Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxi...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 24; no. 2; pp. 585 - 613 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9262 1463-9270 1463-9270 |
DOI | 10.1039/d1gc02705k |
Cover
Abstract | Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal-organic frameworks, polyoxometalates, nanomaterials, polymers,
etc
.) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field.
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. |
---|---|
AbstractList | Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal-organic frameworks, polyoxometalates, nanomaterials, polymers,
etc
.) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field.
Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal–organic frameworks, polyoxometalates, nanomaterials, polymers, etc .) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field. Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. Unfortunately, they still present a big concern from a safety and security perspective considering their high toxicity to humans and the environment. Because of the former record and the persisting risks of some of these chemicals being used as weapons of mass destruction, the chemical weapons convention implemented by the organisation for the prohibition of chemical weapons, has classified a wide range of these chemicals as substances subject to a stringent verification regime. The existing practices for the production, detection and decontamination or destruction of unwanted organophosphorus compounds require high safety and security standards, which are not always attained only by sound management practices. The present review highlights the contribution made by the emerging research and early technology development in the field of green chemistry concerning these chemicals. Firstly, the advances regarding the safe synthesis of these compounds are covered not only due to their extensive legal commercial use but also as reference chemicals in verification processes. Aspects such as greener starting reactants, microwave irradiation, electrochemical synthesis and the use of ionic liquids are among the most promising alternatives. Another topic addressed is the decontamination of these toxic agents in the case of undesired stockpiles, for example, seeking their safe neutralization using mild conditions. The use of catalysts (derived from enzymes, metal–organic frameworks, polyoxometalates, nanomaterials, polymers, etc.) and continuous flow systems stand out. Finally, the greener detection of organophosphorus compounds is presented, which is relevant for inspection procedures regarding their prohibited use or misuse. This review is focused on the sustainable preparation of organophosphorus compounds and faster and cheaper architecture with lower detection limits for their detection, relying on integrated systems for multiple responses and facile applications such as wearable devices. Overall, the developments summarized provide a guide for researchers and the industry in this field, while also attracting the attention of policy makers to the undisclosed potential of green chemistry in this security sensitive domain. However, despite the progress, continuous efforts are imperative for the further development of intrinsically safer, more efficient and sustainable technologies in this field. Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals, and chemical warfare agents. |
Author | Hellinger, Renata Nogueira, Evandro S Legros, Julien Orth, Elisa S Mansour, Sergui Zinoviev, Sergey Silva, Valmir B Santos, Yane H Delaune, Antonin |
AuthorAffiliation | INSA Rouen CNRS UNIROUEN Organisation for the Prohibition of Chemical Weapons (OPCW) Normandie Université COBRA Laboratory Departamento de Química Universidade Federal do Paraná (UFPR) |
AuthorAffiliation_xml | – name: INSA Rouen – name: Organisation for the Prohibition of Chemical Weapons (OPCW) – name: UNIROUEN – name: Universidade Federal do Paraná (UFPR) – name: CNRS – name: COBRA Laboratory – name: Normandie Université – name: Departamento de Química |
Author_xml | – sequence: 1 givenname: Valmir B surname: Silva fullname: Silva, Valmir B – sequence: 2 givenname: Yane H surname: Santos fullname: Santos, Yane H – sequence: 3 givenname: Renata surname: Hellinger fullname: Hellinger, Renata – sequence: 4 givenname: Sergui surname: Mansour fullname: Mansour, Sergui – sequence: 5 givenname: Antonin surname: Delaune fullname: Delaune, Antonin – sequence: 6 givenname: Julien surname: Legros fullname: Legros, Julien – sequence: 7 givenname: Sergey surname: Zinoviev fullname: Zinoviev, Sergey – sequence: 8 givenname: Evandro S surname: Nogueira fullname: Nogueira, Evandro S – sequence: 9 givenname: Elisa S surname: Orth fullname: Orth, Elisa S |
BackLink | https://hal.science/hal-03838933$$DView record in HAL |
BookMark | eNptkk1v1DAQhi1UJNqFC3ckS1wAseCPxEl6qxZoq67UC5yjqTPpuiR28DiV9gfwv_F2q61UcbA9fvXM67HHJ-zIB4-MvZXiixS6-drJWytUJcrfL9ixLIxeNnl3dIiNesVOiO6EkLIyxTH7ex1vwYdpEyiPOBO3GxydhYET2jm6tOV9DCMHPiFY7OchB5EmtMnd4ymnmRI4DzcD8ilCVi0Sd567RJy2Pm2QHH3mHdrgE4wZTS54Dr7LWtrZBP-avexhIHzzuC7Yrx_ff64uluvr88vV2XppdVGnZdNpVRU1dpW4McZWqhZlKbFUSotKiBKh0VmzRZ47VfcGEYQqdA9YSatLvWAf974bGNopuhHitg3g2ouzdbvThK513Wh9LzP7Yc9OMfyZkVI7OrI4DOAxzNQqo00ltcn-C_b-GXoX5ujzTTKVi5O1ErvDP-0pGwNRxP5QgRTtrnvtN3m-eujeVYbFM9i69PByKYIb_p_ybp8SyR6snz6E_gdv2qjc |
CitedBy_id | crossref_primary_10_3390_forensicsci3020017 crossref_primary_10_1016_j_jhazmat_2025_137576 crossref_primary_10_1016_j_eti_2024_103912 crossref_primary_10_1021_acs_joc_3c02409 crossref_primary_10_1039_D3AY01326J crossref_primary_10_1002_chem_202403701 crossref_primary_10_1016_j_cclet_2022_107894 crossref_primary_10_1039_D3TA07332G crossref_primary_10_3390_pharmaceutics14091950 crossref_primary_10_1016_j_cej_2024_157899 crossref_primary_10_1039_D2OB01217K crossref_primary_10_1039_D4CE01223B crossref_primary_10_1021_acssuschemeng_4c07121 crossref_primary_10_1016_j_heliyon_2024_e39898 crossref_primary_10_1007_s11426_024_2351_0 crossref_primary_10_1039_D3DT00925D crossref_primary_10_1021_acsomega_4c04000 crossref_primary_10_1016_j_molliq_2024_124476 crossref_primary_10_1016_j_nantod_2024_102236 crossref_primary_10_1002_cbic_202400137 crossref_primary_10_1002_aenm_202200147 crossref_primary_10_1016_j_seppur_2024_127470 crossref_primary_10_2174_0115734137274085231214100609 crossref_primary_10_1177_17475198221138061 crossref_primary_10_1016_j_envpol_2023_121802 crossref_primary_10_1002_cplu_202300176 crossref_primary_10_3390_pharmaceutics15061666 crossref_primary_10_1039_D4NJ04993D crossref_primary_10_1002_cctc_202301440 crossref_primary_10_1039_D2GC00754A crossref_primary_10_3390_molecules28166097 crossref_primary_10_1007_s00128_023_03693_w crossref_primary_10_1039_D2LC00796G |
Cites_doi | 10.1002/anie.201702744 10.1039/c3ob40324f 10.1039/C7GC01989K 10.1007/s11356-018-1346-2 10.1021/acs.chemmater.5b03960 10.1002/chem.201905379 10.1021/acsami.0c08946 10.1002/btpr.498 10.1081/SCC-100105324 10.1021/acsami.8b02717 10.1039/c2dt31888a 10.1016/j.tetlet.2018.01.021 10.1016/j.carbon.2013.05.032 10.1021/acsami.8b01835 10.1021/acssuschemeng.6b01878 10.1021/bi010243j 10.1039/C5GC01008J 10.1016/j.jhazmat.2010.03.030 10.1016/0956-5663(96)82333-5 10.1021/ja500330a 10.1021/acscatal.8b00972 10.1021/acs.inorgchem.5b01867 10.1021/acs.iecr.8b01546 10.1021/bi300811t 10.1021/ja402832z 10.1093/toxsci/kfx266 10.1016/j.memsci.2011.04.013 10.1016/S0021-9258(18)43068-2 10.1021/ja4050828 10.2478/s11696-013-0516-4 10.1016/S0022-0728(01)00435-1 10.1021/acssensors.7b00603 10.1002/smtd.201800471 10.1196/annals.1371.040 10.1039/c2gc35898k 10.1515/pac-2016-0604 10.1002/poc.3263 10.1080/10643389.2011.574184 10.1021/jacs.8b05762 10.1002/jssc.200500432 10.1080/00304940009355923 10.1016/S0140-6736(95)92170-2 10.1021/ac302781r 10.1007/s11164-015-2348-z 10.1002/bit.20519 10.1021/acsami.7b19763 10.1016/j.apcatb.2019.118496 10.1016/j.chemosphere.2010.10.033 10.1016/j.snb.2018.07.001 10.1080/10408347.2018.1439366 10.1146/annurev.bioeng.5.121202.125602 10.1016/j.jtice.2018.03.014 10.1039/C4CC02689F 10.1016/j.tetlet.2012.02.054 10.1016/j.chemosphere.2020.126770 10.1039/C8CE00455B 10.1016/j.bios.2018.05.039 10.1021/acs.joc.9b02263 10.1039/C6NR01468B 10.1021/cr00044a004 10.2174/138527211795656570 10.1021/ja2042113 10.1021/acsami.7b10902 10.1126/science.1119426 10.1002/9780470060032 10.1002/jctb.5603 10.1016/j.ecoenv.2020.111483 10.1039/C9GC01254K 10.1021/ie401517a 10.1016/j.molcata.2015.03.020 10.1002/ange.201100822 10.1021/es4056388 10.1039/C8RE00083B 10.1039/C5CS00902B 10.1021/es402526n 10.1039/C8GC00931G 10.1007/s11581-019-03069-3 10.1039/C6GC02086K 10.1039/C8GC02026D 10.1038/nmat4238 10.1039/c0gc00026d 10.1080/10426507.2015.1012199 10.1021/acscatal.7b00097 10.1016/j.diamond.2012.11.008 10.3390/molecules25194425 10.1021/acs.accounts.0c00199 10.1039/b921171c 10.1002/ange.200601878 10.1016/j.ccr.2016.03.006 10.1002/ange.201601620 10.3762/bjoc.13.45 10.1021/acs.jpcc.9b03817 10.1039/D1GC00449B 10.1016/j.snb.2013.08.043 10.1021/acsami.5b06905 10.1039/C7RA07059D 10.1039/C9OB00802K 10.1021/acscatal.8b00901 10.1007/s11356-019-05669-y 10.1080/19443994.2013.827779 10.1021/ja8057953 10.1002/slct.201702215 10.1039/B918763B 10.1021/acs.chemrev.9b00828 10.1016/j.snb.2012.11.069 10.1002/ejic.201600286 10.1039/b802426j 10.1021/acs.orglett.7b01796 10.1021/la203437j 10.1016/j.talanta.2011.06.016 10.1093/protein/gzq026 10.1007/s00894-018-3798-1 10.1039/c3cc41290c 10.1016/S0009-2797(99)00059-9 10.1007/s12010-009-8564-5 10.1016/j.jhazmat.2018.10.094 10.1002/ejoc.202000430 10.1002/chem.201003211 10.1002/cctc.201801220 10.1002/anie.201307520 10.1002/cctc.200900275 10.1021/acs.biochem.9b00097 10.1039/c0gc00382d 10.1002/anie.201308072 10.1039/C5GC00340G 10.1016/j.ccr.2016.11.008 10.1002/anie.201001088 10.1016/j.chemosphere.2021.130792 10.1039/C6GC03115C 10.1515/pac-2018-0104 10.1021/jacs.6b00069 10.1016/j.colsurfb.2013.03.003 10.1021/ja101440z 10.1039/C3SC52633J 10.1039/C8TA08100J 10.1590/S0100-40422012001000033 10.1039/c0gc00509f 10.1016/j.scitotenv.2020.139071 10.1021/ie801150y 10.1021/acs.biochem.5b00629 10.1039/C5CC10214F 10.1021/ie061351a 10.1021/sc3001417 10.1007/s11356-016-6143-1 10.2174/157017808786857598 10.1007/978-3-319-30073-3_4 10.1002/ejoc.201901005 10.1016/j.tibtech.2006.04.002 10.1039/c2ee21818f 10.1021/acscatal.9b05085 10.1021/ar300118v 10.1021/cr4007347 10.1016/j.cbi.2019.108788 10.1021/acs.chemrev.5b00402 10.1021/nl204587t 10.1016/j.tetlet.2006.08.050 10.1016/j.neuropharm.2020.108298 10.1080/10408347.2016.1233805 10.2741/S387 10.1590/S0103-50532009000300003 10.1002/(SICI)1099-1395(199706)10:6<427::AID-POC900>3.0.CO;2-6 10.1039/D0GC01142H 10.1038/nchembio.510 10.1039/B705025A 10.1039/C4SC03613A 10.1039/C4GC00944D 10.1055/s-0036-1589031 10.1039/C4SC03075C 10.1002/chem.201304779 10.1021/nn505029k 10.1039/C7NR03311G 10.1021/acsami.9b20833 10.1039/b811247a 10.1080/10426501003724905 10.1515/pac-2019-0818 10.1016/j.tifs.2018.07.018 10.1002/anie.200902483 10.1021/jp312824b 10.1016/j.jhazmat.2017.11.061 10.1016/0043-1354(76)90133-0 10.1016/S0956-5663(01)00126-9 10.1016/j.ultsonch.2007.10.012 10.1021/am3009696 10.1039/C7TA01967J 10.1039/b417264g 10.1021/acssuschemeng.8b04018 10.1002/anie.201700159 10.1021/cr4006473 10.1002/ejic.201300845 10.1021/acsami.9b14439 10.1002/adsc.201700886 10.1134/S1070428013120233 10.1080/10426509808032465 10.1016/j.cbi.2012.10.023 10.1021/jp803003k 10.1021/jacs.6b03112 10.1021/ja002546r 10.1016/j.arabjc.2019.07.003 10.1039/b615227a 10.1039/b502860d 10.1016/j.tetlet.2011.07.027 10.1021/acssuschemeng.8b00936 10.1016/j.jphotochem.2019.112068 10.1016/j.trac.2017.04.012 10.1016/j.snb.2018.06.059 10.1039/C6CS00047A 10.1016/j.elecom.2010.11.033 10.1021/acs.inorgchem.5b01813 10.1021/cb4004892 10.1021/acsnano.6b02518 10.1002/hc.20644 10.1080/00397910802654880 10.1016/j.jcat.2017.10.008 10.1021/ac100176r 10.1016/j.jcis.2013.09.027 10.1039/C6RE00127K 10.1039/C7RA04407K 10.5012/bkcs.2009.30.5.1054 10.1186/s12302-016-0070-0 10.1016/j.proeng.2010.11.027 10.1002/anie.200301684 10.1021/cr200190s 10.1016/j.snb.2014.06.115 10.1039/D0NR04105J 10.1007/s11419-017-0376-7 10.1021/jo201600d 10.1002/pola.28944 10.1021/acssuschemeng.6b01923 10.1021/cr200324t 10.1002/rcm.8276 10.1039/c2cs35143a 10.1021/acs.orglett.5b01307 10.1007/978-3-319-30073-3_3 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 1XC |
DOI | 10.1039/d1gc02705k |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 613 |
ExternalDocumentID | oai_HAL_hal_03838933v1 10_1039_D1GC02705K d1gc02705k |
GroupedDBID | 0-7 0R 1TJ 29I 4.4 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c348t-9d32748ed70b66c7280551e522307005ea93280c4328d28f6eea0243fae71c353 |
ISSN | 1463-9262 1463-9270 |
IngestDate | Fri Sep 12 12:35:16 EDT 2025 Fri Jul 11 10:06:09 EDT 2025 Mon Jun 30 12:04:37 EDT 2025 Tue Jul 01 01:41:32 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Tue Jan 25 04:31:02 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-9d32748ed70b66c7280551e522307005ea93280c4328d28f6eea0243fae71c353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6874-3650 0000-0002-4807-7897 0000-0002-1390-3693 0000-0001-6686-7721 |
PQID | 2622318205 |
PQPubID | 2047490 |
PageCount | 29 |
ParticipantIDs | hal_primary_oai_HAL_hal_03838933v1 proquest_journals_2622318205 crossref_primary_10_1039_D1GC02705K rsc_primary_d1gc02705k crossref_citationtrail_10_1039_D1GC02705K proquest_miscellaneous_2636713624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-24 |
PublicationDateYYYYMMDD | 2022-01-24 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Guo (D1GC02705K/cit41/1) 2017; 359 Rostamnia (D1GC02705K/cit71/1) 2014; 68 Costero (D1GC02705K/cit214/1) 2008 Kreno (D1GC02705K/cit116/1) 2012; 112 Uniyal (D1GC02705K/cit20/1) 2018; 116 Wanamaker (D1GC02705K/cit88/1) 2013; 47 Momeni (D1GC02705K/cit137/1) 2019; 123 Platero-Prats (D1GC02705K/cit133/1) 2016; 138 Aka (D1GC02705K/cit180/1) 2019; 84 Wu (D1GC02705K/cit103/1) 2000; 122 Raushel (D1GC02705K/cit95/1) 2000; 74 Wagner (D1GC02705K/cit151/1) 2008; 112 Montoro (D1GC02705K/cit122/1) 2011; 133 Marciano (D1GC02705K/cit171/1) 2011; 76 Bromberg (D1GC02705K/cit86/1) 2009; 48 Frontana-Uribe (D1GC02705K/cit55/1) 2010; 12 Khulbe (D1GC02705K/cit83/1) 2018; 10 Morita (D1GC02705K/cit10/1) 1995; 346 Croissant (D1GC02705K/cit149/1) 2020 Visa (D1GC02705K/cit28/1) 2016 Katz (D1GC02705K/cit84/1) 2015; 6 Sagar (D1GC02705K/cit27/1) 2000; 32 Yakhvarov (D1GC02705K/cit59/1) 2013; 2013 Bigley (D1GC02705K/cit109/1) 2019; 58 Sun (D1GC02705K/cit34/1) 2017; 19 Nishiyama (D1GC02705K/cit37/1) 2017; 19 Prat (D1GC02705K/cit23/1) 2015; 18 Lu (D1GC02705K/cit79/1) 2010; 23 Li (D1GC02705K/cit142/1) 2018; 344 Wang (D1GC02705K/cit7/1) 2020 Reinsch (D1GC02705K/cit120/1) 2016; 2016 Picard (D1GC02705K/cit177/1) 2017; 56 Moon (D1GC02705K/cit100/1) 2019; 365 Hondred (D1GC02705K/cit213/1) 2018; 10 Mach (D1GC02705K/cit218/1) 2018; 32 Stehle (D1GC02705K/cit94/1) 2014; 413 Perro (D1GC02705K/cit179/1) 2016; 1 Keglevich (D1GC02705K/cit52/1) 2008; 5 Jang (D1GC02705K/cit222/1) 2014; 50 Rani (D1GC02705K/cit199/1) 2018; 25 Gordon (D1GC02705K/cit98/1) 1999; 119 Schlögl (D1GC02705K/cit146/1) 2004; 43 Delaune (D1GC02705K/cit190/1) 2021; 23 Mello (D1GC02705K/cit168/1) 2011; 27 Campos (D1GC02705K/cit154/1) 2020; 26 Sud (D1GC02705K/cit198/1) 2012; 42 Polshettiwar (D1GC02705K/cit77/1) 2010; 12 Shaikh (D1GC02705K/cit68/1) 2016; 42 Giraudeau (D1GC02705K/cit178/1) 2018; 3 John (D1GC02705K/cit11/1) 2018; 36 Bhattacharya (D1GC02705K/cit42/1) 1981; 81 Mulchandani (D1GC02705K/cit232/1) 2001; 16 Ajami (D1GC02705K/cit234/1) 2013; 11 Lau (D1GC02705K/cit181/1) 2015; 17 Ilia (D1GC02705K/cit26/1) 2005; 7 Massiah (D1GC02705K/cit153/1) 2001; 40 Song (D1GC02705K/cit139/1) 2012; 41 Wanderlind (D1GC02705K/cit194/1) 2018; 8 Pacsial-Ong (D1GC02705K/cit21/1) 2013; 5 Singh (D1GC02705K/cit162/1) 2015; 27 Liang (D1GC02705K/cit216/1) 2013; 85 Marrs (D1GC02705K/cit223/1) 2007 Singh (D1GC02705K/cit160/1) 2015; 27 McElroy (D1GC02705K/cit30/1) 2015; 17 Han (D1GC02705K/cit111/1) 2019; 3 Gryaznova (D1GC02705K/cit63/1) 2019; 25 Stevens (D1GC02705K/cit106/1) 2017; 2 Yadav (D1GC02705K/cit242/1) 2021; 280 Reddy (D1GC02705K/cit72/1) 2011; 52 Alonso (D1GC02705K/cit39/1) 2012; 14 Li (D1GC02705K/cit44/1) 2019; 21 Hostert (D1GC02705K/cit81/1) 2017; 356 Aroniadou-Anderjaska (D1GC02705K/cit12/1) 2020 Nayak (D1GC02705K/cit208/1) 2013; 117 Climent (D1GC02705K/cit215/1) 2010; 49 Sadaphal (D1GC02705K/cit69/1) 2009; 30 Mishra (D1GC02705K/cit239/1) 2018; 273 Khin (D1GC02705K/cit240/1) 2012; 5 Mondloch (D1GC02705K/cit134/1) 2013; 135 Lockridge (D1GC02705K/cit17/1) 2019; 311 Bilal (D1GC02705K/cit241/1) 2020; 253 Matveeva (D1GC02705K/cit62/1) 2006; 47 Orozco (D1GC02705K/cit161/1) 2013; 52 Dallinger (D1GC02705K/cit176/1) 2020; 53 Sheydaei (D1GC02705K/cit189/1) 2019; 384 Stankiewicz (D1GC02705K/cit46/1) 2016 Moon (D1GC02705K/cit132/1) 2015; 54 Keglevich (D1GC02705K/cit54/1) 2017; 49 Maccato (D1GC02705K/cit206/1) 2018; 10 Mizrahi (D1GC02705K/cit145/1) 2010; 179 Wang (D1GC02705K/cit184/1) 2005; 91 Tsai (D1GC02705K/cit104/1) 2012; 51 Paddle (D1GC02705K/cit233/1) 1996; 11 Navalon (D1GC02705K/cit157/1) 2014; 114 Dong (D1GC02705K/cit143/1) 2017; 56 Kangas (D1GC02705K/cit211/1) 2017; 47 Fang (D1GC02705K/cit70/1) 2010; 185 Wong (D1GC02705K/cit166/1) 2020; 12 Li (D1GC02705K/cit113/1) 2009; 38 Keglevich (D1GC02705K/cit53/1) 2016; 88 Alves (D1GC02705K/cit96/1) 2018; 10 Fang (D1GC02705K/cit65/1) 2010; 21 Eshghi (D1GC02705K/cit67/1) 2015; 190 Jacquet (D1GC02705K/cit74/1) 2016; 23 Naidek (D1GC02705K/cit164/1) 2018; 56 Wang (D1GC02705K/cit217/1) 2014; 204 Silva (D1GC02705K/cit9/1) 2012; 35 Orth (D1GC02705K/cit163/1) 2013; 61 Li (D1GC02705K/cit200/1) 2014; 8 Ma (D1GC02705K/cit43/1) 2018; 20 Kiss (D1GC02705K/cit47/1) 2009; 39 Kargin (D1GC02705K/cit58/1) 2001; 507 Manco (D1GC02705K/cit93/1) 2018; 93 Peterson (D1GC02705K/cit131/1) 2015; 54 Pérez-Madrigal (D1GC02705K/cit209/1) 2016; 18 Jansa (D1GC02705K/cit50/1) 2011; 13 Su (D1GC02705K/cit158/1) 2013; 46 Parmar (D1GC02705K/cit207/1) 2018; 140 DeCoste (D1GC02705K/cit117/1) 2014; 114 Long (D1GC02705K/cit138/1) 2010; 49 Stein (D1GC02705K/cit147/1) 2020; 25 Bromberg (D1GC02705K/cit170/1) 2015; 7 Katz (D1GC02705K/cit130/1) 2014; 53 Villemin (D1GC02705K/cit49/1) 1998; 133 Wang (D1GC02705K/cit56/1) 2017; 19 Brandhuber (D1GC02705K/cit193/1) 2013; 49 Elias (D1GC02705K/cit196/1) 2014; 48 Jang (D1GC02705K/cit1/1) 2015; 115 Karthik (D1GC02705K/cit212/1) 2018; 6 Mondloch (D1GC02705K/cit85/1) 2015; 14 Li (D1GC02705K/cit159/1) 2016; 10 Sans (D1GC02705K/cit182/1) 2015; 6 Keglevich (D1GC02705K/cit48/1) 2011; 15 Vera (D1GC02705K/cit99/1) 2020; 13 Balow (D1GC02705K/cit174/1) 2018; 57 Balasubramanian (D1GC02705K/cit219/1) 2018; 87 Anastas (D1GC02705K/cit22/1) 2010; 39 Cherny (D1GC02705K/cit105/1) 2013; 8 Letort (D1GC02705K/cit192/1) 2017; 13 Norouzi (D1GC02705K/cit148/1) 2020; 12 Kaur (D1GC02705K/cit236/1) 2017; 92 Grissom (D1GC02705K/cit140/1) 2020; 12 Pavez (D1GC02705K/cit203/1) 2016; 4 Kwon (D1GC02705K/cit229/1) 2012; 12 Cavka (D1GC02705K/cit127/1) 2008; 130 Silva (D1GC02705K/cit156/1) 2017; 7 Zhang (D1GC02705K/cit57/1) 2018; 20 Hou (D1GC02705K/cit144/1) 2018; 8 Bigdeli (D1GC02705K/cit228/1) 2017; 9 Valekar (D1GC02705K/cit129/1) 2020; 10 Matouq (D1GC02705K/cit201/1) 2008; 15 D1GC02705K/cit14/1 Gong (D1GC02705K/cit221/1) 2011; 85 Li (D1GC02705K/cit114/1) 2012; 112 Kaushal (D1GC02705K/cit2/1) 2021; 207 Mallakpour (D1GC02705K/cit61/1) 2012 Blaskó (D1GC02705K/cit36/1) 1997; 10 Guo (D1GC02705K/cit141/1) 2016; 128 Nath (D1GC02705K/cit110/1) 2016; 45 Zou (D1GC02705K/cit121/1) 2010; 132 Smith (D1GC02705K/cit75/1) 2008; 37 Picard (D1GC02705K/cit15/1) 2019; 17 Thomas (D1GC02705K/cit76/1) 2010; 2 Cordeiro (D1GC02705K/cit186/1) 2013; 32 Efremenko (D1GC02705K/cit185/1) 2009; 159 Bigley (D1GC02705K/cit107/1) 2013; 135 Schaate (D1GC02705K/cit126/1) 2011; 17 Weber (D1GC02705K/cit89/1) 1976; 10 Gupta (D1GC02705K/cit101/1) 2011; 7 Noradoun (D1GC02705K/cit197/1) 2005; 7 Bromberg (D1GC02705K/cit173/1) 2007; 46 Artem'ev (D1GC02705K/cit31/1) 2013; 49 Mazur (D1GC02705K/cit90/1) 1946; 164 Malysheva (D1GC02705K/cit32/1) 2019 Fest (D1GC02705K/cit4/1) 2012 Zhou (D1GC02705K/cit97/1) 2018; 6 Park (D1GC02705K/cit237/1) 2016; 8 Cooks (D1GC02705K/cit226/1) 2006; 311 Borkar (D1GC02705K/cit80/1) 2010; 26 Orth (D1GC02705K/cit155/1) 2015; 403 Zhu (D1GC02705K/cit35/1) 2016; 138 Huang (D1GC02705K/cit25/1) 2017; 2 Schenk (D1GC02705K/cit91/1) 2016; 317 Zheng (D1GC02705K/cit205/1) 2010; 7 D1GC02705K/cit13/1 Delfino (D1GC02705K/cit8/1) 2009; 20 Benbrook (D1GC02705K/cit6/1) 2016; 28 Ramananarivo (D1GC02705K/cit45/1) 2013; 1 Ruan (D1GC02705K/cit172/1) 2014; 20 Kirby (D1GC02705K/cit102/1) 2013; 203 Caporali (D1GC02705K/cit29/1) 2016 Morodo (D1GC02705K/cit24/1) 2020 Balow (D1GC02705K/cit152/1) 2017; 9 Emmanuel (D1GC02705K/cit183/1) 2020; 22 Lee (D1GC02705K/cit230/1) 2018; 273 Mason (D1GC02705K/cit112/1) 2014; 5 Fonsaca (D1GC02705K/cit78/1) 2017; 5 Alcalde (D1GC02705K/cit92/1) 2006; 24 Costa (D1GC02705K/cit3/1) 2018; 162 Yakhvarov (D1GC02705K/cit60/1) 2011; 123 Blaskievicz (D1GC02705K/cit82/1) 2020; 264 Liu (D1GC02705K/cit118/1) 2017; 346 Papoušková (D1GC02705K/cit224/1) 2006; 29 Islamoglu (D1GC02705K/cit119/1) 2020; 120 Lyu (D1GC02705K/cit128/1) 2019; 11 Gerola (D1GC02705K/cit169/1) 2017; 7 Astle (D1GC02705K/cit150/1) 2018; 6 Giusti (D1GC02705K/cit167/1) 2014; 27 Motamedhashemi (D1GC02705K/cit187/1) 2011; 376 Wu (D1GC02705K/cit235/1) 2013; 177 Liz (D1GC02705K/cit195/1) 2016; 52 Hellinger (D1GC02705K/cit231/1) 2020; 92 Eubanks (D1GC02705K/cit18/1) 2007; 36 Osovsky (D1GC02705K/cit202/1) 2013; 52 Wang (D1GC02705K/cit125/1) 2013; 188 Wang (D1GC02705K/cit38/1) 2015; 17 Russell (D1GC02705K/cit16/1) 2003; 5 Martínez-Castro (D1GC02705K/cit40/1) 2010; 12 Ghasemi-Varnamkhasti (D1GC02705K/cit204/1) 2018; 80 Chagas (D1GC02705K/cit87/1) 2018; 24 Islamoglu (D1GC02705K/cit135/1) 2018; 20 Sharma (D1GC02705K/cit191/1) 2016; 4 Chen (D1GC02705K/cit210/1) 2011; 13 Van Dyk (D1GC02705K/cit19/1) 2011; 82 Furukawa (D1GC02705K/cit136/1) 2014; 136 Sempionatto (D1GC02705K/cit238/1) 2017; 2 Malysheva (D1GC02705K/cit33/1) 2018; 59 Hostert (D1GC02705K/cit165/1) 2018; 90 Roy (D1GC02705K/cit123/1) 2012; 41 Witkiewicz (D1GC02705K/cit225/1) 2018; 48 Disale (D1GC02705K/cit64/1) 2012; 53 Horcajada (D1GC02705K/cit115/1) 2006; 118 Bromberg (D1GC02705K/cit124/1) 2012; 4 Du (D1GC02705K/cit5/1) 2019; 26 Bigley (D1GC02705K/cit108/1) 2015; 54 Eyckens (D1GC02705K/cit66/1) 2017; 7 Brahim (D1GC02705K/cit188/1) 2014; 52 Midey (D1GC02705K/cit227/1) 2010; 82 Trapp (D1GC02705K/cit73/1) 2006; 1076 Kaboudin (D1GC02705K/cit51/1) 2001; 31 Movsisyan (D1GC02705K/cit175/1) 2016; 45 Liu (D1GC02705K/cit220/1) 2013; 108 |
References_xml | – issn: 2016 end-page: 97-136 publication-title: Chemistry Beyond Chlorine doi: Caporali Serrano-Ruiz Peruzzini – issn: 2016 end-page: 137-168 publication-title: Chemistry Beyond Chlorine doi: Visa Maranescu Ilia – issn: 2012 end-page: 1-32 publication-title: Green solvents II doi: Mallakpour Dinari – issn: 2016 publication-title: Alternative energy sources for green chemistry doi: Stankiewicz Clark De La Hoz Fan Chain Hessel Gascon Van Gerven Hristov Larachi – issn: 2007 publication-title: Chemical warfare agents: toxicology and treatment doi: Marrs Maynard Sidell – issn: 2012 publication-title: The chemistry of organophosphorus pesticides doi: Fest Schmidt – volume: 56 start-page: 7568 year: 2017 ident: D1GC02705K/cit177/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702744 – volume: 11 start-page: 3936 year: 2013 ident: D1GC02705K/cit234/1 publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob40324f – volume: 19 start-page: 4769 year: 2017 ident: D1GC02705K/cit56/1 publication-title: Green Chem. doi: 10.1039/C7GC01989K – volume: 25 start-page: 10878 year: 2018 ident: D1GC02705K/cit199/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-1346-2 – volume: 27 start-page: 8162 year: 2015 ident: D1GC02705K/cit160/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03960 – volume: 26 start-page: 5017 year: 2020 ident: D1GC02705K/cit154/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201905379 – volume: 12 start-page: 33500 year: 2020 ident: D1GC02705K/cit166/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08946 – volume: 26 start-page: 1622 year: 2010 ident: D1GC02705K/cit80/1 publication-title: Biotechnol. Prog. doi: 10.1002/btpr.498 – volume: 31 start-page: 2773 year: 2001 ident: D1GC02705K/cit51/1 publication-title: Synth. Commun. doi: 10.1081/SCC-100105324 – volume: 10 start-page: 15712 year: 2018 ident: D1GC02705K/cit96/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02717 – volume: 41 start-page: 12346 year: 2012 ident: D1GC02705K/cit123/1 publication-title: Dalton Trans. doi: 10.1039/c2dt31888a – volume: 59 start-page: 723 year: 2018 ident: D1GC02705K/cit33/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2018.01.021 – volume: 61 start-page: 543 year: 2013 ident: D1GC02705K/cit163/1 publication-title: Carbon doi: 10.1016/j.carbon.2013.05.032 – volume: 10 start-page: 12305 year: 2018 ident: D1GC02705K/cit206/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01835 – volume: 4 start-page: 6962 year: 2016 ident: D1GC02705K/cit191/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01878 – volume: 40 start-page: 5682 year: 2001 ident: D1GC02705K/cit153/1 publication-title: Biochemistry doi: 10.1021/bi010243j – volume: 18 start-page: 288 year: 2015 ident: D1GC02705K/cit23/1 publication-title: Green Chem. doi: 10.1039/C5GC01008J – volume: 179 start-page: 495 year: 2010 ident: D1GC02705K/cit145/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.030 – volume: 11 start-page: 1079 year: 1996 ident: D1GC02705K/cit233/1 publication-title: Biosens. Bioelectron. doi: 10.1016/0956-5663(96)82333-5 – volume: 136 start-page: 4369 year: 2014 ident: D1GC02705K/cit136/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500330a – volume: 8 start-page: 6062 year: 2018 ident: D1GC02705K/cit144/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00972 – volume: 54 start-page: 9684 year: 2015 ident: D1GC02705K/cit131/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01867 – volume: 57 start-page: 8630 year: 2018 ident: D1GC02705K/cit174/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01546 – volume: 51 start-page: 6463 year: 2012 ident: D1GC02705K/cit104/1 publication-title: Biochemistry doi: 10.1021/bi300811t – volume: 135 start-page: 10426 year: 2013 ident: D1GC02705K/cit107/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402832z – volume: 162 start-page: 24 year: 2018 ident: D1GC02705K/cit3/1 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfx266 – volume: 376 start-page: 119 year: 2011 ident: D1GC02705K/cit187/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.013 – volume: 164 start-page: 271 year: 1946 ident: D1GC02705K/cit90/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)43068-2 – volume: 135 start-page: 10294 year: 2013 ident: D1GC02705K/cit134/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4050828 – volume: 68 start-page: 834 year: 2014 ident: D1GC02705K/cit71/1 publication-title: Chem. Pap. doi: 10.2478/s11696-013-0516-4 – volume: 507 start-page: 157 year: 2001 ident: D1GC02705K/cit58/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(01)00435-1 – volume: 2 start-page: 1531 year: 2017 ident: D1GC02705K/cit238/1 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00603 – volume: 3 start-page: 1800471 year: 2019 ident: D1GC02705K/cit111/1 publication-title: Small Methods doi: 10.1002/smtd.201800471 – volume: 1076 start-page: 527 year: 2006 ident: D1GC02705K/cit73/1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1371.040 – volume: 14 start-page: 2699 year: 2012 ident: D1GC02705K/cit39/1 publication-title: Green Chem. doi: 10.1039/c2gc35898k – volume: 88 start-page: 931 year: 2016 ident: D1GC02705K/cit53/1 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2016-0604 – volume: 27 start-page: 297 year: 2014 ident: D1GC02705K/cit167/1 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.3263 – volume: 42 start-page: 2365 year: 2012 ident: D1GC02705K/cit198/1 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2011.574184 – volume: 140 start-page: 9317 year: 2018 ident: D1GC02705K/cit207/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05762 – volume: 29 start-page: 1531 year: 2006 ident: D1GC02705K/cit224/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.200500432 – volume: 32 start-page: 269 year: 2000 ident: D1GC02705K/cit27/1 publication-title: Org. Prep. Proced. Int. doi: 10.1080/00304940009355923 – volume: 346 start-page: 290 year: 1995 ident: D1GC02705K/cit10/1 publication-title: Lancet doi: 10.1016/S0140-6736(95)92170-2 – volume: 85 start-page: 308 year: 2013 ident: D1GC02705K/cit216/1 publication-title: Anal. Chem. doi: 10.1021/ac302781r – volume: 42 start-page: 5115 year: 2016 ident: D1GC02705K/cit68/1 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-015-2348-z – volume: 2 start-page: 53 year: 2017 ident: D1GC02705K/cit106/1 publication-title: Phys. Sci. Rev. – volume: 91 start-page: 379 year: 2005 ident: D1GC02705K/cit184/1 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20519 – volume: 10 start-page: 11125 year: 2018 ident: D1GC02705K/cit213/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19763 – volume: 264 start-page: 118496 year: 2020 ident: D1GC02705K/cit82/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118496 – volume: 82 start-page: 291 year: 2011 ident: D1GC02705K/cit19/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.10.033 – volume: 273 start-page: 966 year: 2018 ident: D1GC02705K/cit239/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.07.001 – volume: 48 start-page: 337 year: 2018 ident: D1GC02705K/cit225/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2018.1439366 – volume: 5 start-page: 1 year: 2003 ident: D1GC02705K/cit16/1 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.5.121202.125602 – volume: 87 start-page: 83 year: 2018 ident: D1GC02705K/cit219/1 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.03.014 – volume: 50 start-page: 7531 year: 2014 ident: D1GC02705K/cit222/1 publication-title: Chem. Commun. doi: 10.1039/C4CC02689F – volume: 53 start-page: 2277 year: 2012 ident: D1GC02705K/cit64/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2012.02.054 – volume: 253 start-page: 126770 year: 2020 ident: D1GC02705K/cit241/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126770 – volume: 20 start-page: 5913 year: 2018 ident: D1GC02705K/cit135/1 publication-title: CrystEngComm doi: 10.1039/C8CE00455B – volume: 116 start-page: 37 year: 2018 ident: D1GC02705K/cit20/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.05.039 – volume: 84 start-page: 14101 year: 2019 ident: D1GC02705K/cit180/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02263 – volume: 8 start-page: 10591 year: 2016 ident: D1GC02705K/cit237/1 publication-title: Nanoscale doi: 10.1039/C6NR01468B – volume: 81 start-page: 415 year: 1981 ident: D1GC02705K/cit42/1 publication-title: Chem. Rev. doi: 10.1021/cr00044a004 – volume: 15 start-page: 1802 year: 2011 ident: D1GC02705K/cit48/1 publication-title: Curr. Org. Chem. doi: 10.2174/138527211795656570 – volume: 133 start-page: 11888 year: 2011 ident: D1GC02705K/cit122/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2042113 – volume: 9 start-page: 39747 year: 2017 ident: D1GC02705K/cit152/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10902 – volume: 311 start-page: 1566 year: 2006 ident: D1GC02705K/cit226/1 publication-title: Science doi: 10.1126/science.1119426 – volume: 27 start-page: 8162 year: 2015 ident: D1GC02705K/cit162/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03960 – volume-title: Chemical warfare agents: toxicology and treatment year: 2007 ident: D1GC02705K/cit223/1 doi: 10.1002/9780470060032 – volume: 93 start-page: 2064 year: 2018 ident: D1GC02705K/cit93/1 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5603 – volume: 207 start-page: 111483 year: 2021 ident: D1GC02705K/cit2/1 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111483 – volume: 21 start-page: 2916 year: 2019 ident: D1GC02705K/cit44/1 publication-title: Green Chem. doi: 10.1039/C9GC01254K – volume: 52 start-page: 9705 year: 2013 ident: D1GC02705K/cit202/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401517a – volume: 403 start-page: 93 year: 2015 ident: D1GC02705K/cit155/1 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2015.03.020 – volume: 123 start-page: 5482 year: 2011 ident: D1GC02705K/cit60/1 publication-title: Angew. Chem. doi: 10.1002/ange.201100822 – volume: 48 start-page: 2893 year: 2014 ident: D1GC02705K/cit196/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es4056388 – volume: 3 start-page: 399 year: 2018 ident: D1GC02705K/cit178/1 publication-title: React. Chem. Eng. doi: 10.1039/C8RE00083B – volume: 45 start-page: 4892 year: 2016 ident: D1GC02705K/cit175/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00902B – volume: 47 start-page: 9267 year: 2013 ident: D1GC02705K/cit88/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es402526n – volume: 20 start-page: 3408 year: 2018 ident: D1GC02705K/cit43/1 publication-title: Green Chem. doi: 10.1039/C8GC00931G – volume: 25 start-page: 5495 year: 2019 ident: D1GC02705K/cit63/1 publication-title: Ionics doi: 10.1007/s11581-019-03069-3 – volume: 18 start-page: 5930 year: 2016 ident: D1GC02705K/cit209/1 publication-title: Green Chem. doi: 10.1039/C6GC02086K – volume: 20 start-page: 3916 year: 2018 ident: D1GC02705K/cit57/1 publication-title: Green Chem. doi: 10.1039/C8GC02026D – volume: 14 start-page: 512 year: 2015 ident: D1GC02705K/cit85/1 publication-title: Nat. Mater. doi: 10.1038/nmat4238 – volume: 12 start-page: 1171 year: 2010 ident: D1GC02705K/cit40/1 publication-title: Green Chem. doi: 10.1039/c0gc00026d – volume: 190 start-page: 1606 year: 2015 ident: D1GC02705K/cit67/1 publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426507.2015.1012199 – volume: 7 start-page: 2230 year: 2017 ident: D1GC02705K/cit169/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00097 – volume: 32 start-page: 54 year: 2013 ident: D1GC02705K/cit186/1 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2012.11.008 – volume: 25 start-page: 4425 year: 2020 ident: D1GC02705K/cit147/1 publication-title: Molecules doi: 10.3390/molecules25194425 – volume: 53 start-page: 1330 year: 2020 ident: D1GC02705K/cit176/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00199 – volume: 12 start-page: 743 year: 2010 ident: D1GC02705K/cit77/1 publication-title: Green Chem. doi: 10.1039/b921171c – volume: 118 start-page: 6120 year: 2006 ident: D1GC02705K/cit115/1 publication-title: Angew. Chem. doi: 10.1002/ange.200601878 – volume: 317 start-page: 122 year: 2016 ident: D1GC02705K/cit91/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.03.006 – volume: 128 start-page: 7529 year: 2016 ident: D1GC02705K/cit141/1 publication-title: Angew. Chem. doi: 10.1002/ange.201601620 – volume: 13 start-page: 417 year: 2017 ident: D1GC02705K/cit192/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.13.45 – volume: 123 start-page: 15157 year: 2019 ident: D1GC02705K/cit137/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03817 – volume: 23 start-page: 2925 year: 2021 ident: D1GC02705K/cit190/1 publication-title: Green Chem. doi: 10.1039/D1GC00449B – volume: 188 start-page: 1306 year: 2013 ident: D1GC02705K/cit125/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.08.043 – volume: 7 start-page: 22001 year: 2015 ident: D1GC02705K/cit170/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06905 – volume: 7 start-page: 40711 year: 2017 ident: D1GC02705K/cit156/1 publication-title: RSC Adv. doi: 10.1039/C7RA07059D – volume: 17 start-page: 6528 year: 2019 ident: D1GC02705K/cit15/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB00802K – volume: 8 start-page: 3343 year: 2018 ident: D1GC02705K/cit194/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00901 – volume: 26 start-page: 22126 year: 2019 ident: D1GC02705K/cit5/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05669-y – ident: D1GC02705K/cit14/1 – volume: 52 start-page: 6784 year: 2014 ident: D1GC02705K/cit188/1 publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2013.827779 – volume: 130 start-page: 13850 year: 2008 ident: D1GC02705K/cit127/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057953 – volume: 2 start-page: 11007 year: 2017 ident: D1GC02705K/cit25/1 publication-title: ChemistrySelect doi: 10.1002/slct.201702215 – volume: 39 start-page: 301 year: 2010 ident: D1GC02705K/cit22/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B918763B – volume: 120 start-page: 8130 year: 2020 ident: D1GC02705K/cit119/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00828 – volume: 177 start-page: 724 year: 2013 ident: D1GC02705K/cit235/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2012.11.069 – volume: 2016 start-page: 4290 year: 2016 ident: D1GC02705K/cit120/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600286 – volume: 38 start-page: 1477 year: 2009 ident: D1GC02705K/cit113/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 19 start-page: 3899 year: 2017 ident: D1GC02705K/cit37/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01796 – volume: 27 start-page: 15112 year: 2011 ident: D1GC02705K/cit168/1 publication-title: Langmuir doi: 10.1021/la203437j – volume: 85 start-page: 1344 year: 2011 ident: D1GC02705K/cit221/1 publication-title: Talanta doi: 10.1016/j.talanta.2011.06.016 – volume: 23 start-page: 559 year: 2010 ident: D1GC02705K/cit79/1 publication-title: Protein Eng., Des. Sel. doi: 10.1093/protein/gzq026 – volume: 24 start-page: 1 year: 2018 ident: D1GC02705K/cit87/1 publication-title: J. Mol. Model. doi: 10.1007/s00894-018-3798-1 – volume: 49 start-page: 3425 year: 2013 ident: D1GC02705K/cit193/1 publication-title: Chem. Commun. doi: 10.1039/c3cc41290c – volume: 119 start-page: 463 year: 1999 ident: D1GC02705K/cit98/1 publication-title: Chem.-Biol. Interact. doi: 10.1016/S0009-2797(99)00059-9 – volume: 159 start-page: 251 year: 2009 ident: D1GC02705K/cit185/1 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8564-5 – volume: 365 start-page: 261 year: 2019 ident: D1GC02705K/cit100/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.094 – start-page: 5236 year: 2020 ident: D1GC02705K/cit24/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202000430 – volume: 17 start-page: 6643 year: 2011 ident: D1GC02705K/cit126/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201003211 – volume: 10 start-page: 4826 year: 2018 ident: D1GC02705K/cit83/1 publication-title: ChemCatChem doi: 10.1002/cctc.201801220 – volume: 53 start-page: 497 year: 2014 ident: D1GC02705K/cit130/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307520 – volume: 2 start-page: 127 year: 2010 ident: D1GC02705K/cit76/1 publication-title: ChemCatChem doi: 10.1002/cctc.200900275 – volume: 58 start-page: 2039 year: 2019 ident: D1GC02705K/cit109/1 publication-title: Biochemistry doi: 10.1021/acs.biochem.9b00097 – volume: 12 start-page: 2099 year: 2010 ident: D1GC02705K/cit55/1 publication-title: Green Chem. doi: 10.1039/c0gc00382d – volume: 52 start-page: 13276 year: 2013 ident: D1GC02705K/cit161/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308072 – volume: 17 start-page: 3111 year: 2015 ident: D1GC02705K/cit30/1 publication-title: Green Chem. doi: 10.1039/C5GC00340G – volume: 346 start-page: 101 year: 2017 ident: D1GC02705K/cit118/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.11.008 – volume: 49 start-page: 5945 year: 2010 ident: D1GC02705K/cit215/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001088 – volume: 280 start-page: 130792 year: 2021 ident: D1GC02705K/cit242/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130792 – volume: 19 start-page: 1128 year: 2017 ident: D1GC02705K/cit34/1 publication-title: Green Chem. doi: 10.1039/C6GC03115C – volume: 90 start-page: 1593 year: 2018 ident: D1GC02705K/cit165/1 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2018-0104 – volume: 138 start-page: 4178 year: 2016 ident: D1GC02705K/cit133/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00069 – volume: 108 start-page: 266 year: 2013 ident: D1GC02705K/cit220/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2013.03.003 – volume: 132 start-page: 17996 year: 2010 ident: D1GC02705K/cit121/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101440z – volume: 5 start-page: 32 year: 2014 ident: D1GC02705K/cit112/1 publication-title: Chem. Sci. doi: 10.1039/C3SC52633J – volume: 6 start-page: 20444 year: 2018 ident: D1GC02705K/cit150/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08100J – volume: 35 start-page: 2083 year: 2012 ident: D1GC02705K/cit9/1 publication-title: Quím. Nova doi: 10.1590/S0100-40422012001000033 – volume: 13 start-page: 882 year: 2011 ident: D1GC02705K/cit50/1 publication-title: Green Chem. doi: 10.1039/c0gc00509f – start-page: 139071 year: 2020 ident: D1GC02705K/cit7/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139071 – volume: 48 start-page: 1650 year: 2009 ident: D1GC02705K/cit86/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801150y – volume: 54 start-page: 5502 year: 2015 ident: D1GC02705K/cit108/1 publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00629 – volume: 52 start-page: 3167 year: 2016 ident: D1GC02705K/cit195/1 publication-title: Chem. Commun. doi: 10.1039/C5CC10214F – ident: D1GC02705K/cit13/1 – volume: 46 start-page: 3296 year: 2007 ident: D1GC02705K/cit173/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061351a – volume: 1 start-page: 403 year: 2013 ident: D1GC02705K/cit45/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc3001417 – volume: 23 start-page: 8200 year: 2016 ident: D1GC02705K/cit74/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6143-1 – volume: 5 start-page: 616 year: 2008 ident: D1GC02705K/cit52/1 publication-title: Lett. Org. Chem. doi: 10.2174/157017808786857598 – start-page: 137 volume-title: Chemistry Beyond Chlorine year: 2016 ident: D1GC02705K/cit28/1 doi: 10.1007/978-3-319-30073-3_4 – start-page: 6240 year: 2019 ident: D1GC02705K/cit32/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201901005 – volume: 74 start-page: 51 year: 2000 ident: D1GC02705K/cit95/1 publication-title: Adv. Enzymol. Relat. Areas Mol. Biol. – volume: 24 start-page: 281 year: 2006 ident: D1GC02705K/cit92/1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2006.04.002 – start-page: 1 year: 2020 ident: D1GC02705K/cit149/1 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 8075 year: 2012 ident: D1GC02705K/cit240/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21818f – volume: 10 start-page: 3720 year: 2020 ident: D1GC02705K/cit129/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05085 – volume: 46 start-page: 2275 year: 2013 ident: D1GC02705K/cit158/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300118v – volume: 114 start-page: 6179 year: 2014 ident: D1GC02705K/cit157/1 publication-title: Chem. Rev. doi: 10.1021/cr4007347 – volume: 311 start-page: 108788 year: 2019 ident: D1GC02705K/cit17/1 publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2019.108788 – volume: 115 start-page: PR1 year: 2015 ident: D1GC02705K/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00402 – volume-title: The chemistry of organophosphorus pesticides year: 2012 ident: D1GC02705K/cit4/1 – volume: 12 start-page: 2797 year: 2012 ident: D1GC02705K/cit229/1 publication-title: Nano Lett. doi: 10.1021/nl204587t – volume: 47 start-page: 7645 year: 2006 ident: D1GC02705K/cit62/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.08.050 – start-page: 108298 year: 2020 ident: D1GC02705K/cit12/1 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2020.108298 – volume: 47 start-page: 138 year: 2017 ident: D1GC02705K/cit211/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2016.1233805 – volume: 5 start-page: 516 year: 2013 ident: D1GC02705K/cit21/1 publication-title: Front. Biosci., Scholar Ed. doi: 10.2741/S387 – volume: 20 start-page: 407 year: 2009 ident: D1GC02705K/cit8/1 publication-title: J. Braz. Chem. Soc. doi: 10.1590/S0103-50532009000300003 – volume: 10 start-page: 427 year: 1997 ident: D1GC02705K/cit36/1 publication-title: J. Phys. Org. Chem. doi: 10.1002/(SICI)1099-1395(199706)10:6<427::AID-POC900>3.0.CO;2-6 – volume: 22 start-page: 4105 year: 2020 ident: D1GC02705K/cit183/1 publication-title: Green Chem. doi: 10.1039/D0GC01142H – volume: 7 start-page: 120 year: 2011 ident: D1GC02705K/cit101/1 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.510 – volume: 37 start-page: 470 year: 2008 ident: D1GC02705K/cit75/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B705025A – volume: 6 start-page: 2286 year: 2015 ident: D1GC02705K/cit84/1 publication-title: Chem. Sci. doi: 10.1039/C4SC03613A – volume: 17 start-page: 314 year: 2015 ident: D1GC02705K/cit38/1 publication-title: Green Chem. doi: 10.1039/C4GC00944D – volume: 49 start-page: 3069 year: 2017 ident: D1GC02705K/cit54/1 publication-title: Synthesis doi: 10.1055/s-0036-1589031 – volume: 6 start-page: 1258 year: 2015 ident: D1GC02705K/cit182/1 publication-title: Chem. Sci. doi: 10.1039/C4SC03075C – volume: 20 start-page: 4251 year: 2014 ident: D1GC02705K/cit172/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201304779 – volume: 8 start-page: 11118 year: 2014 ident: D1GC02705K/cit200/1 publication-title: ACS Nano doi: 10.1021/nn505029k – volume: 9 start-page: 16546 year: 2017 ident: D1GC02705K/cit228/1 publication-title: Nanoscale doi: 10.1039/C7NR03311G – volume: 12 start-page: 14641 year: 2020 ident: D1GC02705K/cit140/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20833 – start-page: 6002 year: 2008 ident: D1GC02705K/cit214/1 publication-title: Chem. Commun. doi: 10.1039/b811247a – volume: 185 start-page: 2520 year: 2010 ident: D1GC02705K/cit70/1 publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426501003724905 – volume: 92 start-page: 601 year: 2020 ident: D1GC02705K/cit231/1 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2019-0818 – volume: 80 start-page: 71 year: 2018 ident: D1GC02705K/cit204/1 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.07.018 – volume: 49 start-page: 1736 year: 2010 ident: D1GC02705K/cit138/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902483 – volume: 117 start-page: 13202 year: 2013 ident: D1GC02705K/cit208/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp312824b – volume: 344 start-page: 994 year: 2018 ident: D1GC02705K/cit142/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.11.061 – volume: 10 start-page: 237 year: 1976 ident: D1GC02705K/cit89/1 publication-title: Water Res. doi: 10.1016/0043-1354(76)90133-0 – volume: 16 start-page: 225 year: 2001 ident: D1GC02705K/cit232/1 publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(01)00126-9 – volume: 15 start-page: 869 year: 2008 ident: D1GC02705K/cit201/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2007.10.012 – volume: 4 start-page: 4595 year: 2012 ident: D1GC02705K/cit124/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3009696 – volume: 5 start-page: 9591 year: 2017 ident: D1GC02705K/cit78/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01967J – volume: 7 start-page: 217 year: 2005 ident: D1GC02705K/cit26/1 publication-title: Green Chem. doi: 10.1039/b417264g – volume: 6 start-page: 13588 year: 2018 ident: D1GC02705K/cit97/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b04018 – volume: 56 start-page: 4473 year: 2017 ident: D1GC02705K/cit143/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201700159 – volume: 114 start-page: 5695 year: 2014 ident: D1GC02705K/cit117/1 publication-title: Chem. Rev. doi: 10.1021/cr4006473 – volume: 2013 start-page: 4709 year: 2013 ident: D1GC02705K/cit59/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300845 – volume: 11 start-page: 42179 year: 2019 ident: D1GC02705K/cit128/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14439 – volume: 359 start-page: 4141 year: 2017 ident: D1GC02705K/cit41/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201700886 – volume: 49 start-page: 1839 year: 2013 ident: D1GC02705K/cit31/1 publication-title: Russ. J. Org. Chem. doi: 10.1134/S1070428013120233 – volume: 133 start-page: 209 year: 1998 ident: D1GC02705K/cit49/1 publication-title: Phosphorus, Sulfur Silicon Relat. Elem. doi: 10.1080/10426509808032465 – volume: 203 start-page: 181 year: 2013 ident: D1GC02705K/cit102/1 publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2012.10.023 – volume: 112 start-page: 11901 year: 2008 ident: D1GC02705K/cit151/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp803003k – volume: 138 start-page: 5825 year: 2016 ident: D1GC02705K/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03112 – volume: 122 start-page: 10206 year: 2000 ident: D1GC02705K/cit103/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002546r – volume: 13 start-page: 4218 year: 2020 ident: D1GC02705K/cit99/1 publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2019.07.003 – volume: 36 start-page: 458 year: 2007 ident: D1GC02705K/cit18/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b615227a – volume: 7 start-page: 426 year: 2005 ident: D1GC02705K/cit197/1 publication-title: Green Chem. doi: 10.1039/b502860d – volume: 52 start-page: 4764 year: 2011 ident: D1GC02705K/cit72/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2011.07.027 – volume: 6 start-page: 8615 year: 2018 ident: D1GC02705K/cit212/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00936 – volume: 384 start-page: 112068 year: 2019 ident: D1GC02705K/cit189/1 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2019.112068 – volume: 92 start-page: 62 year: 2017 ident: D1GC02705K/cit236/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2017.04.012 – volume: 273 start-page: 322 year: 2018 ident: D1GC02705K/cit230/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.06.059 – volume: 45 start-page: 4127 year: 2016 ident: D1GC02705K/cit110/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00047A – volume: 13 start-page: 133 year: 2011 ident: D1GC02705K/cit210/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.11.033 – start-page: 1 volume-title: Green solvents II year: 2012 ident: D1GC02705K/cit61/1 – volume: 54 start-page: 10829 year: 2015 ident: D1GC02705K/cit132/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01813 – volume-title: Alternative energy sources for green chemistry year: 2016 ident: D1GC02705K/cit46/1 – volume: 8 start-page: 2394 year: 2013 ident: D1GC02705K/cit105/1 publication-title: ACS Chem. Biol. doi: 10.1021/cb4004892 – volume: 10 start-page: 5619 year: 2016 ident: D1GC02705K/cit159/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b02518 – volume: 21 start-page: 546 year: 2010 ident: D1GC02705K/cit65/1 publication-title: Heteroat. Chem. doi: 10.1002/hc.20644 – volume: 39 start-page: 2392 year: 2009 ident: D1GC02705K/cit47/1 publication-title: Synth. Commun. doi: 10.1080/00397910802654880 – volume: 356 start-page: 75 year: 2017 ident: D1GC02705K/cit81/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.008 – volume: 82 start-page: 3764 year: 2010 ident: D1GC02705K/cit227/1 publication-title: Anal. Chem. doi: 10.1021/ac100176r – volume: 413 start-page: 127 year: 2014 ident: D1GC02705K/cit94/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.09.027 – volume: 1 start-page: 577 year: 2016 ident: D1GC02705K/cit179/1 publication-title: React. Chem. Eng. doi: 10.1039/C6RE00127K – volume: 7 start-page: 27900 year: 2017 ident: D1GC02705K/cit66/1 publication-title: RSC Adv. doi: 10.1039/C7RA04407K – volume: 30 start-page: 1054 year: 2009 ident: D1GC02705K/cit69/1 publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2009.30.5.1054 – volume: 28 start-page: 3 year: 2016 ident: D1GC02705K/cit6/1 publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-016-0070-0 – volume: 7 start-page: 179 year: 2010 ident: D1GC02705K/cit205/1 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.11.027 – volume: 43 start-page: 1628 year: 2004 ident: D1GC02705K/cit146/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301684 – volume: 112 start-page: 869 year: 2012 ident: D1GC02705K/cit114/1 publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 204 start-page: 297 year: 2014 ident: D1GC02705K/cit217/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.06.115 – volume: 12 start-page: 19191 year: 2020 ident: D1GC02705K/cit148/1 publication-title: Nanoscale doi: 10.1039/D0NR04105J – volume: 36 start-page: 61 year: 2018 ident: D1GC02705K/cit11/1 publication-title: Forensic Toxicol. doi: 10.1007/s11419-017-0376-7 – volume: 76 start-page: 8549 year: 2011 ident: D1GC02705K/cit171/1 publication-title: J. Org. Chem. doi: 10.1021/jo201600d – volume: 56 start-page: 579 year: 2018 ident: D1GC02705K/cit164/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.28944 – volume: 4 start-page: 7023 year: 2016 ident: D1GC02705K/cit203/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01923 – volume: 112 start-page: 1105 year: 2012 ident: D1GC02705K/cit116/1 publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 32 start-page: 1979 year: 2018 ident: D1GC02705K/cit218/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8276 – volume: 41 start-page: 7384 year: 2012 ident: D1GC02705K/cit139/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35143a – volume: 17 start-page: 3218 year: 2015 ident: D1GC02705K/cit181/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01307 – start-page: 97 volume-title: Chemistry Beyond Chlorine year: 2016 ident: D1GC02705K/cit29/1 doi: 10.1007/978-3-319-30073-3_3 |
SSID | ssj0011764 |
Score | 2.536496 |
SecondaryResourceType | review_article |
Snippet | Organophosphorus compounds play an important role in the modern chemical industry and have a broad range of applications as flame retardants, agrochemicals,... |
SourceID | hal proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 585 |
SubjectTerms | Agrochemicals Biological & chemical weapons Catalysis Catalysts Chemical industry Chemical Sciences Chemical synthesis Chemical warfare Chemical warfare agents Chemical weapons Chemicals Clean technology Continuous flow Decontamination Detection limits Electrochemistry electrosynthesis Flame retardants Flow system Green chemistry Inspection Ionic liquids Irradiation issues and policy Metal-organic frameworks microwave radiation Nanomaterials Nanotechnology Neutralization Organophosphorus compounds Polymers Polyoxometallates Prohibition Safety Security Sustainability Sustainable practices Toxicity Verification Weapons Weapons of mass destruction Wearable technology |
Title | Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection |
URI | https://www.proquest.com/docview/2622318205 https://www.proquest.com/docview/2636713624 https://hal.science/hal-03838933 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELba7gE4IChUFBZkHhe0BJI6r3Krlu4WKMuBFpVTlDhOt6KkVZKuBHf-Lz-BGcdOQlkh4NCoch3H6nyxZ8Yz3xDyBBlkuMssw_UEN-zYjIzIjpkhwPwwmW8nAxezkd-duZO5_WbhLFqtH42opV0RPeffLs0r-R-pQhvIFbNk_0Gy1aDQAN9BvnAFCcP1r2QsEyk32_NNDp9slx9xnf6fq7J0ZfpIeLSFlU9gOPK2Tq5EZ0DeyJ_SCVMyQhbPE_KvKaiHeclCEKPlXIQYOVPoEOZYFDKSK22quDKSp5wJFpKTPocwlbwUtetRE1bgKMu9GzJ1oiDvPK29uKv1hdR0P4brL6usLhf9Aesgyzl-CkFlrrMthOQbV8WdRVpm4Sn_e4rPkK5fkS13q6bzY4BRJMagdn6WLhYd3yrjV9RcG0u67TIDWRHLHa_ZVpYs0fuAGnfVMMfLRd0piwop_cAtc2d_23pMhsytsbXkYOmbzud6g9VBBWfvg5P5dBrMxotZmxwMPND2OuRgNJ69nlYnX5YnKc-qWWtKXTZ8UY_9ixLVPscQ3oZ91M508RqpJM1ukOvKuqGjEqo3SUukXXKl-ru65FqD_7JLeuM6zRJuU_tMfot830c21cimGtkUkU1DqpFNG8h-SRu4phWu6SqlgGta4foZ3UM1BTzSCtW3yfxkPDueGKpgiMGZ7RfGMGYDz_ZF7JmR63KsvAYGgQATA3c20xEhWCu-yW24xgM_cYUIkZEzCYVnceawHumkm1TcITRxhha3EitJhrbtuyxi3HdClyVmKHzbd_rkqZZAwBWbPhZ1WQcyqoMNg1fW6bGU1ts-eVz13ZYcMpf2egSCrDog7ftkNA2wDRZNtCvYhdUnh1rOgXpT8wBQAlYaqPIwq4fVzyBYPPuDF2-zwz7M9SzQVu0-6QE-qufUoLr757Hvkav1G3hIOkW2E_dBIS-iBwrDPwFT0-oZ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organophosphorus+chemical+security+from+a+peaceful+perspective%3A+sustainable+practices+in+its+synthesis%2C+decontamination+and+detection&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Silva%2C+Valmir+B&rft.au=Santos%2C+Yane+H&rft.au=Hellinger%2C+Renata&rft.au=Mansour%2C+Sergui&rft.date=2022-01-24&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=24&rft.issue=2&rft.spage=585&rft.epage=613&rft_id=info:doi/10.1039%2Fd1gc02705k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |