Hybrid Discriminant Neural Networks for Bankruptcy Prediction and Risk Scoring

Determining the firm risk failure using financial statements has been one of the most interesting subjects for investors and decision makers. The discriminant variables that can be selected to predict firm health influence significantly the accuracy of the models especially if we have a missing data...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 83; pp. 670 - 674
Main Authors Azayite, Fatima Zahra, Achchab, Said
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2016
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2016.04.149

Cover

Abstract Determining the firm risk failure using financial statements has been one of the most interesting subjects for investors and decision makers. The discriminant variables that can be selected to predict firm health influence significantly the accuracy of the models especially if we have a missing data available. We developed a hybrid model of neural networks to study the risk of failure of Moroccan firms taking into account the data availability and reliability. Based on a three-step analysis, this methodology combines discriminant analysis, multilayer neural network and self-organizing-maps. This hybrid model considers the firms’ behavior during three years to predict risk failure. It is qualified as a dynamic model because it adapts to financial environment and data availability. The model outperforms Discriminant analysis and gives a visual monitoring tool to supervise a firms’ portfolio.
AbstractList Determining the firm risk failure using financial statements has been one of the most interesting subjects for investors and decision makers. The discriminant variables that can be selected to predict firm health influence significantly the accuracy of the models especially if we have a missing data available. We developed a hybrid model of neural networks to study the risk of failure of Moroccan firms taking into account the data availability and reliability. Based on a three-step analysis, this methodology combines discriminant analysis, multilayer neural network and self-organizing-maps. This hybrid model considers the firms’ behavior during three years to predict risk failure. It is qualified as a dynamic model because it adapts to financial environment and data availability. The model outperforms Discriminant analysis and gives a visual monitoring tool to supervise a firms’ portfolio.
Author Achchab, Said
Azayite, Fatima Zahra
Author_xml – sequence: 1
  givenname: Fatima Zahra
  surname: Azayite
  fullname: Azayite, Fatima Zahra
  email: fatimazahra.azayite@um5s.net.ma
– sequence: 2
  givenname: Said
  surname: Achchab
  fullname: Achchab, Said
  email: s.achchab@um5s.net.ma
BookMark eNqNkM1OwzAMgCMEEmPsCbjkBVqSNqXJgQOMnyFNA_FzjtIkRdlKUiUZU9-ejHFAHABfbEv-LPs7AvvWWQ3ACUY5RvjsdJn33smQF6nJEckxYXtghGldZ6hCbP9bfQgmISxRipJShusRWMyGxhsFr0yQ3rwZK2yEC732okspbpxfBdg6Dy-FXfl1H-UAH7xWRkbjLBRWwUcTVvBJOm_s6zE4aEUX9OQrj8HLzfXzdJbN72_vphfzTJaExow1ShWkTFEIokhFK0lkS2iFRY0ZqyotCK3bkqGmpkg3hUhjraxkU0qqmCjHgOz2rm0vho3oOt6n84UfOEZ8q4Uv-acWvtXCEeFJS8LKHSa9C8Hr9p8U-0FJE8X2_-iF6f5gz3esTjbejfY8SKOtTAa9lpErZ37lPwB-w5O-
CitedBy_id crossref_primary_10_1080_10293523_2022_2155353
crossref_primary_10_15549_jeecar_v6i2_332
crossref_primary_10_1016_j_econmod_2019_04_003
crossref_primary_10_3390_su12166325
crossref_primary_10_24136_oc_2019_023
crossref_primary_10_1109_ACCESS_2019_2948949
crossref_primary_10_1515_foli_2017_0023
crossref_primary_10_1108_BPMJ_06_2020_0273
crossref_primary_10_15549_jeecar_v7i1_369
crossref_primary_10_2139_ssrn_3734053
Cites_doi 10.1016/j.eswa.2013.07.032
10.1007/BF02551274
10.1016/j.knosys.2013.12.006
10.1016/j.eswa.2014.11.025
10.1016/j.cor.2003.09.015
10.1201/9780849333750
10.1016/j.eswa.2004.12.008
10.1111/j.1540-6261.1968.tb00843.x
10.1016/j.neucom.2009.11.034
10.1016/S0957-4174(02)00044-1
10.1016/j.eswa.2007.05.019
ContentType Journal Article
Copyright 2016 The Authors
Copyright_xml – notice: 2016 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2016.04.149
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 674
ExternalDocumentID 10.1016/j.procs.2016.04.149
10_1016_j_procs_2016_04_149
S1877050916301806
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-9bdd2433332a4d4585c4cf4851a719955ea487f390b780eb2aa4dfc5cb3c8d9a3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Aug 19 16:36:56 EDT 2025
Wed Oct 01 02:12:36 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Wed May 17 01:33:55 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bankruptcy prediction
risk scoring
Neural networks
Self Organnizing Maps
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-9bdd2433332a4d4585c4cf4851a719955ea487f390b780eb2aa4dfc5cb3c8d9a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050916301806
PageCount 5
ParticipantIDs unpaywall_primary_10_1016_j_procs_2016_04_149
crossref_primary_10_1016_j_procs_2016_04_149
crossref_citationtrail_10_1016_j_procs_2016_04_149
elsevier_sciencedirect_doi_10_1016_j_procs_2016_04_149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References P. d. Jardin, «Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy
pp. 1115-1129, 2005.
pp. 41-56, 2014.
2010.
p. 245-254, 2002.
pp. 2639-2649, 2008.
T.-S. Lee, C.-C. Chiu, C.-J. Lu et I.-F. Chen, «Credit scoring using the hybrid neural discriminant technique
G. Cybenko, «Approximation by superpositions of a sigmoidal function
1989.
1968.
E. K. Laitinen, O. Lukason et A. Suvas, «Are firm failure processes different? Evidence from seven countries
p. 603-614, 2005.
J. H. Min et Y.-C. Lee, «Bankruptcy prediction using support vector machine
pp. 7285-7293, 2013.
L. Liang et D. Wu, «An application of pattern recognition on scoring chinese corporations financial conditions based on backpropagation neural network
F. J. López-Iturriaga, «Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks
S. Samarasinghe, neural networks for applied sciences and engineering, Auebach Publications, 2006.
E. I. Altman, «Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
2014.
2015.
E. Fedorova, E. Gilenko et S. Dovzhenko, «Bankruptcy prediction fo Russian companies: Application of combined classifiers
S. X. Zongyuan Zhao, «Investigation and improvement of multi-layer perceptron neural
C.-F. Tsai et J.-W. Wu, «Using neural network ensembes for bankruptcy prediction and credit scoring
J. Sun et al. , «Prediction financial distress and corporate failure: A review from the state-of-art definitions, modeling, sampling, and featuring approaches
10.1016/j.procs.2016.04.149_bib0050
10.1016/j.procs.2016.04.149_bib0060
10.1016/j.procs.2016.04.149_bib0030
10.1016/j.procs.2016.04.149_bib0040
10.1016/j.procs.2016.04.149_bib0010
10.1016/j.procs.2016.04.149_bib0065
10.1016/j.procs.2016.04.149_bib0020
10.1016/j.procs.2016.04.149_bib0045
10.1016/j.procs.2016.04.149_bib0055
10.1016/j.procs.2016.04.149_bib0025
10.1016/j.procs.2016.04.149_bib0035
10.1016/j.procs.2016.04.149_bib0005
10.1016/j.procs.2016.04.149_bib0015
References_xml – reference: , p. 603-614, 2005.
– reference: , 2010.
– reference: C.-F. Tsai et J.-W. Wu, «Using neural network ensembes for bankruptcy prediction and credit scoring,»
– reference: E. Fedorova, E. Gilenko et S. Dovzhenko, «Bankruptcy prediction fo Russian companies: Application of combined classifiers,»
– reference: L. Liang et D. Wu, «An application of pattern recognition on scoring chinese corporations financial conditions based on backpropagation neural network,»
– reference: , 1968.
– reference: S. X. Zongyuan Zhao, «Investigation and improvement of multi-layer perceptron neural,»
– reference: , 1989.
– reference: , 2014.
– reference: T.-S. Lee, C.-C. Chiu, C.-J. Lu et I.-F. Chen, «Credit scoring using the hybrid neural discriminant technique,»
– reference: , p. 245-254, 2002.
– reference: S. Samarasinghe, neural networks for applied sciences and engineering, Auebach Publications, 2006.
– reference: J. Sun et al. , «Prediction financial distress and corporate failure: A review from the state-of-art definitions, modeling, sampling, and featuring approaches,»
– reference: , pp. 41-56, 2014.
– reference: E. K. Laitinen, O. Lukason et A. Suvas, «Are firm failure processes different? Evidence from seven countries,»
– reference: , pp. 1115-1129, 2005.
– reference: G. Cybenko, «Approximation by superpositions of a sigmoidal function,»
– reference: J. H. Min et Y.-C. Lee, «Bankruptcy prediction using support vector machine,»
– reference: E. I. Altman, «Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,»
– reference: P. d. Jardin, «Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy,»
– reference: , pp. 2639-2649, 2008.
– reference: , pp. 7285-7293, 2013.
– reference: , 2015.
– reference: F. J. López-Iturriaga, «Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks,»
– ident: 10.1016/j.procs.2016.04.149_bib0050
  doi: 10.1016/j.eswa.2013.07.032
– ident: 10.1016/j.procs.2016.04.149_bib0045
  doi: 10.1007/BF02551274
– ident: 10.1016/j.procs.2016.04.149_bib0060
  doi: 10.1016/j.knosys.2013.12.006
– ident: 10.1016/j.procs.2016.04.149_bib0020
  doi: 10.1016/j.eswa.2014.11.025
– ident: 10.1016/j.procs.2016.04.149_bib0010
  doi: 10.1016/j.cor.2003.09.015
– ident: 10.1016/j.procs.2016.04.149_bib0065
– ident: 10.1016/j.procs.2016.04.149_bib0035
  doi: 10.1201/9780849333750
– ident: 10.1016/j.procs.2016.04.149_bib0055
  doi: 10.1016/j.eswa.2004.12.008
– ident: 10.1016/j.procs.2016.04.149_bib0025
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– ident: 10.1016/j.procs.2016.04.149_bib0030
  doi: 10.1016/j.neucom.2009.11.034
– ident: 10.1016/j.procs.2016.04.149_bib0005
  doi: 10.1016/S0957-4174(02)00044-1
– ident: 10.1016/j.procs.2016.04.149_bib0015
– ident: 10.1016/j.procs.2016.04.149_bib0040
  doi: 10.1016/j.eswa.2007.05.019
SSID ssj0000388917
Score 2.1120875
Snippet Determining the firm risk failure using financial statements has been one of the most interesting subjects for investors and decision makers. The discriminant...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 670
SubjectTerms Bankruptcy prediction
Neural networks
risk scoring
Self Organnizing Maps
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60PXiyPrGisgePpqTZzetYXxTBUMRCPYXd2Q3UlljaBKm_3tk8ioqWes5OEmb28Q37zTeEXCJmlzpxwPIZYxbXWuCaA9syjCoO0oOkkC9-jLz-kD-M3FGls21qYb7d3xc8LLORG13trmc0SRHQb5Om5yLwbpDmMBr0XkxKFfi-ZZRMal2h3y3_Ont28nQmlu9iOv1ytty3yqLtRSFJaCglk06eyQ58_BBs3PC398huhTFpr5wU-2RLpwekVfdvoNVyPiRRf2nqtejt2OwdJSeGGrUONI5KeviCIqil1yKdzPNZBks6mJubHRNNKlJFn8aLCb6wYPEdkeH93fNN36r6K1jAeJBZoVTK4Rgj5giuOCYOwCHhiMGEbyq3XS0wnUlYaEs_sDEFFzgsARckg0CFgh2TRvqW6hNC7a6yRYgPpUq4UDqUATjAAk9BGIKGNnFqz8dQiY-bHhjTuGaZvcaFx2LjsdjmmJKEbXK1MpqV2hvrh3t1SOMKPpSwIMborDe0VhNgkw-d_nP8GWlk81yfI3rJ5EU1az8B_VDvcg
  priority: 102
  providerName: Unpaywall
Title Hybrid Discriminant Neural Networks for Bankruptcy Prediction and Risk Scoring
URI https://dx.doi.org/10.1016/j.procs.2016.04.149
https://doi.org/10.1016/j.procs.2016.04.149
UnpaywallVersion publishedVersion
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QOMCFN2K8lANHqnVN1jbHbTANEBMCJsapSp1UGpvKtIfQ_j12HxNICCGOaeOmdRLHTr98ZuwCffbYJh44gRDCkdZqnHPgOoSokhD7kGT0xfc9v9uXt4PGYI21y7MwBKssbH9u0zNrXVypFdqsTYbD2lM9DAJiL0GPglioiHZbyJDSN9wMWqt9FmI7UVniXarvkEBJPpTBvGidINruuk-Up3Xi1Px5gdpYpBO9_NDj8ZcFqLPDtgrPkTfzl9tlazbdY9tlVgZeTNJ91usu6RQWvxqSRciRLpw4OFC4l4O-ZxxdVd7S6Wi6mMxhyR-m9L-G-ojr1PDH4WyED8yweQes37l-bnedImuCA_j5c0fFxngSNS88LY3EcAAkJBI9Kx3QeeyG1RikJEK5cRC6GFhrrJZAA2IBoVFaHLJK-p7aI8bdunG1wpuxSaQ2VsUheCBC34BSYKHKvFJVERSU4pTZYhyV2LG3KNNvRPqNXImBhqqyy5XQJGfU-L26X_ZB9G1gRGjzfxd0Vj32l4aO_9vQCdukUr4vc8oq8-nCnqGnMo_P2Xrz7vHl7jwbkljq9x6ar58dU-t0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHMaFN-JNDhyp1jVZ2xx5asA2IRjSblXqpFJhKtPYhPbvsfuYQEIT4trETeUkjp1-_szYGfrssU08cAIhhCOt1bjnwHUIUSUh9iHJ6Yu7Pb_9Iu8HrUGNXVW5MASrLG1_YdNza10-aZTabIzStPHcDIOA2EvQoyAWKn-JrcgWeieUxTe4nF-0EN2JyivvkoBDEhX7UI7zooOCeLubPnGeNolU8_cTqj7NRnr2qYfDbyfQ7QZbK11HflF83Sar2WyLrVdlGXi5S7dZrz2jNCx-nZJJKKAunEg4ULhXoL4_OPqq_FJnb-PpaAIz_jimHzY0SVxnhj-lH2_4whyct8Nebm_6V22nLJvggJDhxFGxMZ5E1QtPSyMxHgAJiUTXSgeUkN2yGqOURCg3DkIXI2uN3RJoQSwgNEqLXbacvWd2j3G3aVytsDE2idTGqjgED0ToG1AKLOwzr1JVBCWnOJW2GEYVeOw1yvUbkX4jV2KkofbZ-VxoVFBqLO7uV3MQ_VgZERr9xYLOfMb-MtDBfwc6ZfV2v9uJOne9h0O2Si3FJc0RW56Mp_YY3ZZJfJIvyy9EbetH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60PXiyPrGisgePpqTZzetYXxTBUMRCPYXd2Q3UlljaBKm_3tk8ioqWes5OEmb28Q37zTeEXCJmlzpxwPIZYxbXWuCaA9syjCoO0oOkkC9-jLz-kD-M3FGls21qYb7d3xc8LLORG13trmc0SRHQb5Om5yLwbpDmMBr0XkxKFfi-ZZRMal2h3y3_Ont28nQmlu9iOv1ytty3yqLtRSFJaCglk06eyQ58_BBs3PC398huhTFpr5wU-2RLpwekVfdvoNVyPiRRf2nqtejt2OwdJSeGGrUONI5KeviCIqil1yKdzPNZBks6mJubHRNNKlJFn8aLCb6wYPEdkeH93fNN36r6K1jAeJBZoVTK4Rgj5giuOCYOwCHhiMGEbyq3XS0wnUlYaEs_sDEFFzgsARckg0CFgh2TRvqW6hNC7a6yRYgPpUq4UDqUATjAAk9BGIKGNnFqz8dQiY-bHhjTuGaZvcaFx2LjsdjmmJKEbXK1MpqV2hvrh3t1SOMKPpSwIMborDe0VhNgkw-d_nP8GWlk81yfI3rJ5EU1az8B_VDvcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Discriminant+Neural+Networks+for+Bankruptcy+Prediction+and+Risk+Scoring&rft.jtitle=Procedia+computer+science&rft.au=Azayite%2C+Fatima+Zahra&rft.au=Achchab%2C+Said&rft.date=2016&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=83&rft.spage=670&rft.epage=674&rft_id=info:doi/10.1016%2Fj.procs.2016.04.149&rft.externalDocID=S1877050916301806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon