min...
Saved in:
Published in | Data mining and knowledge discovery Vol. 24; no. 3; pp. 478 - 514 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.05.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-011-0238-6 |
Cover
Abstract | In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers’ attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field. |
---|---|
AbstractList | In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers' attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field. Issue Title: SI: A Decade of Mining the Web In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers' attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field.[PUBLICATION ABSTRACT] |
Author | Palpanas, Themis Tsytsarau, Mikalai |
Author_xml | – sequence: 1 givenname: Mikalai surname: Tsytsarau fullname: Tsytsarau, Mikalai email: tsytsarau@disi.unitn.eu organization: University of Trento – sequence: 2 givenname: Themis surname: Palpanas fullname: Palpanas, Themis organization: University of Trento |
BookMark | eNp9kE1LAzEQhoNUsK3-AG-LJ0Gi-djNJkcpfkHBgwreQjadrSlttibZSv-9u6wgFPQ0A_M8L8M7QSPfeEDonJJrSkh5EykRVGJCKSaMSyyO0JgWJcdlId5H3c5ljgtJyQmaxLgihBSMkzG6emnDDvZZ47ON884vs9hWK7DJ7SBbmGT6S_qA7AuqU3Rcm3WEs585RW_3d6-zRzx_fnia3c6x5blM2Ki8koRRAUIZQusFg0IYVQpRc1C1ZTavBGHS5kWtLKiK51bJikFtwPCS8Sm6HHK3oflsISa9cdHCem08NG3UlFAlcsWY6tCLA3TVtMF332nFJJeyoKKDygGyoYkxQK2tSya5xqdg3LrL032HeuhQdx3qvkPdm_TA3Aa3MWH_r8MGJ3asX0L4felv6Rthy4Ov |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2920075 crossref_primary_10_1080_0952813X_2024_2384568 crossref_primary_10_1142_S0219649218500132 crossref_primary_10_1007_s11042_024_19668_w crossref_primary_10_1109_TAFFC_2017_2705691 crossref_primary_10_1007_s10489_019_01540_2 crossref_primary_10_1007_s42979_021_00993_y crossref_primary_10_1145_2932708 crossref_primary_10_1016_j_jik_2020_06_003 crossref_primary_10_1016_j_jairtraman_2023_102441 crossref_primary_10_1109_ACCESS_2018_2797224 crossref_primary_10_3366_cor_2019_0177 crossref_primary_10_29121_granthaalayah_v5_i4RACSIT_2017_3354 crossref_primary_10_1016_j_jretconser_2021_102881 crossref_primary_10_1080_14766825_2021_1876077 crossref_primary_10_1108_14636681211284926 crossref_primary_10_1016_j_neunet_2014_05_020 crossref_primary_10_1016_j_eswa_2017_03_042 crossref_primary_10_1109_TKDE_2015_2485209 crossref_primary_10_1177_0047287517747753 crossref_primary_10_1371_journal_pone_0217591 crossref_primary_10_1007_s44230_023_00018_2 crossref_primary_10_1177_0165551514535710 crossref_primary_10_1007_s13278_024_01202_3 crossref_primary_10_1109_ACCESS_2017_2668840 crossref_primary_10_1007_s10115_024_02200_9 crossref_primary_10_1017_S1351324912000332 crossref_primary_10_1155_2020_7526580 crossref_primary_10_3390_s25061731 crossref_primary_10_1007_s10579_024_09742_y crossref_primary_10_32329_uad_1383794 crossref_primary_10_1145_3369869 crossref_primary_10_1016_j_eswa_2024_124449 crossref_primary_10_1098_rsos_201756 crossref_primary_10_1007_s10586_017_0742_6 crossref_primary_10_1016_j_ins_2015_03_040 crossref_primary_10_1016_j_knosys_2018_01_023 crossref_primary_10_1016_j_jss_2016_11_027 crossref_primary_10_1108_JCM_12_2019_3540 crossref_primary_10_2139_ssrn_4138915 crossref_primary_10_32628_CSEIT2062149 crossref_primary_10_1002_cpe_5107 crossref_primary_10_1016_j_ipm_2014_06_002 crossref_primary_10_1145_2938640 crossref_primary_10_25046_aj0203209 crossref_primary_10_7763_IJSSH_2016_V6_640 crossref_primary_10_1016_j_eswa_2012_07_059 crossref_primary_10_1016_j_knosys_2019_104868 crossref_primary_10_3390_su6106529 crossref_primary_10_1016_j_asej_2014_04_011 crossref_primary_10_1016_j_indmarman_2019_12_012 crossref_primary_10_1109_TAFFC_2021_3104512 crossref_primary_10_3390_app122211775 crossref_primary_10_3389_fphy_2024_1336795 crossref_primary_10_1145_2380776_2380784 crossref_primary_10_3390_ijerph18115993 crossref_primary_10_1007_s12530_023_09506_z crossref_primary_10_1590_1984_9240827 crossref_primary_10_1007_s10950_019_09833_2 crossref_primary_10_1016_j_inffus_2016_11_012 crossref_primary_10_1016_j_ipm_2017_11_009 crossref_primary_10_1016_j_eswa_2025_127165 crossref_primary_10_1016_j_matpr_2021_02_183 crossref_primary_10_1177_0165551517722741 crossref_primary_10_1002_jtr_2073 crossref_primary_10_1155_2017_8310934 crossref_primary_10_1142_S0219622019300015 crossref_primary_10_1016_j_neucom_2016_10_086 crossref_primary_10_3390_computation12020028 crossref_primary_10_1016_j_knosys_2021_106755 crossref_primary_10_1007_s10462_016_9472_z crossref_primary_10_26634_jse_9_3_3467 crossref_primary_10_1186_s40649_021_00097_w crossref_primary_10_2139_ssrn_3012524 crossref_primary_10_35940_ijitee_C9762_0111322 crossref_primary_10_1108_JKM_07_2015_0296 crossref_primary_10_4018_IJRSDA_2018040106 crossref_primary_10_1109_TAFFC_2020_2970399 crossref_primary_10_1016_j_jretconser_2022_103011 crossref_primary_10_3390_asi6050092 crossref_primary_10_1007_s11042_023_16174_3 crossref_primary_10_3390_app15062912 crossref_primary_10_1016_j_ipm_2016_07_001 crossref_primary_10_3390_s18041080 crossref_primary_10_1155_2020_5824873 crossref_primary_10_4236_ce_2016_718265 crossref_primary_10_1016_j_knosys_2019_105131 crossref_primary_10_1111_cgf_13217 crossref_primary_10_1142_S1469026820500315 crossref_primary_10_1587_nolta_9_382 crossref_primary_10_1016_j_procs_2021_05_017 crossref_primary_10_1007_s40012_014_0055_3 crossref_primary_10_1007_s44212_024_00065_5 crossref_primary_10_1016_j_ipm_2016_12_008 crossref_primary_10_1145_2577554_2577560 crossref_primary_10_1080_13683500_2023_2277900 crossref_primary_10_1108_OIR_04_2017_0114 crossref_primary_10_1155_2019_1712569 crossref_primary_10_3390_app122312380 crossref_primary_10_1140_epjds_s13688_016_0085_1 crossref_primary_10_25046_aj020115 crossref_primary_10_1109_TKDE_2016_2597848 crossref_primary_10_1371_journal_pone_0213843 crossref_primary_10_1155_2016_2385429 crossref_primary_10_36548_jtcsst_2024_1_003 crossref_primary_10_24011_barofd_1492196 crossref_primary_10_1016_j_neucom_2016_06_045 crossref_primary_10_1016_j_ipm_2014_05_001 crossref_primary_10_1007_s10462_023_10472_w crossref_primary_10_1177_1094670514524625 crossref_primary_10_1016_j_ipm_2015_05_006 crossref_primary_10_1007_s11042_022_12345_w crossref_primary_10_1145_3457206 crossref_primary_10_3390_data6060067 crossref_primary_10_1007_s10462_021_10030_2 crossref_primary_10_1080_10919392_2024_2335689 crossref_primary_10_1007_s10115_018_1236_4 crossref_primary_10_1007_s13278_016_0400_7 crossref_primary_10_21015_vtse_v11i2_1574 crossref_primary_10_5897_SRE2016_6381 crossref_primary_10_1007_s10586_016_0677_3 crossref_primary_10_1109_TAFFC_2022_3218504 crossref_primary_10_1007_s42979_021_00480_4 crossref_primary_10_1016_j_eswa_2013_06_076 crossref_primary_10_1080_17517575_2019_1669829 crossref_primary_10_1007_s00799_015_0139_1 crossref_primary_10_1109_TAFFC_2015_2444846 crossref_primary_10_3390_fi14100300 crossref_primary_10_1007_s11042_022_14112_3 crossref_primary_10_1016_j_knosys_2022_108586 crossref_primary_10_1002_asi_22984 crossref_primary_10_1007_s40797_022_00217_z crossref_primary_10_1016_j_joi_2015_12_002 crossref_primary_10_1155_2020_5812715 crossref_primary_10_14778_3436905_3436924 crossref_primary_10_3390_app112311091 crossref_primary_10_1080_02642069_2018_1476497 crossref_primary_10_1007_s11704_019_9094_0 crossref_primary_10_1016_j_knosys_2015_06_015 crossref_primary_10_1007_s10462_020_09884_9 crossref_primary_10_1145_2432546_2432552 crossref_primary_10_1007_s10462_017_9597_8 crossref_primary_10_1080_02522667_2017_1417726 |
Cites_doi | 10.1016/j.eswa.2008.09.035 10.1145/1076034.1076161 10.1007/978-3-642-00958-7_75 10.1145/1321440.1321555 10.1609/icwsm.v3i1.13953 10.1145/1772690.1772726 10.1145/1651461.1651469 10.1007/978-3-642-04409-0_22 10.3115/1218955.1219040 10.3115/1073483.1073495 10.3115/1119355.1119372 10.1016/j.eswa.2009.02.063 10.1609/icwsm.v4i1.14009 10.1145/1772690.1772871 10.1109/ICDEW.2008.4498371 10.3115/1599081.1599184 10.1145/1088622.1088626 10.1145/1645953.1646004 10.1145/1871437.1871557 10.1007/978-3-540-30586-6_53 10.3115/1699571.1699589 10.1145/1651461.1651464 10.1145/775047.775098 10.3115/1654758.1654769 10.1101/pdb.rec8147 10.3115/1220355.1220476 10.1007/978-3-540-74889-2_21 10.1561/1500000011 10.1111/j.1467-8640.2006.00276.x 10.1145/1651461.1651465 10.1145/1645953.1646235 10.1145/775152.775226 10.1509/jmkr.43.3.345 10.1145/1014052.1014073 10.1145/604045.604067 10.3115/1610075.1610122 10.3115/1219840.1219855 10.1145/1772938.1772952 10.1145/1390749.1390758 10.1109/ICDM.2003.1250949 10.1145/1651461.1651470 10.1016/j.joi.2009.01.003 10.3115/1609067.1609124 10.1145/1871437.1871741 10.1145/944012.944013 10.3115/1220575.1220648 10.1145/1772690.1772761 10.1007/978-3-642-16184-1_1 10.1007/978-3-642-00672-2_30 10.1007/978-3-540-68825-9_3 10.1111/j.1540-6261.2004.00662.x 10.1145/1651437.1651448 10.3115/1073083.1073153 10.1109/HICSS.2005.445 10.1145/1651461.1651476 10.1007/978-3-540-68125-0_106 10.1145/1557019.1557156 10.1145/1458082.1458223 10.3115/1220575.1220619 10.3115/1218955.1218990 10.1145/1341531.1341560 10.1002/asi.20735 10.1145/1060745.1060797 10.1145/1651461.1651474 10.1145/1242572.1242596 10.1145/1281192.1281202 10.1109/VAST.2006.261431 10.1145/1458082.1458363 10.1145/1645953.1646003 10.3115/981623.981633 10.3115/1220355.1220555 |
ContentType | Journal Article |
Copyright | The Author(s) 2011 The Author(s) 2012 |
Copyright_xml | – notice: The Author(s) 2011 – notice: The Author(s) 2012 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10618-011-0238-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 514 |
ExternalDocumentID | 2610841441 10_1007_s10618_011_0238_6 |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c348t-a94b80216e69a01fd2e56a9766f3e9fc2c4b6028c45f9ce9b34c98b2efaea3723 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Thu Sep 04 17:55:13 EDT 2025 Sat Aug 23 14:34:47 EDT 2025 Tue Jul 01 00:40:29 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Fri Feb 21 02:33:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Sentiment analysis Opinion mining Contradiction analysis |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-a94b80216e69a01fd2e56a9766f3e9fc2c4b6028c45f9ce9b34c98b2efaea3723 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 928388516 |
PQPubID | 43030 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_1019649229 proquest_journals_928388516 crossref_citationtrail_10_1007_s10618_011_0238_6 crossref_primary_10_1007_s10618_011_0238_6 springer_journals_10_1007_s10618_011_0238_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2012 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Yu H, Hatzivassiloglou V (2003) Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Collins M, Steedman M (eds) EMNLP, Sapporo, JP, EMNLP’03, pp 129–136. http://portal.acm.org/citation.cfm?id=1119355.1119372 Liu B, Hu M, Cheng J (2005) Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th international conference on world wide web. ACM, New York, NY, USA, WWW’05, pp 342–351. doi:10.1145/1060745.1060797. Wiebe J, Riloff E (2005) Creating subjective and objective sentence classifiers from unannotated texts. In: CICLing-2005 Osherenko A, André E (2007) Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Proceedings of the 2nd international conference on affective computing and intelligent interaction. Springer-Verlag, Berlin, ACII’07, pp 230–241. doi:10.1007/978-3-540-74889-2_21. Pado S, de Marneffe MC, MacCartney B, Rafferty AN, Yeh E, Manning CD (2008) Deciding entailment and contradiction with stochastic and edit distance-based alignment. In: Proceedings of the first text analysis conference, TAC’08 Chen F, Tan PN, Jain AK (2009) A co-classification framework for detecting web spam and spammers in social media web sites. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 1807–1810. doi:10.1145/1645953.1646235. Choudhury MD, Sundaram H, John A, Seligmann DD (2008) Multi-scale characterization of social network dynamics in the blogosphere. In: CIKM, pp 1515–1516 Thet TT, Na JC, Khoo CS, Shakthikumar S (2009) Sentiment analysis of movie reviews on discussion boards using a linguistic approach. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09 Chaovalit P, Zhou L (2005) Movie review mining: a comparison between supervised and unsupervised classification approaches. Hawaii international conference on system sciences, vol 4, p 112c. doi:10.1109/HICSS.2005.445. Dave K, Lawrence S, Pennock D (2003) Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th international conference on World Wide Web, ACM, New York, NY, USA, WWW’03, pp 519–528. doi:10.1145/775152.775226. Hu M, Liu B (2004a) Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’04, pp 168–177. doi:10.1145/1014052.1014073. Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, The Association for Computational Linguistics Bermingham A, Ghose A, Smeaton AF (2010) Classifying sentiment in microblogs: Is brevity an advantage? In: Huang J, Koudas N, Jones G, Wu X, Collins-Thompson K, An A (eds) CIKM, ACM, pp 1833–1836 Voorhees EM (2008) Contradictions and justifications: extensions to the textual entailment task. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 63–71 Harabagiu S, Hickl A, Lacatusu F (2006) Negation, contrast and contradiction in text processing. In: AAAI’06: proceedings of the 21st national conference on artificial intelligence, pp 755–762 Alm CO, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, HLT’05, pp 579–586. 10.3115/1220575.1220648. Kim HD, Zhai C (2009) Generating comparative summaries of contradictory opinions in text. In: Proceedings of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 385–394. doi:10.1145/1645953.1646004. Tsytsarau M, Palpanas T, Denecke K (2011) Scalable detection of sentiment-based contradictions. In: First international workshop on knowledge diversity on the web, Colocated with WWW 2011, Hyderabad, India, 28–31 Mar 2011 Devitt A, Ahmad K (2007) Sentiment polarity identification in financial news: a cohesion-based approach. In: 45th Annual meeting of the Association of Computational Linguistics Nowson S (2009) Scary films good, scary flights bad: topic driven feature selection for classification of sentiment. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 17–24. doi:10.1145/1651461.1651465. Choi Y, Kim Y, Myaeng SH (2009) Domain-specific sentiment analysis using contextual feature generation. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 37–44. doi:10.1145/1651461.1651469. Yi J, Nasukawa T, Bunescu R, Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Proceedings of the IEEE international conference on data mining, ICDM’03 Riloff E, Wiebe J, Phillips W (2005) Exploiting subjectivity classification to improve information extraction. In: Veloso MM, Kambhampati S (eds) AAAI. AAAI Press/The MIT Press, pp 1106–1111 Archak N, Ghose A, Ipeirotis PG (2007) Show me the money!: deriving the pricing power of product features by mining consumer reviews. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’07, pp 56–65. doi:10.1145/1281192.1281202. Wiebe J, Wilson T, Bell M (2001) Identifying collocations for recognizing opinions. In: Proceedings of the ACL workshop on collocation: computational extraction, analysis, and exploitation, Association for Computational Linguistics, ACL’01, pp 24–31 Melville P, Gryc W, Lawrence RD (2009) Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’09, pp 1275–1284. 10.1145/1557019.1557156. MiaoQ.LiQ.DaiRAmazing: a sentiment mining and retrieval systemExpert Syst Appl20093637192719810.1016/j.eswa.2008.09.035 FellbaumCWordNet: an electronic lexical database1998CambridgeMIT Press0913.68054 Ku LW, Liang YT, Chen HH (2006) Opinion extraction, summarization and tracking in news and blog corpora. In: Proceedings of AAAI-2006 spring symposium on computational approaches to analyzing weblogs HuMLiuBMcguinnessDLFergusonGMcguinnessDLFergusonGMining opinion features in customer reviewsAAAI2004CambridgeAAAI Press/The MIT Press755760 Nadeau D, Sabourin C, de Koninck J, Matwin S, Turney P (2006) Automatic dream sentiment analysis. In: Proceedings of the workshop on computational aesthetics at the 21st national conference on artificial intelligence, AAAI-06 Godbole N, Srinivasaiah M, Skiena S (2007) Large-scale sentiment analysis for news and blogs. In: Proceedings of the international conference on weblogs and social media, ICWSM’07 Esuli A, Sebastiani F (2006) Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06 Giampiccolo D, Dang HT, Magnini B, Dagan I, Cabrio E, Dolan B (2008) The fourth pascal recognizing textual entailment challenge. In: Proceedings of the first text analysis conference, TAC’08 McArthur R (2008) Uncovering deep user context from blogs. In: AND, pp 47–54 TangHTanSChengXA survey on sentiment detection of reviewsExpert Syst Appl20093671076010773 PrabowoRThelwallMSentiment analysis: a combined approachJ Informetr20093214315710.1016/j.joi.2009.01.003 Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, pp 271–278 Read J, Carroll J (2009) Weakly supervised techniques for domain-independent sentiment classification. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 45–52. doi:10.1145/1651461.1651470. Taboada M, Anthony C, Voll K (2006a) Methods for creating semantic orientation dictionaries. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06, pp 427–432 Carenini G, Ng R, Pauls A (2006) Multi-document summarization of evaluative text. In: Proceedings of the 11st conference of the European Chapter of the Association for Computational Linguistics, pp 3–7 Varlamis I, Vassalos V, Palaios A (2008) Monitoring the evolution of interests in the blogosphere. In: ICDE workshops. IEEE Computer Society, pp 513–518 Leung CWK, Chan SCF, Chung FL (2006) Integrating collaborative filtering and sentiment analysis: a rating inference approach. In: ECAI 2006 workshop on recommender systems, pp 62–66 KoppelMSchlerJThe importance of neutral examples for learning sentimentComput Intell2006222100109222744310.1111/j.1467-8640.2006.00276.x Zhang J, Kawai Y, Kumamoto T, Tanaka K (2009) A novel visualization method for distinction of web news sentiment. In: Vossen G, Long DDE, Yu JX (eds) WISE. Lecture notes in computer science, vol 5802. Springer pp 181–194 Ekman P, Friesen WV, Ellsworth P (1982) What emotion categories or dimensions can observers judge from facial behavior? In: Emotion in the human face. Cambridge University Press, New York, pp 39–55 Jindal N, Liu B (2008) Opinion spam and analysis. In: Proceedings of the international conference on Web search and web data mining. ACM, New York, NY, USA, WSDM’08, pp 219–230. doi:10.1145/1341531.1341560. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP 2002, pp 79–86 Liu H, Lieberman H, Selker T (2003) A model of textual affect sensing using real-world knowledge. In: Proceedings of the 8th international P Turney (238_CR92) 2003; 21 238_CR80 238_CR83 238_CR84 238_CR81 238_CR82 238_CR87 238_CR88 238_CR85 238_CR86 238_CR89 238_CR90 238_CR91 L. Zhou (238_CR102) 2008; 59 238_CR94 238_CR95 238_CR93 238_CR10 238_CR98 238_CR11 238_CR99 238_CR96 238_CR97 238_CR14 238_CR1 238_CR12 238_CR2 238_CR13 238_CR18 238_CR4 238_CR19 238_CR5 238_CR16 238_CR6 238_CR17 M Koppel (238_CR48) 2006; 22 Q. Miao (238_CR64) 2009; 36 238_CR61 238_CR62 238_CR60 238_CR65 238_CR66 238_CR63 238_CR69 238_CR67 238_CR68 238_CR72 238_CR73 238_CR70 238_CR101 238_CR71 238_CR100 238_CR103 238_CR77 238_CR74 238_CR75 238_CR79 238_CR40 238_CR44 238_CR41 238_CR42 238_CR47 238_CR45 238_CR46 W Antweiler (238_CR3) 2004; 59 238_CR49 JA Chevalier (238_CR15) 2006; 43 238_CR50 238_CR51 238_CR54 238_CR55 238_CR52 238_CR53 238_CR58 238_CR59 238_CR56 238_CR57 B Pang (238_CR76) 2008; 2 238_CR7 238_CR8 238_CR9 R Prabowo (238_CR78) 2009; 3 M Hu (238_CR43) 2004 238_CR21 238_CR22 238_CR20 238_CR25 (238_CR28) 1998 238_CR26 238_CR23 238_CR24 238_CR29 238_CR27 238_CR32 238_CR33 238_CR30 238_CR31 238_CR36 238_CR37 238_CR34 238_CR35 238_CR38 238_CR39 |
References_xml | – reference: Hoffman T (2008) Online reputation management is hot—but is it ethical? Computerworld – reference: Pang B, Lee L (2005) Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: ACL – reference: Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In: Calzolari N, Choukri K, Maegaard B, Mariani J, Odijk J, Piperidis S, Rosner M, Tapias D (eds) LREC, European Language Resources Association – reference: Carenini G, Ng RT, Zwart E (2005) Extracting knowledge from evaluative text. In: Proceedings of the 3rd international conference on Knowledge capture. ACM, New York, NY, USA, K-CAP’05, pp 11–18. doi:10.1145/1088622.1088626. – reference: ZhouL.ChaovalitPOntology-supported polarity miningJ Am Soc Inf Sci Technol2008599811010.1002/asi.20735 – reference: Hu M, Liu B (2004a) Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’04, pp 168–177. doi:10.1145/1014052.1014073. – reference: TurneyPLittmanMMeasuring praise and criticism: inference of semantic orientation from associationACM Trans Inf Syst20032131534610.1145/944012.944013 – reference: Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, pp 271–278 – reference: Bodendorf F, Kaiser C (2009) Detecting opinion leaders and trends in online social networks. In: Proceeding of the 2nd ACM workshop on social web search and mining. ACM, New York, NY, USA, SWSM’09, pp 65–68, doi:10.1145/1651437.1651448. – reference: Turney PD (2002) Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting on ACL, Association for Computational Linguistics, Morristown, NJ, USA, ACL’02, pp 417–424. doi:10.3115/1073083.1073153. – reference: Liu B, Hu M, Cheng J (2005) Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th international conference on world wide web. ACM, New York, NY, USA, WWW’05, pp 342–351. doi:10.1145/1060745.1060797. – reference: Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, The Association for Computational Linguistics – reference: Zhang J, Kawai Y, Kumamoto T, Tanaka K (2009) A novel visualization method for distinction of web news sentiment. In: Vossen G, Long DDE, Yu JX (eds) WISE. Lecture notes in computer science, vol 5802. Springer pp 181–194 – reference: Wiebe J, Wilson T, Bell M (2001) Identifying collocations for recognizing opinions. In: Proceedings of the ACL workshop on collocation: computational extraction, analysis, and exploitation, Association for Computational Linguistics, ACL’01, pp 24–31 – reference: Osherenko A, André E (2007) Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Proceedings of the 2nd international conference on affective computing and intelligent interaction. Springer-Verlag, Berlin, ACII’07, pp 230–241. doi:10.1007/978-3-540-74889-2_21. – reference: ChevalierJAMayzlinDThe effect of word of mouth on sales: online book reviewsJ Mark Res200643334535410.1509/jmkr.43.3.345 – reference: Mullen T, Malouf R (2006) A preliminary investigation into sentiment analysis of informal political discourse. In: AAAI spring symposium on computational approaches to analyzing weblogs – reference: PrabowoRThelwallMSentiment analysis: a combined approachJ Informetr20093214315710.1016/j.joi.2009.01.003 – reference: Liu J, Birnbaum L, Pardo B (2009) Spectrum: retrieving different points of view from the blogosphere. In: Proceedings of the third international conference on weblogs and social media – reference: Dasgupta S, Ng V (2009) Topic-wise, sentiment-wise, or otherwise?: identifying the hidden dimension for unsupervised text classification. In: Proceedings of the 2009 conference on empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, EMNLP’09, pp 580–589 – reference: Ku LW, Liang YT, Chen HH (2006) Opinion extraction, summarization and tracking in news and blog corpora. In: Proceedings of AAAI-2006 spring symposium on computational approaches to analyzing weblogs – reference: O’Hare N, Davy M, Bermingham A, Ferguson P, Sheridan P, Gurrin C, Smeaton AF (2009) Topic-dependent sentiment analysis of financial blogs. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09 – reference: Lim E, Liu B, Jindal N, Nguyen V, Lauw W (2010) Detecting product review spammers using rating behaviors. In: CIKM, Toronto, ON, Canada – reference: Choi Y, Kim Y, Myaeng SH (2009) Domain-specific sentiment analysis using contextual feature generation. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 37–44. doi:10.1145/1651461.1651469. – reference: Bermingham A, Ghose A, Smeaton AF (2010) Classifying sentiment in microblogs: Is brevity an advantage? In: Huang J, Koudas N, Jones G, Wu X, Collins-Thompson K, An A (eds) CIKM, ACM, pp 1833–1836 – reference: Carenini G, Ng R, Pauls A (2006) Multi-document summarization of evaluative text. In: Proceedings of the 11st conference of the European Chapter of the Association for Computational Linguistics, pp 3–7 – reference: Taboada M, Anthony C, Voll K (2006a) Methods for creating semantic orientation dictionaries. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06, pp 427–432 – reference: Feng S, Wang D, Yu G, Yang C, Yang N (2009) Sentiment clustering: a novel method to explore in the blogosphere. In: Proceedings of the joint international conferences on advances in data and web management. Springer-Verlag, Berlin, Heidelberg, APWeb/WAIM’09, pp 332–344. doi:10.1007/978-3-642-00672-2_30. – reference: Fahrni A, Klenner M (2008) Old wine or warm beer: target-specific sentiment analysis of adjectives. In: Proceedings of the symposium on affective language in human and machine, AISB 2008 convention, pp 60–63 – reference: Ennals R, Byler D, Agosta JM, Rosario B (2010a) What is disputed on the web? In: Proceedings of the 4th ACM workshop on information credibility on the web, WICOW 2010, Raleigh, USA, 27 Apr 2010 – reference: He B, Macdonald C, He J, Ounis I (2008) An effective statistical approach to blog post opinion retrieval. In: CIKM, pp 1063–1072 – reference: Godbole N, Srinivasaiah M, Skiena S (2007) Large-scale sentiment analysis for news and blogs. In: Proceedings of the international conference on weblogs and social media, ICWSM’07 – reference: Horrigan JA (2008) Online shopping. Pew Internet and American Life Project Report – reference: Bifet A, Frank E (2010) Sentiment knowledge discovery in Twitter streaming data. In: Proceedings of the 13th international conference on discovery science. Springer, Canberra, Australia, pp 1–15 – reference: Bollen J, Mao H, Zeng XJ (2010) Twitter mood predicts the stock market. CoRR abs/1010.3003 – reference: Bestgen Y (2008) Building affective lexicons from specific corpora for automatic sentiment analysis. In: Chair NCC, Choukri K, Maegaard B, Mariani J, Odjik J, Piperidis S, Tapias D (eds) Proceedings of the 6th international conference on language resources and evaluation. European Language Resources Association (ELRA), Marrakech, Morocco, LREC’08. http://www.lrec-conf.org/proceedings/lrec2008/ – reference: Tsytsarau M, Palpanas T, Denecke K (2011) Scalable detection of sentiment-based contradictions. In: First international workshop on knowledge diversity on the web, Colocated with WWW 2011, Hyderabad, India, 28–31 Mar 2011 – reference: de Marneffe MC, Rafferty AN, Manning CD (2008) Finding contradictions in text. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 1039–1047 – reference: Jindal N, Liu B (2008) Opinion spam and analysis. In: Proceedings of the international conference on Web search and web data mining. ACM, New York, NY, USA, WSDM’08, pp 219–230. doi:10.1145/1341531.1341560. – reference: Varlamis I, Vassalos V, Palaios A (2008) Monitoring the evolution of interests in the blogosphere. In: ICDE workshops. IEEE Computer Society, pp 513–518 – reference: Kim SM, Hovy E (2004) Determining the sentiment of opinions. In: Proceedings of the 20th international conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, COLING’04, p 1367. doi:10.3115/1220355.1220555. – reference: Ku LW, Lee LY, Wu TH, Chen HH (2005) Major topic detection and its application to opinion summarization. In: Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, SIGIR’05, pp 627–628. doi:10.1145/1076034.1076161. – reference: MiaoQ.LiQ.DaiRAmazing: a sentiment mining and retrieval systemExpert Syst Appl20093637192719810.1016/j.eswa.2008.09.035 – reference: Goldberg A, Zhu X (2006) Seeing stars when there aren’t many stars: graph-based semi-supervised learning for sentiment categorization. In: TextGraphs workshop on graph based methods for natural language processing – reference: Taboada M, Gillies MA, McFetridge P (2006b) Sentiment classification techniques for tracking literary reputation. In: Proceedings of LREC workshop towards computational models of literary analysis, pp 36–43 – reference: Lin C, He Y (2009) Joint sentiment/topic model for sentiment analysis. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 375–384. doi:10.1145/1645953.1646003. – reference: Leung CWK, Chan SCF, Chung FL (2006) Integrating collaborative filtering and sentiment analysis: a rating inference approach. In: ECAI 2006 workshop on recommender systems, pp 62–66 – reference: Stoyanov V, Cardie C (2008) Topic identification for fine-grained opinion analysis. In: Proceedings of the 22nd international conference on computational linguistics, Manchester, UK, Coling’08, pp 817–824 – reference: Harabagiu S, Hickl A, Lacatusu F (2006) Negation, contrast and contradiction in text processing. In: AAAI’06: proceedings of the 21st national conference on artificial intelligence, pp 755–762 – reference: Yi J, Nasukawa T, Bunescu R, Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Proceedings of the IEEE international conference on data mining, ICDM’03 – reference: Ku LW, Lo YS, Chen HH (2007) Using polarity scores of words for sentence-level opinion extraction. In: Proceedings of NTCIR-6 workshop meeting, pp 316–322 – reference: Choudhury MD, Sundaram H, John A, Seligmann DD (2008) Multi-scale characterization of social network dynamics in the blogosphere. In: CIKM, pp 1515–1516 – reference: Church KW, Hanks P (1989) Word association norms, mutual information, and lexicography. In: Proceedings of the 27th annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp 76–83. doi:10.3115/981623.981633. – reference: Kim HD, Zhai C (2009) Generating comparative summaries of contradictory opinions in text. In: Proceedings of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 385–394. doi:10.1145/1645953.1646004. – reference: Thet TT, Na JC, Khoo CS, Shakthikumar S (2009) Sentiment analysis of movie reviews on discussion boards using a linguistic approach. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09 – reference: FellbaumCWordNet: an electronic lexical database1998CambridgeMIT Press0913.68054 – reference: Zhang J, Yu CT, Meng W (2007) Opinion retrieval from blogs. In: Silva MJ, Laender AHF, Baeza-Yates RA, McGuinness DL, Olstad B, Olsen ØH, Falcão AO (eds) CIKM, ACM, pp 831–840 – reference: Yu H, Hatzivassiloglou V (2003) Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Collins M, Steedman M (eds) EMNLP, Sapporo, JP, EMNLP’03, pp 129–136. http://portal.acm.org/citation.cfm?id=1119355.1119372 – reference: Dave K, Lawrence S, Pennock D (2003) Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th international conference on World Wide Web, ACM, New York, NY, USA, WWW’03, pp 519–528. doi:10.1145/775152.775226. – reference: McArthur R (2008) Uncovering deep user context from blogs. In: AND, pp 47–54 – reference: Mei Q, Ling X, Wondra M, Su H, Zhai C (2007) Topic sentiment mixture: modeling facets and opinions in weblogs. In: WWW, ACM, New York, NY, USA, pp 171–180 – reference: Gindl S, Liegl J (2008) Evaluation of different sentiment detection methods for polarity classification on web-based reviews. In: Proceedings of the 18th European conference on artificial intelligence, pp 35–43 – reference: AntweilerWFrankMZIs all that talk just noise? the information content of internet stock message boardsJ Financ20045931259129410.1111/j.1540-6261.2004.00662.x – reference: TangHTanSChengXA survey on sentiment detection of reviewsExpert Syst Appl20093671076010773 – reference: Shimada K, Endo T (2008) Seeing several stars: a rating inference task for a document containing several evaluation criteria. In: PAKDD, pp 1006–1014 – reference: Zhu J, Zhu M, Wang H, Tsou BK (2009) Aspect-based sentence segmentation for sentiment summarization. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 65–72. doi:10.1145/1651461.1651474. – reference: Annett M, Kondrak G (2008) A comparison of sentiment analysis techniques: Polarizing movie blogs. In: Proceedings of the Canadian Society for Computational Studies of Intelligence, 21st Conference on advances in artificial intelligence, Canadian AI’08, pp 25–35 – reference: Lu Y, Tsaparas P, Ntoulas A, Polanyi L (2010) Exploiting social context for review quality prediction. In: Proceedings of the 19th international conference on world wide web. ACM, New York, NY, USA, WWW’10, pp 691–700. doi:10.1145/1772690.1772761. – reference: Chaovalit P, Zhou L (2005) Movie review mining: a comparison between supervised and unsupervised classification approaches. Hawaii international conference on system sciences, vol 4, p 112c. doi:10.1109/HICSS.2005.445. – reference: Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. Tech. Rep., Stanford University – reference: Tsytsarau M, Palpanas T, Denecke K (2010) Scalable discovery of contradictions on the web. In: Proceedings of the 19th international conference on world wide web, WWW 2010, Raleigh, USA, 26–30 Apr 2010 – reference: Alm CO, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, HLT’05, pp 579–586. 10.3115/1220575.1220648. – reference: Lerman K, Blair-Goldensohn S, Mcdonald R (2009) Sentiment summarization: evaluating and learning user preferences. In: Proceedings of 12th conference of the European chapter of the Association for Computational Linguistics, EACL’09 – reference: Chen C, Ibekwe-SanJuan F, SanJuan E, Weaver C (2006) Visual analysis of conflicting opinions. In: IEEE symposium on visual analytics science and technology, pp 59–66 – reference: Read J, Carroll J (2009) Weakly supervised techniques for domain-independent sentiment classification. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 45–52. doi:10.1145/1651461.1651470. – reference: Esuli A, Sebastiani F (2006) Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06 – reference: Morinaga S, Yamanishi K, Tateishi K, Fukushima T (2002) Mining product reputations on the web. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA, KDD’02, pp 341–349. doi:10.1145/775047.775098. – reference: HuMLiuBMcguinnessDLFergusonGMcguinnessDLFergusonGMining opinion features in customer reviewsAAAI2004CambridgeAAAI Press/The MIT Press755760 – reference: Ennals R, Trushkowsky B, Agosta JM (2010b) Highlighting disputed claims on the web. In: Proceedings of the 19th international conference on world wide web, WWW 2010, Raleigh, USA, 26–30 Apr 2010 – reference: PangBLeeLOpinion mining and sentiment analysisFound Trends Inf Retr200821–2113510.1561/1500000011 – reference: Riloff E, Wiebe J, Phillips W (2005) Exploiting subjectivity classification to improve information extraction. In: Veloso MM, Kambhampati S (eds) AAAI. AAAI Press/The MIT Press, pp 1106–1111 – reference: Giampiccolo D, Dang HT, Magnini B, Dagan I, Cabrio E, Dolan B (2008) The fourth pascal recognizing textual entailment challenge. In: Proceedings of the first text analysis conference, TAC’08 – reference: Nadeau D, Sabourin C, de Koninck J, Matwin S, Turney P (2006) Automatic dream sentiment analysis. In: Proceedings of the workshop on computational aesthetics at the 21st national conference on artificial intelligence, AAAI-06 – reference: Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP 2002, pp 79–86 – reference: Kamps J, Marx M, Mokken RJ, Rijke MD (2004) Using wordnet to measure semantic orientation of adjectives. In: Proceedings of the 4th international conference on language resources and evaluation, LREC’04, vol IV, pp 1115–1118 – reference: Archak N, Ghose A, Ipeirotis PG (2007) Show me the money!: deriving the pricing power of product features by mining consumer reviews. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’07, pp 56–65. doi:10.1145/1281192.1281202. – reference: Liu H, Lieberman H, Selker T (2003) A model of textual affect sensing using real-world knowledge. In: Proceedings of the 8th international conference on intelligent user interfaces, IUI’03, pp 125–133 – reference: Melville P, Gryc W, Lawrence RD (2009) Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’09, pp 1275–1284. 10.1145/1557019.1557156. – reference: Voorhees EM (2008) Contradictions and justifications: extensions to the textual entailment task. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 63–71 – reference: Devitt A, Ahmad K (2007) Sentiment polarity identification in financial news: a cohesion-based approach. In: 45th Annual meeting of the Association of Computational Linguistics – reference: Liu B (2010) Sentiment analysis and subjectivity. In: Indurkhya N, Damerau FJ (eds) Handbook of natural language processing, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton. ISBN 978-1420085921 – reference: Nowson S (2009) Scary films good, scary flights bad: topic driven feature selection for classification of sentiment. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 17–24. doi:10.1145/1651461.1651465. – reference: KoppelMSchlerJThe importance of neutral examples for learning sentimentComput Intell2006222100109222744310.1111/j.1467-8640.2006.00276.x – reference: Missen MM, Boughanem M (2009) Using wordnet’s semantic relations for opinion detection in blogs. In: Proceedings of the 31th European conference on IR research on advances in information retrieval. Springer-Verlag, Berlin, ECIR’09, pp 729–733. doi:10.1007/978-3-642-00958-7_75. – reference: Chen F, Tan PN, Jain AK (2009) A co-classification framework for detecting web spam and spammers in social media web sites. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 1807–1810. doi:10.1145/1645953.1646235. – reference: Hillard D, Ostendorf M, Shriberg E (2003) Detection of agreement vs. disagreement in meetings: training with unlabeled data. In: HLT-NAACL – reference: Thomas M, Pang B, Lee L (2006) Get out the vote: determining support or opposition from congressional floor-debate transcripts. In: EMNLP, pp 327–335 – reference: Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Cohen WW, Gosling S (eds) ICWSM. The AAAI Press – reference: Gamon M (2004) Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th international conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, COLING’04, p 841. doi:10.3115/1220355.1220476. – reference: Ekman P, Friesen WV, Ellsworth P (1982) What emotion categories or dimensions can observers judge from facial behavior? In: Emotion in the human face. Cambridge University Press, New York, pp 39–55 – reference: Pado S, de Marneffe MC, MacCartney B, Rafferty AN, Yeh E, Manning CD (2008) Deciding entailment and contradiction with stochastic and edit distance-based alignment. In: Proceedings of the first text analysis conference, TAC’08 – reference: Galley M, McKeown K, Hirschberg J, Shriberg E (2004) Identifying agreement and disagreement in conversational speech: Use of Bayesian networks to model pragmatic dependencies. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, ACL’04, pp 669–676. doi:10.3115/1218955.1219040. – reference: Wiebe J, Riloff E (2005) Creating subjective and objective sentence classifiers from unannotated texts. In: CICLing-2005 – volume: 36 start-page: 7192 issue: 3 year: 2009 ident: 238_CR64 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.035 – ident: 238_CR49 doi: 10.1145/1076034.1076161 – ident: 238_CR65 doi: 10.1007/978-3-642-00958-7_75 – ident: 238_CR100 doi: 10.1145/1321440.1321555 – ident: 238_CR80 – ident: 238_CR59 doi: 10.1609/icwsm.v3i1.13953 – ident: 238_CR25 doi: 10.1145/1772690.1772726 – ident: 238_CR22 – ident: 238_CR6 – ident: 238_CR16 doi: 10.1145/1651461.1651469 – ident: 238_CR68 – ident: 238_CR51 – ident: 238_CR45 – ident: 238_CR101 doi: 10.1007/978-3-642-04409-0_22 – ident: 238_CR30 doi: 10.3115/1218955.1219040 – ident: 238_CR33 – ident: 238_CR39 doi: 10.3115/1073483.1073495 – ident: 238_CR99 doi: 10.3115/1119355.1119372 – ident: 238_CR85 doi: 10.1016/j.eswa.2009.02.063 – ident: 238_CR90 doi: 10.1609/icwsm.v4i1.14009 – ident: 238_CR88 doi: 10.1145/1772690.1772871 – ident: 238_CR93 doi: 10.1109/ICDEW.2008.4498371 – ident: 238_CR27 – ident: 238_CR9 – ident: 238_CR82 doi: 10.3115/1599081.1599184 – ident: 238_CR10 doi: 10.1145/1088622.1088626 – ident: 238_CR40 – ident: 238_CR47 doi: 10.1145/1645953.1646004 – ident: 238_CR11 – ident: 238_CR34 – ident: 238_CR54 doi: 10.1145/1871437.1871557 – ident: 238_CR53 – ident: 238_CR95 doi: 10.1007/978-3-540-30586-6_53 – ident: 238_CR19 doi: 10.3115/1699571.1699589 – ident: 238_CR70 doi: 10.1145/1651461.1651464 – ident: 238_CR66 doi: 10.1145/775047.775098 – ident: 238_CR36 doi: 10.3115/1654758.1654769 – ident: 238_CR50 doi: 10.1101/pdb.rec8147 – ident: 238_CR31 doi: 10.3115/1220355.1220476 – ident: 238_CR71 doi: 10.1007/978-3-540-74889-2_21 – volume: 2 start-page: 1 issue: 1–2 year: 2008 ident: 238_CR76 publication-title: Found Trends Inf Retr doi: 10.1561/1500000011 – volume: 22 start-page: 100 issue: 2 year: 2006 ident: 238_CR48 publication-title: Comput Intell doi: 10.1111/j.1467-8640.2006.00276.x – ident: 238_CR69 doi: 10.1145/1651461.1651465 – ident: 238_CR14 doi: 10.1145/1645953.1646235 – ident: 238_CR56 – ident: 238_CR20 doi: 10.1145/775152.775226 – volume: 43 start-page: 345 issue: 3 year: 2006 ident: 238_CR15 publication-title: J Mark Res doi: 10.1509/jmkr.43.3.345 – ident: 238_CR67 – ident: 238_CR73 – ident: 238_CR42 doi: 10.1145/1014052.1014073 – ident: 238_CR84 – ident: 238_CR32 – ident: 238_CR57 doi: 10.1145/604045.604067 – ident: 238_CR87 doi: 10.3115/1610075.1610122 – ident: 238_CR75 doi: 10.3115/1219840.1219855 – ident: 238_CR24 doi: 10.1145/1772938.1772952 – ident: 238_CR61 doi: 10.1145/1390749.1390758 – ident: 238_CR26 – ident: 238_CR41 – ident: 238_CR98 doi: 10.1109/ICDM.2003.1250949 – ident: 238_CR79 doi: 10.1145/1651461.1651470 – ident: 238_CR37 – ident: 238_CR89 – volume: 3 start-page: 143 issue: 2 year: 2009 ident: 238_CR78 publication-title: J Informetr doi: 10.1016/j.joi.2009.01.003 – ident: 238_CR52 doi: 10.3115/1609067.1609124 – ident: 238_CR5 doi: 10.1145/1871437.1871741 – volume: 21 start-page: 315 year: 2003 ident: 238_CR92 publication-title: ACM Trans Inf Syst doi: 10.1145/944012.944013 – ident: 238_CR23 – ident: 238_CR96 – ident: 238_CR1 doi: 10.3115/1220575.1220648 – ident: 238_CR60 doi: 10.1145/1772690.1772761 – ident: 238_CR7 doi: 10.1007/978-3-642-16184-1_1 – ident: 238_CR29 doi: 10.1007/978-3-642-00672-2_30 – ident: 238_CR2 doi: 10.1007/978-3-540-68825-9_3 – start-page: 755 volume-title: AAAI year: 2004 ident: 238_CR43 – volume: 59 start-page: 1259 issue: 3 year: 2004 ident: 238_CR3 publication-title: J Financ doi: 10.1111/j.1540-6261.2004.00662.x – volume-title: WordNet: an electronic lexical database year: 1998 ident: 238_CR28 – ident: 238_CR8 doi: 10.1145/1651437.1651448 – ident: 238_CR91 doi: 10.3115/1073083.1073153 – ident: 238_CR12 doi: 10.1109/HICSS.2005.445 – ident: 238_CR86 doi: 10.1145/1651461.1651476 – ident: 238_CR81 doi: 10.1007/978-3-540-68125-0_106 – ident: 238_CR63 doi: 10.1145/1557019.1557156 – ident: 238_CR38 doi: 10.1145/1458082.1458223 – ident: 238_CR97 doi: 10.3115/1220575.1220619 – ident: 238_CR72 – ident: 238_CR74 doi: 10.3115/1218955.1218990 – ident: 238_CR44 doi: 10.1145/1341531.1341560 – volume: 59 start-page: 98 year: 2008 ident: 238_CR102 publication-title: J Am Soc Inf Sci Technol doi: 10.1002/asi.20735 – ident: 238_CR35 – ident: 238_CR58 doi: 10.1145/1060745.1060797 – ident: 238_CR83 – ident: 238_CR103 doi: 10.1145/1651461.1651474 – ident: 238_CR62 doi: 10.1145/1242572.1242596 – ident: 238_CR4 doi: 10.1145/1281192.1281202 – ident: 238_CR13 doi: 10.1109/VAST.2006.261431 – ident: 238_CR21 – ident: 238_CR94 – ident: 238_CR17 doi: 10.1145/1458082.1458363 – ident: 238_CR55 doi: 10.1145/1645953.1646003 – ident: 238_CR77 – ident: 238_CR18 doi: 10.3115/981623.981633 – ident: 238_CR46 doi: 10.3115/1220355.1220555 |
SSID | ssj0005230 |
Score | 2.5067835 |
Snippet | In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis.... Issue Title: SI: A Decade of Mining the Web In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 478 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Computer Science Data mining Data Mining and Knowledge Discovery Information retrieval Information Storage and Retrieval Internet Machine learning Mining Physics Presidential elections Product reviews Retrieval Search engines Searching Sentiment analysis Statistics for Engineering Subjectivity Trends User generated content |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURVrVSJ4UgLdJJtujkUsRdCThd6WJJscRLfSbQX_vZN9tFVU8JxsFmaSmW-Yb2YAroTNtHZSUpUpSYUWlibeGuq15drbnpbl1JKHRzkai_tJPKnruIuG7d6kJEtLvVbsJqNAvMLwF_0MlZuwFYd2UniJx2ywxuvgVWlwImicRMtU5k9HfHVGK4T5LSla-prhPuzWIJEMKq0ewIbL27DXDGAg9Xtsw3bJ37TFIaABmL27DzLNyWs58oEUC_NcGTMSWKBhBbEeQat5BOPh3dPtiNZzEKjlIplTrYRJ0BdLJ5XuRT5jLpYacYT03ClvmRVGIk6wIvbKOmW4sCoxzHntNO8zfgytfJq7EyCcZ4iQ-kbjwxYmijHa8hwjImdEZBQ3Heg1Aklt3SQ8zKp4SVftjYMMU5RhGmSYyg5cLz95qzpk_LW520g5rR9LkSqEOAkiP1y9XK7iLQ-pC5276aIIRDTUtGJMdeCmUc7qhF__d_qv3V3YQTzEKj7jGbTms4U7R8wxNxflHfsEQpzLMw priority: 102 providerName: Springer Nature |
Title | Survey on mining subjective data on the web |
URI | https://link.springer.com/article/10.1007/s10618-011-0238-6 https://www.proquest.com/docview/928388516 https://www.proquest.com/docview/1019649229 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9uKL3-Kcjgo-KcG1SWPzIDJlU5QNEQfzqSRp8iDaTbcJ_vde-rGp4F6bpoFL7u53vcv9AI6ZTqQ0nBORCE6YZJpEVitipabS6pbkGWtJr89vB-xuGA4r0CvvwriyytImZoY6GWn3j_xMoB-MEB7wy_E7caRRLrlaMmjIglkhucg6jK1ADS1y2KpC7arTf3j8UfNB82vDESNh5M_TnPldOu67ui6MrtGNEf7bUS3Q55-EaeaHuhuwVgBIr53v-CZUTLoF6yU5g1fo6jagSfj4NF_eKPXeMhIIbzJTL7l581xdqBtB9OehHd2BQbfzdH1LCmYEoimLpkQKpiL0ztxwIVu-TQITconIgltqhNWBZoojctAstEIboSjTIlKBsdJIeh7QXaimo9TsgUdpgpjpXElUdab8EOMvSzFGMor5SlBVh1YphlgXbcMde8VrvGh47CQXo-RiJ7mY1-FkPmWc98xY9nKjlG1cqM8knm92HY7mo3juXTJDpmY0m7jSNMGZCAJRh9NySxZf-He9_aXrNWAVEVGQVzQeQHX6MTOHiDqmqgkrUfemCbX2zfN9p1mcLHw6CNrfB8nVUg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEC1kPOjFXRzXCHpRgtOddOwcRFwZt0FEwVubpJODaI86M4of579Z6WVGBb157iVQqdSrSi0PYI2bVCkrBJWpFJQrbmjsjKZOGaacaSiRs5ZctETzhp_eRrdD8FH1wviyysom5oY6bRt_R74lEQdjdA_E7tMz9aRRPrlaMWioklkh3cknjJV9HWf2_Q0juM7OySFu93oYHh9dHzRpSTJADeNxlyrJdYxAJ6yQqhG4NLSRUAjSwjErnQkN1wJB2PDISWOlZtzIWIfWKavYtp97gAgwzP39SQ2G949al1dfakxY0aYccxrFQT-tWvTuicDXkWE0j7BJxXdgHHi7PxK0Oe4dT8BY6bCSvULDJmHIZlMwXpFBkNI2TAOaoJdX-07aGXnMSSdIp6fvC3NKfB2qf4LeJkG7PQM3_yKkWahl7czOAWEsRR9tWys0LVwHEcZ7jmFMZjUPtGS6Do1KDIkpx5R7toyHZDBg2UsuQcklXnKJqMNG_5OnYkbHXy8vVLJNyuPaSfrKVYfV_lM8Zz55ojLb7nV8KZwUXIahrMNmtSWDP_y63vyf663ASPP64jw5P2mdLcAoemNhUU25CLXuS88uocfT1culXhG4-29V_gTsFg-V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8hKqG9bAM2rYOBkbaXTVab2HHjh2oalIoOVqFpSH3LbMd-QJBCPzb1T9x_tXPitIAEbzw7iaXz-X53uY8fwEducqWsEFTmUlCuuKGpM5o6ZZhypq1EyVryYyhOLvj3UTJag391L4wvq6xtYmmo87Hx_8hbEnEwRfdAtFyoijjv9b_e3FJPIOUTrTWbhgosC3m3nDYWejxO7eIvRnPT7qCHR_8pjvvHv45OaCAcoIbxdEaV5DpF0BNWSNWOXB7bRCgEbOGYlc7EhmuBgGx44qSxUjNuZKpj65RVrONnICAaNDoI-hgHNg6Ph-c_79SbsKplOeU0SaNlirXq4xORrynDyB4hlIr7ILnyfB8ka0sM7L-Gl8F5Jd8qbduENVtswauaGIIEO7ENaI4mf-yCjAtyXRJQkOlcX1amlfiaVL-CnidBG_4GLp5FSG9hvRgX9h0QxnL01zpaoZnhOkow9nMM4zOreaQl001o12LITBhZ7pkzrrLVsGUvuQwll3nJZaIJn5ev3FTzOp56eKeWbRau7jRbKloTDpareOd8IkUVdjyf-rI4KbiMY9mEL_WRrL7w6H7vn9xvHzZQpbOzwfB0B16gYxZXhZW7sD6bzO0HdH5mei-oFYHfz63J_wHLjxPZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+mining+subjective+data+on+the+web&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tsytsarau%2C+Mikalai&rft.au=Palpanas%2C+Themis&rft.date=2012-05-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=24&rft.issue=3&rft.spage=478&rft.epage=514&rft_id=info:doi/10.1007%2Fs10618-011-0238-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_011_0238_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |