Survey on mining subjective data on the web

In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for min...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 24; no. 3; pp. 478 - 514
Main Authors Tsytsarau, Mikalai, Palpanas, Themis
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.05.2012
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-011-0238-6

Cover

Abstract In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers’ attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field.
AbstractList In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers' attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field.
Issue Title: SI: A Decade of Mining the Web In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by revealing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, exposing the customers' attitude towards a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field.[PUBLICATION ABSTRACT]
Author Palpanas, Themis
Tsytsarau, Mikalai
Author_xml – sequence: 1
  givenname: Mikalai
  surname: Tsytsarau
  fullname: Tsytsarau, Mikalai
  email: tsytsarau@disi.unitn.eu
  organization: University of Trento
– sequence: 2
  givenname: Themis
  surname: Palpanas
  fullname: Palpanas, Themis
  organization: University of Trento
BookMark eNp9kE1LAzEQhoNUsK3-AG-LJ0Gi-djNJkcpfkHBgwreQjadrSlttibZSv-9u6wgFPQ0A_M8L8M7QSPfeEDonJJrSkh5EykRVGJCKSaMSyyO0JgWJcdlId5H3c5ljgtJyQmaxLgihBSMkzG6emnDDvZZ47ON884vs9hWK7DJ7SBbmGT6S_qA7AuqU3Rcm3WEs585RW_3d6-zRzx_fnia3c6x5blM2Ki8koRRAUIZQusFg0IYVQpRc1C1ZTavBGHS5kWtLKiK51bJikFtwPCS8Sm6HHK3oflsISa9cdHCem08NG3UlFAlcsWY6tCLA3TVtMF332nFJJeyoKKDygGyoYkxQK2tSya5xqdg3LrL032HeuhQdx3qvkPdm_TA3Aa3MWH_r8MGJ3asX0L4felv6Rthy4Ov
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2920075
crossref_primary_10_1080_0952813X_2024_2384568
crossref_primary_10_1142_S0219649218500132
crossref_primary_10_1007_s11042_024_19668_w
crossref_primary_10_1109_TAFFC_2017_2705691
crossref_primary_10_1007_s10489_019_01540_2
crossref_primary_10_1007_s42979_021_00993_y
crossref_primary_10_1145_2932708
crossref_primary_10_1016_j_jik_2020_06_003
crossref_primary_10_1016_j_jairtraman_2023_102441
crossref_primary_10_1109_ACCESS_2018_2797224
crossref_primary_10_3366_cor_2019_0177
crossref_primary_10_29121_granthaalayah_v5_i4RACSIT_2017_3354
crossref_primary_10_1016_j_jretconser_2021_102881
crossref_primary_10_1080_14766825_2021_1876077
crossref_primary_10_1108_14636681211284926
crossref_primary_10_1016_j_neunet_2014_05_020
crossref_primary_10_1016_j_eswa_2017_03_042
crossref_primary_10_1109_TKDE_2015_2485209
crossref_primary_10_1177_0047287517747753
crossref_primary_10_1371_journal_pone_0217591
crossref_primary_10_1007_s44230_023_00018_2
crossref_primary_10_1177_0165551514535710
crossref_primary_10_1007_s13278_024_01202_3
crossref_primary_10_1109_ACCESS_2017_2668840
crossref_primary_10_1007_s10115_024_02200_9
crossref_primary_10_1017_S1351324912000332
crossref_primary_10_1155_2020_7526580
crossref_primary_10_3390_s25061731
crossref_primary_10_1007_s10579_024_09742_y
crossref_primary_10_32329_uad_1383794
crossref_primary_10_1145_3369869
crossref_primary_10_1016_j_eswa_2024_124449
crossref_primary_10_1098_rsos_201756
crossref_primary_10_1007_s10586_017_0742_6
crossref_primary_10_1016_j_ins_2015_03_040
crossref_primary_10_1016_j_knosys_2018_01_023
crossref_primary_10_1016_j_jss_2016_11_027
crossref_primary_10_1108_JCM_12_2019_3540
crossref_primary_10_2139_ssrn_4138915
crossref_primary_10_32628_CSEIT2062149
crossref_primary_10_1002_cpe_5107
crossref_primary_10_1016_j_ipm_2014_06_002
crossref_primary_10_1145_2938640
crossref_primary_10_25046_aj0203209
crossref_primary_10_7763_IJSSH_2016_V6_640
crossref_primary_10_1016_j_eswa_2012_07_059
crossref_primary_10_1016_j_knosys_2019_104868
crossref_primary_10_3390_su6106529
crossref_primary_10_1016_j_asej_2014_04_011
crossref_primary_10_1016_j_indmarman_2019_12_012
crossref_primary_10_1109_TAFFC_2021_3104512
crossref_primary_10_3390_app122211775
crossref_primary_10_3389_fphy_2024_1336795
crossref_primary_10_1145_2380776_2380784
crossref_primary_10_3390_ijerph18115993
crossref_primary_10_1007_s12530_023_09506_z
crossref_primary_10_1590_1984_9240827
crossref_primary_10_1007_s10950_019_09833_2
crossref_primary_10_1016_j_inffus_2016_11_012
crossref_primary_10_1016_j_ipm_2017_11_009
crossref_primary_10_1016_j_eswa_2025_127165
crossref_primary_10_1016_j_matpr_2021_02_183
crossref_primary_10_1177_0165551517722741
crossref_primary_10_1002_jtr_2073
crossref_primary_10_1155_2017_8310934
crossref_primary_10_1142_S0219622019300015
crossref_primary_10_1016_j_neucom_2016_10_086
crossref_primary_10_3390_computation12020028
crossref_primary_10_1016_j_knosys_2021_106755
crossref_primary_10_1007_s10462_016_9472_z
crossref_primary_10_26634_jse_9_3_3467
crossref_primary_10_1186_s40649_021_00097_w
crossref_primary_10_2139_ssrn_3012524
crossref_primary_10_35940_ijitee_C9762_0111322
crossref_primary_10_1108_JKM_07_2015_0296
crossref_primary_10_4018_IJRSDA_2018040106
crossref_primary_10_1109_TAFFC_2020_2970399
crossref_primary_10_1016_j_jretconser_2022_103011
crossref_primary_10_3390_asi6050092
crossref_primary_10_1007_s11042_023_16174_3
crossref_primary_10_3390_app15062912
crossref_primary_10_1016_j_ipm_2016_07_001
crossref_primary_10_3390_s18041080
crossref_primary_10_1155_2020_5824873
crossref_primary_10_4236_ce_2016_718265
crossref_primary_10_1016_j_knosys_2019_105131
crossref_primary_10_1111_cgf_13217
crossref_primary_10_1142_S1469026820500315
crossref_primary_10_1587_nolta_9_382
crossref_primary_10_1016_j_procs_2021_05_017
crossref_primary_10_1007_s40012_014_0055_3
crossref_primary_10_1007_s44212_024_00065_5
crossref_primary_10_1016_j_ipm_2016_12_008
crossref_primary_10_1145_2577554_2577560
crossref_primary_10_1080_13683500_2023_2277900
crossref_primary_10_1108_OIR_04_2017_0114
crossref_primary_10_1155_2019_1712569
crossref_primary_10_3390_app122312380
crossref_primary_10_1140_epjds_s13688_016_0085_1
crossref_primary_10_25046_aj020115
crossref_primary_10_1109_TKDE_2016_2597848
crossref_primary_10_1371_journal_pone_0213843
crossref_primary_10_1155_2016_2385429
crossref_primary_10_36548_jtcsst_2024_1_003
crossref_primary_10_24011_barofd_1492196
crossref_primary_10_1016_j_neucom_2016_06_045
crossref_primary_10_1016_j_ipm_2014_05_001
crossref_primary_10_1007_s10462_023_10472_w
crossref_primary_10_1177_1094670514524625
crossref_primary_10_1016_j_ipm_2015_05_006
crossref_primary_10_1007_s11042_022_12345_w
crossref_primary_10_1145_3457206
crossref_primary_10_3390_data6060067
crossref_primary_10_1007_s10462_021_10030_2
crossref_primary_10_1080_10919392_2024_2335689
crossref_primary_10_1007_s10115_018_1236_4
crossref_primary_10_1007_s13278_016_0400_7
crossref_primary_10_21015_vtse_v11i2_1574
crossref_primary_10_5897_SRE2016_6381
crossref_primary_10_1007_s10586_016_0677_3
crossref_primary_10_1109_TAFFC_2022_3218504
crossref_primary_10_1007_s42979_021_00480_4
crossref_primary_10_1016_j_eswa_2013_06_076
crossref_primary_10_1080_17517575_2019_1669829
crossref_primary_10_1007_s00799_015_0139_1
crossref_primary_10_1109_TAFFC_2015_2444846
crossref_primary_10_3390_fi14100300
crossref_primary_10_1007_s11042_022_14112_3
crossref_primary_10_1016_j_knosys_2022_108586
crossref_primary_10_1002_asi_22984
crossref_primary_10_1007_s40797_022_00217_z
crossref_primary_10_1016_j_joi_2015_12_002
crossref_primary_10_1155_2020_5812715
crossref_primary_10_14778_3436905_3436924
crossref_primary_10_3390_app112311091
crossref_primary_10_1080_02642069_2018_1476497
crossref_primary_10_1007_s11704_019_9094_0
crossref_primary_10_1016_j_knosys_2015_06_015
crossref_primary_10_1007_s10462_020_09884_9
crossref_primary_10_1145_2432546_2432552
crossref_primary_10_1007_s10462_017_9597_8
crossref_primary_10_1080_02522667_2017_1417726
Cites_doi 10.1016/j.eswa.2008.09.035
10.1145/1076034.1076161
10.1007/978-3-642-00958-7_75
10.1145/1321440.1321555
10.1609/icwsm.v3i1.13953
10.1145/1772690.1772726
10.1145/1651461.1651469
10.1007/978-3-642-04409-0_22
10.3115/1218955.1219040
10.3115/1073483.1073495
10.3115/1119355.1119372
10.1016/j.eswa.2009.02.063
10.1609/icwsm.v4i1.14009
10.1145/1772690.1772871
10.1109/ICDEW.2008.4498371
10.3115/1599081.1599184
10.1145/1088622.1088626
10.1145/1645953.1646004
10.1145/1871437.1871557
10.1007/978-3-540-30586-6_53
10.3115/1699571.1699589
10.1145/1651461.1651464
10.1145/775047.775098
10.3115/1654758.1654769
10.1101/pdb.rec8147
10.3115/1220355.1220476
10.1007/978-3-540-74889-2_21
10.1561/1500000011
10.1111/j.1467-8640.2006.00276.x
10.1145/1651461.1651465
10.1145/1645953.1646235
10.1145/775152.775226
10.1509/jmkr.43.3.345
10.1145/1014052.1014073
10.1145/604045.604067
10.3115/1610075.1610122
10.3115/1219840.1219855
10.1145/1772938.1772952
10.1145/1390749.1390758
10.1109/ICDM.2003.1250949
10.1145/1651461.1651470
10.1016/j.joi.2009.01.003
10.3115/1609067.1609124
10.1145/1871437.1871741
10.1145/944012.944013
10.3115/1220575.1220648
10.1145/1772690.1772761
10.1007/978-3-642-16184-1_1
10.1007/978-3-642-00672-2_30
10.1007/978-3-540-68825-9_3
10.1111/j.1540-6261.2004.00662.x
10.1145/1651437.1651448
10.3115/1073083.1073153
10.1109/HICSS.2005.445
10.1145/1651461.1651476
10.1007/978-3-540-68125-0_106
10.1145/1557019.1557156
10.1145/1458082.1458223
10.3115/1220575.1220619
10.3115/1218955.1218990
10.1145/1341531.1341560
10.1002/asi.20735
10.1145/1060745.1060797
10.1145/1651461.1651474
10.1145/1242572.1242596
10.1145/1281192.1281202
10.1109/VAST.2006.261431
10.1145/1458082.1458363
10.1145/1645953.1646003
10.3115/981623.981633
10.3115/1220355.1220555
ContentType Journal Article
Copyright The Author(s) 2011
The Author(s) 2012
Copyright_xml – notice: The Author(s) 2011
– notice: The Author(s) 2012
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10618-011-0238-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 514
ExternalDocumentID 2610841441
10_1007_s10618_011_0238_6
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c348t-a94b80216e69a01fd2e56a9766f3e9fc2c4b6028c45f9ce9b34c98b2efaea3723
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Thu Sep 04 17:55:13 EDT 2025
Sat Aug 23 14:34:47 EDT 2025
Tue Jul 01 00:40:29 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Fri Feb 21 02:33:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Sentiment analysis
Opinion mining
Contradiction analysis
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-a94b80216e69a01fd2e56a9766f3e9fc2c4b6028c45f9ce9b34c98b2efaea3723
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 928388516
PQPubID 43030
PageCount 37
ParticipantIDs proquest_miscellaneous_1019649229
proquest_journals_928388516
crossref_citationtrail_10_1007_s10618_011_0238_6
crossref_primary_10_1007_s10618_011_0238_6
springer_journals_10_1007_s10618_011_0238_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yu H, Hatzivassiloglou V (2003) Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Collins M, Steedman M (eds) EMNLP, Sapporo, JP, EMNLP’03, pp 129–136. http://portal.acm.org/citation.cfm?id=1119355.1119372
Liu B, Hu M, Cheng J (2005) Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th international conference on world wide web. ACM, New York, NY, USA, WWW’05, pp 342–351. doi:10.1145/1060745.1060797.
Wiebe J, Riloff E (2005) Creating subjective and objective sentence classifiers from unannotated texts. In: CICLing-2005
Osherenko A, André E (2007) Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Proceedings of the 2nd international conference on affective computing and intelligent interaction. Springer-Verlag, Berlin, ACII’07, pp 230–241. doi:10.1007/978-3-540-74889-2_21.
Pado S, de Marneffe MC, MacCartney B, Rafferty AN, Yeh E, Manning CD (2008) Deciding entailment and contradiction with stochastic and edit distance-based alignment. In: Proceedings of the first text analysis conference, TAC’08
Chen F, Tan PN, Jain AK (2009) A co-classification framework for detecting web spam and spammers in social media web sites. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 1807–1810. doi:10.1145/1645953.1646235.
Choudhury MD, Sundaram H, John A, Seligmann DD (2008) Multi-scale characterization of social network dynamics in the blogosphere. In: CIKM, pp 1515–1516
Thet TT, Na JC, Khoo CS, Shakthikumar S (2009) Sentiment analysis of movie reviews on discussion boards using a linguistic approach. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09
Chaovalit P, Zhou L (2005) Movie review mining: a comparison between supervised and unsupervised classification approaches. Hawaii international conference on system sciences, vol 4, p 112c. doi:10.1109/HICSS.2005.445.
Dave K, Lawrence S, Pennock D (2003) Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th international conference on World Wide Web, ACM, New York, NY, USA, WWW’03, pp 519–528. doi:10.1145/775152.775226.
Hu M, Liu B (2004a) Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’04, pp 168–177. doi:10.1145/1014052.1014073.
Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, The Association for Computational Linguistics
Bermingham A, Ghose A, Smeaton AF (2010) Classifying sentiment in microblogs: Is brevity an advantage? In: Huang J, Koudas N, Jones G, Wu X, Collins-Thompson K, An A (eds) CIKM, ACM, pp 1833–1836
Voorhees EM (2008) Contradictions and justifications: extensions to the textual entailment task. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 63–71
Harabagiu S, Hickl A, Lacatusu F (2006) Negation, contrast and contradiction in text processing. In: AAAI’06: proceedings of the 21st national conference on artificial intelligence, pp 755–762
Alm CO, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, HLT’05, pp 579–586. 10.3115/1220575.1220648.
Kim HD, Zhai C (2009) Generating comparative summaries of contradictory opinions in text. In: Proceedings of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 385–394. doi:10.1145/1645953.1646004.
Tsytsarau M, Palpanas T, Denecke K (2011) Scalable detection of sentiment-based contradictions. In: First international workshop on knowledge diversity on the web, Colocated with WWW 2011, Hyderabad, India, 28–31 Mar 2011
Devitt A, Ahmad K (2007) Sentiment polarity identification in financial news: a cohesion-based approach. In: 45th Annual meeting of the Association of Computational Linguistics
Nowson S (2009) Scary films good, scary flights bad: topic driven feature selection for classification of sentiment. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 17–24. doi:10.1145/1651461.1651465.
Choi Y, Kim Y, Myaeng SH (2009) Domain-specific sentiment analysis using contextual feature generation. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 37–44. doi:10.1145/1651461.1651469.
Yi J, Nasukawa T, Bunescu R, Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Proceedings of the IEEE international conference on data mining, ICDM’03
Riloff E, Wiebe J, Phillips W (2005) Exploiting subjectivity classification to improve information extraction. In: Veloso MM, Kambhampati S (eds) AAAI. AAAI Press/The MIT Press, pp 1106–1111
Archak N, Ghose A, Ipeirotis PG (2007) Show me the money!: deriving the pricing power of product features by mining consumer reviews. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’07, pp 56–65. doi:10.1145/1281192.1281202.
Wiebe J, Wilson T, Bell M (2001) Identifying collocations for recognizing opinions. In: Proceedings of the ACL workshop on collocation: computational extraction, analysis, and exploitation, Association for Computational Linguistics, ACL’01, pp 24–31
Melville P, Gryc W, Lawrence RD (2009) Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’09, pp 1275–1284. 10.1145/1557019.1557156.
MiaoQ.LiQ.DaiRAmazing: a sentiment mining and retrieval systemExpert Syst Appl20093637192719810.1016/j.eswa.2008.09.035
FellbaumCWordNet: an electronic lexical database1998CambridgeMIT Press0913.68054
Ku LW, Liang YT, Chen HH (2006) Opinion extraction, summarization and tracking in news and blog corpora. In: Proceedings of AAAI-2006 spring symposium on computational approaches to analyzing weblogs
HuMLiuBMcguinnessDLFergusonGMcguinnessDLFergusonGMining opinion features in customer reviewsAAAI2004CambridgeAAAI Press/The MIT Press755760
Nadeau D, Sabourin C, de Koninck J, Matwin S, Turney P (2006) Automatic dream sentiment analysis. In: Proceedings of the workshop on computational aesthetics at the 21st national conference on artificial intelligence, AAAI-06
Godbole N, Srinivasaiah M, Skiena S (2007) Large-scale sentiment analysis for news and blogs. In: Proceedings of the international conference on weblogs and social media, ICWSM’07
Esuli A, Sebastiani F (2006) Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06
Giampiccolo D, Dang HT, Magnini B, Dagan I, Cabrio E, Dolan B (2008) The fourth pascal recognizing textual entailment challenge. In: Proceedings of the first text analysis conference, TAC’08
McArthur R (2008) Uncovering deep user context from blogs. In: AND, pp 47–54
TangHTanSChengXA survey on sentiment detection of reviewsExpert Syst Appl20093671076010773
PrabowoRThelwallMSentiment analysis: a combined approachJ Informetr20093214315710.1016/j.joi.2009.01.003
Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, pp 271–278
Read J, Carroll J (2009) Weakly supervised techniques for domain-independent sentiment classification. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 45–52. doi:10.1145/1651461.1651470.
Taboada M, Anthony C, Voll K (2006a) Methods for creating semantic orientation dictionaries. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06, pp 427–432
Carenini G, Ng R, Pauls A (2006) Multi-document summarization of evaluative text. In: Proceedings of the 11st conference of the European Chapter of the Association for Computational Linguistics, pp 3–7
Varlamis I, Vassalos V, Palaios A (2008) Monitoring the evolution of interests in the blogosphere. In: ICDE workshops. IEEE Computer Society, pp 513–518
Leung CWK, Chan SCF, Chung FL (2006) Integrating collaborative filtering and sentiment analysis: a rating inference approach. In: ECAI 2006 workshop on recommender systems, pp 62–66
KoppelMSchlerJThe importance of neutral examples for learning sentimentComput Intell2006222100109222744310.1111/j.1467-8640.2006.00276.x
Zhang J, Kawai Y, Kumamoto T, Tanaka K (2009) A novel visualization method for distinction of web news sentiment. In: Vossen G, Long DDE, Yu JX (eds) WISE. Lecture notes in computer science, vol 5802. Springer pp 181–194
Ekman P, Friesen WV, Ellsworth P (1982) What emotion categories or dimensions can observers judge from facial behavior? In: Emotion in the human face. Cambridge University Press, New York, pp 39–55
Jindal N, Liu B (2008) Opinion spam and analysis. In: Proceedings of the international conference on Web search and web data mining. ACM, New York, NY, USA, WSDM’08, pp 219–230. doi:10.1145/1341531.1341560.
Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP 2002, pp 79–86
Liu H, Lieberman H, Selker T (2003) A model of textual affect sensing using real-world knowledge. In: Proceedings of the 8th international
P Turney (238_CR92) 2003; 21
238_CR80
238_CR83
238_CR84
238_CR81
238_CR82
238_CR87
238_CR88
238_CR85
238_CR86
238_CR89
238_CR90
238_CR91
L. Zhou (238_CR102) 2008; 59
238_CR94
238_CR95
238_CR93
238_CR10
238_CR98
238_CR11
238_CR99
238_CR96
238_CR97
238_CR14
238_CR1
238_CR12
238_CR2
238_CR13
238_CR18
238_CR4
238_CR19
238_CR5
238_CR16
238_CR6
238_CR17
M Koppel (238_CR48) 2006; 22
Q. Miao (238_CR64) 2009; 36
238_CR61
238_CR62
238_CR60
238_CR65
238_CR66
238_CR63
238_CR69
238_CR67
238_CR68
238_CR72
238_CR73
238_CR70
238_CR101
238_CR71
238_CR100
238_CR103
238_CR77
238_CR74
238_CR75
238_CR79
238_CR40
238_CR44
238_CR41
238_CR42
238_CR47
238_CR45
238_CR46
W Antweiler (238_CR3) 2004; 59
238_CR49
JA Chevalier (238_CR15) 2006; 43
238_CR50
238_CR51
238_CR54
238_CR55
238_CR52
238_CR53
238_CR58
238_CR59
238_CR56
238_CR57
B Pang (238_CR76) 2008; 2
238_CR7
238_CR8
238_CR9
R Prabowo (238_CR78) 2009; 3
M Hu (238_CR43) 2004
238_CR21
238_CR22
238_CR20
238_CR25
(238_CR28) 1998
238_CR26
238_CR23
238_CR24
238_CR29
238_CR27
238_CR32
238_CR33
238_CR30
238_CR31
238_CR36
238_CR37
238_CR34
238_CR35
238_CR38
238_CR39
References_xml – reference: Hoffman T (2008) Online reputation management is hot—but is it ethical? Computerworld
– reference: Pang B, Lee L (2005) Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: ACL
– reference: Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In: Calzolari N, Choukri K, Maegaard B, Mariani J, Odijk J, Piperidis S, Rosner M, Tapias D (eds) LREC, European Language Resources Association
– reference: Carenini G, Ng RT, Zwart E (2005) Extracting knowledge from evaluative text. In: Proceedings of the 3rd international conference on Knowledge capture. ACM, New York, NY, USA, K-CAP’05, pp 11–18. doi:10.1145/1088622.1088626.
– reference: ZhouL.ChaovalitPOntology-supported polarity miningJ Am Soc Inf Sci Technol2008599811010.1002/asi.20735
– reference: Hu M, Liu B (2004a) Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’04, pp 168–177. doi:10.1145/1014052.1014073.
– reference: TurneyPLittmanMMeasuring praise and criticism: inference of semantic orientation from associationACM Trans Inf Syst20032131534610.1145/944012.944013
– reference: Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, pp 271–278
– reference: Bodendorf F, Kaiser C (2009) Detecting opinion leaders and trends in online social networks. In: Proceeding of the 2nd ACM workshop on social web search and mining. ACM, New York, NY, USA, SWSM’09, pp 65–68, doi:10.1145/1651437.1651448.
– reference: Turney PD (2002) Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting on ACL, Association for Computational Linguistics, Morristown, NJ, USA, ACL’02, pp 417–424. doi:10.3115/1073083.1073153.
– reference: Liu B, Hu M, Cheng J (2005) Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th international conference on world wide web. ACM, New York, NY, USA, WWW’05, pp 342–351. doi:10.1145/1060745.1060797.
– reference: Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, The Association for Computational Linguistics
– reference: Zhang J, Kawai Y, Kumamoto T, Tanaka K (2009) A novel visualization method for distinction of web news sentiment. In: Vossen G, Long DDE, Yu JX (eds) WISE. Lecture notes in computer science, vol 5802. Springer pp 181–194
– reference: Wiebe J, Wilson T, Bell M (2001) Identifying collocations for recognizing opinions. In: Proceedings of the ACL workshop on collocation: computational extraction, analysis, and exploitation, Association for Computational Linguistics, ACL’01, pp 24–31
– reference: Osherenko A, André E (2007) Lexical affect sensing: Are affect dictionaries necessary to analyze affect? In: Proceedings of the 2nd international conference on affective computing and intelligent interaction. Springer-Verlag, Berlin, ACII’07, pp 230–241. doi:10.1007/978-3-540-74889-2_21.
– reference: ChevalierJAMayzlinDThe effect of word of mouth on sales: online book reviewsJ Mark Res200643334535410.1509/jmkr.43.3.345
– reference: Mullen T, Malouf R (2006) A preliminary investigation into sentiment analysis of informal political discourse. In: AAAI spring symposium on computational approaches to analyzing weblogs
– reference: PrabowoRThelwallMSentiment analysis: a combined approachJ Informetr20093214315710.1016/j.joi.2009.01.003
– reference: Liu J, Birnbaum L, Pardo B (2009) Spectrum: retrieving different points of view from the blogosphere. In: Proceedings of the third international conference on weblogs and social media
– reference: Dasgupta S, Ng V (2009) Topic-wise, sentiment-wise, or otherwise?: identifying the hidden dimension for unsupervised text classification. In: Proceedings of the 2009 conference on empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, EMNLP’09, pp 580–589
– reference: Ku LW, Liang YT, Chen HH (2006) Opinion extraction, summarization and tracking in news and blog corpora. In: Proceedings of AAAI-2006 spring symposium on computational approaches to analyzing weblogs
– reference: O’Hare N, Davy M, Bermingham A, Ferguson P, Sheridan P, Gurrin C, Smeaton AF (2009) Topic-dependent sentiment analysis of financial blogs. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09
– reference: Lim E, Liu B, Jindal N, Nguyen V, Lauw W (2010) Detecting product review spammers using rating behaviors. In: CIKM, Toronto, ON, Canada
– reference: Choi Y, Kim Y, Myaeng SH (2009) Domain-specific sentiment analysis using contextual feature generation. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 37–44. doi:10.1145/1651461.1651469.
– reference: Bermingham A, Ghose A, Smeaton AF (2010) Classifying sentiment in microblogs: Is brevity an advantage? In: Huang J, Koudas N, Jones G, Wu X, Collins-Thompson K, An A (eds) CIKM, ACM, pp 1833–1836
– reference: Carenini G, Ng R, Pauls A (2006) Multi-document summarization of evaluative text. In: Proceedings of the 11st conference of the European Chapter of the Association for Computational Linguistics, pp 3–7
– reference: Taboada M, Anthony C, Voll K (2006a) Methods for creating semantic orientation dictionaries. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06, pp 427–432
– reference: Feng S, Wang D, Yu G, Yang C, Yang N (2009) Sentiment clustering: a novel method to explore in the blogosphere. In: Proceedings of the joint international conferences on advances in data and web management. Springer-Verlag, Berlin, Heidelberg, APWeb/WAIM’09, pp 332–344. doi:10.1007/978-3-642-00672-2_30.
– reference: Fahrni A, Klenner M (2008) Old wine or warm beer: target-specific sentiment analysis of adjectives. In: Proceedings of the symposium on affective language in human and machine, AISB 2008 convention, pp 60–63
– reference: Ennals R, Byler D, Agosta JM, Rosario B (2010a) What is disputed on the web? In: Proceedings of the 4th ACM workshop on information credibility on the web, WICOW 2010, Raleigh, USA, 27 Apr 2010
– reference: He B, Macdonald C, He J, Ounis I (2008) An effective statistical approach to blog post opinion retrieval. In: CIKM, pp 1063–1072
– reference: Godbole N, Srinivasaiah M, Skiena S (2007) Large-scale sentiment analysis for news and blogs. In: Proceedings of the international conference on weblogs and social media, ICWSM’07
– reference: Horrigan JA (2008) Online shopping. Pew Internet and American Life Project Report
– reference: Bifet A, Frank E (2010) Sentiment knowledge discovery in Twitter streaming data. In: Proceedings of the 13th international conference on discovery science. Springer, Canberra, Australia, pp 1–15
– reference: Bollen J, Mao H, Zeng XJ (2010) Twitter mood predicts the stock market. CoRR abs/1010.3003
– reference: Bestgen Y (2008) Building affective lexicons from specific corpora for automatic sentiment analysis. In: Chair NCC, Choukri K, Maegaard B, Mariani J, Odjik J, Piperidis S, Tapias D (eds) Proceedings of the 6th international conference on language resources and evaluation. European Language Resources Association (ELRA), Marrakech, Morocco, LREC’08. http://www.lrec-conf.org/proceedings/lrec2008/
– reference: Tsytsarau M, Palpanas T, Denecke K (2011) Scalable detection of sentiment-based contradictions. In: First international workshop on knowledge diversity on the web, Colocated with WWW 2011, Hyderabad, India, 28–31 Mar 2011
– reference: de Marneffe MC, Rafferty AN, Manning CD (2008) Finding contradictions in text. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 1039–1047
– reference: Jindal N, Liu B (2008) Opinion spam and analysis. In: Proceedings of the international conference on Web search and web data mining. ACM, New York, NY, USA, WSDM’08, pp 219–230. doi:10.1145/1341531.1341560.
– reference: Varlamis I, Vassalos V, Palaios A (2008) Monitoring the evolution of interests in the blogosphere. In: ICDE workshops. IEEE Computer Society, pp 513–518
– reference: Kim SM, Hovy E (2004) Determining the sentiment of opinions. In: Proceedings of the 20th international conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, COLING’04, p 1367. doi:10.3115/1220355.1220555.
– reference: Ku LW, Lee LY, Wu TH, Chen HH (2005) Major topic detection and its application to opinion summarization. In: Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, SIGIR’05, pp 627–628. doi:10.1145/1076034.1076161.
– reference: MiaoQ.LiQ.DaiRAmazing: a sentiment mining and retrieval systemExpert Syst Appl20093637192719810.1016/j.eswa.2008.09.035
– reference: Goldberg A, Zhu X (2006) Seeing stars when there aren’t many stars: graph-based semi-supervised learning for sentiment categorization. In: TextGraphs workshop on graph based methods for natural language processing
– reference: Taboada M, Gillies MA, McFetridge P (2006b) Sentiment classification techniques for tracking literary reputation. In: Proceedings of LREC workshop towards computational models of literary analysis, pp 36–43
– reference: Lin C, He Y (2009) Joint sentiment/topic model for sentiment analysis. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 375–384. doi:10.1145/1645953.1646003.
– reference: Leung CWK, Chan SCF, Chung FL (2006) Integrating collaborative filtering and sentiment analysis: a rating inference approach. In: ECAI 2006 workshop on recommender systems, pp 62–66
– reference: Stoyanov V, Cardie C (2008) Topic identification for fine-grained opinion analysis. In: Proceedings of the 22nd international conference on computational linguistics, Manchester, UK, Coling’08, pp 817–824
– reference: Harabagiu S, Hickl A, Lacatusu F (2006) Negation, contrast and contradiction in text processing. In: AAAI’06: proceedings of the 21st national conference on artificial intelligence, pp 755–762
– reference: Yi J, Nasukawa T, Bunescu R, Niblack W (2003) Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Proceedings of the IEEE international conference on data mining, ICDM’03
– reference: Ku LW, Lo YS, Chen HH (2007) Using polarity scores of words for sentence-level opinion extraction. In: Proceedings of NTCIR-6 workshop meeting, pp 316–322
– reference: Choudhury MD, Sundaram H, John A, Seligmann DD (2008) Multi-scale characterization of social network dynamics in the blogosphere. In: CIKM, pp 1515–1516
– reference: Church KW, Hanks P (1989) Word association norms, mutual information, and lexicography. In: Proceedings of the 27th annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp 76–83. doi:10.3115/981623.981633.
– reference: Kim HD, Zhai C (2009) Generating comparative summaries of contradictory opinions in text. In: Proceedings of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 385–394. doi:10.1145/1645953.1646004.
– reference: Thet TT, Na JC, Khoo CS, Shakthikumar S (2009) Sentiment analysis of movie reviews on discussion boards using a linguistic approach. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement, TSA’09
– reference: FellbaumCWordNet: an electronic lexical database1998CambridgeMIT Press0913.68054
– reference: Zhang J, Yu CT, Meng W (2007) Opinion retrieval from blogs. In: Silva MJ, Laender AHF, Baeza-Yates RA, McGuinness DL, Olstad B, Olsen ØH, Falcão AO (eds) CIKM, ACM, pp 831–840
– reference: Yu H, Hatzivassiloglou V (2003) Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Collins M, Steedman M (eds) EMNLP, Sapporo, JP, EMNLP’03, pp 129–136. http://portal.acm.org/citation.cfm?id=1119355.1119372
– reference: Dave K, Lawrence S, Pennock D (2003) Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th international conference on World Wide Web, ACM, New York, NY, USA, WWW’03, pp 519–528. doi:10.1145/775152.775226.
– reference: McArthur R (2008) Uncovering deep user context from blogs. In: AND, pp 47–54
– reference: Mei Q, Ling X, Wondra M, Su H, Zhai C (2007) Topic sentiment mixture: modeling facets and opinions in weblogs. In: WWW, ACM, New York, NY, USA, pp 171–180
– reference: Gindl S, Liegl J (2008) Evaluation of different sentiment detection methods for polarity classification on web-based reviews. In: Proceedings of the 18th European conference on artificial intelligence, pp 35–43
– reference: AntweilerWFrankMZIs all that talk just noise? the information content of internet stock message boardsJ Financ20045931259129410.1111/j.1540-6261.2004.00662.x
– reference: TangHTanSChengXA survey on sentiment detection of reviewsExpert Syst Appl20093671076010773
– reference: Shimada K, Endo T (2008) Seeing several stars: a rating inference task for a document containing several evaluation criteria. In: PAKDD, pp 1006–1014
– reference: Zhu J, Zhu M, Wang H, Tsou BK (2009) Aspect-based sentence segmentation for sentiment summarization. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 65–72. doi:10.1145/1651461.1651474.
– reference: Annett M, Kondrak G (2008) A comparison of sentiment analysis techniques: Polarizing movie blogs. In: Proceedings of the Canadian Society for Computational Studies of Intelligence, 21st Conference on advances in artificial intelligence, Canadian AI’08, pp 25–35
– reference: Lu Y, Tsaparas P, Ntoulas A, Polanyi L (2010) Exploiting social context for review quality prediction. In: Proceedings of the 19th international conference on world wide web. ACM, New York, NY, USA, WWW’10, pp 691–700. doi:10.1145/1772690.1772761.
– reference: Chaovalit P, Zhou L (2005) Movie review mining: a comparison between supervised and unsupervised classification approaches. Hawaii international conference on system sciences, vol 4, p 112c. doi:10.1109/HICSS.2005.445.
– reference: Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. Tech. Rep., Stanford University
– reference: Tsytsarau M, Palpanas T, Denecke K (2010) Scalable discovery of contradictions on the web. In: Proceedings of the 19th international conference on world wide web, WWW 2010, Raleigh, USA, 26–30 Apr 2010
– reference: Alm CO, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, Association for Computational Linguistics, Morristown, NJ, USA, HLT’05, pp 579–586. 10.3115/1220575.1220648.
– reference: Lerman K, Blair-Goldensohn S, Mcdonald R (2009) Sentiment summarization: evaluating and learning user preferences. In: Proceedings of 12th conference of the European chapter of the Association for Computational Linguistics, EACL’09
– reference: Chen C, Ibekwe-SanJuan F, SanJuan E, Weaver C (2006) Visual analysis of conflicting opinions. In: IEEE symposium on visual analytics science and technology, pp 59–66
– reference: Read J, Carroll J (2009) Weakly supervised techniques for domain-independent sentiment classification. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 45–52. doi:10.1145/1651461.1651470.
– reference: Esuli A, Sebastiani F (2006) Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th international conference on language resources and evaluation, LREC’06
– reference: Morinaga S, Yamanishi K, Tateishi K, Fukushima T (2002) Mining product reputations on the web. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA, KDD’02, pp 341–349. doi:10.1145/775047.775098.
– reference: HuMLiuBMcguinnessDLFergusonGMcguinnessDLFergusonGMining opinion features in customer reviewsAAAI2004CambridgeAAAI Press/The MIT Press755760
– reference: Ennals R, Trushkowsky B, Agosta JM (2010b) Highlighting disputed claims on the web. In: Proceedings of the 19th international conference on world wide web, WWW 2010, Raleigh, USA, 26–30 Apr 2010
– reference: PangBLeeLOpinion mining and sentiment analysisFound Trends Inf Retr200821–2113510.1561/1500000011
– reference: Riloff E, Wiebe J, Phillips W (2005) Exploiting subjectivity classification to improve information extraction. In: Veloso MM, Kambhampati S (eds) AAAI. AAAI Press/The MIT Press, pp 1106–1111
– reference: Giampiccolo D, Dang HT, Magnini B, Dagan I, Cabrio E, Dolan B (2008) The fourth pascal recognizing textual entailment challenge. In: Proceedings of the first text analysis conference, TAC’08
– reference: Nadeau D, Sabourin C, de Koninck J, Matwin S, Turney P (2006) Automatic dream sentiment analysis. In: Proceedings of the workshop on computational aesthetics at the 21st national conference on artificial intelligence, AAAI-06
– reference: Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP 2002, pp 79–86
– reference: Kamps J, Marx M, Mokken RJ, Rijke MD (2004) Using wordnet to measure semantic orientation of adjectives. In: Proceedings of the 4th international conference on language resources and evaluation, LREC’04, vol IV, pp 1115–1118
– reference: Archak N, Ghose A, Ipeirotis PG (2007) Show me the money!: deriving the pricing power of product features by mining consumer reviews. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD’07, pp 56–65. doi:10.1145/1281192.1281202.
– reference: Liu H, Lieberman H, Selker T (2003) A model of textual affect sensing using real-world knowledge. In: Proceedings of the 8th international conference on intelligent user interfaces, IUI’03, pp 125–133
– reference: Melville P, Gryc W, Lawrence RD (2009) Sentiment analysis of blogs by combining lexical knowledge with text classification. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, KDD’09, pp 1275–1284. 10.1145/1557019.1557156.
– reference: Voorhees EM (2008) Contradictions and justifications: extensions to the textual entailment task. In: Proceedings of ACL: HLT, Association for Computational Linguistics, Columbus, Ohio, ACL’08, pp 63–71
– reference: Devitt A, Ahmad K (2007) Sentiment polarity identification in financial news: a cohesion-based approach. In: 45th Annual meeting of the Association of Computational Linguistics
– reference: Liu B (2010) Sentiment analysis and subjectivity. In: Indurkhya N, Damerau FJ (eds) Handbook of natural language processing, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton. ISBN 978-1420085921
– reference: Nowson S (2009) Scary films good, scary flights bad: topic driven feature selection for classification of sentiment. In: Proceeding of the international CIKM workshop on topic-sentiment analysis for mass opinion measurement. ACM, New York, NY, USA, TSA’09, pp 17–24. doi:10.1145/1651461.1651465.
– reference: KoppelMSchlerJThe importance of neutral examples for learning sentimentComput Intell2006222100109222744310.1111/j.1467-8640.2006.00276.x
– reference: Missen MM, Boughanem M (2009) Using wordnet’s semantic relations for opinion detection in blogs. In: Proceedings of the 31th European conference on IR research on advances in information retrieval. Springer-Verlag, Berlin, ECIR’09, pp 729–733. doi:10.1007/978-3-642-00958-7_75.
– reference: Chen F, Tan PN, Jain AK (2009) A co-classification framework for detecting web spam and spammers in social media web sites. In: Proceeding of the 18th ACM conference on information and knowledge management. ACM, New York, NY, USA, CIKM’09, pp 1807–1810. doi:10.1145/1645953.1646235.
– reference: Hillard D, Ostendorf M, Shriberg E (2003) Detection of agreement vs. disagreement in meetings: training with unlabeled data. In: HLT-NAACL
– reference: Thomas M, Pang B, Lee L (2006) Get out the vote: determining support or opposition from congressional floor-debate transcripts. In: EMNLP, pp 327–335
– reference: Tumasjan A, Sprenger TO, Sandner PG, Welpe IM (2010) Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Cohen WW, Gosling S (eds) ICWSM. The AAAI Press
– reference: Gamon M (2004) Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th international conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, COLING’04, p 841. doi:10.3115/1220355.1220476.
– reference: Ekman P, Friesen WV, Ellsworth P (1982) What emotion categories or dimensions can observers judge from facial behavior? In: Emotion in the human face. Cambridge University Press, New York, pp 39–55
– reference: Pado S, de Marneffe MC, MacCartney B, Rafferty AN, Yeh E, Manning CD (2008) Deciding entailment and contradiction with stochastic and edit distance-based alignment. In: Proceedings of the first text analysis conference, TAC’08
– reference: Galley M, McKeown K, Hirschberg J, Shriberg E (2004) Identifying agreement and disagreement in conversational speech: Use of Bayesian networks to model pragmatic dependencies. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, ACL’04, pp 669–676. doi:10.3115/1218955.1219040.
– reference: Wiebe J, Riloff E (2005) Creating subjective and objective sentence classifiers from unannotated texts. In: CICLing-2005
– volume: 36
  start-page: 7192
  issue: 3
  year: 2009
  ident: 238_CR64
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.035
– ident: 238_CR49
  doi: 10.1145/1076034.1076161
– ident: 238_CR65
  doi: 10.1007/978-3-642-00958-7_75
– ident: 238_CR100
  doi: 10.1145/1321440.1321555
– ident: 238_CR80
– ident: 238_CR59
  doi: 10.1609/icwsm.v3i1.13953
– ident: 238_CR25
  doi: 10.1145/1772690.1772726
– ident: 238_CR22
– ident: 238_CR6
– ident: 238_CR16
  doi: 10.1145/1651461.1651469
– ident: 238_CR68
– ident: 238_CR51
– ident: 238_CR45
– ident: 238_CR101
  doi: 10.1007/978-3-642-04409-0_22
– ident: 238_CR30
  doi: 10.3115/1218955.1219040
– ident: 238_CR33
– ident: 238_CR39
  doi: 10.3115/1073483.1073495
– ident: 238_CR99
  doi: 10.3115/1119355.1119372
– ident: 238_CR85
  doi: 10.1016/j.eswa.2009.02.063
– ident: 238_CR90
  doi: 10.1609/icwsm.v4i1.14009
– ident: 238_CR88
  doi: 10.1145/1772690.1772871
– ident: 238_CR93
  doi: 10.1109/ICDEW.2008.4498371
– ident: 238_CR27
– ident: 238_CR9
– ident: 238_CR82
  doi: 10.3115/1599081.1599184
– ident: 238_CR10
  doi: 10.1145/1088622.1088626
– ident: 238_CR40
– ident: 238_CR47
  doi: 10.1145/1645953.1646004
– ident: 238_CR11
– ident: 238_CR34
– ident: 238_CR54
  doi: 10.1145/1871437.1871557
– ident: 238_CR53
– ident: 238_CR95
  doi: 10.1007/978-3-540-30586-6_53
– ident: 238_CR19
  doi: 10.3115/1699571.1699589
– ident: 238_CR70
  doi: 10.1145/1651461.1651464
– ident: 238_CR66
  doi: 10.1145/775047.775098
– ident: 238_CR36
  doi: 10.3115/1654758.1654769
– ident: 238_CR50
  doi: 10.1101/pdb.rec8147
– ident: 238_CR31
  doi: 10.3115/1220355.1220476
– ident: 238_CR71
  doi: 10.1007/978-3-540-74889-2_21
– volume: 2
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 238_CR76
  publication-title: Found Trends Inf Retr
  doi: 10.1561/1500000011
– volume: 22
  start-page: 100
  issue: 2
  year: 2006
  ident: 238_CR48
  publication-title: Comput Intell
  doi: 10.1111/j.1467-8640.2006.00276.x
– ident: 238_CR69
  doi: 10.1145/1651461.1651465
– ident: 238_CR14
  doi: 10.1145/1645953.1646235
– ident: 238_CR56
– ident: 238_CR20
  doi: 10.1145/775152.775226
– volume: 43
  start-page: 345
  issue: 3
  year: 2006
  ident: 238_CR15
  publication-title: J Mark Res
  doi: 10.1509/jmkr.43.3.345
– ident: 238_CR67
– ident: 238_CR73
– ident: 238_CR42
  doi: 10.1145/1014052.1014073
– ident: 238_CR84
– ident: 238_CR32
– ident: 238_CR57
  doi: 10.1145/604045.604067
– ident: 238_CR87
  doi: 10.3115/1610075.1610122
– ident: 238_CR75
  doi: 10.3115/1219840.1219855
– ident: 238_CR24
  doi: 10.1145/1772938.1772952
– ident: 238_CR61
  doi: 10.1145/1390749.1390758
– ident: 238_CR26
– ident: 238_CR41
– ident: 238_CR98
  doi: 10.1109/ICDM.2003.1250949
– ident: 238_CR79
  doi: 10.1145/1651461.1651470
– ident: 238_CR37
– ident: 238_CR89
– volume: 3
  start-page: 143
  issue: 2
  year: 2009
  ident: 238_CR78
  publication-title: J Informetr
  doi: 10.1016/j.joi.2009.01.003
– ident: 238_CR52
  doi: 10.3115/1609067.1609124
– ident: 238_CR5
  doi: 10.1145/1871437.1871741
– volume: 21
  start-page: 315
  year: 2003
  ident: 238_CR92
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/944012.944013
– ident: 238_CR23
– ident: 238_CR96
– ident: 238_CR1
  doi: 10.3115/1220575.1220648
– ident: 238_CR60
  doi: 10.1145/1772690.1772761
– ident: 238_CR7
  doi: 10.1007/978-3-642-16184-1_1
– ident: 238_CR29
  doi: 10.1007/978-3-642-00672-2_30
– ident: 238_CR2
  doi: 10.1007/978-3-540-68825-9_3
– start-page: 755
  volume-title: AAAI
  year: 2004
  ident: 238_CR43
– volume: 59
  start-page: 1259
  issue: 3
  year: 2004
  ident: 238_CR3
  publication-title: J Financ
  doi: 10.1111/j.1540-6261.2004.00662.x
– volume-title: WordNet: an electronic lexical database
  year: 1998
  ident: 238_CR28
– ident: 238_CR8
  doi: 10.1145/1651437.1651448
– ident: 238_CR91
  doi: 10.3115/1073083.1073153
– ident: 238_CR12
  doi: 10.1109/HICSS.2005.445
– ident: 238_CR86
  doi: 10.1145/1651461.1651476
– ident: 238_CR81
  doi: 10.1007/978-3-540-68125-0_106
– ident: 238_CR63
  doi: 10.1145/1557019.1557156
– ident: 238_CR38
  doi: 10.1145/1458082.1458223
– ident: 238_CR97
  doi: 10.3115/1220575.1220619
– ident: 238_CR72
– ident: 238_CR74
  doi: 10.3115/1218955.1218990
– ident: 238_CR44
  doi: 10.1145/1341531.1341560
– volume: 59
  start-page: 98
  year: 2008
  ident: 238_CR102
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.20735
– ident: 238_CR35
– ident: 238_CR58
  doi: 10.1145/1060745.1060797
– ident: 238_CR83
– ident: 238_CR103
  doi: 10.1145/1651461.1651474
– ident: 238_CR62
  doi: 10.1145/1242572.1242596
– ident: 238_CR4
  doi: 10.1145/1281192.1281202
– ident: 238_CR13
  doi: 10.1109/VAST.2006.261431
– ident: 238_CR21
– ident: 238_CR94
– ident: 238_CR17
  doi: 10.1145/1458082.1458363
– ident: 238_CR55
  doi: 10.1145/1645953.1646003
– ident: 238_CR77
– ident: 238_CR18
  doi: 10.3115/981623.981633
– ident: 238_CR46
  doi: 10.3115/1220355.1220555
SSID ssj0005230
Score 2.5067835
Snippet In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis....
Issue Title: SI: A Decade of Mining the Web In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 478
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data mining
Data Mining and Knowledge Discovery
Information retrieval
Information Storage and Retrieval
Internet
Machine learning
Mining
Physics
Presidential elections
Product reviews
Retrieval
Search engines
Searching
Sentiment analysis
Statistics for Engineering
Subjectivity
Trends
User generated content
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURVrVSJ4UgLdJJtujkUsRdCThd6WJJscRLfSbQX_vZN9tFVU8JxsFmaSmW-Yb2YAroTNtHZSUpUpSYUWlibeGuq15drbnpbl1JKHRzkai_tJPKnruIuG7d6kJEtLvVbsJqNAvMLwF_0MlZuwFYd2UniJx2ywxuvgVWlwImicRMtU5k9HfHVGK4T5LSla-prhPuzWIJEMKq0ewIbL27DXDGAg9Xtsw3bJ37TFIaABmL27DzLNyWs58oEUC_NcGTMSWKBhBbEeQat5BOPh3dPtiNZzEKjlIplTrYRJ0BdLJ5XuRT5jLpYacYT03ClvmRVGIk6wIvbKOmW4sCoxzHntNO8zfgytfJq7EyCcZ4iQ-kbjwxYmijHa8hwjImdEZBQ3Heg1Aklt3SQ8zKp4SVftjYMMU5RhGmSYyg5cLz95qzpk_LW520g5rR9LkSqEOAkiP1y9XK7iLQ-pC5276aIIRDTUtGJMdeCmUc7qhF__d_qv3V3YQTzEKj7jGbTms4U7R8wxNxflHfsEQpzLMw
  priority: 102
  providerName: Springer Nature
Title Survey on mining subjective data on the web
URI https://link.springer.com/article/10.1007/s10618-011-0238-6
https://www.proquest.com/docview/928388516
https://www.proquest.com/docview/1019649229
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9uKL3-Kcjgo-KcG1SWPzIDJlU5QNEQfzqSRp8iDaTbcJ_vde-rGp4F6bpoFL7u53vcv9AI6ZTqQ0nBORCE6YZJpEVitipabS6pbkGWtJr89vB-xuGA4r0CvvwriyytImZoY6GWn3j_xMoB-MEB7wy_E7caRRLrlaMmjIglkhucg6jK1ADS1y2KpC7arTf3j8UfNB82vDESNh5M_TnPldOu67ui6MrtGNEf7bUS3Q55-EaeaHuhuwVgBIr53v-CZUTLoF6yU5g1fo6jagSfj4NF_eKPXeMhIIbzJTL7l581xdqBtB9OehHd2BQbfzdH1LCmYEoimLpkQKpiL0ztxwIVu-TQITconIgltqhNWBZoojctAstEIboSjTIlKBsdJIeh7QXaimo9TsgUdpgpjpXElUdab8EOMvSzFGMor5SlBVh1YphlgXbcMde8VrvGh47CQXo-RiJ7mY1-FkPmWc98xY9nKjlG1cqM8knm92HY7mo3juXTJDpmY0m7jSNMGZCAJRh9NySxZf-He9_aXrNWAVEVGQVzQeQHX6MTOHiDqmqgkrUfemCbX2zfN9p1mcLHw6CNrfB8nVUg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEC1kPOjFXRzXCHpRgtOddOwcRFwZt0FEwVubpJODaI86M4of579Z6WVGBb157iVQqdSrSi0PYI2bVCkrBJWpFJQrbmjsjKZOGaacaSiRs5ZctETzhp_eRrdD8FH1wviyysom5oY6bRt_R74lEQdjdA_E7tMz9aRRPrlaMWioklkh3cknjJV9HWf2_Q0juM7OySFu93oYHh9dHzRpSTJADeNxlyrJdYxAJ6yQqhG4NLSRUAjSwjErnQkN1wJB2PDISWOlZtzIWIfWKavYtp97gAgwzP39SQ2G949al1dfakxY0aYccxrFQT-tWvTuicDXkWE0j7BJxXdgHHi7PxK0Oe4dT8BY6bCSvULDJmHIZlMwXpFBkNI2TAOaoJdX-07aGXnMSSdIp6fvC3NKfB2qf4LeJkG7PQM3_yKkWahl7czOAWEsRR9tWys0LVwHEcZ7jmFMZjUPtGS6Do1KDIkpx5R7toyHZDBg2UsuQcklXnKJqMNG_5OnYkbHXy8vVLJNyuPaSfrKVYfV_lM8Zz55ojLb7nV8KZwUXIahrMNmtSWDP_y63vyf663ASPP64jw5P2mdLcAoemNhUU25CLXuS88uocfT1culXhG4-29V_gTsFg-V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8hKqG9bAM2rYOBkbaXTVab2HHjh2oalIoOVqFpSH3LbMd-QJBCPzb1T9x_tXPitIAEbzw7iaXz-X53uY8fwEducqWsEFTmUlCuuKGpM5o6ZZhypq1EyVryYyhOLvj3UTJag391L4wvq6xtYmmo87Hx_8hbEnEwRfdAtFyoijjv9b_e3FJPIOUTrTWbhgosC3m3nDYWejxO7eIvRnPT7qCHR_8pjvvHv45OaCAcoIbxdEaV5DpF0BNWSNWOXB7bRCgEbOGYlc7EhmuBgGx44qSxUjNuZKpj65RVrONnICAaNDoI-hgHNg6Ph-c_79SbsKplOeU0SaNlirXq4xORrynDyB4hlIr7ILnyfB8ka0sM7L-Gl8F5Jd8qbduENVtswauaGIIEO7ENaI4mf-yCjAtyXRJQkOlcX1amlfiaVL-CnidBG_4GLp5FSG9hvRgX9h0QxnL01zpaoZnhOkow9nMM4zOreaQl001o12LITBhZ7pkzrrLVsGUvuQwll3nJZaIJn5ev3FTzOp56eKeWbRau7jRbKloTDpareOd8IkUVdjyf-rI4KbiMY9mEL_WRrL7w6H7vn9xvHzZQpbOzwfB0B16gYxZXhZW7sD6bzO0HdH5mei-oFYHfz63J_wHLjxPZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+mining+subjective+data+on+the+web&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Tsytsarau%2C+Mikalai&rft.au=Palpanas%2C+Themis&rft.date=2012-05-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=24&rft.issue=3&rft.spage=478&rft.epage=514&rft_id=info:doi/10.1007%2Fs10618-011-0238-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_011_0238_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon