Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection

Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxi...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 2; pp. 585 - 613
Main Authors Silva, Valmir B, Santos, Yane H, Hellinger, Renata, Mansour, Sergui, Delaune, Antonin, Legros, Julien, Zinoviev, Sergey, Nogueira, Evandro S, Orth, Elisa S
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.01.2022
Subjects
Online AccessGet full text
ISSN1463-9262
1463-9270
1463-9270
DOI10.1039/d1gc02705k

Cover

Abstract Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal-organic frameworks, polyoxometalates, nanomaterials, polymers, etc .) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field. Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents.
AbstractList Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal-organic frameworks, polyoxometalates, nanomaterials, polymers, etc .) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field. Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents.
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal–organic frameworks, polyoxometalates, nanomaterials, polymers, etc .) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field.
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal–organic frameworks, polyoxometalates, nanomaterials, polymers, etc.) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field.
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents.
Author Hellinger, Renata
Nogueira, Evandro S
Legros, Julien
Orth, Elisa S
Mansour, Sergui
Zinoviev, Sergey
Silva, Valmir B
Santos, Yane H
Delaune, Antonin
AuthorAffiliation INSA Rouen
CNRS
UNIROUEN
Organisation for the Prohibition of Chemical Weapons (OPCW)
Normandie Université
COBRA Laboratory
Departamento de Química
Universidade Federal do Paraná (UFPR)
AuthorAffiliation_xml – name: INSA Rouen
– name: Organisation for the Prohibition of Chemical Weapons (OPCW)
– name: UNIROUEN
– name: Universidade Federal do Paraná (UFPR)
– name: CNRS
– name: COBRA Laboratory
– name: Normandie Université
– name: Departamento de Química
Author_xml – sequence: 1
  givenname: Valmir B
  surname: Silva
  fullname: Silva, Valmir B
– sequence: 2
  givenname: Yane H
  surname: Santos
  fullname: Santos, Yane H
– sequence: 3
  givenname: Renata
  surname: Hellinger
  fullname: Hellinger, Renata
– sequence: 4
  givenname: Sergui
  surname: Mansour
  fullname: Mansour, Sergui
– sequence: 5
  givenname: Antonin
  surname: Delaune
  fullname: Delaune, Antonin
– sequence: 6
  givenname: Julien
  surname: Legros
  fullname: Legros, Julien
– sequence: 7
  givenname: Sergey
  surname: Zinoviev
  fullname: Zinoviev, Sergey
– sequence: 8
  givenname: Evandro S
  surname: Nogueira
  fullname: Nogueira, Evandro S
– sequence: 9
  givenname: Elisa S
  surname: Orth
  fullname: Orth, Elisa S
BackLink https://hal.science/hal-03838933$$DView record in HAL
BookMark eNptkk1v1DAQhi1UJNqFC3ckS1wAseCPxEl6qxZoq67UC5yjqTPpuiR28DiV9gfwv_F2q61UcbA9fvXM67HHJ-zIB4-MvZXiixS6-drJWytUJcrfL9ixLIxeNnl3dIiNesVOiO6EkLIyxTH7ex1vwYdpEyiPOBO3GxydhYET2jm6tOV9DCMHPiFY7OchB5EmtMnd4ymnmRI4DzcD8ilCVi0Sd567RJy2Pm2QHH3mHdrgE4wZTS54Dr7LWtrZBP-avexhIHzzuC7Yrx_ff64uluvr88vV2XppdVGnZdNpVRU1dpW4McZWqhZlKbFUSotKiBKh0VmzRZ47VfcGEYQqdA9YSatLvWAf974bGNopuhHitg3g2ouzdbvThK513Wh9LzP7Yc9OMfyZkVI7OrI4DOAxzNQqo00ltcn-C_b-GXoX5ujzTTKVi5O1ErvDP-0pGwNRxP5QgRTtrnvtN3m-eujeVYbFM9i69PByKYIb_p_ybp8SyR6snz6E_gdv2qjc
CitedBy_id crossref_primary_10_3390_forensicsci3020017
crossref_primary_10_1016_j_jhazmat_2025_137576
crossref_primary_10_1016_j_eti_2024_103912
crossref_primary_10_1021_acs_joc_3c02409
crossref_primary_10_1039_D3AY01326J
crossref_primary_10_1002_chem_202403701
crossref_primary_10_1016_j_cclet_2022_107894
crossref_primary_10_1039_D3TA07332G
crossref_primary_10_3390_pharmaceutics14091950
crossref_primary_10_1016_j_cej_2024_157899
crossref_primary_10_1039_D2OB01217K
crossref_primary_10_1039_D4CE01223B
crossref_primary_10_1021_acssuschemeng_4c07121
crossref_primary_10_1016_j_heliyon_2024_e39898
crossref_primary_10_1007_s11426_024_2351_0
crossref_primary_10_1039_D3DT00925D
crossref_primary_10_1021_acsomega_4c04000
crossref_primary_10_1016_j_molliq_2024_124476
crossref_primary_10_1016_j_nantod_2024_102236
crossref_primary_10_1002_cbic_202400137
crossref_primary_10_1002_aenm_202200147
crossref_primary_10_1016_j_seppur_2024_127470
crossref_primary_10_2174_0115734137274085231214100609
crossref_primary_10_1177_17475198221138061
crossref_primary_10_1016_j_envpol_2023_121802
crossref_primary_10_1002_cplu_202300176
crossref_primary_10_3390_pharmaceutics15061666
crossref_primary_10_1039_D4NJ04993D
crossref_primary_10_1002_cctc_202301440
crossref_primary_10_1039_D2GC00754A
crossref_primary_10_3390_molecules28166097
crossref_primary_10_1007_s00128_023_03693_w
crossref_primary_10_1039_D2LC00796G
Cites_doi 10.1002/anie.201702744
10.1039/c3ob40324f
10.1039/C7GC01989K
10.1007/s11356-018-1346-2
10.1021/acs.chemmater.5b03960
10.1002/chem.201905379
10.1021/acsami.0c08946
10.1002/btpr.498
10.1081/SCC-100105324
10.1021/acsami.8b02717
10.1039/c2dt31888a
10.1016/j.tetlet.2018.01.021
10.1016/j.carbon.2013.05.032
10.1021/acsami.8b01835
10.1021/acssuschemeng.6b01878
10.1021/bi010243j
10.1039/C5GC01008J
10.1016/j.jhazmat.2010.03.030
10.1016/0956-5663(96)82333-5
10.1021/ja500330a
10.1021/acscatal.8b00972
10.1021/acs.inorgchem.5b01867
10.1021/acs.iecr.8b01546
10.1021/bi300811t
10.1021/ja402832z
10.1093/toxsci/kfx266
10.1016/j.memsci.2011.04.013
10.1016/S0021-9258(18)43068-2
10.1021/ja4050828
10.2478/s11696-013-0516-4
10.1016/S0022-0728(01)00435-1
10.1021/acssensors.7b00603
10.1002/smtd.201800471
10.1196/annals.1371.040
10.1039/c2gc35898k
10.1515/pac-2016-0604
10.1002/poc.3263
10.1080/10643389.2011.574184
10.1021/jacs.8b05762
10.1002/jssc.200500432
10.1080/00304940009355923
10.1016/S0140-6736(95)92170-2
10.1021/ac302781r
10.1007/s11164-015-2348-z
10.1002/bit.20519
10.1021/acsami.7b19763
10.1016/j.apcatb.2019.118496
10.1016/j.chemosphere.2010.10.033
10.1016/j.snb.2018.07.001
10.1080/10408347.2018.1439366
10.1146/annurev.bioeng.5.121202.125602
10.1016/j.jtice.2018.03.014
10.1039/C4CC02689F
10.1016/j.tetlet.2012.02.054
10.1016/j.chemosphere.2020.126770
10.1039/C8CE00455B
10.1016/j.bios.2018.05.039
10.1021/acs.joc.9b02263
10.1039/C6NR01468B
10.1021/cr00044a004
10.2174/138527211795656570
10.1021/ja2042113
10.1021/acsami.7b10902
10.1126/science.1119426
10.1002/9780470060032
10.1002/jctb.5603
10.1016/j.ecoenv.2020.111483
10.1039/C9GC01254K
10.1021/ie401517a
10.1016/j.molcata.2015.03.020
10.1002/ange.201100822
10.1021/es4056388
10.1039/C8RE00083B
10.1039/C5CS00902B
10.1021/es402526n
10.1039/C8GC00931G
10.1007/s11581-019-03069-3
10.1039/C6GC02086K
10.1039/C8GC02026D
10.1038/nmat4238
10.1039/c0gc00026d
10.1080/10426507.2015.1012199
10.1021/acscatal.7b00097
10.1016/j.diamond.2012.11.008
10.3390/molecules25194425
10.1021/acs.accounts.0c00199
10.1039/b921171c
10.1002/ange.200601878
10.1016/j.ccr.2016.03.006
10.1002/ange.201601620
10.3762/bjoc.13.45
10.1021/acs.jpcc.9b03817
10.1039/D1GC00449B
10.1016/j.snb.2013.08.043
10.1021/acsami.5b06905
10.1039/C7RA07059D
10.1039/C9OB00802K
10.1021/acscatal.8b00901
10.1007/s11356-019-05669-y
10.1080/19443994.2013.827779
10.1021/ja8057953
10.1002/slct.201702215
10.1039/B918763B
10.1021/acs.chemrev.9b00828
10.1016/j.snb.2012.11.069
10.1002/ejic.201600286
10.1039/b802426j
10.1021/acs.orglett.7b01796
10.1021/la203437j
10.1016/j.talanta.2011.06.016
10.1093/protein/gzq026
10.1007/s00894-018-3798-1
10.1039/c3cc41290c
10.1016/S0009-2797(99)00059-9
10.1007/s12010-009-8564-5
10.1016/j.jhazmat.2018.10.094
10.1002/ejoc.202000430
10.1002/chem.201003211
10.1002/cctc.201801220
10.1002/anie.201307520
10.1002/cctc.200900275
10.1021/acs.biochem.9b00097
10.1039/c0gc00382d
10.1002/anie.201308072
10.1039/C5GC00340G
10.1016/j.ccr.2016.11.008
10.1002/anie.201001088
10.1016/j.chemosphere.2021.130792
10.1039/C6GC03115C
10.1515/pac-2018-0104
10.1021/jacs.6b00069
10.1016/j.colsurfb.2013.03.003
10.1021/ja101440z
10.1039/C3SC52633J
10.1039/C8TA08100J
10.1590/S0100-40422012001000033
10.1039/c0gc00509f
10.1016/j.scitotenv.2020.139071
10.1021/ie801150y
10.1021/acs.biochem.5b00629
10.1039/C5CC10214F
10.1021/ie061351a
10.1021/sc3001417
10.1007/s11356-016-6143-1
10.2174/157017808786857598
10.1007/978-3-319-30073-3_4
10.1002/ejoc.201901005
10.1016/j.tibtech.2006.04.002
10.1039/c2ee21818f
10.1021/acscatal.9b05085
10.1021/ar300118v
10.1021/cr4007347
10.1016/j.cbi.2019.108788
10.1021/acs.chemrev.5b00402
10.1021/nl204587t
10.1016/j.tetlet.2006.08.050
10.1016/j.neuropharm.2020.108298
10.1080/10408347.2016.1233805
10.2741/S387
10.1590/S0103-50532009000300003
10.1002/(SICI)1099-1395(199706)10:6<427::AID-POC900>3.0.CO;2-6
10.1039/D0GC01142H
10.1038/nchembio.510
10.1039/B705025A
10.1039/C4SC03613A
10.1039/C4GC00944D
10.1055/s-0036-1589031
10.1039/C4SC03075C
10.1002/chem.201304779
10.1021/nn505029k
10.1039/C7NR03311G
10.1021/acsami.9b20833
10.1039/b811247a
10.1080/10426501003724905
10.1515/pac-2019-0818
10.1016/j.tifs.2018.07.018
10.1002/anie.200902483
10.1021/jp312824b
10.1016/j.jhazmat.2017.11.061
10.1016/0043-1354(76)90133-0
10.1016/S0956-5663(01)00126-9
10.1016/j.ultsonch.2007.10.012
10.1021/am3009696
10.1039/C7TA01967J
10.1039/b417264g
10.1021/acssuschemeng.8b04018
10.1002/anie.201700159
10.1021/cr4006473
10.1002/ejic.201300845
10.1021/acsami.9b14439
10.1002/adsc.201700886
10.1134/S1070428013120233
10.1080/10426509808032465
10.1016/j.cbi.2012.10.023
10.1021/jp803003k
10.1021/jacs.6b03112
10.1021/ja002546r
10.1016/j.arabjc.2019.07.003
10.1039/b615227a
10.1039/b502860d
10.1016/j.tetlet.2011.07.027
10.1021/acssuschemeng.8b00936
10.1016/j.jphotochem.2019.112068
10.1016/j.trac.2017.04.012
10.1016/j.snb.2018.06.059
10.1039/C6CS00047A
10.1016/j.elecom.2010.11.033
10.1021/acs.inorgchem.5b01813
10.1021/cb4004892
10.1021/acsnano.6b02518
10.1002/hc.20644
10.1080/00397910802654880
10.1016/j.jcat.2017.10.008
10.1021/ac100176r
10.1016/j.jcis.2013.09.027
10.1039/C6RE00127K
10.1039/C7RA04407K
10.5012/bkcs.2009.30.5.1054
10.1186/s12302-016-0070-0
10.1016/j.proeng.2010.11.027
10.1002/anie.200301684
10.1021/cr200190s
10.1016/j.snb.2014.06.115
10.1039/D0NR04105J
10.1007/s11419-017-0376-7
10.1021/jo201600d
10.1002/pola.28944
10.1021/acssuschemeng.6b01923
10.1021/cr200324t
10.1002/rcm.8276
10.1039/c2cs35143a
10.1021/acs.orglett.5b01307
10.1007/978-3-319-30073-3_3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
1XC
DOI 10.1039/d1gc02705k
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 613
ExternalDocumentID oai_HAL_hal_03838933v1
10_1039_D1GC02705K
d1gc02705k
GroupedDBID 0-7
0R
1TJ
29I
4.4
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
1XC
ID FETCH-LOGICAL-c348t-9d32748ed70b66c7280551e522307005ea93280c4328d28f6eea0243fae71c353
ISSN 1463-9262
1463-9270
IngestDate Fri Sep 12 12:35:16 EDT 2025
Fri Jul 11 10:06:09 EDT 2025
Mon Jun 30 12:04:37 EDT 2025
Tue Jul 01 01:41:32 EDT 2025
Thu Apr 24 23:07:25 EDT 2025
Tue Jan 25 04:31:02 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-9d32748ed70b66c7280551e522307005ea93280c4328d28f6eea0243fae71c353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6874-3650
0000-0002-4807-7897
0000-0002-1390-3693
0000-0001-6686-7721
PQID 2622318205
PQPubID 2047490
PageCount 29
ParticipantIDs hal_primary_oai_HAL_hal_03838933v1
proquest_journals_2622318205
crossref_primary_10_1039_D1GC02705K
rsc_primary_d1gc02705k
crossref_citationtrail_10_1039_D1GC02705K
proquest_miscellaneous_2636713624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Guo (D1GC02705K/cit41/1) 2017; 359
Rostamnia (D1GC02705K/cit71/1) 2014; 68
Costero (D1GC02705K/cit214/1) 2008
Kreno (D1GC02705K/cit116/1) 2012; 112
Uniyal (D1GC02705K/cit20/1) 2018; 116
Wanamaker (D1GC02705K/cit88/1) 2013; 47
Momeni (D1GC02705K/cit137/1) 2019; 123
Platero-Prats (D1GC02705K/cit133/1) 2016; 138
Aka (D1GC02705K/cit180/1) 2019; 84
Wu (D1GC02705K/cit103/1) 2000; 122
Raushel (D1GC02705K/cit95/1) 2000; 74
Wagner (D1GC02705K/cit151/1) 2008; 112
Montoro (D1GC02705K/cit122/1) 2011; 133
Marciano (D1GC02705K/cit171/1) 2011; 76
Bromberg (D1GC02705K/cit86/1) 2009; 48
Frontana-Uribe (D1GC02705K/cit55/1) 2010; 12
Khulbe (D1GC02705K/cit83/1) 2018; 10
Morita (D1GC02705K/cit10/1) 1995; 346
Croissant (D1GC02705K/cit149/1) 2020
Visa (D1GC02705K/cit28/1) 2016
Katz (D1GC02705K/cit84/1) 2015; 6
Sagar (D1GC02705K/cit27/1) 2000; 32
Yakhvarov (D1GC02705K/cit59/1) 2013; 2013
Bigley (D1GC02705K/cit109/1) 2019; 58
Sun (D1GC02705K/cit34/1) 2017; 19
Nishiyama (D1GC02705K/cit37/1) 2017; 19
Prat (D1GC02705K/cit23/1) 2015; 18
Lu (D1GC02705K/cit79/1) 2010; 23
Li (D1GC02705K/cit142/1) 2018; 344
Wang (D1GC02705K/cit7/1) 2020
Reinsch (D1GC02705K/cit120/1) 2016; 2016
Picard (D1GC02705K/cit177/1) 2017; 56
Moon (D1GC02705K/cit100/1) 2019; 365
Hondred (D1GC02705K/cit213/1) 2018; 10
Mach (D1GC02705K/cit218/1) 2018; 32
Stehle (D1GC02705K/cit94/1) 2014; 413
Perro (D1GC02705K/cit179/1) 2016; 1
Keglevich (D1GC02705K/cit52/1) 2008; 5
Jang (D1GC02705K/cit222/1) 2014; 50
Rani (D1GC02705K/cit199/1) 2018; 25
Gordon (D1GC02705K/cit98/1) 1999; 119
Schlögl (D1GC02705K/cit146/1) 2004; 43
Delaune (D1GC02705K/cit190/1) 2021; 23
Mello (D1GC02705K/cit168/1) 2011; 27
Campos (D1GC02705K/cit154/1) 2020; 26
Sud (D1GC02705K/cit198/1) 2012; 42
Polshettiwar (D1GC02705K/cit77/1) 2010; 12
Shaikh (D1GC02705K/cit68/1) 2016; 42
Giraudeau (D1GC02705K/cit178/1) 2018; 3
John (D1GC02705K/cit11/1) 2018; 36
Bhattacharya (D1GC02705K/cit42/1) 1981; 81
Mulchandani (D1GC02705K/cit232/1) 2001; 16
Ajami (D1GC02705K/cit234/1) 2013; 11
Lau (D1GC02705K/cit181/1) 2015; 17
Ilia (D1GC02705K/cit26/1) 2005; 7
Massiah (D1GC02705K/cit153/1) 2001; 40
Song (D1GC02705K/cit139/1) 2012; 41
Wanderlind (D1GC02705K/cit194/1) 2018; 8
Pacsial-Ong (D1GC02705K/cit21/1) 2013; 5
Singh (D1GC02705K/cit162/1) 2015; 27
Liang (D1GC02705K/cit216/1) 2013; 85
Marrs (D1GC02705K/cit223/1) 2007
Singh (D1GC02705K/cit160/1) 2015; 27
McElroy (D1GC02705K/cit30/1) 2015; 17
Han (D1GC02705K/cit111/1) 2019; 3
Gryaznova (D1GC02705K/cit63/1) 2019; 25
Stevens (D1GC02705K/cit106/1) 2017; 2
Yadav (D1GC02705K/cit242/1) 2021; 280
Reddy (D1GC02705K/cit72/1) 2011; 52
Alonso (D1GC02705K/cit39/1) 2012; 14
Li (D1GC02705K/cit44/1) 2019; 21
Hostert (D1GC02705K/cit81/1) 2017; 356
Aroniadou-Anderjaska (D1GC02705K/cit12/1) 2020
Nayak (D1GC02705K/cit208/1) 2013; 117
Climent (D1GC02705K/cit215/1) 2010; 49
Sadaphal (D1GC02705K/cit69/1) 2009; 30
Mishra (D1GC02705K/cit239/1) 2018; 273
Khin (D1GC02705K/cit240/1) 2012; 5
Mondloch (D1GC02705K/cit134/1) 2013; 135
Lockridge (D1GC02705K/cit17/1) 2019; 311
Bilal (D1GC02705K/cit241/1) 2020; 253
Matveeva (D1GC02705K/cit62/1) 2006; 47
Orozco (D1GC02705K/cit161/1) 2013; 52
Dallinger (D1GC02705K/cit176/1) 2020; 53
Sheydaei (D1GC02705K/cit189/1) 2019; 384
Stankiewicz (D1GC02705K/cit46/1) 2016
Moon (D1GC02705K/cit132/1) 2015; 54
Keglevich (D1GC02705K/cit54/1) 2017; 49
Maccato (D1GC02705K/cit206/1) 2018; 10
Mizrahi (D1GC02705K/cit145/1) 2010; 179
Wang (D1GC02705K/cit184/1) 2005; 91
Tsai (D1GC02705K/cit104/1) 2012; 51
Paddle (D1GC02705K/cit233/1) 1996; 11
Navalon (D1GC02705K/cit157/1) 2014; 114
Dong (D1GC02705K/cit143/1) 2017; 56
Kangas (D1GC02705K/cit211/1) 2017; 47
Fang (D1GC02705K/cit70/1) 2010; 185
Wong (D1GC02705K/cit166/1) 2020; 12
Li (D1GC02705K/cit113/1) 2009; 38
Keglevich (D1GC02705K/cit53/1) 2016; 88
Alves (D1GC02705K/cit96/1) 2018; 10
Fang (D1GC02705K/cit65/1) 2010; 21
Eshghi (D1GC02705K/cit67/1) 2015; 190
Jacquet (D1GC02705K/cit74/1) 2016; 23
Naidek (D1GC02705K/cit164/1) 2018; 56
Wang (D1GC02705K/cit217/1) 2014; 204
Silva (D1GC02705K/cit9/1) 2012; 35
Orth (D1GC02705K/cit163/1) 2013; 61
Li (D1GC02705K/cit200/1) 2014; 8
Ma (D1GC02705K/cit43/1) 2018; 20
Kiss (D1GC02705K/cit47/1) 2009; 39
Kargin (D1GC02705K/cit58/1) 2001; 507
Manco (D1GC02705K/cit93/1) 2018; 93
Peterson (D1GC02705K/cit131/1) 2015; 54
Pérez-Madrigal (D1GC02705K/cit209/1) 2016; 18
Jansa (D1GC02705K/cit50/1) 2011; 13
Su (D1GC02705K/cit158/1) 2013; 46
Parmar (D1GC02705K/cit207/1) 2018; 140
DeCoste (D1GC02705K/cit117/1) 2014; 114
Long (D1GC02705K/cit138/1) 2010; 49
Stein (D1GC02705K/cit147/1) 2020; 25
Bromberg (D1GC02705K/cit170/1) 2015; 7
Katz (D1GC02705K/cit130/1) 2014; 53
Villemin (D1GC02705K/cit49/1) 1998; 133
Wang (D1GC02705K/cit56/1) 2017; 19
Brandhuber (D1GC02705K/cit193/1) 2013; 49
Elias (D1GC02705K/cit196/1) 2014; 48
Jang (D1GC02705K/cit1/1) 2015; 115
Karthik (D1GC02705K/cit212/1) 2018; 6
Mondloch (D1GC02705K/cit85/1) 2015; 14
Li (D1GC02705K/cit159/1) 2016; 10
Sans (D1GC02705K/cit182/1) 2015; 6
Keglevich (D1GC02705K/cit48/1) 2011; 15
Vera (D1GC02705K/cit99/1) 2020; 13
Balow (D1GC02705K/cit174/1) 2018; 57
Balasubramanian (D1GC02705K/cit219/1) 2018; 87
Anastas (D1GC02705K/cit22/1) 2010; 39
Cherny (D1GC02705K/cit105/1) 2013; 8
Letort (D1GC02705K/cit192/1) 2017; 13
Norouzi (D1GC02705K/cit148/1) 2020; 12
Kaur (D1GC02705K/cit236/1) 2017; 92
Grissom (D1GC02705K/cit140/1) 2020; 12
Pavez (D1GC02705K/cit203/1) 2016; 4
Kwon (D1GC02705K/cit229/1) 2012; 12
Cavka (D1GC02705K/cit127/1) 2008; 130
Silva (D1GC02705K/cit156/1) 2017; 7
Zhang (D1GC02705K/cit57/1) 2018; 20
Hou (D1GC02705K/cit144/1) 2018; 8
Bigdeli (D1GC02705K/cit228/1) 2017; 9
Valekar (D1GC02705K/cit129/1) 2020; 10
Matouq (D1GC02705K/cit201/1) 2008; 15
D1GC02705K/cit14/1
Gong (D1GC02705K/cit221/1) 2011; 85
Li (D1GC02705K/cit114/1) 2012; 112
Kaushal (D1GC02705K/cit2/1) 2021; 207
Mallakpour (D1GC02705K/cit61/1) 2012
Blaskó (D1GC02705K/cit36/1) 1997; 10
Guo (D1GC02705K/cit141/1) 2016; 128
Nath (D1GC02705K/cit110/1) 2016; 45
Zou (D1GC02705K/cit121/1) 2010; 132
Smith (D1GC02705K/cit75/1) 2008; 37
Picard (D1GC02705K/cit15/1) 2019; 17
Thomas (D1GC02705K/cit76/1) 2010; 2
Cordeiro (D1GC02705K/cit186/1) 2013; 32
Efremenko (D1GC02705K/cit185/1) 2009; 159
Bigley (D1GC02705K/cit107/1) 2013; 135
Schaate (D1GC02705K/cit126/1) 2011; 17
Weber (D1GC02705K/cit89/1) 1976; 10
Gupta (D1GC02705K/cit101/1) 2011; 7
Noradoun (D1GC02705K/cit197/1) 2005; 7
Bromberg (D1GC02705K/cit173/1) 2007; 46
Artem'ev (D1GC02705K/cit31/1) 2013; 49
Mazur (D1GC02705K/cit90/1) 1946; 164
Malysheva (D1GC02705K/cit32/1) 2019
Fest (D1GC02705K/cit4/1) 2012
Zhou (D1GC02705K/cit97/1) 2018; 6
Park (D1GC02705K/cit237/1) 2016; 8
Cooks (D1GC02705K/cit226/1) 2006; 311
Borkar (D1GC02705K/cit80/1) 2010; 26
Orth (D1GC02705K/cit155/1) 2015; 403
Zhu (D1GC02705K/cit35/1) 2016; 138
Huang (D1GC02705K/cit25/1) 2017; 2
Schenk (D1GC02705K/cit91/1) 2016; 317
Zheng (D1GC02705K/cit205/1) 2010; 7
D1GC02705K/cit13/1
Delfino (D1GC02705K/cit8/1) 2009; 20
Benbrook (D1GC02705K/cit6/1) 2016; 28
Ramananarivo (D1GC02705K/cit45/1) 2013; 1
Ruan (D1GC02705K/cit172/1) 2014; 20
Kirby (D1GC02705K/cit102/1) 2013; 203
Caporali (D1GC02705K/cit29/1) 2016
Morodo (D1GC02705K/cit24/1) 2020
Balow (D1GC02705K/cit152/1) 2017; 9
Emmanuel (D1GC02705K/cit183/1) 2020; 22
Lee (D1GC02705K/cit230/1) 2018; 273
Mason (D1GC02705K/cit112/1) 2014; 5
Fonsaca (D1GC02705K/cit78/1) 2017; 5
Alcalde (D1GC02705K/cit92/1) 2006; 24
Costa (D1GC02705K/cit3/1) 2018; 162
Yakhvarov (D1GC02705K/cit60/1) 2011; 123
Blaskievicz (D1GC02705K/cit82/1) 2020; 264
Liu (D1GC02705K/cit118/1) 2017; 346
Papoušková (D1GC02705K/cit224/1) 2006; 29
Islamoglu (D1GC02705K/cit119/1) 2020; 120
Lyu (D1GC02705K/cit128/1) 2019; 11
Gerola (D1GC02705K/cit169/1) 2017; 7
Astle (D1GC02705K/cit150/1) 2018; 6
Giusti (D1GC02705K/cit167/1) 2014; 27
Motamedhashemi (D1GC02705K/cit187/1) 2011; 376
Wu (D1GC02705K/cit235/1) 2013; 177
Liz (D1GC02705K/cit195/1) 2016; 52
Hellinger (D1GC02705K/cit231/1) 2020; 92
Eubanks (D1GC02705K/cit18/1) 2007; 36
Osovsky (D1GC02705K/cit202/1) 2013; 52
Wang (D1GC02705K/cit125/1) 2013; 188
Wang (D1GC02705K/cit38/1) 2015; 17
Russell (D1GC02705K/cit16/1) 2003; 5
Martínez-Castro (D1GC02705K/cit40/1) 2010; 12
Ghasemi-Varnamkhasti (D1GC02705K/cit204/1) 2018; 80
Chagas (D1GC02705K/cit87/1) 2018; 24
Islamoglu (D1GC02705K/cit135/1) 2018; 20
Sharma (D1GC02705K/cit191/1) 2016; 4
Chen (D1GC02705K/cit210/1) 2011; 13
Van Dyk (D1GC02705K/cit19/1) 2011; 82
Furukawa (D1GC02705K/cit136/1) 2014; 136
Sempionatto (D1GC02705K/cit238/1) 2017; 2
Malysheva (D1GC02705K/cit33/1) 2018; 59
Hostert (D1GC02705K/cit165/1) 2018; 90
Roy (D1GC02705K/cit123/1) 2012; 41
Witkiewicz (D1GC02705K/cit225/1) 2018; 48
Disale (D1GC02705K/cit64/1) 2012; 53
Horcajada (D1GC02705K/cit115/1) 2006; 118
Bromberg (D1GC02705K/cit124/1) 2012; 4
Du (D1GC02705K/cit5/1) 2019; 26
Bigley (D1GC02705K/cit108/1) 2015; 54
Eyckens (D1GC02705K/cit66/1) 2017; 7
Brahim (D1GC02705K/cit188/1) 2014; 52
Midey (D1GC02705K/cit227/1) 2010; 82
Trapp (D1GC02705K/cit73/1) 2006; 1076
Kaboudin (D1GC02705K/cit51/1) 2001; 31
Movsisyan (D1GC02705K/cit175/1) 2016; 45
Liu (D1GC02705K/cit220/1) 2013; 108
References_xml – issn: 2016
  end-page: 97-136
  publication-title: Chemistry Beyond Chlorine
  doi: Caporali Serrano-Ruiz Peruzzini
– issn: 2016
  end-page: 137-168
  publication-title: Chemistry Beyond Chlorine
  doi: Visa Maranescu Ilia
– issn: 2012
  end-page: 1-32
  publication-title: Green solvents II
  doi: Mallakpour Dinari
– issn: 2016
  publication-title: Alternative energy sources for green chemistry
  doi: Stankiewicz Clark De La Hoz Fan Chain Hessel Gascon Van Gerven Hristov Larachi
– issn: 2007
  publication-title: Chemical warfare agents: toxicology and treatment
  doi: Marrs Maynard Sidell
– issn: 2012
  publication-title: The chemistry of organophosphorus pesticides
  doi: Fest Schmidt
– volume: 56
  start-page: 7568
  year: 2017
  ident: D1GC02705K/cit177/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702744
– volume: 11
  start-page: 3936
  year: 2013
  ident: D1GC02705K/cit234/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c3ob40324f
– volume: 19
  start-page: 4769
  year: 2017
  ident: D1GC02705K/cit56/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC01989K
– volume: 25
  start-page: 10878
  year: 2018
  ident: D1GC02705K/cit199/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-1346-2
– volume: 27
  start-page: 8162
  year: 2015
  ident: D1GC02705K/cit160/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03960
– volume: 26
  start-page: 5017
  year: 2020
  ident: D1GC02705K/cit154/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201905379
– volume: 12
  start-page: 33500
  year: 2020
  ident: D1GC02705K/cit166/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08946
– volume: 26
  start-page: 1622
  year: 2010
  ident: D1GC02705K/cit80/1
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.498
– volume: 31
  start-page: 2773
  year: 2001
  ident: D1GC02705K/cit51/1
  publication-title: Synth. Commun.
  doi: 10.1081/SCC-100105324
– volume: 10
  start-page: 15712
  year: 2018
  ident: D1GC02705K/cit96/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02717
– volume: 41
  start-page: 12346
  year: 2012
  ident: D1GC02705K/cit123/1
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31888a
– volume: 59
  start-page: 723
  year: 2018
  ident: D1GC02705K/cit33/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.01.021
– volume: 61
  start-page: 543
  year: 2013
  ident: D1GC02705K/cit163/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.032
– volume: 10
  start-page: 12305
  year: 2018
  ident: D1GC02705K/cit206/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01835
– volume: 4
  start-page: 6962
  year: 2016
  ident: D1GC02705K/cit191/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01878
– volume: 40
  start-page: 5682
  year: 2001
  ident: D1GC02705K/cit153/1
  publication-title: Biochemistry
  doi: 10.1021/bi010243j
– volume: 18
  start-page: 288
  year: 2015
  ident: D1GC02705K/cit23/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC01008J
– volume: 179
  start-page: 495
  year: 2010
  ident: D1GC02705K/cit145/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.03.030
– volume: 11
  start-page: 1079
  year: 1996
  ident: D1GC02705K/cit233/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/0956-5663(96)82333-5
– volume: 136
  start-page: 4369
  year: 2014
  ident: D1GC02705K/cit136/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500330a
– volume: 8
  start-page: 6062
  year: 2018
  ident: D1GC02705K/cit144/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00972
– volume: 54
  start-page: 9684
  year: 2015
  ident: D1GC02705K/cit131/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01867
– volume: 57
  start-page: 8630
  year: 2018
  ident: D1GC02705K/cit174/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01546
– volume: 51
  start-page: 6463
  year: 2012
  ident: D1GC02705K/cit104/1
  publication-title: Biochemistry
  doi: 10.1021/bi300811t
– volume: 135
  start-page: 10426
  year: 2013
  ident: D1GC02705K/cit107/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402832z
– volume: 162
  start-page: 24
  year: 2018
  ident: D1GC02705K/cit3/1
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfx266
– volume: 376
  start-page: 119
  year: 2011
  ident: D1GC02705K/cit187/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.04.013
– volume: 164
  start-page: 271
  year: 1946
  ident: D1GC02705K/cit90/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)43068-2
– volume: 135
  start-page: 10294
  year: 2013
  ident: D1GC02705K/cit134/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4050828
– volume: 68
  start-page: 834
  year: 2014
  ident: D1GC02705K/cit71/1
  publication-title: Chem. Pap.
  doi: 10.2478/s11696-013-0516-4
– volume: 507
  start-page: 157
  year: 2001
  ident: D1GC02705K/cit58/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(01)00435-1
– volume: 2
  start-page: 1531
  year: 2017
  ident: D1GC02705K/cit238/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00603
– volume: 3
  start-page: 1800471
  year: 2019
  ident: D1GC02705K/cit111/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800471
– volume: 1076
  start-page: 527
  year: 2006
  ident: D1GC02705K/cit73/1
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1371.040
– volume: 14
  start-page: 2699
  year: 2012
  ident: D1GC02705K/cit39/1
  publication-title: Green Chem.
  doi: 10.1039/c2gc35898k
– volume: 88
  start-page: 931
  year: 2016
  ident: D1GC02705K/cit53/1
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2016-0604
– volume: 27
  start-page: 297
  year: 2014
  ident: D1GC02705K/cit167/1
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.3263
– volume: 42
  start-page: 2365
  year: 2012
  ident: D1GC02705K/cit198/1
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2011.574184
– volume: 140
  start-page: 9317
  year: 2018
  ident: D1GC02705K/cit207/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05762
– volume: 29
  start-page: 1531
  year: 2006
  ident: D1GC02705K/cit224/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.200500432
– volume: 32
  start-page: 269
  year: 2000
  ident: D1GC02705K/cit27/1
  publication-title: Org. Prep. Proced. Int.
  doi: 10.1080/00304940009355923
– volume: 346
  start-page: 290
  year: 1995
  ident: D1GC02705K/cit10/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)92170-2
– volume: 85
  start-page: 308
  year: 2013
  ident: D1GC02705K/cit216/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac302781r
– volume: 42
  start-page: 5115
  year: 2016
  ident: D1GC02705K/cit68/1
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-015-2348-z
– volume: 2
  start-page: 53
  year: 2017
  ident: D1GC02705K/cit106/1
  publication-title: Phys. Sci. Rev.
– volume: 91
  start-page: 379
  year: 2005
  ident: D1GC02705K/cit184/1
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20519
– volume: 10
  start-page: 11125
  year: 2018
  ident: D1GC02705K/cit213/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19763
– volume: 264
  start-page: 118496
  year: 2020
  ident: D1GC02705K/cit82/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118496
– volume: 82
  start-page: 291
  year: 2011
  ident: D1GC02705K/cit19/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.10.033
– volume: 273
  start-page: 966
  year: 2018
  ident: D1GC02705K/cit239/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.07.001
– volume: 48
  start-page: 337
  year: 2018
  ident: D1GC02705K/cit225/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2018.1439366
– volume: 5
  start-page: 1
  year: 2003
  ident: D1GC02705K/cit16/1
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.5.121202.125602
– volume: 87
  start-page: 83
  year: 2018
  ident: D1GC02705K/cit219/1
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.03.014
– volume: 50
  start-page: 7531
  year: 2014
  ident: D1GC02705K/cit222/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02689F
– volume: 53
  start-page: 2277
  year: 2012
  ident: D1GC02705K/cit64/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2012.02.054
– volume: 253
  start-page: 126770
  year: 2020
  ident: D1GC02705K/cit241/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126770
– volume: 20
  start-page: 5913
  year: 2018
  ident: D1GC02705K/cit135/1
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00455B
– volume: 116
  start-page: 37
  year: 2018
  ident: D1GC02705K/cit20/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.05.039
– volume: 84
  start-page: 14101
  year: 2019
  ident: D1GC02705K/cit180/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02263
– volume: 8
  start-page: 10591
  year: 2016
  ident: D1GC02705K/cit237/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR01468B
– volume: 81
  start-page: 415
  year: 1981
  ident: D1GC02705K/cit42/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00044a004
– volume: 15
  start-page: 1802
  year: 2011
  ident: D1GC02705K/cit48/1
  publication-title: Curr. Org. Chem.
  doi: 10.2174/138527211795656570
– volume: 133
  start-page: 11888
  year: 2011
  ident: D1GC02705K/cit122/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2042113
– volume: 9
  start-page: 39747
  year: 2017
  ident: D1GC02705K/cit152/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10902
– volume: 311
  start-page: 1566
  year: 2006
  ident: D1GC02705K/cit226/1
  publication-title: Science
  doi: 10.1126/science.1119426
– volume: 27
  start-page: 8162
  year: 2015
  ident: D1GC02705K/cit162/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03960
– volume-title: Chemical warfare agents: toxicology and treatment
  year: 2007
  ident: D1GC02705K/cit223/1
  doi: 10.1002/9780470060032
– volume: 93
  start-page: 2064
  year: 2018
  ident: D1GC02705K/cit93/1
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5603
– volume: 207
  start-page: 111483
  year: 2021
  ident: D1GC02705K/cit2/1
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111483
– volume: 21
  start-page: 2916
  year: 2019
  ident: D1GC02705K/cit44/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC01254K
– volume: 52
  start-page: 9705
  year: 2013
  ident: D1GC02705K/cit202/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401517a
– volume: 403
  start-page: 93
  year: 2015
  ident: D1GC02705K/cit155/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2015.03.020
– volume: 123
  start-page: 5482
  year: 2011
  ident: D1GC02705K/cit60/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201100822
– volume: 48
  start-page: 2893
  year: 2014
  ident: D1GC02705K/cit196/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4056388
– volume: 3
  start-page: 399
  year: 2018
  ident: D1GC02705K/cit178/1
  publication-title: React. Chem. Eng.
  doi: 10.1039/C8RE00083B
– volume: 45
  start-page: 4892
  year: 2016
  ident: D1GC02705K/cit175/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00902B
– volume: 47
  start-page: 9267
  year: 2013
  ident: D1GC02705K/cit88/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402526n
– volume: 20
  start-page: 3408
  year: 2018
  ident: D1GC02705K/cit43/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC00931G
– volume: 25
  start-page: 5495
  year: 2019
  ident: D1GC02705K/cit63/1
  publication-title: Ionics
  doi: 10.1007/s11581-019-03069-3
– volume: 18
  start-page: 5930
  year: 2016
  ident: D1GC02705K/cit209/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC02086K
– volume: 20
  start-page: 3916
  year: 2018
  ident: D1GC02705K/cit57/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC02026D
– volume: 14
  start-page: 512
  year: 2015
  ident: D1GC02705K/cit85/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4238
– volume: 12
  start-page: 1171
  year: 2010
  ident: D1GC02705K/cit40/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00026d
– volume: 190
  start-page: 1606
  year: 2015
  ident: D1GC02705K/cit67/1
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426507.2015.1012199
– volume: 7
  start-page: 2230
  year: 2017
  ident: D1GC02705K/cit169/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00097
– volume: 32
  start-page: 54
  year: 2013
  ident: D1GC02705K/cit186/1
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2012.11.008
– volume: 25
  start-page: 4425
  year: 2020
  ident: D1GC02705K/cit147/1
  publication-title: Molecules
  doi: 10.3390/molecules25194425
– volume: 53
  start-page: 1330
  year: 2020
  ident: D1GC02705K/cit176/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00199
– volume: 12
  start-page: 743
  year: 2010
  ident: D1GC02705K/cit77/1
  publication-title: Green Chem.
  doi: 10.1039/b921171c
– volume: 118
  start-page: 6120
  year: 2006
  ident: D1GC02705K/cit115/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200601878
– volume: 317
  start-page: 122
  year: 2016
  ident: D1GC02705K/cit91/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.03.006
– volume: 128
  start-page: 7529
  year: 2016
  ident: D1GC02705K/cit141/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201601620
– volume: 13
  start-page: 417
  year: 2017
  ident: D1GC02705K/cit192/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.13.45
– volume: 123
  start-page: 15157
  year: 2019
  ident: D1GC02705K/cit137/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03817
– volume: 23
  start-page: 2925
  year: 2021
  ident: D1GC02705K/cit190/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC00449B
– volume: 188
  start-page: 1306
  year: 2013
  ident: D1GC02705K/cit125/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.08.043
– volume: 7
  start-page: 22001
  year: 2015
  ident: D1GC02705K/cit170/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b06905
– volume: 7
  start-page: 40711
  year: 2017
  ident: D1GC02705K/cit156/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07059D
– volume: 17
  start-page: 6528
  year: 2019
  ident: D1GC02705K/cit15/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00802K
– volume: 8
  start-page: 3343
  year: 2018
  ident: D1GC02705K/cit194/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00901
– volume: 26
  start-page: 22126
  year: 2019
  ident: D1GC02705K/cit5/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05669-y
– ident: D1GC02705K/cit14/1
– volume: 52
  start-page: 6784
  year: 2014
  ident: D1GC02705K/cit188/1
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2013.827779
– volume: 130
  start-page: 13850
  year: 2008
  ident: D1GC02705K/cit127/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057953
– volume: 2
  start-page: 11007
  year: 2017
  ident: D1GC02705K/cit25/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201702215
– volume: 39
  start-page: 301
  year: 2010
  ident: D1GC02705K/cit22/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B918763B
– volume: 120
  start-page: 8130
  year: 2020
  ident: D1GC02705K/cit119/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00828
– volume: 177
  start-page: 724
  year: 2013
  ident: D1GC02705K/cit235/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2012.11.069
– volume: 2016
  start-page: 4290
  year: 2016
  ident: D1GC02705K/cit120/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600286
– volume: 38
  start-page: 1477
  year: 2009
  ident: D1GC02705K/cit113/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 19
  start-page: 3899
  year: 2017
  ident: D1GC02705K/cit37/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01796
– volume: 27
  start-page: 15112
  year: 2011
  ident: D1GC02705K/cit168/1
  publication-title: Langmuir
  doi: 10.1021/la203437j
– volume: 85
  start-page: 1344
  year: 2011
  ident: D1GC02705K/cit221/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.06.016
– volume: 23
  start-page: 559
  year: 2010
  ident: D1GC02705K/cit79/1
  publication-title: Protein Eng., Des. Sel.
  doi: 10.1093/protein/gzq026
– volume: 24
  start-page: 1
  year: 2018
  ident: D1GC02705K/cit87/1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-018-3798-1
– volume: 49
  start-page: 3425
  year: 2013
  ident: D1GC02705K/cit193/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41290c
– volume: 119
  start-page: 463
  year: 1999
  ident: D1GC02705K/cit98/1
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/S0009-2797(99)00059-9
– volume: 159
  start-page: 251
  year: 2009
  ident: D1GC02705K/cit185/1
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8564-5
– volume: 365
  start-page: 261
  year: 2019
  ident: D1GC02705K/cit100/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.094
– start-page: 5236
  year: 2020
  ident: D1GC02705K/cit24/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202000430
– volume: 17
  start-page: 6643
  year: 2011
  ident: D1GC02705K/cit126/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201003211
– volume: 10
  start-page: 4826
  year: 2018
  ident: D1GC02705K/cit83/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801220
– volume: 53
  start-page: 497
  year: 2014
  ident: D1GC02705K/cit130/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307520
– volume: 2
  start-page: 127
  year: 2010
  ident: D1GC02705K/cit76/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.200900275
– volume: 58
  start-page: 2039
  year: 2019
  ident: D1GC02705K/cit109/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.9b00097
– volume: 12
  start-page: 2099
  year: 2010
  ident: D1GC02705K/cit55/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00382d
– volume: 52
  start-page: 13276
  year: 2013
  ident: D1GC02705K/cit161/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308072
– volume: 17
  start-page: 3111
  year: 2015
  ident: D1GC02705K/cit30/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC00340G
– volume: 346
  start-page: 101
  year: 2017
  ident: D1GC02705K/cit118/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.11.008
– volume: 49
  start-page: 5945
  year: 2010
  ident: D1GC02705K/cit215/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001088
– volume: 280
  start-page: 130792
  year: 2021
  ident: D1GC02705K/cit242/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130792
– volume: 19
  start-page: 1128
  year: 2017
  ident: D1GC02705K/cit34/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC03115C
– volume: 90
  start-page: 1593
  year: 2018
  ident: D1GC02705K/cit165/1
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2018-0104
– volume: 138
  start-page: 4178
  year: 2016
  ident: D1GC02705K/cit133/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00069
– volume: 108
  start-page: 266
  year: 2013
  ident: D1GC02705K/cit220/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2013.03.003
– volume: 132
  start-page: 17996
  year: 2010
  ident: D1GC02705K/cit121/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101440z
– volume: 5
  start-page: 32
  year: 2014
  ident: D1GC02705K/cit112/1
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52633J
– volume: 6
  start-page: 20444
  year: 2018
  ident: D1GC02705K/cit150/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08100J
– volume: 35
  start-page: 2083
  year: 2012
  ident: D1GC02705K/cit9/1
  publication-title: Quím. Nova
  doi: 10.1590/S0100-40422012001000033
– volume: 13
  start-page: 882
  year: 2011
  ident: D1GC02705K/cit50/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00509f
– start-page: 139071
  year: 2020
  ident: D1GC02705K/cit7/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139071
– volume: 48
  start-page: 1650
  year: 2009
  ident: D1GC02705K/cit86/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801150y
– volume: 54
  start-page: 5502
  year: 2015
  ident: D1GC02705K/cit108/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00629
– volume: 52
  start-page: 3167
  year: 2016
  ident: D1GC02705K/cit195/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC10214F
– ident: D1GC02705K/cit13/1
– volume: 46
  start-page: 3296
  year: 2007
  ident: D1GC02705K/cit173/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061351a
– volume: 1
  start-page: 403
  year: 2013
  ident: D1GC02705K/cit45/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc3001417
– volume: 23
  start-page: 8200
  year: 2016
  ident: D1GC02705K/cit74/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6143-1
– volume: 5
  start-page: 616
  year: 2008
  ident: D1GC02705K/cit52/1
  publication-title: Lett. Org. Chem.
  doi: 10.2174/157017808786857598
– start-page: 137
  volume-title: Chemistry Beyond Chlorine
  year: 2016
  ident: D1GC02705K/cit28/1
  doi: 10.1007/978-3-319-30073-3_4
– start-page: 6240
  year: 2019
  ident: D1GC02705K/cit32/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201901005
– volume: 74
  start-page: 51
  year: 2000
  ident: D1GC02705K/cit95/1
  publication-title: Adv. Enzymol. Relat. Areas Mol. Biol.
– volume: 24
  start-page: 281
  year: 2006
  ident: D1GC02705K/cit92/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2006.04.002
– start-page: 1
  year: 2020
  ident: D1GC02705K/cit149/1
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 8075
  year: 2012
  ident: D1GC02705K/cit240/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21818f
– volume: 10
  start-page: 3720
  year: 2020
  ident: D1GC02705K/cit129/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05085
– volume: 46
  start-page: 2275
  year: 2013
  ident: D1GC02705K/cit158/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300118v
– volume: 114
  start-page: 6179
  year: 2014
  ident: D1GC02705K/cit157/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr4007347
– volume: 311
  start-page: 108788
  year: 2019
  ident: D1GC02705K/cit17/1
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2019.108788
– volume: 115
  start-page: PR1
  year: 2015
  ident: D1GC02705K/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00402
– volume-title: The chemistry of organophosphorus pesticides
  year: 2012
  ident: D1GC02705K/cit4/1
– volume: 12
  start-page: 2797
  year: 2012
  ident: D1GC02705K/cit229/1
  publication-title: Nano Lett.
  doi: 10.1021/nl204587t
– volume: 47
  start-page: 7645
  year: 2006
  ident: D1GC02705K/cit62/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.08.050
– start-page: 108298
  year: 2020
  ident: D1GC02705K/cit12/1
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2020.108298
– volume: 47
  start-page: 138
  year: 2017
  ident: D1GC02705K/cit211/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2016.1233805
– volume: 5
  start-page: 516
  year: 2013
  ident: D1GC02705K/cit21/1
  publication-title: Front. Biosci., Scholar Ed.
  doi: 10.2741/S387
– volume: 20
  start-page: 407
  year: 2009
  ident: D1GC02705K/cit8/1
  publication-title: J. Braz. Chem. Soc.
  doi: 10.1590/S0103-50532009000300003
– volume: 10
  start-page: 427
  year: 1997
  ident: D1GC02705K/cit36/1
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/(SICI)1099-1395(199706)10:6<427::AID-POC900>3.0.CO;2-6
– volume: 22
  start-page: 4105
  year: 2020
  ident: D1GC02705K/cit183/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC01142H
– volume: 7
  start-page: 120
  year: 2011
  ident: D1GC02705K/cit101/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.510
– volume: 37
  start-page: 470
  year: 2008
  ident: D1GC02705K/cit75/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B705025A
– volume: 6
  start-page: 2286
  year: 2015
  ident: D1GC02705K/cit84/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03613A
– volume: 17
  start-page: 314
  year: 2015
  ident: D1GC02705K/cit38/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC00944D
– volume: 49
  start-page: 3069
  year: 2017
  ident: D1GC02705K/cit54/1
  publication-title: Synthesis
  doi: 10.1055/s-0036-1589031
– volume: 6
  start-page: 1258
  year: 2015
  ident: D1GC02705K/cit182/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03075C
– volume: 20
  start-page: 4251
  year: 2014
  ident: D1GC02705K/cit172/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201304779
– volume: 8
  start-page: 11118
  year: 2014
  ident: D1GC02705K/cit200/1
  publication-title: ACS Nano
  doi: 10.1021/nn505029k
– volume: 9
  start-page: 16546
  year: 2017
  ident: D1GC02705K/cit228/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR03311G
– volume: 12
  start-page: 14641
  year: 2020
  ident: D1GC02705K/cit140/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20833
– start-page: 6002
  year: 2008
  ident: D1GC02705K/cit214/1
  publication-title: Chem. Commun.
  doi: 10.1039/b811247a
– volume: 185
  start-page: 2520
  year: 2010
  ident: D1GC02705K/cit70/1
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426501003724905
– volume: 92
  start-page: 601
  year: 2020
  ident: D1GC02705K/cit231/1
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2019-0818
– volume: 80
  start-page: 71
  year: 2018
  ident: D1GC02705K/cit204/1
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2018.07.018
– volume: 49
  start-page: 1736
  year: 2010
  ident: D1GC02705K/cit138/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200902483
– volume: 117
  start-page: 13202
  year: 2013
  ident: D1GC02705K/cit208/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp312824b
– volume: 344
  start-page: 994
  year: 2018
  ident: D1GC02705K/cit142/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.11.061
– volume: 10
  start-page: 237
  year: 1976
  ident: D1GC02705K/cit89/1
  publication-title: Water Res.
  doi: 10.1016/0043-1354(76)90133-0
– volume: 16
  start-page: 225
  year: 2001
  ident: D1GC02705K/cit232/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(01)00126-9
– volume: 15
  start-page: 869
  year: 2008
  ident: D1GC02705K/cit201/1
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.10.012
– volume: 4
  start-page: 4595
  year: 2012
  ident: D1GC02705K/cit124/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3009696
– volume: 5
  start-page: 9591
  year: 2017
  ident: D1GC02705K/cit78/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01967J
– volume: 7
  start-page: 217
  year: 2005
  ident: D1GC02705K/cit26/1
  publication-title: Green Chem.
  doi: 10.1039/b417264g
– volume: 6
  start-page: 13588
  year: 2018
  ident: D1GC02705K/cit97/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04018
– volume: 56
  start-page: 4473
  year: 2017
  ident: D1GC02705K/cit143/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201700159
– volume: 114
  start-page: 5695
  year: 2014
  ident: D1GC02705K/cit117/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr4006473
– volume: 2013
  start-page: 4709
  year: 2013
  ident: D1GC02705K/cit59/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201300845
– volume: 11
  start-page: 42179
  year: 2019
  ident: D1GC02705K/cit128/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14439
– volume: 359
  start-page: 4141
  year: 2017
  ident: D1GC02705K/cit41/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201700886
– volume: 49
  start-page: 1839
  year: 2013
  ident: D1GC02705K/cit31/1
  publication-title: Russ. J. Org. Chem.
  doi: 10.1134/S1070428013120233
– volume: 133
  start-page: 209
  year: 1998
  ident: D1GC02705K/cit49/1
  publication-title: Phosphorus, Sulfur Silicon Relat. Elem.
  doi: 10.1080/10426509808032465
– volume: 203
  start-page: 181
  year: 2013
  ident: D1GC02705K/cit102/1
  publication-title: Chem.-Biol. Interact.
  doi: 10.1016/j.cbi.2012.10.023
– volume: 112
  start-page: 11901
  year: 2008
  ident: D1GC02705K/cit151/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803003k
– volume: 138
  start-page: 5825
  year: 2016
  ident: D1GC02705K/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03112
– volume: 122
  start-page: 10206
  year: 2000
  ident: D1GC02705K/cit103/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002546r
– volume: 13
  start-page: 4218
  year: 2020
  ident: D1GC02705K/cit99/1
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2019.07.003
– volume: 36
  start-page: 458
  year: 2007
  ident: D1GC02705K/cit18/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b615227a
– volume: 7
  start-page: 426
  year: 2005
  ident: D1GC02705K/cit197/1
  publication-title: Green Chem.
  doi: 10.1039/b502860d
– volume: 52
  start-page: 4764
  year: 2011
  ident: D1GC02705K/cit72/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2011.07.027
– volume: 6
  start-page: 8615
  year: 2018
  ident: D1GC02705K/cit212/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00936
– volume: 384
  start-page: 112068
  year: 2019
  ident: D1GC02705K/cit189/1
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2019.112068
– volume: 92
  start-page: 62
  year: 2017
  ident: D1GC02705K/cit236/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.04.012
– volume: 273
  start-page: 322
  year: 2018
  ident: D1GC02705K/cit230/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.06.059
– volume: 45
  start-page: 4127
  year: 2016
  ident: D1GC02705K/cit110/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00047A
– volume: 13
  start-page: 133
  year: 2011
  ident: D1GC02705K/cit210/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.11.033
– start-page: 1
  volume-title: Green solvents II
  year: 2012
  ident: D1GC02705K/cit61/1
– volume: 54
  start-page: 10829
  year: 2015
  ident: D1GC02705K/cit132/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01813
– volume-title: Alternative energy sources for green chemistry
  year: 2016
  ident: D1GC02705K/cit46/1
– volume: 8
  start-page: 2394
  year: 2013
  ident: D1GC02705K/cit105/1
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb4004892
– volume: 10
  start-page: 5619
  year: 2016
  ident: D1GC02705K/cit159/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02518
– volume: 21
  start-page: 546
  year: 2010
  ident: D1GC02705K/cit65/1
  publication-title: Heteroat. Chem.
  doi: 10.1002/hc.20644
– volume: 39
  start-page: 2392
  year: 2009
  ident: D1GC02705K/cit47/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397910802654880
– volume: 356
  start-page: 75
  year: 2017
  ident: D1GC02705K/cit81/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.10.008
– volume: 82
  start-page: 3764
  year: 2010
  ident: D1GC02705K/cit227/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac100176r
– volume: 413
  start-page: 127
  year: 2014
  ident: D1GC02705K/cit94/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.09.027
– volume: 1
  start-page: 577
  year: 2016
  ident: D1GC02705K/cit179/1
  publication-title: React. Chem. Eng.
  doi: 10.1039/C6RE00127K
– volume: 7
  start-page: 27900
  year: 2017
  ident: D1GC02705K/cit66/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA04407K
– volume: 30
  start-page: 1054
  year: 2009
  ident: D1GC02705K/cit69/1
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2009.30.5.1054
– volume: 28
  start-page: 3
  year: 2016
  ident: D1GC02705K/cit6/1
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-016-0070-0
– volume: 7
  start-page: 179
  year: 2010
  ident: D1GC02705K/cit205/1
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.11.027
– volume: 43
  start-page: 1628
  year: 2004
  ident: D1GC02705K/cit146/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200301684
– volume: 112
  start-page: 869
  year: 2012
  ident: D1GC02705K/cit114/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 204
  start-page: 297
  year: 2014
  ident: D1GC02705K/cit217/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.06.115
– volume: 12
  start-page: 19191
  year: 2020
  ident: D1GC02705K/cit148/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR04105J
– volume: 36
  start-page: 61
  year: 2018
  ident: D1GC02705K/cit11/1
  publication-title: Forensic Toxicol.
  doi: 10.1007/s11419-017-0376-7
– volume: 76
  start-page: 8549
  year: 2011
  ident: D1GC02705K/cit171/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo201600d
– volume: 56
  start-page: 579
  year: 2018
  ident: D1GC02705K/cit164/1
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.28944
– volume: 4
  start-page: 7023
  year: 2016
  ident: D1GC02705K/cit203/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01923
– volume: 112
  start-page: 1105
  year: 2012
  ident: D1GC02705K/cit116/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 32
  start-page: 1979
  year: 2018
  ident: D1GC02705K/cit218/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.8276
– volume: 41
  start-page: 7384
  year: 2012
  ident: D1GC02705K/cit139/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35143a
– volume: 17
  start-page: 3218
  year: 2015
  ident: D1GC02705K/cit181/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b01307
– start-page: 97
  volume-title: Chemistry Beyond Chlorine
  year: 2016
  ident: D1GC02705K/cit29/1
  doi: 10.1007/978-3-319-30073-3_3
SSID ssj0011764
Score 2.536496
SecondaryResourceType review_article
Snippet Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals,...
SourceID hal
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 585
SubjectTerms Agrochemicals
Biological & chemical weapons
Catalysis
Catalysts
Chemical industry
Chemical Sciences
Chemical synthesis
Chemical warfare
Chemical warfare agents
Chemical weapons
Chemicals
Clean technology
Continuous flow
Decontamination
Detection limits
Electrochemistry
electrosynthesis
Flame retardants
Flow system
Green chemistry
Inspection
Ionic liquids
Irradiation
issues and policy
Metal-organic frameworks
microwave radiation
Nanomaterials
Nanotechnology
Neutralization
Organophosphorus compounds
Polymers
Polyoxometallates
Prohibition
Safety
Security
Sustainability
Sustainable practices
Toxicity
Verification
Weapons
Weapons of mass destruction
Wearable technology
Title Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection
URI https://www.proquest.com/docview/2622318205
https://www.proquest.com/docview/2636713624
https://hal.science/hal-03838933
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELba7gE4IChUFBZkHhe0BJI6r3Krlu4WKMuBFpVTlDhOt6KkVZKuBHf-Lz-BGcdOQlkh4NCoch3H6nyxZ8Yz3xDyBBlkuMssw_UEN-zYjIzIjpkhwPwwmW8nAxezkd-duZO5_WbhLFqtH42opV0RPeffLs0r-R-pQhvIFbNk_0Gy1aDQAN9BvnAFCcP1r2QsEyk32_NNDp9slx9xnf6fq7J0ZfpIeLSFlU9gOPK2Tq5EZ0DeyJ_SCVMyQhbPE_KvKaiHeclCEKPlXIQYOVPoEOZYFDKSK22quDKSp5wJFpKTPocwlbwUtetRE1bgKMu9GzJ1oiDvPK29uKv1hdR0P4brL6usLhf9Aesgyzl-CkFlrrMthOQbV8WdRVpm4Sn_e4rPkK5fkS13q6bzY4BRJMagdn6WLhYd3yrjV9RcG0u67TIDWRHLHa_ZVpYs0fuAGnfVMMfLRd0piwop_cAtc2d_23pMhsytsbXkYOmbzud6g9VBBWfvg5P5dBrMxotZmxwMPND2OuRgNJ69nlYnX5YnKc-qWWtKXTZ8UY_9ixLVPscQ3oZ91M508RqpJM1ukOvKuqGjEqo3SUukXXKl-ru65FqD_7JLeuM6zRJuU_tMfot830c21cimGtkUkU1DqpFNG8h-SRu4phWu6SqlgGta4foZ3UM1BTzSCtW3yfxkPDueGKpgiMGZ7RfGMGYDz_ZF7JmR63KsvAYGgQATA3c20xEhWCu-yW24xgM_cYUIkZEzCYVnceawHumkm1TcITRxhha3EitJhrbtuyxi3HdClyVmKHzbd_rkqZZAwBWbPhZ1WQcyqoMNg1fW6bGU1ts-eVz13ZYcMpf2egSCrDog7ftkNA2wDRZNtCvYhdUnh1rOgXpT8wBQAlYaqPIwq4fVzyBYPPuDF2-zwz7M9SzQVu0-6QE-qufUoLr757Hvkav1G3hIOkW2E_dBIS-iBwrDPwFT0-oZ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organophosphorus+chemical+security+from+a+peaceful+perspective%3A+sustainable+practices+in+its+synthesis%2C+decontamination+and+detection&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Silva%2C+Valmir+B&rft.au=Santos%2C+Yane+H&rft.au=Hellinger%2C+Renata&rft.au=Mansour%2C+Sergui&rft.date=2022-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=2&rft.spage=585&rft.epage=613&rft_id=info:doi/10.1039%2Fd1gc02705k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon