Impact of sex differences on subject-independent EEG-based emotion recognition models

Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependen...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 190; p. 110036
Main Authors Sheoran, Anshul, Valderrama, Camilo E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2025.110036

Cover

Abstract Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects’ sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject’s sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models. [Display omitted] •Audio-visual stimuli elicit distinct brain activation patterns in females and males.•Females exhibit greater activation in the left hemisphere during emotion processing.•Males display higher activation in the right hemisphere during emotion processing.•Incorporating biological sex enhances emotion prediction accuracy in subject-independent approaches.
AbstractList Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects' sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject's sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models.
Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects' sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject's sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models.Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects' sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject's sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models.
Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects’ sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject’s sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models. [Display omitted] •Audio-visual stimuli elicit distinct brain activation patterns in females and males.•Females exhibit greater activation in the left hemisphere during emotion processing.•Males display higher activation in the right hemisphere during emotion processing.•Incorporating biological sex enhances emotion prediction accuracy in subject-independent approaches.
AbstractElectroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed using deep learning models to predict emotional states. Two approaches can be employed to develop these deep learning models: subject-dependent and subject-independent. The subject-independent approach is more practical since it does not require recalibration for new users. However, it faces challenges due to the high variability of EEG signals among individuals. Recent studies suggest that incorporating subjects’ sex can enhance the accuracy of subject-independent models due to differences in emotional processing between males and females. Although previous studies have demonstrated the effect of sex on emotion recognition, they have primarily focused on the predictive aspect, neglecting the interpretability of how emotion regulation differs between males and females. This work addresses this limitation by using attention network layers to identify brain areas more involved in predicting emotions. Additionally, an odds ratio analysis was conducted using logistic regression to evaluate the impact of sex on emotion prediction. Our findings reveal that cortical activation patterns elicited by emotional audio-visual stimuli differ between females and males, with females showing more neural activation in the left hemisphere and males showing more in the right hemisphere. Moreover, when the output probabilities of the deep learning models are further postprocessing with the subject’s sex, the odds of correctly predicting emotions increase. These findings suggest that sex differences can lead to more robust subject-independent emotion recognition models.
ArticleNumber 110036
Author Valderrama, Camilo E.
Sheoran, Anshul
Author_xml – sequence: 1
  givenname: Anshul
  orcidid: 0009-0006-2795-5140
  surname: Sheoran
  fullname: Sheoran, Anshul
  organization: Department of Applied Computer Science, University of Winnipeg, 515 Portage Avenue, Winnipeg, R3B 2E9, MB, Canada
– sequence: 2
  givenname: Camilo E.
  orcidid: 0000-0001-5333-8265
  surname: Valderrama
  fullname: Valderrama, Camilo E.
  email: c.valderrama@uwinnipeg.ca
  organization: Department of Applied Computer Science, University of Winnipeg, 515 Portage Avenue, Winnipeg, R3B 2E9, MB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40147184$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1TAQRS1URF8Lv4CyZJPH2HESe4OA6lEqVWIBXVuOPUEOiR3spKJ_j8MrrYSE1I3txblX4zNn5MQHj4QUFPYUaPN22JswzZ0LE9o9A1bvKQWommdkR0UrS6grfkJ2ABRKLlh9Ss5SGgCAQwUvyCkHylsq-I7cXE2zNksR-iLhr8K6vseI3mAqgi_S2g1oltJ5izPmwy_F4XBZdjqhLXAKi8tURBO-e_fnPQWLY3pJnvd6TPjq_j4nN58O3y4-l9dfLq8uPlyXpuJiKXXTtb2smeTQMWtZLVvDDBqwnLa9kFJrWiHtkG-jG2Mlp1YI2TS0A0BWnZM3x945hp8rpkVNLhkcR-0xrElVVDDeStrKjL6-R9cuW1NzdJOOd-qvigyII2BiSCli_4BQUJt1NahH62qzro7Wc_TjMZq_jrcOo0rGbRKty24WZYN7Ssm7f0rM6LwzevyBd5iGsEafXSqqElOgvm7L3XbL6hwXbZsL3v-_4Gkz_AaKb7mI
Cites_doi 10.1109/TCSS.2022.3188891
10.1109/ACCESS.2019.2927768
10.3389/fpsyt.2025.1494369
10.1080/00913367.1995.10673467
10.1016/j.conb.2012.12.009
10.3389/fpsyg.2023.1333794
10.1002/dneu.20814
10.1002/jnr.23829
10.18653/v1/N16-1174
10.1016/j.asoc.2020.106954
10.1037/0894-4105.12.3.446
10.1007/s11517-023-02956-2
10.1016/j.paid.2007.01.016
10.1109/TAFFC.2020.2994159
10.1109/ACCESS.2022.3205734
10.1016/S0304-3940(03)00406-3
10.1109/CVPR.2018.00781
10.1037/1528-3542.1.3.276
10.1109/T-AFFC.2011.15
10.1016/j.inffus.2019.12.012
10.3390/s19071659
10.1093/cercor/12.9.998
10.1023/A:1018628609742
10.1109/TAFFC.2018.2817622
10.1016/j.neucom.2023.126262
10.1109/TAMD.2015.2431497
10.1145/3524499
10.1088/1741-2552/ad085a
10.1109/TETC.2021.3087174
10.11648/j.ajbio.20140204.13
10.1109/TCDS.2020.2999337
10.1109/TAFFC.2022.3170428
10.1006/nlme.2000.3999
10.1109/ACCESS.2019.2891579
10.1111/j.2517-6161.1995.tb02031.x
ContentType Journal Article
Copyright 2025 The Authors
The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.110036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110036
ExternalDocumentID 40147184
10_1016_j_compbiomed_2025_110036
S0010482525003877
1_s2_0_S0010482525003877
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
6I.
AAFTH
77I
AAYXX
ACLOT
CITATION
EFLBG
~HD
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-a6b7f952940b2dd2597c2cec0d417f899aa13e1be40004ccd941d889661b00e23
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Sep 05 17:51:39 EDT 2025
Tue Apr 22 01:20:41 EDT 2025
Wed Oct 01 06:03:09 EDT 2025
Sat Jun 14 16:51:50 EDT 2025
Thu Jun 12 22:56:26 EDT 2025
Tue Aug 26 16:44:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Emotion recognition
Attention mechanism
Electroencephalography
EEG signal processing
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-a6b7f952940b2dd2597c2cec0d417f899aa13e1be40004ccd941d889661b00e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-2795-5140
0000-0001-5333-8265
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482525003877
PMID 40147184
PQID 3182479179
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3182479179
pubmed_primary_40147184
crossref_primary_10_1016_j_compbiomed_2025_110036
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110036
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525003877
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Tong, Heng (b35) 2019; 7
Song, Zheng, Liu, Zong, Cui, Li (b40) 2021; 10
Maswanganyi, Tu, Owolawi, Du (b6) 2022; 10
Li, Zheng, Cui, Zhang, Zong (b31) 2018
Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, García, Gil-López, Molina, Benjamins (b27) 2020; 58
Zhong, Wang, Miao (b37) 2020; 13
Li, Chen, Li, Fu, Wu, Ji, Zhou, Niu, Shi, Zheng (b41) 2022; 14
Darley, Smith (b48) 1995; 24
Song, Liu, Zheng, Zong, Cui (b36) 2020; 34
Whittington, Cunningham, LeBeau, Racca, Traub (b22) 2011; 71
Sen, Mishra, Pattnaik (b18) 2023
Gur, Gunning-Dixon, Bilker, Gur (b46) 2002; 12
Li, Ren, Li, Zhao, Lu, Zhang (b9) 2022; 10
Valderrama, Ulloa (b28) 2014; 10
Cooper, Osselton, Shaw (b20) 2014
Rangayyan, Krishnan (b19) 2015
Song, Zheng, Song, Cui (b33) 2018; 11
Cahill, Haier, White, Fallon, Kilpatrick, Lawrence, Potkin, Alkire (b45) 2001; 75
Al Machot, Elmachot, Ali, Al Machot, Kyamakya (b5) 2019; 19
Benjamini, Hochberg (b26) 1995; 57
Suykens, Vandewalle (b29) 1999; 9
Heinzel, Rüdiger, Schilling (b23) 2002
Bradley, Codispoti, Cuthbert, Lang (b52) 2001; 1
Duan, Zhong, Hu, Ye, Zhang (b12) 2023
Reber, Tranel (b47) 2017; 95
Zhu, Yu, Huang, Ying, Zhang (b43) 2024; 62
A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.
Power, Petersen (b2) 2013; 23
Zhou, Li, Li, Ji, Shi, Zheng, Zhang, Chen, Cheng (b42) 2023; 544
Zheng, Liu, Lu, Lu, Cichocki (b16) 2018
Borod, Cicero, Obler, Welkowitz, Erhan, Santschi, Grunwald, Agosti, Whalen (b49) 1998; 12
Wang, Zhang, Xu, Chen, Xing, Chen (b32) 2018
Merritt, Hirshman, Wharton, Stangl, Devlin, Lenz (b50) 2007; 43
Song, Zheng, Lu, Zong, Zhang, Cui (b34) 2019; 7
Katsigiannis, Ramzan (b54) 2017
Liu, Qiu, Zheng, Lu (b17) 2021
Valderrama, Gomes Ferreira, Mayor Torres, Garcia-Ramirez, Camorlinga (b3) 2024; 14
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b53) 2011; 3
Li, Liu, Zhu, Lu (b10) 2022
Li, Zhang, Tiwari, Song, Hu, Yang, Zhao, Kumar, Marttinen (b4) 2022; 55
Ahad, Ahmed (b21) 2021
Zheng, Lu (b15) 2015; 7
Peng, Zheng, Liu, Jiang, Li, Lu, Lu (b11) 2023; 20
Valderrama (b24) 2021
Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b38) 2020; 13
Hamann (b51) 2005; 11
Weiss, Siedentopf, Hofer, Deisenhammer, Hoptman, Kremser, Golaszewski, Felber, Fleischhacker, Delazer (b7) 2003; 344
Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, pp. 1480–1489.
Loshchilov, Hutter (b25) 2016
Valderrama, Sheoran (b44) 2025; 16
Hajjawi (b1) 2014; 2
Yan, Zheng, Liu, Lu (b8) 2017
Yin, Zheng, Hu, Zhang, Cui (b39) 2021; 100
Valderrama, Sheoran, Liu (b14) 2024
Loshchilov (10.1016/j.compbiomed.2025.110036_b25) 2016
Yin (10.1016/j.compbiomed.2025.110036_b39) 2021; 100
Darley (10.1016/j.compbiomed.2025.110036_b48) 1995; 24
Cahill (10.1016/j.compbiomed.2025.110036_b45) 2001; 75
Valderrama (10.1016/j.compbiomed.2025.110036_b3) 2024; 14
Benjamini (10.1016/j.compbiomed.2025.110036_b26) 1995; 57
Valderrama (10.1016/j.compbiomed.2025.110036_b28) 2014; 10
Li (10.1016/j.compbiomed.2025.110036_b4) 2022; 55
Rangayyan (10.1016/j.compbiomed.2025.110036_b19) 2015
Cooper (10.1016/j.compbiomed.2025.110036_b20) 2014
Al Machot (10.1016/j.compbiomed.2025.110036_b5) 2019; 19
Song (10.1016/j.compbiomed.2025.110036_b34) 2019; 7
10.1016/j.compbiomed.2025.110036_b30
Wang (10.1016/j.compbiomed.2025.110036_b35) 2019; 7
Song (10.1016/j.compbiomed.2025.110036_b36) 2020; 34
Liu (10.1016/j.compbiomed.2025.110036_b17) 2021
Reber (10.1016/j.compbiomed.2025.110036_b47) 2017; 95
Zheng (10.1016/j.compbiomed.2025.110036_b15) 2015; 7
Sen (10.1016/j.compbiomed.2025.110036_b18) 2023
Valderrama (10.1016/j.compbiomed.2025.110036_b14) 2024
Song (10.1016/j.compbiomed.2025.110036_b40) 2021; 10
Duan (10.1016/j.compbiomed.2025.110036_b12) 2023
Li (10.1016/j.compbiomed.2025.110036_b9) 2022; 10
Koelstra (10.1016/j.compbiomed.2025.110036_b53) 2011; 3
Yan (10.1016/j.compbiomed.2025.110036_b8) 2017
Valderrama (10.1016/j.compbiomed.2025.110036_b44) 2025; 16
Zhong (10.1016/j.compbiomed.2025.110036_b37) 2020; 13
Li (10.1016/j.compbiomed.2025.110036_b38) 2020; 13
Katsigiannis (10.1016/j.compbiomed.2025.110036_b54) 2017
Ahad (10.1016/j.compbiomed.2025.110036_b21) 2021
Song (10.1016/j.compbiomed.2025.110036_b33) 2018; 11
Maswanganyi (10.1016/j.compbiomed.2025.110036_b6) 2022; 10
Peng (10.1016/j.compbiomed.2025.110036_b11) 2023; 20
Gur (10.1016/j.compbiomed.2025.110036_b46) 2002; 12
Power (10.1016/j.compbiomed.2025.110036_b2) 2013; 23
10.1016/j.compbiomed.2025.110036_b13
Li (10.1016/j.compbiomed.2025.110036_b41) 2022; 14
Hamann (10.1016/j.compbiomed.2025.110036_b51) 2005; 11
Arrieta (10.1016/j.compbiomed.2025.110036_b27) 2020; 58
Zhou (10.1016/j.compbiomed.2025.110036_b42) 2023; 544
Merritt (10.1016/j.compbiomed.2025.110036_b50) 2007; 43
Hajjawi (10.1016/j.compbiomed.2025.110036_b1) 2014; 2
Li (10.1016/j.compbiomed.2025.110036_b10) 2022
Suykens (10.1016/j.compbiomed.2025.110036_b29) 1999; 9
Whittington (10.1016/j.compbiomed.2025.110036_b22) 2011; 71
Zhu (10.1016/j.compbiomed.2025.110036_b43) 2024; 62
Borod (10.1016/j.compbiomed.2025.110036_b49) 1998; 12
Zheng (10.1016/j.compbiomed.2025.110036_b16) 2018
Heinzel (10.1016/j.compbiomed.2025.110036_b23) 2002
Li (10.1016/j.compbiomed.2025.110036_b31) 2018
Valderrama (10.1016/j.compbiomed.2025.110036_b24) 2021
Bradley (10.1016/j.compbiomed.2025.110036_b52) 2001; 1
Wang (10.1016/j.compbiomed.2025.110036_b32) 2018
Weiss (10.1016/j.compbiomed.2025.110036_b7) 2003; 344
References_xml – volume: 12
  start-page: 446
  year: 1998
  ident: b49
  article-title: Right hemisphere emotional perception: evidence across multiple channels
  publication-title: Neuropsychology
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: b26
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 1240
  year: 2018
  end-page: 1244
  ident: b32
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system
  publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine
– reference: A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.
– start-page: 533
  year: 2017
  end-page: 542
  ident: b8
  article-title: Identifying gender differences in multimodal emotion recognition using bimodal deep autoencoder
  publication-title: Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, Part IV 24
– volume: 23
  start-page: 223
  year: 2013
  end-page: 228
  ident: b2
  article-title: Control-related systems in the human brain
  publication-title: Curr. Opin. Neurobiol.
– year: 2024
  ident: b14
  article-title: Exploring the effect of age and sex on subject-independent EEG-based emotion recognition methods
  publication-title: 2024 IEEE Canadian Conference on Electrical and Computer Engineering
– volume: 10
  start-page: 376
  year: 2022
  end-page: 387
  ident: b9
  article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 16
  year: 2025
  ident: b44
  article-title: Identifying relevant EEG channels for subject-independent emotion recognition using attention network layers
  publication-title: Front. Psychiatry
– volume: 12
  start-page: 998
  year: 2002
  end-page: 1003
  ident: b46
  article-title: Sex differences in temporo-limbic and frontal brain volumes of healthy adults
  publication-title: Cerebral Cortex
– year: 2002
  ident: b23
  article-title: Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows
– year: 2016
  ident: b25
  article-title: Sgdr: Stochastic gradient descent with warm restarts
– volume: 19
  start-page: 1659
  year: 2019
  ident: b5
  article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors
  publication-title: Sensors
– volume: 10
  start-page: 481
  year: 2014
  end-page: 496
  ident: b28
  article-title: Combining spectral and fractal features for emotion recognition on electroencephalographic signals
  publication-title: WSEAS Trans. Signal Process.
– year: 2021
  ident: b21
  article-title: Signal Processing Techniques for Computational Health Informatics
– start-page: 496
  year: 2021
  end-page: 499
  ident: b24
  article-title: A comparison between the Hilbert-Huang and Discrete Wavelet Transforms to recognize emotions from electroencephalographic signals
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– volume: 62
  start-page: 479
  year: 2024
  end-page: 493
  ident: b43
  article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition
  publication-title: Med. Biol. Eng. Comput.
– volume: 75
  start-page: 1
  year: 2001
  end-page: 9
  ident: b45
  article-title: Sex-related difference in amygdala activity during emotionally influenced memory storage
  publication-title: Neurobiol. Learn. Mem.
– volume: 11
  start-page: 288
  year: 2005
  end-page: 293
  ident: b51
  article-title: Sex differences in the responses of the human amygdala
  publication-title: Neurosci.
– volume: 24
  start-page: 41
  year: 1995
  end-page: 56
  ident: b48
  article-title: Gender differences in information processing strategies: An empirical test of the selectivity model in advertising response
  publication-title: J. Advert.
– volume: 13
  start-page: 1290
  year: 2020
  end-page: 1301
  ident: b37
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b15
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b16
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 71
  start-page: 92
  year: 2011
  end-page: 106
  ident: b22
  article-title: Multiple origins of the cortical gamma rhythm
  publication-title: Dev. Neurobiol.
– volume: 1
  start-page: 276
  year: 2001
  ident: b52
  article-title: Emotion and motivation I: defensive and appetitive reactions in picture processing
  publication-title: Emotion Emot.
– volume: 10
  start-page: 1399
  year: 2021
  end-page: 1413
  ident: b40
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 2
  start-page: 122
  year: 2014
  end-page: 134
  ident: b1
  article-title: Human brain biochemistry
  publication-title: Am. J. BioSci.
– volume: 7
  start-page: 12177
  year: 2019
  end-page: 12191
  ident: b34
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
– volume: 34
  start-page: 2701
  year: 2020
  end-page: 2708
  ident: b36
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– year: 2017
  ident: b54
  article-title: Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices
– volume: 13
  start-page: 354
  year: 2020
  end-page: 367
  ident: b38
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 1561
  year: 2018
  end-page: 1567
  ident: b31
  article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition
  publication-title: IJCAI
– year: 2021
  ident: b17
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 43
  start-page: 597
  year: 2007
  end-page: 609
  ident: b50
  article-title: Evidence for gender differences in visual selective attention
  publication-title: Pers. Individ. Differ.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b29
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 544
  year: 2023
  ident: b42
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
– volume: 7
  start-page: 93711
  year: 2019
  end-page: 93722
  ident: b35
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: Ieee Access
– start-page: 1
  year: 2023
  end-page: 6
  ident: b12
  article-title: Exploring gender differences in emotion recognition with electroencephalography
  publication-title: 2023 15th International Conference on Advanced Computational Intelligence
– volume: 14
  start-page: 2512
  year: 2022
  end-page: 2525
  ident: b41
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 95
  start-page: 270
  year: 2017
  end-page: 278
  ident: b47
  article-title: Sex differences in the functional lateralization of emotion and decision making in the human brain
  publication-title: J. Neurosci. Res.
– volume: 100
  year: 2021
  ident: b39
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: b27
  article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b33
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 344
  start-page: 169
  year: 2003
  end-page: 172
  ident: b7
  article-title: Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers
  publication-title: Neurosci. Lett.
– start-page: 4793
  year: 2022
  end-page: 4796
  ident: b10
  article-title: Exploring sex differences in key frequency bands and channel connections for EEG-based emotion recognition
  publication-title: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– volume: 14
  year: 2024
  ident: b3
  article-title: Machine learning approaches to recognize human emotions
  publication-title: Front. Psychol.
– year: 2015
  ident: b19
  article-title: Biomedical Signal Analysis
– volume: 10
  start-page: 96821
  year: 2022
  end-page: 96839
  ident: b6
  article-title: Statistical evaluation of factors influencing inter-session and inter-subject variability in eeg-based brain computer interface
  publication-title: IEEE Access
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b53
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– year: 2014
  ident: b20
  article-title: EEG Technology
– reference: Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, pp. 1480–1489.
– start-page: 270
  year: 2023
  end-page: 277
  ident: b18
  article-title: A review of the filtering techniques used in EEG signal processing
  publication-title: 2023 7th International Conference on Trends in Electronics and Informatics
– volume: 55
  start-page: 1
  year: 2022
  end-page: 57
  ident: b4
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Comput. Surv.
– volume: 20
  year: 2023
  ident: b11
  article-title: Identifying sex differences in EEG-based emotion recognition using graph convolutional network with attention mechanism
  publication-title: J. Neural Eng.
– volume: 10
  start-page: 376
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110036_b9
  article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3188891
– volume: 7
  start-page: 93711
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110036_b35
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2927768
– volume: 16
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110036_b44
  article-title: Identifying relevant EEG channels for subject-independent emotion recognition using attention network layers
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2025.1494369
– year: 2002
  ident: 10.1016/j.compbiomed.2025.110036_b23
– start-page: 270
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110036_b18
  article-title: A review of the filtering techniques used in EEG signal processing
– volume: 24
  start-page: 41
  issue: 1
  year: 1995
  ident: 10.1016/j.compbiomed.2025.110036_b48
  article-title: Gender differences in information processing strategies: An empirical test of the selectivity model in advertising response
  publication-title: J. Advert.
  doi: 10.1080/00913367.1995.10673467
– start-page: 496
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110036_b24
  article-title: A comparison between the Hilbert-Huang and Discrete Wavelet Transforms to recognize emotions from electroencephalographic signals
– volume: 23
  start-page: 223
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110036_b2
  article-title: Control-related systems in the human brain
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2012.12.009
– volume: 14
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110036_b3
  article-title: Machine learning approaches to recognize human emotions
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2023.1333794
– year: 2017
  ident: 10.1016/j.compbiomed.2025.110036_b54
– volume: 71
  start-page: 92
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2025.110036_b22
  article-title: Multiple origins of the cortical gamma rhythm
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.20814
– volume: 95
  start-page: 270
  issue: 1–2
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110036_b47
  article-title: Sex differences in the functional lateralization of emotion and decision making in the human brain
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23829
– ident: 10.1016/j.compbiomed.2025.110036_b13
  doi: 10.18653/v1/N16-1174
– start-page: 4793
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110036_b10
  article-title: Exploring sex differences in key frequency bands and channel connections for EEG-based emotion recognition
– volume: 100
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110036_b39
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106954
– start-page: 1240
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110036_b32
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system
– volume: 12
  start-page: 446
  issue: 3
  year: 1998
  ident: 10.1016/j.compbiomed.2025.110036_b49
  article-title: Right hemisphere emotional perception: evidence across multiple channels
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.12.3.446
– year: 2021
  ident: 10.1016/j.compbiomed.2025.110036_b17
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 62
  start-page: 479
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110036_b43
  article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-023-02956-2
– volume: 11
  start-page: 288
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2025.110036_b51
  article-title: Sex differences in the responses of the human amygdala
  publication-title: Neurosci.
– year: 2014
  ident: 10.1016/j.compbiomed.2025.110036_b20
– volume: 43
  start-page: 597
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2025.110036_b50
  article-title: Evidence for gender differences in visual selective attention
  publication-title: Pers. Individ. Differ.
  doi: 10.1016/j.paid.2007.01.016
– volume: 10
  start-page: 481
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110036_b28
  article-title: Combining spectral and fractal features for emotion recognition on electroencephalographic signals
  publication-title: WSEAS Trans. Signal Process.
– volume: 13
  start-page: 1290
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110036_b37
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2994159
– volume: 10
  start-page: 96821
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110036_b6
  article-title: Statistical evaluation of factors influencing inter-session and inter-subject variability in eeg-based brain computer interface
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3205734
– volume: 344
  start-page: 169
  issue: 3
  year: 2003
  ident: 10.1016/j.compbiomed.2025.110036_b7
  article-title: Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00406-3
– ident: 10.1016/j.compbiomed.2025.110036_b30
  doi: 10.1109/CVPR.2018.00781
– volume: 1
  start-page: 276
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110036_b52
  article-title: Emotion and motivation I: defensive and appetitive reactions in picture processing
  publication-title: Emotion Emot.
  doi: 10.1037/1528-3542.1.3.276
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110036_b16
  article-title: EmotionMeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2025.110036_b53
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110036_b12
  article-title: Exploring gender differences in emotion recognition with electroencephalography
– volume: 58
  start-page: 82
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110036_b27
  article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– start-page: 1561
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110036_b31
  article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition
– volume: 19
  start-page: 1659
  issue: 7
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110036_b5
  article-title: A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors
  publication-title: Sensors
  doi: 10.3390/s19071659
– year: 2021
  ident: 10.1016/j.compbiomed.2025.110036_b21
– volume: 34
  start-page: 2701
  issue: 03
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110036_b36
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 12
  start-page: 998
  issue: 9
  year: 2002
  ident: 10.1016/j.compbiomed.2025.110036_b46
  article-title: Sex differences in temporo-limbic and frontal brain volumes of healthy adults
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/12.9.998
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.compbiomed.2025.110036_b29
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110036_b33
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 544
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110036_b42
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126262
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110036_b15
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110036_b4
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3524499
– volume: 20
  issue: 6
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110036_b11
  article-title: Identifying sex differences in EEG-based emotion recognition using graph convolutional network with attention mechanism
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad085a
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110036_b14
  article-title: Exploring the effect of age and sex on subject-independent EEG-based emotion recognition methods
– year: 2015
  ident: 10.1016/j.compbiomed.2025.110036_b19
– volume: 10
  start-page: 1399
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110036_b40
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2021.3087174
– volume: 2
  start-page: 122
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110036_b1
  article-title: Human brain biochemistry
  publication-title: Am. J. BioSci.
  doi: 10.11648/j.ajbio.20140204.13
– volume: 13
  start-page: 354
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110036_b38
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2999337
– volume: 14
  start-page: 2512
  issue: 3
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110036_b41
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3170428
– volume: 75
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110036_b45
  article-title: Sex-related difference in amygdala activity during emotionally influenced memory storage
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1006/nlme.2000.3999
– volume: 7
  start-page: 12177
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110036_b34
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– start-page: 533
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110036_b8
  article-title: Identifying gender differences in multimodal emotion recognition using bimodal deep autoencoder
– year: 2016
  ident: 10.1016/j.compbiomed.2025.110036_b25
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.compbiomed.2025.110036_b26
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
SSID ssj0004030
Score 2.4119742
Snippet Electroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be processed...
AbstractElectroencephalography (EEG) can capture emotion regulation by recording electrical activity from the brain cortex. This electrical activity can be...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110036
SubjectTerms Adult
Attention mechanism
Brain - physiology
Deep Learning
EEG signal processing
Electroencephalography
Emotion recognition
Emotions - physiology
Female
Humans
Internal Medicine
Male
Other
Sex Characteristics
Young Adult
Title Impact of sex differences on subject-independent EEG-based emotion recognition models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525003877
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525003877
https://dx.doi.org/10.1016/j.compbiomed.2025.110036
https://www.ncbi.nlm.nih.gov/pubmed/40147184
https://www.proquest.com/docview/3182479179
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5EofRFqm31bCsr-Lo1m938ok8id55KffLAt2V_Bc6H3GHuoE_9253JJidFBaEvIQlZEobZb2ay37cDcJobVyXBK55UVnIlQs2NNJIL53IVvCG1I7EtbvPpTF3fZ_dbcDFoYYhW2WN_xPQOrfs7Z701z5bzOWl8sZTAAgeDOK3BkqKcdv9Cn_7595nmoRIZZSiIN_R0z-aJHC-ibUeZO1aKaUac-KTbrPnVEPVWCtqFoskn2O1zSHYeP3MPtkKzDx9-96vkn2F21Ukf2aJmbfjDhh4oiAhs0bB2benfC59vGuCu2Hh8ySmeeRZiWx-2IRbhedctp_0Cs8n47mLK-_YJ3ElVrrjJbVFXWVqpxKbeY51TuNQFl3glihrrLGOEDMIGRWZyzldK-LLE-kfgXAyp_ArbzaIJh8B86UsjvPdJapWUmfGi9FZiXAt5Vtt8BGKwmF7GXTL0QB970M9W1mRlHa08gmowrR5UoIhbGqH8HWOL18aGtp-ArRa6TXWiXzjJCH5tRv7jZ-9878ngAxqnIa2tmCYs1q1GaExVgbVvNYKD6BwbS2AJSymAOvqvd3-Dj3QVyZbfYXv1uA4_MCFa2ePO4_FYTi6PYef86mZ6-wRD5At3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7sCa0volbbq1ZX8HUxm938wieRs3dV78kD35b9Fbg-5I7mDvzzO5vdnBQtCH0LCUPCx-w3M9lvdgAucmWqxFlBk0pzKpirqeKKU2ZMLpxVvtvRqy2m-Xgmfj5lT1tw0_fCeFll5P7A6R1bxzuXEc3L5Xzue3yxlMACB4O434MtPsC2yJCTB7B9PbkbT1_aIxMeOlGQcrxBFPQEmZdXbodOdywW08zL4pPuvOY3o9S_stAuGt3uwW5MI8l1-NJ92HLNAXx8iBvln2E26bofyaImrXsm_RgUJAWyaEi71v73C51vZuCuyGj0g_qQZokLk33IRluE193AnPYQZrejx5sxjRMUqOGiXFGV66KusrQSiU6txVKnMKlxJrGCFTWWWkox7ph2wsNkjK0Es2WJJRDD5ehSfgSDZtG4r0BsaUvFrLVJqgXnmbKstJpjaHN5Vut8CKxHTC7DQRmyV5D9ki8oS4-yDCgPoeqhlX0jKFKXRDZ_h23xlq1r4xpsJZNtKhP5yk-GcLWx_MvV3vne894HJK5Ev72iGrdYtxLZMRUFlr_VEL4E59gggVWszwLEt_969xl8Gj8-3Mv7yfTuGHb8k6C9PIHB6vfafcf8aKVPo___AQrUDTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+sex+differences+on+subject-independent+EEG-based+emotion+recognition+models&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sheoran%2C+Anshul&rft.au=Valderrama%2C+Camilo+E.&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=190&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110036&rft.externalDocID=S0010482525003877
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00056%2Fcov150h.gif