Realizing smart scanning transmission electron microscopy using high performance computing

Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far bey...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 95; no. 10
Main Authors Pratiush, Utkarsh, Houston, Austin, Kalinin, Sergei V., Duscher, Gerd
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.10.2024
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/5.0225401

Cover

Abstract Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub.
AbstractList Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub.
Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub.Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material characterization via rich imaging and spectroscopic data. Modern electron microscopes can access multiple length scales and sampling rates far beyond human perception and reaction time. Recent advancements in machine learning (ML) offer a promising avenue to enhance these capabilities by integrating ML algorithms into the STEM-EELS framework, fostering an environment of active learning. This work enables the seamless integration of STEM with High-Performance Computing (HPC) systems. This integration is facilitated by our developed server software, written in Python, which acts as a wrapper over DigitalMicrograph (version 3.5) hardware modules to enable remote computer interactions. We present several implemented workflows that exemplify this integration. These workflows include sophisticated techniques such as object finding and deep kernel learning. Through these developments, we demonstrate how the fusion of STEM-EELS with ML and HPC enhances the efficiency and scope of material characterization for all of STEM available globally having Gatan, Inc. image filter installed on them. The codes are available on GitHub.
Author Houston, Austin
Pratiush, Utkarsh
Duscher, Gerd
Kalinin, Sergei V.
Author_xml – sequence: 1
  givenname: Utkarsh
  surname: Pratiush
  fullname: Pratiush, Utkarsh
  organization: Department of Materials Science and Engineering, University of Tennessee
– sequence: 2
  givenname: Austin
  surname: Houston
  fullname: Houston, Austin
  organization: Department of Materials Science and Engineering, University of Tennessee
– sequence: 3
  givenname: Sergei V.
  surname: Kalinin
  fullname: Kalinin, Sergei V.
  organization: 2Pacific Northwest National Laboratory, Richland, Washington 99354, USA
– sequence: 4
  givenname: Gerd
  surname: Duscher
  fullname: Duscher, Gerd
  organization: Department of Materials Science and Engineering, University of Tennessee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39352239$$D View this record in MEDLINE/PubMed
BookMark eNp90U1LwzAYB_AgE7epB7-AFLyo0C0vTdoeRXyDgSA7eSlp9nTLaJOatAf99GZu8zDEXJKQ3_Pw8M8YDYw1gNAFwROCBZvyCaaUJ5gcoRHBWR6ngrIBGmHMklikSTZEY-_XOCxOyAkaspxxSlk-Qu9vIGv9pc0y8o10XeSVNGZz7Zw0vtHea2siqEF1LhwarZz1yrafUe83bKWXq6gFV1nXSKMgUrZp-y48naHjStYeznf7KZo_Pszvn-PZ69PL_d0sVizJujirQHLBRQoVIQyAlRRYpVQCtBQgcyYpAOV5mVcJpWkmKlGWiySjCyIySdgput62bZ396MF3RRhaQV1LA7b3BSOECJamhAd6dUDXtncmDPejUswykQZ1uVN92cCiaJ0OyXwW-9ACuNmCTRTeQfVLCC42H1LwYvchwU4PrNKd7EKmIV9d_1lxu63we_lP-283j5oP
CODEN RSINAK
CitedBy_id crossref_primary_10_3390_app15052634
crossref_primary_10_1039_D4DD00277F
Cites_doi 10.1021/acs.nanolett.8b02406
10.3390/electronics12010022
10.1093/micmic/ozad067.704
10.1021/acsnano.1c11118
10.1038/s41598-023-40943-7
10.1038/s41524-020-00363-x
10.1002/rob.21918
10.1017/s1431927617001167
10.1038/s41524-021-00569-7
10.1038/s41578-020-0188-y
10.1088/1674-4926/43/8/081001
10.1038/s41524-021-00637-y
10.1088/2632-2153/ab9c3c
10.1038/nmat2380
10.1093/micmic/ozad067.702
10.1017/s1431927604887403
10.1017/s1431927619001636
10.1017/s1431927621009016
10.1017/s1431927621013696
10.1038/nature08879
10.1016/s0968-4328(97)00033-4
10.1016/j.ultramic.2017.03.005
10.1097/rti.0000000000000311
10.1038/s43586-022-00095-w
10.1021/nl204004p
10.1016/j.dsp.2022.103514
10.1016/j.patter.2023.100858
10.1093/mictod/qaad096
10.1017/s1431927618002726
10.1038/s41524-023-01142-0
10.1111/j.1365-2818.1974.tb03937.x
10.1016/j.micron.2021.103032
10.1007/bf01246212
10.1021/acs.chemrev.7b00354
10.1103/physrevb.80.035413
10.1016/j.elspec.2003.12.009
10.1016/0304-3991(95)00031-u
10.1126/sciadv.adn5899
10.1016/j.mssp.2016.06.005
10.1039/d2nh00377e
10.1007/978-1-4757-2519-3_1
10.1088/2632-2153/ac4baa
10.1016/j.ultramic.2006.09.003
10.1021/acsnano.8b01191
10.1126/sciadv.abd5084
10.1038/srep26348
10.1088/2053-1583/aa878f
10.1016/0304-3991(90)90070-3
10.1017/s1431927622011473
10.1016/j.isci.2023.107072
10.1109/msp.2012.2211477
10.1021/acsnano.2c05303
10.1039/d1qm00275a
10.1002/anie.202213503
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0225401
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 39352239
10_1063_5_0225401
rsi
Genre Journal Article
GrantInformation_xml – fundername: University of Tennessee, Knoxville
  funderid: https://doi.org/10.13039/100014455
– fundername: National Science Foundation
  grantid: DMR-2004768
  funderid: https://doi.org/10.13039/100000001
– fundername: Materials Sciences and Engineering Division
  funderid: https://doi.org/10.13039/100031156
GroupedDBID ---
-DZ
-~X
.DC
123
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
CITATION
M43
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c348t-8fea56567ef113ee3b2e3fcc4e2b6ea93a2ee259b9f422786f6bbd482d168a13
ISSN 0034-6748
1089-7623
IngestDate Thu Oct 02 11:16:56 EDT 2025
Fri Sep 12 01:41:12 EDT 2025
Thu Apr 03 07:04:40 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Wed Oct 01 03:37:54 EDT 2025
Wed Oct 02 03:55:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Published under an exclusive license by AIP Publishing.
2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-8fea56567ef113ee3b2e3fcc4e2b6ea93a2ee259b9f422786f6bbd482d168a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-7249-103X
0000-0002-2039-548X
0009-0005-8777-4686
0000-0001-5354-6152
PMID 39352239
PQID 3111703867
PQPubID 2050675
PageCount 8
ParticipantIDs proquest_miscellaneous_3111637715
proquest_journals_3111703867
pubmed_primary_39352239
crossref_primary_10_1063_5_0225401
crossref_citationtrail_10_1063_5_0225401
scitation_primary_10_1063_5_0225401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241001
2024-10-01
2024-Oct-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241001
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kratzer, Sakong, Pankoke (c48) 2012; 12
Roccapriore, Torsi, Robinson, Kalinin, Ziatdinov (c54) 2023; 10
Nguyen, Guo, Qin, Frew, Xu, Agar (c33) 2021; 7
Zaidi, Ansari, Aslam, Kanwal, Asghar, Lee (c38) 2022; 126
Mkhoyan, Babinec, Maccagnano, Kirkland, Silcox (c2) 2007; 107
Susi, Meyer, Kotakoski (c57) 2017; 180
Xie, Feng, Srinivasan, Stevens, Browning (c23) 2017; 23
Browning, Wallis, Nellist, Pennycook (c11) 1997; 28
Ghosh, Roccapriore, Sumpter, Dyck, Ziatdinov, Kalinin (c63) 2022; 28
Ede (c32) 2020; 1
Deng (c30) 2012; 29
Gatts, Duscher, Müllejans, Rühle (c18) 1995; 59
Horwath, Zakharov, Mégret, Stach (c50) 2020; 6
Postl, Kozyrau, Madsen, Susi (c58) 2023; 29
Creange, Roccapriore, Dyck, Lupini, Vasudevan, Kalinin (c62) 2021; 27
Yu, Li, Wen, Amine, Lu (c17) 2021; 5
Schneider, Woltersdorf, Röder (c12) 1997; 125
Gloter, Ewels, Umek, Arcon, Colliex (c13) 2009; 80
Susi, Kepaptsoglou, Lin, Ramasse, Meyer, Suenaga, Kotakoski (c60) 2017; 4
Muller (c4) 2009; 8
Kalinin, Ophus, Voyles, Erni, Kepaptsoglou, Grillo, Lupini, Oxley, Schwenker, Chan, Etheridge, Li, Han, Ziatdinov, Shibata, Pennycook (c29) 2022; 2
Crewe (c5) 1974; 100
Liu, Ziatdinov, Vasudevan, Kalinin (c43) 2023; 4
Egerton, Malac (c7) 2005; 143
Kalinin, Dyck, Jesse, Ziatdinov (c52) 2021; 7
Roccapriore, Boebinger, Klein, Weile, Ross, Ziatdinov, Unocic, Kalinin (c64) 2023; 29
Annys, Jannis, Verbeeck (c56) 2023; 13
Trebbia, Bonnet (c19) 1990; 34
Ziatdinov, Ghosh, Kalinin (c34) 2021; 3
Tripathi, Mittelberger, Pike, Mangler, Meyer, Verstraete, Kotakoski, Susi (c61) 2018; 18
Botifoll, Pinto-Huguet, Arbiol (c22) 2022; 7
Krivanek, Chisholm, Nicolosi, Pennycook, Corbin, Dellby, Murfitt, Own, Szilagyi, Oxley, Pantelides, Pennycook (c6) 2010; 464
Blanco-Portals, Peiró, Estradé (c53) 2022; 28
Ghosh, Sumpter, Dyck, Kalinin, Ziatdinov (c49) 2021; 7
Noircler, Lebreton, Drahi, de Coux, Warot-Fonrose (c15) 2021; 145
Jesse, Chi, Belianinov, Beekman, Kalinin, Borisevich, Lupini (c31) 2016; 6
Grigorescu, Trasnea, Cocias, Macesanu (c28) 2020; 37
Cheng, Wang, Wu, Chu (c21) 2022; 43
Morris, Saboury, Burkett, Gao, Siegel (c26) 2018; 33
Ziatdinov, Liu, Kelley, Vasudevan, Kalinin (c35) 2022; 16
Lovejoy, Corbin, Dellby, Hoffman, Krivanek (c8) 2018; 24
Browning, Wallis, Nellist, Pennycook (c10) 1997; 28
Andronie, Lăzăroiu, Karabolevski, Stefănescu, Hurloiu, Dijmărescu, Dijmărescu (c27) 2022; 12
Trebbia, Bonnet (c55) 1990; 34
Gázquez, Sánchez-Santolino, Biškup, Roldán, Cabero, Pennycook, Varela (c9) 2017; 65
Wu, Li, Camden (c14) 2018; 118
Blum, Graves, Zachman, Kannan, Pan, Chi (c51) 2019; 25
Tripathi, Markevich, Böttger, Facsko, Besley, Kotakoski, Susi (c59) 2018; 12
Qu, Sui, Li (c16) 2023; 26
Dyck, Ziatdinov, Lingerfelt, Unocic, Hudak, Lupini, Jesse, Kalinin (c65) 2020; 6
Roccapriore, Dyck, Oxley, Ziatdinov, Kalinin (c25) 2022; 16
Kalinin, Liu, Biswas, Duscher, Pratiush, Roccapriore, Ziatdinov, Vasudevan (c41) 2024; 32
Watanabe, Williams (c20) 2004; 10
Kalinin, Mukherjee, Roccapriore, Blaiszik, Ghosh, Ziatdinov, Al-Najjar, Doty, Akers, Rao, Agar, Spurgeon (c24) 2023; 9
Zhu, Lu, Zheng, Chen, Lv, Jiang, Yan, Narita, Müllen, Wang, Sun (c45) 2022; 61
(2024100113053061300_c14) 2018; 118
(2024100113053061300_c40) 2022
(2024100113053061300_c10) 1997; 28
(2024100113053061300_c32) 2020; 1
(2024100113053061300_c46) 2018
(2024100113053061300_c39) 2006
(2024100113053061300_c64) 2023; 29
(2024100113053061300_c15) 2021; 145
(2024100113053061300_c51) 2019; 25
(2024100113053061300_c61) 2018; 18
(2024100113053061300_c21) 2022; 43
(2024100113053061300_c50) 2020; 6
(2024100113053061300_c53) 2022; 28
(2024100113053061300_c24) 2023; 9
(2024100113053061300_c45) 2022; 61
(2024100113053061300_c48) 2012; 12
(2024100113053061300_c25) 2022; 16
(2024100113053061300_c31) 2016; 6
(2024100113053061300_c55) 1990; 34
2024100113053061300_c47
2024100113053061300_c44
(2024100113053061300_c18) 1995; 59
(2024100113053061300_c26) 2018; 33
(2024100113053061300_c57) 2017; 180
2024100113053061300_c42
(2024100113053061300_c8) 2018; 24
(2024100113053061300_c7) 2005; 143
(2024100113053061300_c62) 2021; 27
(2024100113053061300_c41) 2024; 32
(2024100113053061300_c3) 1996
(2024100113053061300_c6) 2010; 464
(2024100113053061300_c49) 2021; 7
(2024100113053061300_c56) 2023; 13
(2024100113053061300_c13) 2009; 80
2024100113053061300_c36
(2024100113053061300_c20) 2004; 10
(2024100113053061300_c59) 2018; 12
(2024100113053061300_c23) 2017; 23
2024100113053061300_c37
(2024100113053061300_c27) 2022; 12
(2024100113053061300_c19) 1990; 34
(2024100113053061300_c29) 2022; 2
(2024100113053061300_c58) 2023; 29
(2024100113053061300_c9) 2017; 65
(2024100113053061300_c5) 1974; 100
(2024100113053061300_c16) 2023; 26
(2024100113053061300_c2) 2007; 107
(2024100113053061300_c38) 2022; 126
(2024100113053061300_c33) 2021; 7
(2024100113053061300_c11) 1997; 28
(2024100113053061300_c52) 2021; 7
(2024100113053061300_c12) 1997; 125
(2024100113053061300_c54) 2023; 10
(2024100113053061300_c63) 2022; 28
(2024100113053061300_c1) 2011
(2024100113053061300_c22) 2022; 7
(2024100113053061300_c60) 2017; 4
(2024100113053061300_c35) 2022; 16
(2024100113053061300_c28) 2020; 37
(2024100113053061300_c43) 2023; 4
(2024100113053061300_c34) 2021; 3
(2024100113053061300_c17) 2021; 5
(2024100113053061300_c65) 2020; 6
(2024100113053061300_c30) 2012; 29
(2024100113053061300_c4) 2009; 8
References_xml – volume: 125
  start-page: 361
  year: 1997
  ident: c12
  article-title: EELS nanoanalysis for investigating both chemical composition and bonding of interlayers in composites
  publication-title: Mikrochim. Acta
– volume: 6
  start-page: 640
  year: 2020
  ident: c65
  article-title: Author correction: Atom-by-atom fabrication with electron beams
  publication-title: Nat. Rev. Mater.
– volume: 143
  start-page: 43
  year: 2005
  ident: c7
  article-title: EELS in the TEM
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 7
  start-page: 1427
  year: 2022
  ident: c22
  article-title: Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook
  publication-title: Nanoscale Horiz.
– volume: 126
  start-page: 103514
  year: 2022
  ident: c38
  article-title: A survey of modern deep learning based object detection models
  publication-title: Digital Signal Process.
– volume: 8
  start-page: 263
  year: 2009
  ident: c4
  article-title: Structure and bonding at the atomic scale by scanning transmission electron microscopy
  publication-title: Nat. Mater.
– volume: 118
  start-page: 2994
  year: 2018
  ident: c14
  article-title: Probing nanoparticle plasmons with electron energy loss spectroscopy
  publication-title: Chem. Rev.
– volume: 7
  start-page: 166
  year: 2021
  ident: c33
  article-title: Symmetry-aware recursive image similarity exploration for materials microscopy
  publication-title: npj Comput. Mater.
– volume: 34
  start-page: 165
  year: 1990
  ident: c19
  article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts
  publication-title: Ultramicroscopy
– volume: 10
  start-page: 1040
  year: 2004
  ident: c20
  article-title: Improvements of elemental mapping via X-ray spectrum imaging combined with principal component analysis and zero-peak deconvolution
  publication-title: Microsc. Microanal.
– volume: 10
  start-page: eadn5899
  year: 2023
  ident: c54
  article-title: Dynamic STEM-EELS for single atom and defect measurement during electron beam transformations
  publication-title: Sci. Adv.
– volume: 33
  start-page: 4
  year: 2018
  ident: c26
  article-title: Reinventing radiology: Big data and the future of medical imaging
  publication-title: J. Thorac. Imaging
– volume: 12
  start-page: 22
  year: 2022
  ident: c27
  article-title: Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things
  publication-title: Electronics
– volume: 80
  start-page: 035413
  year: 2009
  ident: c13
  article-title: Electronic structure of titania-based nanotubes investigated by EELS spectroscopy
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 100858
  year: 2023
  ident: c43
  article-title: Explainability and human intervention in autonomous scanning probe microscopy
  publication-title: Patterns
– volume: 16
  start-page: 13492
  year: 2022
  ident: c35
  article-title: Bayesian active learning for scanning probe microscopy: From Gaussian processes to hypothesis learning
  publication-title: ACS Nano
– volume: 2
  start-page: 11
  year: 2022
  ident: c29
  article-title: Machine learning in scanning transmission electron microscopy
  publication-title: Nat. Rev. Methods Primers
– volume: 24
  start-page: 446
  year: 2018
  ident: c8
  article-title: Advances in ultra-high energy resolution STEM-EELS
  publication-title: Microsc. Microanal.
– volume: 29
  start-page: 141
  year: 2012
  ident: c30
  article-title: The MNIST database of handwritten digit images for machine learning research [best of the web]
  publication-title: IEEE Signal Process. Mag.
– volume: 180
  start-page: 163
  year: 2017
  ident: c57
  article-title: Manipulating low-dimensional materials down to the level of single atoms with electron irradiation
  publication-title: Ultramicroscopy
– volume: 145
  start-page: 103032
  year: 2021
  ident: c15
  article-title: STEM-EELS investigation of c-Si/a-AlO interface for solar cell applications
  publication-title: Micron
– volume: 29
  start-page: 1366
  year: 2023
  ident: c64
  article-title: AI-enabled automation of atomic manipulation and characterization in the STEM
  publication-title: Microsc. Microanal.
– volume: 28
  start-page: 3078
  year: 2022
  ident: c63
  article-title: Finding features from microscopes to simulations via ensemble learning and atomic manipulation
  publication-title: Microsc. Microanal.
– volume: 28
  start-page: 333
  year: 1997
  ident: c11
  article-title: EELS in the STEM: Determination of materials properties on the atomic scale
  publication-title: Micron
– volume: 1
  start-page: 045003
  year: 2020
  ident: c32
  article-title: Warwick electron microscopy datasets
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 107
  start-page: 345
  year: 2007
  ident: c2
  article-title: Separation of bulk and surface-losses in low-loss EELS measurements in STEM
  publication-title: Ultramicroscopy
– volume: 12
  start-page: 4641
  year: 2018
  ident: c59
  article-title: Implanting germanium into graphene
  publication-title: ACS Nano
– volume: 3
  start-page: 015003
  year: 2021
  ident: c34
  article-title: Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 4
  start-page: 042004
  year: 2017
  ident: c60
  article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope
  publication-title: 2D Mater.
– volume: 7
  start-page: 100
  year: 2021
  ident: c49
  article-title: Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
  publication-title: npj Comput. Mater.
– volume: 23
  start-page: 96
  year: 2017
  ident: c23
  article-title: Acquisition of STEM images by adaptive compressive sensing
  publication-title: Microsc. Microanal.
– volume: 13
  start-page: 13724
  year: 2023
  ident: c56
  article-title: Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy
  publication-title: Sci. Rep.
– volume: 26
  start-page: 107072
  year: 2023
  ident: c16
  article-title: Recent advances in transmission electron microscopy techniques for heterogeneous catalysis
  publication-title: iScience
– volume: 28
  start-page: 333
  year: 1997
  ident: c10
  article-title: EELS in the STEM: Determination of materials properties on the atomic scale
  publication-title: Micron
– volume: 5
  start-page: 5186
  year: 2021
  ident: c17
  article-title: (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries
  publication-title: Mater. Chem. Front.
– volume: 6
  start-page: 26348
  year: 2016
  ident: c31
  article-title: Big data analytics for scanning transmission electron microscopy ptychography
  publication-title: Sci. Rep.
– volume: 25
  start-page: 180
  year: 2019
  ident: c51
  article-title: Machine learning for challenging EELS and EDS spectral decomposition
  publication-title: Microsc. Microanal.
– volume: 29
  start-page: 1370
  year: 2023
  ident: c58
  article-title: Challenges for scaling up electron-beam manipulation of graphene impurities
  publication-title: Microsc. Microanal.
– volume: 18
  start-page: 5319
  year: 2018
  ident: c61
  article-title: Electron-beam manipulation of silicon dopants in graphene
  publication-title: Nano Lett.
– volume: 27
  start-page: 2530
  year: 2021
  ident: c62
  article-title: Automated electron beam manipulation for controlled materials transformations
  publication-title: Microsc. Microanal.
– volume: 65
  start-page: 49
  year: 2017
  ident: c9
  article-title: Applications of STEM-EELS to complex oxides
  publication-title: Mater. Sci. Semicond. Process.
– volume: 12
  start-page: 943
  year: 2012
  ident: c48
  article-title: Catalytic role of gold nanoparticle in GaAs nanowire growth: A density functional theory study
  publication-title: Nano Lett.
– volume: 37
  start-page: 362
  year: 2020
  ident: c28
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Rob.
– volume: 61
  start-page: e202213503
  year: 2022
  ident: c45
  article-title: A deep-learning framework for the automated recognition of molecules in scanning-probe-microscopy images
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: eabd5084
  year: 2021
  ident: c52
  article-title: Exploring order parameters and dynamic processes in disordered systems via variational autoencoders
  publication-title: Sci. Adv.
– volume: 28
  start-page: 109
  year: 2022
  ident: c53
  article-title: Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering
  publication-title: Microsc. Microanal.
– volume: 464
  start-page: 571
  year: 2010
  ident: c6
  article-title: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy
  publication-title: Nature
– volume: 34
  start-page: 165
  year: 1990
  ident: c55
  article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts
  publication-title: Ultramicroscopy
– volume: 6
  start-page: 108
  year: 2020
  ident: c50
  article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
  publication-title: npj Comput. Mater.
– volume: 32
  start-page: 35
  year: 2024
  ident: c41
  article-title: Human-in-the-loop: The future of machine learning in automated electron microscopy
  publication-title: Microsc. Today
– volume: 59
  start-page: 229
  year: 1995
  ident: c18
  article-title: Analyzing line scan EELS data with neural pattern recognition
  publication-title: Ultramicroscopy
– volume: 16
  start-page: 7605
  year: 2022
  ident: c25
  article-title: Automated experiment in 4D-STEM: Exploring emergent physics and structural behaviors
  publication-title: ACS Nano
– volume: 9
  start-page: 227
  year: 2023
  ident: c24
  article-title: Machine learning for automated experimentation in scanning transmission electron microscopy
  publication-title: npj Comput. Mater.
– volume: 100
  start-page: 247
  year: 1974
  ident: c5
  article-title: Scanning transmission electron microscopy
  publication-title: J. Microsc.
– volume: 43
  start-page: 081001
  year: 2022
  ident: c21
  article-title: Review transmission electron microscope with machine learning
  publication-title: J. Semicond.
– volume: 18
  start-page: 5319
  issue: 8
  year: 2018
  ident: 2024100113053061300_c61
  article-title: Electron-beam manipulation of silicon dopants in graphene
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02406
– volume: 12
  start-page: 22
  issue: 1
  year: 2022
  ident: 2024100113053061300_c27
  article-title: Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the internet of robotic things
  publication-title: Electronics
  doi: 10.3390/electronics12010022
– volume: 29
  start-page: 1370
  issue: Supplement_1
  year: 2023
  ident: 2024100113053061300_c58
  article-title: Challenges for scaling up electron-beam manipulation of graphene impurities
  publication-title: Microsc. Microanal.
  doi: 10.1093/micmic/ozad067.704
– volume: 16
  start-page: 7605
  issue: 5
  year: 2022
  ident: 2024100113053061300_c25
  article-title: Automated experiment in 4D-STEM: Exploring emergent physics and structural behaviors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11118
– volume: 13
  start-page: 13724
  year: 2023
  ident: 2024100113053061300_c56
  article-title: Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-40943-7
– volume-title: Scanning Transmission Electron Microscopy
  year: 2011
  ident: 2024100113053061300_c1
– volume-title: Deep Learning
  year: 2022
  ident: 2024100113053061300_c40
– volume: 6
  start-page: 108
  issue: 1
  year: 2020
  ident: 2024100113053061300_c50
  article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00363-x
– volume: 37
  start-page: 362
  issue: 3
  year: 2020
  ident: 2024100113053061300_c28
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Rob.
  doi: 10.1002/rob.21918
– volume: 23
  start-page: 96
  issue: S1
  year: 2017
  ident: 2024100113053061300_c23
  article-title: Acquisition of STEM images by adaptive compressive sensing
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927617001167
– volume: 7
  start-page: 100
  issue: 1
  year: 2021
  ident: 2024100113053061300_c49
  article-title: Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00569-7
– volume: 6
  start-page: 640
  issue: 7
  year: 2020
  ident: 2024100113053061300_c65
  article-title: Author correction: Atom-by-atom fabrication with electron beams
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0188-y
– volume: 43
  start-page: 081001
  issue: 8
  year: 2022
  ident: 2024100113053061300_c21
  article-title: Review in situ transmission electron microscope with machine learning
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/43/8/081001
– volume: 7
  start-page: 166
  issue: 1
  year: 2021
  ident: 2024100113053061300_c33
  article-title: Symmetry-aware recursive image similarity exploration for materials microscopy
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00637-y
– ident: 2024100113053061300_c37
– volume: 1
  start-page: 045003
  issue: 4
  year: 2020
  ident: 2024100113053061300_c32
  article-title: Warwick electron microscopy datasets
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ab9c3c
– volume: 8
  start-page: 263
  issue: 4
  year: 2009
  ident: 2024100113053061300_c4
  article-title: Structure and bonding at the atomic scale by scanning transmission electron microscopy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2380
– volume: 29
  start-page: 1366
  issue: Supplement_1
  year: 2023
  ident: 2024100113053061300_c64
  article-title: AI-enabled automation of atomic manipulation and characterization in the STEM
  publication-title: Microsc. Microanal.
  doi: 10.1093/micmic/ozad067.702
– volume: 10
  start-page: 1040
  issue: S02
  year: 2004
  ident: 2024100113053061300_c20
  article-title: Improvements of elemental mapping via X-ray spectrum imaging combined with principal component analysis and zero-peak deconvolution
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927604887403
– volume: 25
  start-page: 180
  issue: S2
  year: 2019
  ident: 2024100113053061300_c51
  article-title: Machine learning for challenging EELS and EDS spectral decomposition
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927619001636
– volume: 27
  start-page: 2530
  issue: S1
  year: 2021
  ident: 2024100113053061300_c62
  article-title: Automated electron beam manipulation for controlled materials transformations
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927621009016
– volume: 28
  start-page: 109
  issue: 1
  year: 2022
  ident: 2024100113053061300_c53
  article-title: Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927621013696
– volume: 464
  start-page: 571
  issue: 7288
  year: 2010
  ident: 2024100113053061300_c6
  article-title: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy
  publication-title: Nature
  doi: 10.1038/nature08879
– ident: 2024100113053061300_c44
– volume: 28
  start-page: 333
  issue: 5
  year: 1997
  ident: 2024100113053061300_c10
  article-title: EELS in the STEM: Determination of materials properties on the atomic scale
  publication-title: Micron
  doi: 10.1016/s0968-4328(97)00033-4
– volume: 180
  start-page: 163
  year: 2017
  ident: 2024100113053061300_c57
  article-title: Manipulating low-dimensional materials down to the level of single atoms with electron irradiation
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.03.005
– volume: 33
  start-page: 4
  issue: 1
  year: 2018
  ident: 2024100113053061300_c26
  article-title: Reinventing radiology: Big data and the future of medical imaging
  publication-title: J. Thorac. Imaging
  doi: 10.1097/rti.0000000000000311
– volume: 2
  start-page: 11
  issue: 1
  year: 2022
  ident: 2024100113053061300_c29
  article-title: Machine learning in scanning transmission electron microscopy
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00095-w
– volume: 12
  start-page: 943
  issue: 2
  year: 2012
  ident: 2024100113053061300_c48
  article-title: Catalytic role of gold nanoparticle in GaAs nanowire growth: A density functional theory study
  publication-title: Nano Lett.
  doi: 10.1021/nl204004p
– volume: 126
  start-page: 103514
  year: 2022
  ident: 2024100113053061300_c38
  article-title: A survey of modern deep learning based object detection models
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2022.103514
– volume: 4
  start-page: 100858
  issue: 11
  year: 2023
  ident: 2024100113053061300_c43
  article-title: Explainability and human intervention in autonomous scanning probe microscopy
  publication-title: Patterns
  doi: 10.1016/j.patter.2023.100858
– volume: 32
  start-page: 35
  issue: 1
  year: 2024
  ident: 2024100113053061300_c41
  article-title: Human-in-the-loop: The future of machine learning in automated electron microscopy
  publication-title: Microsc. Today
  doi: 10.1093/mictod/qaad096
– volume: 24
  start-page: 446
  issue: S1
  year: 2018
  ident: 2024100113053061300_c8
  article-title: Advances in ultra-high energy resolution STEM-EELS
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927618002726
– volume: 9
  start-page: 227
  issue: 1
  year: 2023
  ident: 2024100113053061300_c24
  article-title: Machine learning for automated experimentation in scanning transmission electron microscopy
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-023-01142-0
– volume: 100
  start-page: 247
  issue: 3
  year: 1974
  ident: 2024100113053061300_c5
  article-title: Scanning transmission electron microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1974.tb03937.x
– volume: 145
  start-page: 103032
  year: 2021
  ident: 2024100113053061300_c15
  article-title: STEM-EELS investigation of c-Si/a-AlOx interface for solar cell applications
  publication-title: Micron
  doi: 10.1016/j.micron.2021.103032
– volume: 125
  start-page: 361
  issue: 1–4
  year: 1997
  ident: 2024100113053061300_c12
  article-title: EELS nanoanalysis for investigating both chemical composition and bonding of interlayers in composites
  publication-title: Mikrochim. Acta
  doi: 10.1007/bf01246212
– volume: 118
  start-page: 2994
  issue: 6
  year: 2018
  ident: 2024100113053061300_c14
  article-title: Probing nanoparticle plasmons with electron energy loss spectroscopy
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00354
– volume: 80
  start-page: 035413
  issue: 3
  year: 2009
  ident: 2024100113053061300_c13
  article-title: Electronic structure of titania-based nanotubes investigated by EELS spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.80.035413
– volume: 143
  start-page: 43
  issue: 2–3
  year: 2005
  ident: 2024100113053061300_c7
  article-title: EELS in the TEM
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2003.12.009
– volume: 59
  start-page: 229
  issue: 1–4
  year: 1995
  ident: 2024100113053061300_c18
  article-title: Analyzing line scan EELS data with neural pattern recognition
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(95)00031-u
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: 2024100113053061300_c46
– volume: 10
  start-page: eadn5899
  year: 2023
  ident: 2024100113053061300_c54
  article-title: Dynamic STEM-EELS for single atom and defect measurement during electron beam transformations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adn5899
– ident: 2024100113053061300_c47
  article-title: GaAs nanowire review
– volume: 65
  start-page: 49
  year: 2017
  ident: 2024100113053061300_c9
  article-title: Applications of STEM-EELS to complex oxides
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2016.06.005
– volume: 7
  start-page: 1427
  issue: 12
  year: 2022
  ident: 2024100113053061300_c22
  article-title: Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook
  publication-title: Nanoscale Horiz.
  doi: 10.1039/d2nh00377e
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 2024100113053061300_c39
– start-page: 3
  volume-title: Transmission Electron Microscopy
  year: 1996
  ident: 2024100113053061300_c3
  article-title: The transmission electron microscope
  doi: 10.1007/978-1-4757-2519-3_1
– volume: 3
  start-page: 015003
  year: 2021
  ident: 2024100113053061300_c34
  article-title: Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ac4baa
– volume: 107
  start-page: 345
  issue: 4–5
  year: 2007
  ident: 2024100113053061300_c2
  article-title: Separation of bulk and surface-losses in low-loss EELS measurements in STEM
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2006.09.003
– volume: 12
  start-page: 4641
  issue: 5
  year: 2018
  ident: 2024100113053061300_c59
  article-title: Implanting germanium into graphene
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01191
– ident: 2024100113053061300_c42
– volume: 7
  start-page: eabd5084
  issue: 17
  year: 2021
  ident: 2024100113053061300_c52
  article-title: Exploring order parameters and dynamic processes in disordered systems via variational autoencoders
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd5084
– volume: 6
  start-page: 26348
  issue: 1
  year: 2016
  ident: 2024100113053061300_c31
  article-title: Big data analytics for scanning transmission electron microscopy ptychography
  publication-title: Sci. Rep.
  doi: 10.1038/srep26348
– volume: 4
  start-page: 042004
  issue: 4
  year: 2017
  ident: 2024100113053061300_c60
  article-title: Towards atomically precise manipulation of 2D nanostructures in the electron microscope
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa878f
– volume: 34
  start-page: 165
  issue: 3
  year: 1990
  ident: 2024100113053061300_c19
  article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(90)90070-3
– volume: 28
  start-page: 3078
  issue: S1
  year: 2022
  ident: 2024100113053061300_c63
  article-title: Finding features from microscopes to simulations via ensemble learning and atomic manipulation
  publication-title: Microsc. Microanal.
  doi: 10.1017/s1431927622011473
– volume: 34
  start-page: 165
  issue: 3
  year: 1990
  ident: 2024100113053061300_c55
  article-title: EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(90)90070-3
– volume: 26
  start-page: 107072
  issue: 7
  year: 2023
  ident: 2024100113053061300_c16
  article-title: Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis
  publication-title: iScience
  doi: 10.1016/j.isci.2023.107072
– volume: 29
  start-page: 141
  issue: 6
  year: 2012
  ident: 2024100113053061300_c30
  article-title: The MNIST database of handwritten digit images for machine learning research [best of the web]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/msp.2012.2211477
– ident: 2024100113053061300_c36
– volume: 16
  start-page: 13492
  issue: 9
  year: 2022
  ident: 2024100113053061300_c35
  article-title: Bayesian active learning for scanning probe microscopy: From Gaussian processes to hypothesis learning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05303
– volume: 5
  start-page: 5186
  issue: 14
  year: 2021
  ident: 2024100113053061300_c17
  article-title: (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries
  publication-title: Mater. Chem. Front.
  doi: 10.1039/d1qm00275a
– volume: 61
  start-page: e202213503
  issue: 49
  year: 2022
  ident: 2024100113053061300_c45
  article-title: A deep-learning framework for the automated recognition of molecules in scanning-probe-microscopy images
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202213503
– volume: 28
  start-page: 333
  issue: 5
  year: 1997
  ident: 2024100113053061300_c11
  article-title: EELS in the STEM: Determination of materials properties on the atomic scale
  publication-title: Micron
  doi: 10.1016/s0968-4328(97)00033-4
SSID ssj0000511
Score 2.4695513
Snippet Scanning Transmission Electron Microscopy (STEM) coupled with Electron Energy Loss Spectroscopy (EELS) presents a powerful platform for detailed material...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Computation
Electron energy loss spectroscopy
High performance computing
Image filters
Machine learning
Python
Scanning electron microscopy
Scanning transmission electron microscopy
Transmission electron microscopy
Title Realizing smart scanning transmission electron microscopy using high performance computing
URI http://dx.doi.org/10.1063/5.0225401
https://www.ncbi.nlm.nih.gov/pubmed/39352239
https://www.proquest.com/docview/3111703867
https://www.proquest.com/docview/3111637715
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7623
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000511
  issn: 0034-6748
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QF6QJRnoCDzOBStsmwyjpMcK14r1HKALaq4RHHiSCvaFJHsgf56ZuLYCWKRCpdolVjZyPNlPJ7MNx9jLyJqYV6WoQ-lFL4ItfTTKlB-osI0qhSAionvfPxRLk_Eh9PodDI5GlUtbVo1Ly638kr-x6p4Du1KLNl_sKy7KZ7A32hfPKKF8XglG3_CKG992WUEzvHyrCmMAhEJP9QNWpBSYTOrdDM7p-I7oqH8nG26FAH1KqbGxY46UHQaD3Y1s327HbvFsCepuIhq2Fvqu9B3guq8K4Fp03R5mpP2G-6YXap5ebFprHo1yYcNn_5zYmaaHCzxQNezL_Mhtm4sot5rw_23-YlQuEo353NB-CRpYlYc42YXSeqjG4axHzZimxZvi63-HQMqNEo0x8gDQ81gWMRcaeGPZn2N7YR488WU7Ry-OT76PKzMUWAUFPsnsp2mJLxyt_w9Pvlj07HLruNcmyqJUSCyusVu9jsIfmjgsMcmur7N9nof3fCDvpH4yzvsq8MH7_DBLT74GB_c4oMP-OAdPjjhg4_wwR0-7rLVu7er10u_19LwCxBJ6yeVzil2j3UVBKA1qFBDVRRCh0rqPIU81Bq3wiqtBLGjZSWVKkUSloFM8gDusWl9UesHjKciX2iIqrzE6FNBoqTQkMtU6EInqSw8dmAnMLMzRXInZ1lX7yAhi7J-rj32zA39bpqrbBu0b62Q9e9ek0FAikmQyNhjT91lnDf63JXXGlHdjZEQx0HksfvGeu5fiJCOgXHqsefOnH9_hIdXGvWI3Rjwv8-m-BbqxxixtupJD8RfICebSA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+smart+scanning+transmission+electron+microscopy+using+high+performance+computing&rft.jtitle=Review+of+scientific+instruments&rft.au=Pratiush%2C+Utkarsh&rft.au=Houston%2C+Austin&rft.au=Kalinin%2C+Sergei+V.&rft.au=Duscher%2C+Gerd&rft.date=2024-10-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=95&rft.issue=10&rft_id=info:doi/10.1063%2F5.0225401&rft.externalDocID=rsi
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon