Realizing smart scanning transmission electron microscopy using high performance computing
Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far bey...
Saved in:
| Published in | Review of scientific instruments Vol. 95; no. 10 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Institute of Physics
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-6748 1089-7623 1089-7623 |
| DOI | 10.1063/5.0225401 |
Cover
| Abstract | Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub. |
|---|---|
| AbstractList | Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub. Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub.Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub. |
| Author | Houston, Austin Pratiush, Utkarsh Duscher, Gerd Kalinin, Sergei V. |
| Author_xml | – sequence: 1 givenname: Utkarsh surname: Pratiush fullname: Pratiush, Utkarsh organization: Department of Materials Science and Engineering, University of Tennessee – sequence: 2 givenname: Austin surname: Houston fullname: Houston, Austin organization: Department of Materials Science and Engineering, University of Tennessee – sequence: 3 givenname: Sergei V. surname: Kalinin fullname: Kalinin, Sergei V. organization: 2Pacific Northwest National Laboratory, Richland, Washington 99354, USA – sequence: 4 givenname: Gerd surname: Duscher fullname: Duscher, Gerd organization: Department of Materials Science and Engineering, University of Tennessee |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39352239$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90U1LwzAYB_AgE7epB7-AFLyo0C0vTdoeRXyDgSA7eSlp9nTLaJOatAf99GZu8zDEXJKQ3_Pw8M8YDYw1gNAFwROCBZvyCaaUJ5gcoRHBWR6ngrIBGmHMklikSTZEY-_XOCxOyAkaspxxSlk-Qu9vIGv9pc0y8o10XeSVNGZz7Zw0vtHea2siqEF1LhwarZz1yrafUe83bKWXq6gFV1nXSKMgUrZp-y48naHjStYeznf7KZo_Pszvn-PZ69PL_d0sVizJujirQHLBRQoVIQyAlRRYpVQCtBQgcyYpAOV5mVcJpWkmKlGWiySjCyIySdgput62bZ396MF3RRhaQV1LA7b3BSOECJamhAd6dUDXtncmDPejUswykQZ1uVN92cCiaJ0OyXwW-9ACuNmCTRTeQfVLCC42H1LwYvchwU4PrNKd7EKmIV9d_1lxu63we_lP-283j5oP |
| CODEN | RSINAK |
| CitedBy_id | crossref_primary_10_3390_app15052634 crossref_primary_10_1039_D4DD00277F |
| Cites_doi | 10.1021/acs.nanolett.8b02406 10.3390/electronics12010022 10.1093/micmic/ozad067.704 10.1021/acsnano.1c11118 10.1038/s41598-023-40943-7 10.1038/s41524-020-00363-x 10.1002/rob.21918 10.1017/s1431927617001167 10.1038/s41524-021-00569-7 10.1038/s41578-020-0188-y 10.1088/1674-4926/43/8/081001 10.1038/s41524-021-00637-y 10.1088/2632-2153/ab9c3c 10.1038/nmat2380 10.1093/micmic/ozad067.702 10.1017/s1431927604887403 10.1017/s1431927619001636 10.1017/s1431927621009016 10.1017/s1431927621013696 10.1038/nature08879 10.1016/s0968-4328(97)00033-4 10.1016/j.ultramic.2017.03.005 10.1097/rti.0000000000000311 10.1038/s43586-022-00095-w 10.1021/nl204004p 10.1016/j.dsp.2022.103514 10.1016/j.patter.2023.100858 10.1093/mictod/qaad096 10.1017/s1431927618002726 10.1038/s41524-023-01142-0 10.1111/j.1365-2818.1974.tb03937.x 10.1016/j.micron.2021.103032 10.1007/bf01246212 10.1021/acs.chemrev.7b00354 10.1103/physrevb.80.035413 10.1016/j.elspec.2003.12.009 10.1016/0304-3991(95)00031-u 10.1126/sciadv.adn5899 10.1016/j.mssp.2016.06.005 10.1039/d2nh00377e 10.1007/978-1-4757-2519-3_1 10.1088/2632-2153/ac4baa 10.1016/j.ultramic.2006.09.003 10.1021/acsnano.8b01191 10.1126/sciadv.abd5084 10.1038/srep26348 10.1088/2053-1583/aa878f 10.1016/0304-3991(90)90070-3 10.1017/s1431927622011473 10.1016/j.isci.2023.107072 10.1109/msp.2012.2211477 10.1021/acsnano.2c05303 10.1039/d1qm00275a 10.1002/anie.202213503 |
| ContentType | Journal Article |
| Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
| DOI | 10.1063/5.0225401 |
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1089-7623 |
| ExternalDocumentID | 39352239 10_1063_5_0225401 rsi |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: University of Tennessee, Knoxville funderid: https://doi.org/10.13039/100014455 – fundername: National Science Foundation grantid: DMR-2004768 funderid: https://doi.org/10.13039/100000001 – fundername: Materials Sciences and Engineering Division funderid: https://doi.org/10.13039/100031156 |
| GroupedDBID | --- -DZ -~X .DC 123 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 AAGWI AAYXX ABJGX CITATION M43 NPM 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c348t-8fea56567ef113ee3b2e3fcc4e2b6ea93a2ee259b9f422786f6bbd482d168a13 |
| ISSN | 0034-6748 1089-7623 |
| IngestDate | Thu Oct 02 11:16:56 EDT 2025 Fri Sep 12 01:41:12 EDT 2025 Thu Apr 03 07:04:40 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Wed Oct 01 03:37:54 EDT 2025 Wed Oct 02 03:55:22 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Published under an exclusive license by AIP Publishing. 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c348t-8fea56567ef113ee3b2e3fcc4e2b6ea93a2ee259b9f422786f6bbd482d168a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0003-7249-103X 0000-0002-2039-548X 0009-0005-8777-4686 0000-0001-5354-6152 |
| PMID | 39352239 |
| PQID | 3111703867 |
| PQPubID | 2050675 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_3111637715 proquest_journals_3111703867 pubmed_primary_39352239 crossref_primary_10_1063_5_0225401 crossref_citationtrail_10_1063_5_0225401 scitation_primary_10_1063_5_0225401 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241001 2024-10-01 2024-Oct-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241001 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Melville |
| PublicationTitle | Review of scientific instruments |
| PublicationTitleAlternate | Rev Sci Instrum |
| PublicationYear | 2024 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Kratzer, Sakong, Pankoke (c48) 2012; 12 Roccapriore, Torsi, Robinson, Kalinin, Ziatdinov (c54) 2023; 10 Nguyen, Guo, Qin, Frew, Xu, Agar (c33) 2021; 7 Zaidi, Ansari, Aslam, Kanwal, Asghar, Lee (c38) 2022; 126 Mkhoyan, Babinec, Maccagnano, Kirkland, Silcox (c2) 2007; 107 Susi, Meyer, Kotakoski (c57) 2017; 180 Xie, Feng, Srinivasan, Stevens, Browning (c23) 2017; 23 Browning, Wallis, Nellist, Pennycook (c11) 1997; 28 Ghosh, Roccapriore, Sumpter, Dyck, Ziatdinov, Kalinin (c63) 2022; 28 Ede (c32) 2020; 1 Deng (c30) 2012; 29 Gatts, Duscher, Müllejans, Rühle (c18) 1995; 59 Horwath, Zakharov, Mégret, Stach (c50) 2020; 6 Postl, Kozyrau, Madsen, Susi (c58) 2023; 29 Creange, Roccapriore, Dyck, Lupini, Vasudevan, Kalinin (c62) 2021; 27 Yu, Li, Wen, Amine, Lu (c17) 2021; 5 Schneider, Woltersdorf, Röder (c12) 1997; 125 Gloter, Ewels, Umek, Arcon, Colliex (c13) 2009; 80 Susi, Kepaptsoglou, Lin, Ramasse, Meyer, Suenaga, Kotakoski (c60) 2017; 4 Muller (c4) 2009; 8 Kalinin, Ophus, Voyles, Erni, Kepaptsoglou, Grillo, Lupini, Oxley, Schwenker, Chan, Etheridge, Li, Han, Ziatdinov, Shibata, Pennycook (c29) 2022; 2 Crewe (c5) 1974; 100 Liu, Ziatdinov, Vasudevan, Kalinin (c43) 2023; 4 Egerton, Malac (c7) 2005; 143 Kalinin, Dyck, Jesse, Ziatdinov (c52) 2021; 7 Roccapriore, Boebinger, Klein, Weile, Ross, Ziatdinov, Unocic, Kalinin (c64) 2023; 29 Annys, Jannis, Verbeeck (c56) 2023; 13 Trebbia, Bonnet (c19) 1990; 34 Ziatdinov, Ghosh, Kalinin (c34) 2021; 3 Tripathi, Mittelberger, Pike, Mangler, Meyer, Verstraete, Kotakoski, Susi (c61) 2018; 18 Botifoll, Pinto-Huguet, Arbiol (c22) 2022; 7 Krivanek, Chisholm, Nicolosi, Pennycook, Corbin, Dellby, Murfitt, Own, Szilagyi, Oxley, Pantelides, Pennycook (c6) 2010; 464 Blanco-Portals, Peiró, Estradé (c53) 2022; 28 Ghosh, Sumpter, Dyck, Kalinin, Ziatdinov (c49) 2021; 7 Noircler, Lebreton, Drahi, de Coux, Warot-Fonrose (c15) 2021; 145 Jesse, Chi, Belianinov, Beekman, Kalinin, Borisevich, Lupini (c31) 2016; 6 Grigorescu, Trasnea, Cocias, Macesanu (c28) 2020; 37 Cheng, Wang, Wu, Chu (c21) 2022; 43 Morris, Saboury, Burkett, Gao, Siegel (c26) 2018; 33 Ziatdinov, Liu, Kelley, Vasudevan, Kalinin (c35) 2022; 16 Lovejoy, Corbin, Dellby, Hoffman, Krivanek (c8) 2018; 24 Browning, Wallis, Nellist, Pennycook (c10) 1997; 28 Andronie, Lăzăroiu, Karabolevski, Stefănescu, Hurloiu, Dijmărescu, Dijmărescu (c27) 2022; 12 Trebbia, Bonnet (c55) 1990; 34 Gázquez, Sánchez-Santolino, Biškup, Roldán, Cabero, Pennycook, Varela (c9) 2017; 65 Wu, Li, Camden (c14) 2018; 118 Blum, Graves, Zachman, Kannan, Pan, Chi (c51) 2019; 25 Tripathi, Markevich, Böttger, Facsko, Besley, Kotakoski, Susi (c59) 2018; 12 Qu, Sui, Li (c16) 2023; 26 Dyck, Ziatdinov, Lingerfelt, Unocic, Hudak, Lupini, Jesse, Kalinin (c65) 2020; 6 Roccapriore, Dyck, Oxley, Ziatdinov, Kalinin (c25) 2022; 16 Kalinin, Liu, Biswas, Duscher, Pratiush, Roccapriore, Ziatdinov, Vasudevan (c41) 2024; 32 Watanabe, Williams (c20) 2004; 10 Kalinin, Mukherjee, Roccapriore, Blaiszik, Ghosh, Ziatdinov, Al-Najjar, Doty, Akers, Rao, Agar, Spurgeon (c24) 2023; 9 Zhu, Lu, Zheng, Chen, Lv, Jiang, Yan, Narita, Müllen, Wang, Sun (c45) 2022; 61 (2024100113053061300_c14) 2018; 118 (2024100113053061300_c40) 2022 (2024100113053061300_c10) 1997; 28 (2024100113053061300_c32) 2020; 1 (2024100113053061300_c46) 2018 (2024100113053061300_c39) 2006 (2024100113053061300_c64) 2023; 29 (2024100113053061300_c15) 2021; 145 (2024100113053061300_c51) 2019; 25 (2024100113053061300_c61) 2018; 18 (2024100113053061300_c21) 2022; 43 (2024100113053061300_c50) 2020; 6 (2024100113053061300_c53) 2022; 28 (2024100113053061300_c24) 2023; 9 (2024100113053061300_c45) 2022; 61 (2024100113053061300_c48) 2012; 12 (2024100113053061300_c25) 2022; 16 (2024100113053061300_c31) 2016; 6 (2024100113053061300_c55) 1990; 34 2024100113053061300_c47 2024100113053061300_c44 (2024100113053061300_c18) 1995; 59 (2024100113053061300_c26) 2018; 33 (2024100113053061300_c57) 2017; 180 2024100113053061300_c42 (2024100113053061300_c8) 2018; 24 (2024100113053061300_c7) 2005; 143 (2024100113053061300_c62) 2021; 27 (2024100113053061300_c41) 2024; 32 (2024100113053061300_c3) 1996 (2024100113053061300_c6) 2010; 464 (2024100113053061300_c49) 2021; 7 (2024100113053061300_c56) 2023; 13 (2024100113053061300_c13) 2009; 80 2024100113053061300_c36 (2024100113053061300_c20) 2004; 10 (2024100113053061300_c59) 2018; 12 (2024100113053061300_c23) 2017; 23 2024100113053061300_c37 (2024100113053061300_c27) 2022; 12 (2024100113053061300_c19) 1990; 34 (2024100113053061300_c29) 2022; 2 (2024100113053061300_c58) 2023; 29 (2024100113053061300_c9) 2017; 65 (2024100113053061300_c5) 1974; 100 (2024100113053061300_c16) 2023; 26 (2024100113053061300_c2) 2007; 107 (2024100113053061300_c38) 2022; 126 (2024100113053061300_c33) 2021; 7 (2024100113053061300_c11) 1997; 28 (2024100113053061300_c52) 2021; 7 (2024100113053061300_c12) 1997; 125 (2024100113053061300_c54) 2023; 10 (2024100113053061300_c63) 2022; 28 (2024100113053061300_c1) 2011 (2024100113053061300_c22) 2022; 7 (2024100113053061300_c60) 2017; 4 (2024100113053061300_c35) 2022; 16 (2024100113053061300_c28) 2020; 37 (2024100113053061300_c43) 2023; 4 (2024100113053061300_c34) 2021; 3 (2024100113053061300_c17) 2021; 5 (2024100113053061300_c65) 2020; 6 (2024100113053061300_c30) 2012; 29 (2024100113053061300_c4) 2009; 8 |
| References_xml | – volume: 125 start-page: 361 year: 1997 ident: c12 article-title: EELS nanoanalysis for investigating both chemical composition and bonding of interlayers in composites publication-title: Mikrochim. Acta – volume: 6 start-page: 640 year: 2020 ident: c65 article-title: Author correction: Atom-by-atom fabrication with electron beams publication-title: Nat. Rev. Mater. – volume: 143 start-page: 43 year: 2005 ident: c7 article-title: EELS in the TEM publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 7 start-page: 1427 year: 2022 ident: c22 article-title: Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook publication-title: Nanoscale Horiz. – volume: 126 start-page: 103514 year: 2022 ident: c38 article-title: A survey of modern deep learning based object detection models publication-title: Digital Signal Process. – volume: 8 start-page: 263 year: 2009 ident: c4 article-title: Structure and bonding at the atomic scale by scanning transmission electron microscopy publication-title: Nat. Mater. – volume: 118 start-page: 2994 year: 2018 ident: c14 article-title: Probing nanoparticle plasmons with electron energy loss spectroscopy publication-title: Chem. Rev. – volume: 7 start-page: 166 year: 2021 ident: c33 article-title: Symmetry-aware recursive image similarity exploration for materials microscopy publication-title: npj Comput. Mater. – volume: 34 start-page: 165 year: 1990 ident: c19 article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts publication-title: Ultramicroscopy – volume: 10 start-page: 1040 year: 2004 ident: c20 article-title: Improvements of elemental mapping via X-ray spectrum imaging combined with principal component analysis and zero-peak deconvolution publication-title: Microsc. Microanal. – volume: 10 start-page: eadn5899 year: 2023 ident: c54 article-title: Dynamic STEM-EELS for single atom and defect measurement during electron beam transformations publication-title: Sci. Adv. – volume: 33 start-page: 4 year: 2018 ident: c26 article-title: Reinventing radiology: Big data and the future of medical imaging publication-title: J. Thorac. Imaging – volume: 12 start-page: 22 year: 2022 ident: c27 article-title: Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things publication-title: Electronics – volume: 80 start-page: 035413 year: 2009 ident: c13 article-title: Electronic structure of titania-based nanotubes investigated by EELS spectroscopy publication-title: Phys. Rev. B – volume: 4 start-page: 100858 year: 2023 ident: c43 article-title: Explainability and human intervention in autonomous scanning probe microscopy publication-title: Patterns – volume: 16 start-page: 13492 year: 2022 ident: c35 article-title: Bayesian active learning for scanning probe microscopy: From Gaussian processes to hypothesis learning publication-title: ACS Nano – volume: 2 start-page: 11 year: 2022 ident: c29 article-title: Machine learning in scanning transmission electron microscopy publication-title: Nat. Rev. Methods Primers – volume: 24 start-page: 446 year: 2018 ident: c8 article-title: Advances in ultra-high energy resolution STEM-EELS publication-title: Microsc. Microanal. – volume: 29 start-page: 141 year: 2012 ident: c30 article-title: The MNIST database of handwritten digit images for machine learning research [best of the web] publication-title: IEEE Signal Process. Mag. – volume: 180 start-page: 163 year: 2017 ident: c57 article-title: Manipulating low-dimensional materials down to the level of single atoms with electron irradiation publication-title: Ultramicroscopy – volume: 145 start-page: 103032 year: 2021 ident: c15 article-title: STEM-EELS investigation of c-Si/a-AlO interface for solar cell applications publication-title: Micron – volume: 29 start-page: 1366 year: 2023 ident: c64 article-title: AI-enabled automation of atomic manipulation and characterization in the STEM publication-title: Microsc. Microanal. – volume: 28 start-page: 3078 year: 2022 ident: c63 article-title: Finding features from microscopes to simulations via ensemble learning and atomic manipulation publication-title: Microsc. Microanal. – volume: 28 start-page: 333 year: 1997 ident: c11 article-title: EELS in the STEM: Determination of materials properties on the atomic scale publication-title: Micron – volume: 1 start-page: 045003 year: 2020 ident: c32 article-title: Warwick electron microscopy datasets publication-title: Mach. Learn.: Sci. Technol. – volume: 107 start-page: 345 year: 2007 ident: c2 article-title: Separation of bulk and surface-losses in low-loss EELS measurements in STEM publication-title: Ultramicroscopy – volume: 12 start-page: 4641 year: 2018 ident: c59 article-title: Implanting germanium into graphene publication-title: ACS Nano – volume: 3 start-page: 015003 year: 2021 ident: c34 article-title: Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process publication-title: Mach. Learn.: Sci. Technol. – volume: 4 start-page: 042004 year: 2017 ident: c60 article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope publication-title: 2D Mater. – volume: 7 start-page: 100 year: 2021 ident: c49 article-title: Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy publication-title: npj Comput. Mater. – volume: 23 start-page: 96 year: 2017 ident: c23 article-title: Acquisition of STEM images by adaptive compressive sensing publication-title: Microsc. Microanal. – volume: 13 start-page: 13724 year: 2023 ident: c56 article-title: Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy publication-title: Sci. Rep. – volume: 26 start-page: 107072 year: 2023 ident: c16 article-title: Recent advances in transmission electron microscopy techniques for heterogeneous catalysis publication-title: iScience – volume: 28 start-page: 333 year: 1997 ident: c10 article-title: EELS in the STEM: Determination of materials properties on the atomic scale publication-title: Micron – volume: 5 start-page: 5186 year: 2021 ident: c17 article-title: (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries publication-title: Mater. Chem. Front. – volume: 6 start-page: 26348 year: 2016 ident: c31 article-title: Big data analytics for scanning transmission electron microscopy ptychography publication-title: Sci. Rep. – volume: 25 start-page: 180 year: 2019 ident: c51 article-title: Machine learning for challenging EELS and EDS spectral decomposition publication-title: Microsc. Microanal. – volume: 29 start-page: 1370 year: 2023 ident: c58 article-title: Challenges for scaling up electron-beam manipulation of graphene impurities publication-title: Microsc. Microanal. – volume: 18 start-page: 5319 year: 2018 ident: c61 article-title: Electron-beam manipulation of silicon dopants in graphene publication-title: Nano Lett. – volume: 27 start-page: 2530 year: 2021 ident: c62 article-title: Automated electron beam manipulation for controlled materials transformations publication-title: Microsc. Microanal. – volume: 65 start-page: 49 year: 2017 ident: c9 article-title: Applications of STEM-EELS to complex oxides publication-title: Mater. Sci. Semicond. Process. – volume: 12 start-page: 943 year: 2012 ident: c48 article-title: Catalytic role of gold nanoparticle in GaAs nanowire growth: A density functional theory study publication-title: Nano Lett. – volume: 37 start-page: 362 year: 2020 ident: c28 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Rob. – volume: 61 start-page: e202213503 year: 2022 ident: c45 article-title: A deep-learning framework for the automated recognition of molecules in scanning-probe-microscopy images publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: eabd5084 year: 2021 ident: c52 article-title: Exploring order parameters and dynamic processes in disordered systems via variational autoencoders publication-title: Sci. Adv. – volume: 28 start-page: 109 year: 2022 ident: c53 article-title: Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering publication-title: Microsc. Microanal. – volume: 464 start-page: 571 year: 2010 ident: c6 article-title: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy publication-title: Nature – volume: 34 start-page: 165 year: 1990 ident: c55 article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts publication-title: Ultramicroscopy – volume: 6 start-page: 108 year: 2020 ident: c50 article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images publication-title: npj Comput. Mater. – volume: 32 start-page: 35 year: 2024 ident: c41 article-title: Human-in-the-loop: The future of machine learning in automated electron microscopy publication-title: Microsc. Today – volume: 59 start-page: 229 year: 1995 ident: c18 article-title: Analyzing line scan EELS data with neural pattern recognition publication-title: Ultramicroscopy – volume: 16 start-page: 7605 year: 2022 ident: c25 article-title: Automated experiment in 4D-STEM: Exploring emergent physics and structural behaviors publication-title: ACS Nano – volume: 9 start-page: 227 year: 2023 ident: c24 article-title: Machine learning for automated experimentation in scanning transmission electron microscopy publication-title: npj Comput. Mater. – volume: 100 start-page: 247 year: 1974 ident: c5 article-title: Scanning transmission electron microscopy publication-title: J. Microsc. – volume: 43 start-page: 081001 year: 2022 ident: c21 article-title: Review transmission electron microscope with machine learning publication-title: J. Semicond. – volume: 18 start-page: 5319 issue: 8 year: 2018 ident: 2024100113053061300_c61 article-title: Electron-beam manipulation of silicon dopants in graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02406 – volume: 12 start-page: 22 issue: 1 year: 2022 ident: 2024100113053061300_c27 article-title: Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things publication-title: Electronics doi: 10.3390/electronics12010022 – volume: 29 start-page: 1370 issue: Supplement_1 year: 2023 ident: 2024100113053061300_c58 article-title: Challenges for scaling up electron-beam manipulation of graphene impurities publication-title: Microsc. Microanal. doi: 10.1093/micmic/ozad067.704 – volume: 16 start-page: 7605 issue: 5 year: 2022 ident: 2024100113053061300_c25 article-title: Automated experiment in 4D-STEM: Exploring emergent physics and structural behaviors publication-title: ACS Nano doi: 10.1021/acsnano.1c11118 – volume: 13 start-page: 13724 year: 2023 ident: 2024100113053061300_c56 article-title: Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy publication-title: Sci. Rep. doi: 10.1038/s41598-023-40943-7 – volume-title: Scanning Transmission Electron Microscopy year: 2011 ident: 2024100113053061300_c1 – volume-title: Deep Learning year: 2022 ident: 2024100113053061300_c40 – volume: 6 start-page: 108 issue: 1 year: 2020 ident: 2024100113053061300_c50 article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00363-x – volume: 37 start-page: 362 issue: 3 year: 2020 ident: 2024100113053061300_c28 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Rob. doi: 10.1002/rob.21918 – volume: 23 start-page: 96 issue: S1 year: 2017 ident: 2024100113053061300_c23 article-title: Acquisition of STEM images by adaptive compressive sensing publication-title: Microsc. Microanal. doi: 10.1017/s1431927617001167 – volume: 7 start-page: 100 issue: 1 year: 2021 ident: 2024100113053061300_c49 article-title: Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00569-7 – volume: 6 start-page: 640 issue: 7 year: 2020 ident: 2024100113053061300_c65 article-title: Author correction: Atom-by-atom fabrication with electron beams publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0188-y – volume: 43 start-page: 081001 issue: 8 year: 2022 ident: 2024100113053061300_c21 article-title: Review in situ transmission electron microscope with machine learning publication-title: J. Semicond. doi: 10.1088/1674-4926/43/8/081001 – volume: 7 start-page: 166 issue: 1 year: 2021 ident: 2024100113053061300_c33 article-title: Symmetry-aware recursive image similarity exploration for materials microscopy publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00637-y – ident: 2024100113053061300_c37 – volume: 1 start-page: 045003 issue: 4 year: 2020 ident: 2024100113053061300_c32 article-title: Warwick electron microscopy datasets publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ab9c3c – volume: 8 start-page: 263 issue: 4 year: 2009 ident: 2024100113053061300_c4 article-title: Structure and bonding at the atomic scale by scanning transmission electron microscopy publication-title: Nat. Mater. doi: 10.1038/nmat2380 – volume: 29 start-page: 1366 issue: Supplement_1 year: 2023 ident: 2024100113053061300_c64 article-title: AI-enabled automation of atomic manipulation and characterization in the STEM publication-title: Microsc. Microanal. doi: 10.1093/micmic/ozad067.702 – volume: 10 start-page: 1040 issue: S02 year: 2004 ident: 2024100113053061300_c20 article-title: Improvements of elemental mapping via X-ray spectrum imaging combined with principal component analysis and zero-peak deconvolution publication-title: Microsc. Microanal. doi: 10.1017/s1431927604887403 – volume: 25 start-page: 180 issue: S2 year: 2019 ident: 2024100113053061300_c51 article-title: Machine learning for challenging EELS and EDS spectral decomposition publication-title: Microsc. Microanal. doi: 10.1017/s1431927619001636 – volume: 27 start-page: 2530 issue: S1 year: 2021 ident: 2024100113053061300_c62 article-title: Automated electron beam manipulation for controlled materials transformations publication-title: Microsc. Microanal. doi: 10.1017/s1431927621009016 – volume: 28 start-page: 109 issue: 1 year: 2022 ident: 2024100113053061300_c53 article-title: Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering publication-title: Microsc. Microanal. doi: 10.1017/s1431927621013696 – volume: 464 start-page: 571 issue: 7288 year: 2010 ident: 2024100113053061300_c6 article-title: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy publication-title: Nature doi: 10.1038/nature08879 – ident: 2024100113053061300_c44 – volume: 28 start-page: 333 issue: 5 year: 1997 ident: 2024100113053061300_c10 article-title: EELS in the STEM: Determination of materials properties on the atomic scale publication-title: Micron doi: 10.1016/s0968-4328(97)00033-4 – volume: 180 start-page: 163 year: 2017 ident: 2024100113053061300_c57 article-title: Manipulating low-dimensional materials down to the level of single atoms with electron irradiation publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.03.005 – volume: 33 start-page: 4 issue: 1 year: 2018 ident: 2024100113053061300_c26 article-title: Reinventing radiology: Big data and the future of medical imaging publication-title: J. Thorac. Imaging doi: 10.1097/rti.0000000000000311 – volume: 2 start-page: 11 issue: 1 year: 2022 ident: 2024100113053061300_c29 article-title: Machine learning in scanning transmission electron microscopy publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00095-w – volume: 12 start-page: 943 issue: 2 year: 2012 ident: 2024100113053061300_c48 article-title: Catalytic role of gold nanoparticle in GaAs nanowire growth: A density functional theory study publication-title: Nano Lett. doi: 10.1021/nl204004p – volume: 126 start-page: 103514 year: 2022 ident: 2024100113053061300_c38 article-title: A survey of modern deep learning based object detection models publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2022.103514 – volume: 4 start-page: 100858 issue: 11 year: 2023 ident: 2024100113053061300_c43 article-title: Explainability and human intervention in autonomous scanning probe microscopy publication-title: Patterns doi: 10.1016/j.patter.2023.100858 – volume: 32 start-page: 35 issue: 1 year: 2024 ident: 2024100113053061300_c41 article-title: Human-in-the-loop: The future of machine learning in automated electron microscopy publication-title: Microsc. Today doi: 10.1093/mictod/qaad096 – volume: 24 start-page: 446 issue: S1 year: 2018 ident: 2024100113053061300_c8 article-title: Advances in ultra-high energy resolution STEM-EELS publication-title: Microsc. Microanal. doi: 10.1017/s1431927618002726 – volume: 9 start-page: 227 issue: 1 year: 2023 ident: 2024100113053061300_c24 article-title: Machine learning for automated experimentation in scanning transmission electron microscopy publication-title: npj Comput. Mater. doi: 10.1038/s41524-023-01142-0 – volume: 100 start-page: 247 issue: 3 year: 1974 ident: 2024100113053061300_c5 article-title: Scanning transmission electron microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1974.tb03937.x – volume: 145 start-page: 103032 year: 2021 ident: 2024100113053061300_c15 article-title: STEM-EELS investigation of c-Si/a-AlOx interface for solar cell applications publication-title: Micron doi: 10.1016/j.micron.2021.103032 – volume: 125 start-page: 361 issue: 1–4 year: 1997 ident: 2024100113053061300_c12 article-title: EELS nanoanalysis for investigating both chemical composition and bonding of interlayers in composites publication-title: Mikrochim. Acta doi: 10.1007/bf01246212 – volume: 118 start-page: 2994 issue: 6 year: 2018 ident: 2024100113053061300_c14 article-title: Probing nanoparticle plasmons with electron energy loss spectroscopy publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00354 – volume: 80 start-page: 035413 issue: 3 year: 2009 ident: 2024100113053061300_c13 article-title: Electronic structure of titania-based nanotubes investigated by EELS spectroscopy publication-title: Phys. Rev. B doi: 10.1103/physrevb.80.035413 – volume: 143 start-page: 43 issue: 2–3 year: 2005 ident: 2024100113053061300_c7 article-title: EELS in the TEM publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2003.12.009 – volume: 59 start-page: 229 issue: 1–4 year: 1995 ident: 2024100113053061300_c18 article-title: Analyzing line scan EELS data with neural pattern recognition publication-title: Ultramicroscopy doi: 10.1016/0304-3991(95)00031-u – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: 2024100113053061300_c46 – volume: 10 start-page: eadn5899 year: 2023 ident: 2024100113053061300_c54 article-title: Dynamic STEM-EELS for single atom and defect measurement during electron beam transformations publication-title: Sci. Adv. doi: 10.1126/sciadv.adn5899 – ident: 2024100113053061300_c47 article-title: GaAs nanowire review – volume: 65 start-page: 49 year: 2017 ident: 2024100113053061300_c9 article-title: Applications of STEM-EELS to complex oxides publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.06.005 – volume: 7 start-page: 1427 issue: 12 year: 2022 ident: 2024100113053061300_c22 article-title: Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook publication-title: Nanoscale Horiz. doi: 10.1039/d2nh00377e – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 2024100113053061300_c39 – start-page: 3 volume-title: Transmission Electron Microscopy year: 1996 ident: 2024100113053061300_c3 article-title: The transmission electron microscope doi: 10.1007/978-1-4757-2519-3_1 – volume: 3 start-page: 015003 year: 2021 ident: 2024100113053061300_c34 article-title: Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ac4baa – volume: 107 start-page: 345 issue: 4–5 year: 2007 ident: 2024100113053061300_c2 article-title: Separation of bulk and surface-losses in low-loss EELS measurements in STEM publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2006.09.003 – volume: 12 start-page: 4641 issue: 5 year: 2018 ident: 2024100113053061300_c59 article-title: Implanting germanium into graphene publication-title: ACS Nano doi: 10.1021/acsnano.8b01191 – ident: 2024100113053061300_c42 – volume: 7 start-page: eabd5084 issue: 17 year: 2021 ident: 2024100113053061300_c52 article-title: Exploring order parameters and dynamic processes in disordered systems via variational autoencoders publication-title: Sci. Adv. doi: 10.1126/sciadv.abd5084 – volume: 6 start-page: 26348 issue: 1 year: 2016 ident: 2024100113053061300_c31 article-title: Big data analytics for scanning transmission electron microscopy ptychography publication-title: Sci. Rep. doi: 10.1038/srep26348 – volume: 4 start-page: 042004 issue: 4 year: 2017 ident: 2024100113053061300_c60 article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope publication-title: 2D Mater. doi: 10.1088/2053-1583/aa878f – volume: 34 start-page: 165 issue: 3 year: 1990 ident: 2024100113053061300_c19 article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts publication-title: Ultramicroscopy doi: 10.1016/0304-3991(90)90070-3 – volume: 28 start-page: 3078 issue: S1 year: 2022 ident: 2024100113053061300_c63 article-title: Finding features from microscopes to simulations via ensemble learning and atomic manipulation publication-title: Microsc. Microanal. doi: 10.1017/s1431927622011473 – volume: 34 start-page: 165 issue: 3 year: 1990 ident: 2024100113053061300_c55 article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts publication-title: Ultramicroscopy doi: 10.1016/0304-3991(90)90070-3 – volume: 26 start-page: 107072 issue: 7 year: 2023 ident: 2024100113053061300_c16 article-title: Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis publication-title: iScience doi: 10.1016/j.isci.2023.107072 – volume: 29 start-page: 141 issue: 6 year: 2012 ident: 2024100113053061300_c30 article-title: The MNIST database of handwritten digit images for machine learning research [best of the web] publication-title: IEEE Signal Process. Mag. doi: 10.1109/msp.2012.2211477 – ident: 2024100113053061300_c36 – volume: 16 start-page: 13492 issue: 9 year: 2022 ident: 2024100113053061300_c35 article-title: Bayesian active learning for scanning probe microscopy: From Gaussian processes to hypothesis learning publication-title: ACS Nano doi: 10.1021/acsnano.2c05303 – volume: 5 start-page: 5186 issue: 14 year: 2021 ident: 2024100113053061300_c17 article-title: (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/d1qm00275a – volume: 61 start-page: e202213503 issue: 49 year: 2022 ident: 2024100113053061300_c45 article-title: A deep-learning framework for the automated recognition of molecules in scanning-probe-microscopy images publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202213503 – volume: 28 start-page: 333 issue: 5 year: 1997 ident: 2024100113053061300_c11 article-title: EELS in the STEM: Determination of materials properties on the atomic scale publication-title: Micron doi: 10.1016/s0968-4328(97)00033-4 |
| SSID | ssj0000511 |
| Score | 2.4695513 |
| Snippet | Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material... |
| SourceID | proquest pubmed crossref scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Computation Electron energy loss spectroscopy High performance computing Image filters Machine learning Python Scanning electron microscopy Scanning transmission electron microscopy Transmission electron microscopy |
| Title | Realizing smart scanning transmission electron microscopy using high performance computing |
| URI | http://dx.doi.org/10.1063/5.0225401 https://www.ncbi.nlm.nih.gov/pubmed/39352239 https://www.proquest.com/docview/3111703867 https://www.proquest.com/docview/3111637715 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7623 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000511 issn: 0034-6748 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QF6QJRnoCDzOBStsmwyjpMcK14r1HKALaq4RHHiSCvaFJHsgf56ZuLYCWKRCpdolVjZyPNlPJ7MNx9jLyJqYV6WoQ-lFL4ItfTTKlB-osI0qhSAionvfPxRLk_Eh9PodDI5GlUtbVo1Ly638kr-x6p4Du1KLNl_sKy7KZ7A32hfPKKF8XglG3_CKG992WUEzvHyrCmMAhEJP9QNWpBSYTOrdDM7p-I7oqH8nG26FAH1KqbGxY46UHQaD3Y1s327HbvFsCepuIhq2Fvqu9B3guq8K4Fp03R5mpP2G-6YXap5ebFprHo1yYcNn_5zYmaaHCzxQNezL_Mhtm4sot5rw_23-YlQuEo353NB-CRpYlYc42YXSeqjG4axHzZimxZvi63-HQMqNEo0x8gDQ81gWMRcaeGPZn2N7YR488WU7Ry-OT76PKzMUWAUFPsnsp2mJLxyt_w9Pvlj07HLruNcmyqJUSCyusVu9jsIfmjgsMcmur7N9nof3fCDvpH4yzvsq8MH7_DBLT74GB_c4oMP-OAdPjjhg4_wwR0-7rLVu7er10u_19LwCxBJ6yeVzil2j3UVBKA1qFBDVRRCh0rqPIU81Bq3wiqtBLGjZSWVKkUSloFM8gDusWl9UesHjKciX2iIqrzE6FNBoqTQkMtU6EInqSw8dmAnMLMzRXInZ1lX7yAhi7J-rj32zA39bpqrbBu0b62Q9e9ek0FAikmQyNhjT91lnDf63JXXGlHdjZEQx0HksfvGeu5fiJCOgXHqsefOnH9_hIdXGvWI3Rjwv8-m-BbqxxixtupJD8RfICebSA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+smart+scanning+transmission+electron+microscopy+using+high+performance+computing&rft.jtitle=Review+of+scientific+instruments&rft.au=Pratiush%2C+Utkarsh&rft.au=Houston%2C+Austin&rft.au=Kalinin%2C+Sergei+V.&rft.au=Duscher%2C+Gerd&rft.date=2024-10-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=95&rft.issue=10&rft_id=info:doi/10.1063%2F5.0225401&rft.externalDocID=rsi |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |