A deep learning algorithm to accelerate algebraic multigrid methods in finite element solvers of 3D elliptic PDEs
Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters t...
Saved in:
| Published in | Computers & mathematics with applications (1987) Vol. 167; pp. 217 - 231 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0898-1221 1873-7668 1873-7668 |
| DOI | 10.1016/j.camwa.2024.05.013 |
Cover
| Abstract | Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters that require to be fine-tuned. In particular, the strong threshold parameter is the most relevant since it stands at the basis of the construction of successively coarser grids needed by the AMG methods. We introduce a novel deep learning algorithm that minimizes the computational cost of the AMG method when used as a finite element solver. We show that our algorithm requires minimal changes to any existing code. The proposed Artificial Neural Network (ANN) tunes the value of the strong threshold parameter by interpreting the sparse matrix of the linear system as a gray scale image and exploiting a pooling operator to transform it into a small multi-channel image. We experimentally prove that the pooling successfully reduces the computational cost of processing a large sparse matrix and preserves the features needed for the regression task at hand. We train the proposed algorithm on a large dataset containing problems with a strongly heterogeneous diffusion coefficient defined in different three-dimensional geometries and discretized with unstructured grids and linear elasticity problems with a strongly heterogeneous Young's modulus. When tested on problems with coefficients or geometries not present in the training dataset, our approach reduces the computational time by up to 30%. |
|---|---|
| AbstractList | Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters that require to be fine-tuned. In particular, the strong threshold parameter is the most relevant since it stands at the basis of the construction of successively coarser grids needed by the AMG methods. We introduce a novel deep learning algorithm that minimizes the computational cost of the AMG method when used as a finite element solver. We show that our algorithm requires minimal changes to any existing code. The proposed Artificial Neural Network (ANN) tunes the value of the strong threshold parameter by interpreting the sparse matrix of the linear system as a gray scale image and exploiting a pooling operator to transform it into a small multi-channel image. We experimentally prove that the pooling successfully reduces the computational cost of processing a large sparse matrix and preserves the features needed for the regression task at hand. We train the proposed algorithm on a large dataset containing problems with a strongly heterogeneous diffusion coefficient defined in different three-dimensional geometries and discretized with unstructured grids and linear elasticity problems with a strongly heterogeneous Young's modulus. When tested on problems with coefficients or geometries not present in the training dataset, our approach reduces the computational time by up to 30%. |
| Author | Dede', Luca Caldana, Matteo Antonietti, Paola F. |
| Author_xml | – sequence: 1 givenname: Matteo surname: Caldana fullname: Caldana, Matteo email: matteo.caldana@polimi.it – sequence: 2 givenname: Paola F. orcidid: 0000-0002-2138-3878 surname: Antonietti fullname: Antonietti, Paola F. email: paola.antonietti@polimi.it – sequence: 3 givenname: Luca surname: Dede' fullname: Dede', Luca email: luca.dede@polimi.it |
| BookMark | eNqNkMtOHDEQRa0IpAyEL2DjH-iOHz0e9yILBOQhIZFFsraq3eXBI7c9sQ2Iv48nwyoLklVJV3Xqcc7ISUwRCbnkrOeMq4-73sLyDL1gYujZumdcviMrrjey2yilT8iK6VF3XAj-npyVsmOMDVKwFfl1RWfEPQ0IOfq4pRC2Kfv6sNCaKFiLATNUPOQ4ZfCWLo-h-m32M12wPqS5UB-p89G3rta9YKy0pPCEudDkqLxpafD72tDvN7flAzl1EApevNZz8vPz7Y_rr93d_Zdv11d3nZWDrp2eYa25A-Ekb2c4Dcox0HIUk1NrGDajkqgnKfSISgmtlFU46c3AkE-zVfKcDMe5j3EPL88Qgtlnv0B-MZyZgzazM3-0mYM2w9amaWvYeMRsTqVkdMb6CtWnWNv34R-s_Iv9v42fjhQ2G08esynWY7Q4-4y2mjn5N_nfL8OetQ |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2025_113773 |
| Cites_doi | 10.1016/j.cma.2022.114825 10.1515/jnma-2020-0043 10.1137/S1064827599361047 10.1016/j.jcp.2022.111531 10.1137/151006135 10.1090/S0894-0347-02-00398-3 10.2514/2.689 10.1021/ac60214a047 10.1137/S1064827598344303 10.1017/S0962492917000083 10.1137/21M1466864 10.1137/S1064827502407706 10.1145/3065386 10.1007/s211-001-8015-y 10.1137/040614402 10.1007/s00791-004-0147-y 10.1137/S106482750139892X 10.1137/S1064827502407810 10.1090/conm/218/03002 10.1002/nla.437 10.1016/j.cma.2019.112575 10.1038/s43588-022-00264-7 10.1007/s10915-018-0783-x 10.1051/m2an/2018007 10.1137/0722039 10.1137/S0036142903429742 10.1007/s10092-017-0223-6 10.1137/21M1429849 10.1016/j.patcog.2017.10.013 10.1016/0096-3003(86)90095-0 10.1007/BF02238511 10.1137/18M1204383 10.1016/j.camwa.2020.02.022 10.1137/18M1205364 10.1038/nature14539 10.1007/s42967-021-00142-5 10.1137/1034116 10.1016/j.jcp.2023.112421 10.1002/nla.1930 10.1016/S0168-9274(01)00115-5 10.1016/j.cam.2019.112524 10.1007/s10013-022-00597-w 10.1007/s00365-021-09551-4 10.1007/s10596-020-09979-w 10.1002/nla.504 10.1016/j.jcp.2019.07.050 10.1090/S0025-5718-1991-1079008-4 10.1063/5.0104605 10.1002/gamm.202100001 10.1002/nla.1816 10.1007/s00466-019-01740-0 10.1002/nla.556 10.1016/j.cma.2020.113268 10.1007/s10915-021-01462-7 10.1016/j.jcp.2021.110900 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.camwa.2024.05.013 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-7668 |
| EndPage | 231 |
| ExternalDocumentID | 10.1016/j.camwa.2024.05.013 10_1016_j_camwa_2024_05_013 S0898122124002256 |
| GrantInformation_xml | – fundername: MUR grantid: 20204LN5N5 funderid: https://doi.org/10.13039/501100021856 – fundername: NextGenerationEU program grantid: M4C2 – fundername: European Union grantid: 101115663 funderid: https://doi.org/10.13039/501100000780 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ACDAQ ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW T5K TN5 XPP ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ LG9 M26 M41 R2- SSZ TAE WUQ ZY4 ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c348t-8da581fa2f31accf8a6f0a8392bf65a47963e8b3289e662866c6eb8740e1bdc63 |
| IEDL.DBID | UNPAY |
| ISSN | 0898-1221 1873-7668 |
| IngestDate | Tue Aug 19 23:34:22 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Oct 01 04:16:31 EDT 2025 Tue Jun 18 08:52:25 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Deep learning Elliptic problems Algebraic multigrid methods Partial differential equations Convolutional neural networks |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-8da581fa2f31accf8a6f0a8392bf65a47963e8b3289e662866c6eb8740e1bdc63 |
| ORCID | 0000-0002-2138-3878 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.camwa.2024.05.013 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_camwa_2024_05_013 crossref_citationtrail_10_1016_j_camwa_2024_05_013 crossref_primary_10_1016_j_camwa_2024_05_013 elsevier_sciencedirect_doi_10_1016_j_camwa_2024_05_013 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & mathematics with applications (1987) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Siek, Lee, Lumsdaine (br0820) 2001 Arndt, Bangerth, Davydov, Heister, Heltai, Kronbichler, Maier, Pelteret, Turcksin, Wells (br0780) 2021; 81 Falgout, Vassilevski, Zikatanov (br0440) 2005; 12 Antonietti, Manuzzi (br0670) 2022; 452 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai (br0600) 2018; 77 Heinlein, Klawonn, Lanser, Weber (br0720) 2019; 41 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (br0580) 2016 Katrutsa, Daulbaev, Oseledets (br0650) 2020; 368 Arrarás, Gaspar, Portero, Rodrigo (br0350) 2021; 25 Antonietti, Pennesi (br0040) 2019; 78 Brandt (br0090) 1984 Arndt, Bangerth, Blais, Clevenger, Fehling, Grayver, Heister, Heltai, Kronbichler, Maier (br0790) 2020; 28 Baker, Falgout, Kolev, Yang (br0070) 2012 Brezina, Falgout, MacLachlan, Manteuffel, McCormick, Ruge (br0750) 2006; 27 Jones, Vassilevski (br0200) 2001; 23 MacLachlan, Olson (br0450) 2014; 21 Falgout, Vassilevski (br0430) 2004; 42 Antonietti, Farenga, Manuzzi, Martinelli, Saverio (br0680) 2022 Vaněk, Brezina, Mandel (br0180) 2001; 88 Bastian, Blatt, Scheichl (br0230) 2012; 19 Ruge, Stüben (br0110) 1987 Mishra (br0490) 2018 Vassilevski (br0150) 2008 Dobrev, Lazarov, Vassilevski, Zikatanov (br0220) 2006; 13 Antonietti, Houston, Hu, Sarti, Verani (br0030) 2017; 54 Vaněk, Mandel, Brezina (br0160) 1996; 56 Antonietti, Dassi, Manuzzi (br0660) 2022; 469 Falgout (br0140) 2006 Quarteroni, Valli (br0460) 2008 Heinlein, Klawonn, Lanser, Weber (br0730) 2021; 44 Brandt, McCormick, Ruge (br0080) 1983 Trottenberg, Oosterlee, Schuller (br0130) 2000 Chartier, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge, Vassilevski (br0210) 2003; 25 Wesseling (br0010) 2004 White, Castelletto, Klevtsov, Bui, Osei-Kuffuor, Tchelepi (br0340) 2019; 357 Brandt (br0100) 1986; 19 Antonietti, Berrone, Busetto, Verani (br0060) 2023; 61 LeCun, Bengio, Hinton (br0470) 2015; 521 Eichinger, Heinlein, Klawonn (br0630) 2020 Regazzoni, Salvador, Dedè, Quarteroni (br0540) 2022; 393 Cleary, Falgout, Henson, Jones (br0760) 1998 Regazzoni, Dede, Quarteroni (br0530) 2020; 370 Bochev, Garasi, Hu, Robinson, Tuminaro (br0290) 2003; 25 Xu, Zikatanov (br0400) 2017; 26 Di Pietro, Hülsemann, Matalon, Mycek, Rüde (br0260) 2023 Hu, Shen, Sun (br0570) 2018 Antonietti, Caldana, Dede (br0740) 2023 McCormick (br0410) 1985; 22 Zikatanov (br0420) 2008; 15 Berrone, Oberto (br0550) 2022; 34 Luz, Galun, Maron, Basri, Yavneh (br0690) 2020 Botti, Di Pietro (br0250) 2022; 4 Kolev, Vassilevski (br0300) 2009 Barnafi, Pavarino, Scacchi (br0320) 2023 Greenfeld, Galun, Basri, Yavneh, Kimmel (br0640) 2019 He, Zhang, Ren, Sun (br0830) 2016 Xu (br0370) 1992; 34 Kutyniok, Petersen, Raslan, Schneider (br0480) 2022; 55 Yang (br0800) 2002; 41 Krizhevsky, Sutskever, Hinton (br0590) 2017; 60 Savitzky, Golay (br0770) 1964; 36 Falgout, Yang (br0810) 2002 Griebel, Oeltz, Schweitzer (br0310) 2003; 25 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (br0610) 2020 Briggs, Henson, McCormick (br0120) 2000 Brezina, Cleary, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge (br0190) 2001; 22 Raw (br0270) 1996 Xu, Zikatanov (br0380) 2002; 15 Xu, Zikatanov (br0390) 2004; 7 Weiss, Maruszewski, Smith (br0280) 1999; 37 Fresca, Dede, Manzoni (br0520) 2021; 87 Moore, Cyr, Siefert (br0700) 2022 Antonietti, Mascotto, Verani (br0050) 2018; 52 Regazzoni, Dede, Quarteroni (br0510) 2019; 397 Goodfellow, Bengio, Courville (br0840) 2016 Taghibakhshi, MacLachlan, Olson, West (br0710) 2021; 34 Adler, Benson, Cyr, MacLachlan, Tuminaro (br0330) 2016; 38 Bramble, Pasciak, Wang, Xu (br0360) 1991; 57 Vinuesa, Brunton (br0500) 2022; 2 LeCun, Bengio (br0560) 1995 Antonietti, Melas (br0240) 2020; 42 Bramble (br0020) 2019 Chan, Xu, Zikatanov (br0170) 1998; 218 Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (br0620) 2019; 64 Jones (10.1016/j.camwa.2024.05.013_br0200) 2001; 23 Xu (10.1016/j.camwa.2024.05.013_br0370) 1992; 34 Xu (10.1016/j.camwa.2024.05.013_br0380) 2002; 15 White (10.1016/j.camwa.2024.05.013_br0340) 2019; 357 Ruge (10.1016/j.camwa.2024.05.013_br0110) 1987 Vaněk (10.1016/j.camwa.2024.05.013_br0160) 1996; 56 Kolev (10.1016/j.camwa.2024.05.013_br0300) 2009 Falgout (10.1016/j.camwa.2024.05.013_br0440) 2005; 12 Brandt (10.1016/j.camwa.2024.05.013_br0100) 1986; 19 Antonietti (10.1016/j.camwa.2024.05.013_br0680) Antonietti (10.1016/j.camwa.2024.05.013_br0030) 2017; 54 Bochev (10.1016/j.camwa.2024.05.013_br0290) 2003; 25 Vaněk (10.1016/j.camwa.2024.05.013_br0180) 2001; 88 Quarteroni (10.1016/j.camwa.2024.05.013_br0460) 2008 Dosovitskiy (10.1016/j.camwa.2024.05.013_br0610) Bramble (10.1016/j.camwa.2024.05.013_br0020) 2019 Siek (10.1016/j.camwa.2024.05.013_br0820) 2001 McCormick (10.1016/j.camwa.2024.05.013_br0410) 1985; 22 Greenfeld (10.1016/j.camwa.2024.05.013_br0640) 2019 Weiss (10.1016/j.camwa.2024.05.013_br0280) 1999; 37 Berrone (10.1016/j.camwa.2024.05.013_br0550) 2022; 34 Hu (10.1016/j.camwa.2024.05.013_br0570) 2018 Antonietti (10.1016/j.camwa.2024.05.013_br0660) 2022; 469 Briggs (10.1016/j.camwa.2024.05.013_br0120) 2000 Antonietti (10.1016/j.camwa.2024.05.013_br0040) 2019; 78 Krizhevsky (10.1016/j.camwa.2024.05.013_br0590) 2017; 60 Savitzky (10.1016/j.camwa.2024.05.013_br0770) 1964; 36 He (10.1016/j.camwa.2024.05.013_br0830) 2016 Bhatnagar (10.1016/j.camwa.2024.05.013_br0620) 2019; 64 Antonietti (10.1016/j.camwa.2024.05.013_br0240) 2020; 42 Botti (10.1016/j.camwa.2024.05.013_br0250) 2022; 4 Arndt (10.1016/j.camwa.2024.05.013_br0780) 2021; 81 Luz (10.1016/j.camwa.2024.05.013_br0690) 2020 Taghibakhshi (10.1016/j.camwa.2024.05.013_br0710) 2021; 34 LeCun (10.1016/j.camwa.2024.05.013_br0560) 1995 Chartier (10.1016/j.camwa.2024.05.013_br0210) 2003; 25 Mishra (10.1016/j.camwa.2024.05.013_br0490) Bramble (10.1016/j.camwa.2024.05.013_br0360) 1991; 57 Falgout (10.1016/j.camwa.2024.05.013_br0140) 2006 Cleary (10.1016/j.camwa.2024.05.013_br0760) 1998 Arrarás (10.1016/j.camwa.2024.05.013_br0350) 2021; 25 Antonietti (10.1016/j.camwa.2024.05.013_br0670) 2022; 452 Regazzoni (10.1016/j.camwa.2024.05.013_br0530) 2020; 370 Goodfellow (10.1016/j.camwa.2024.05.013_br0840) 2016 Falgout (10.1016/j.camwa.2024.05.013_br0430) 2004; 42 Di Pietro (10.1016/j.camwa.2024.05.013_br0260) 2023 Iandola (10.1016/j.camwa.2024.05.013_br0580) Dobrev (10.1016/j.camwa.2024.05.013_br0220) 2006; 13 Moore (10.1016/j.camwa.2024.05.013_br0700) 2022 Antonietti (10.1016/j.camwa.2024.05.013_br0060) 2023; 61 Brezina (10.1016/j.camwa.2024.05.013_br0750) 2006; 27 Fresca (10.1016/j.camwa.2024.05.013_br0520) 2021; 87 Katrutsa (10.1016/j.camwa.2024.05.013_br0650) 2020; 368 Baker (10.1016/j.camwa.2024.05.013_br0070) 2012 Antonietti (10.1016/j.camwa.2024.05.013_br0050) 2018; 52 Kutyniok (10.1016/j.camwa.2024.05.013_br0480) 2022; 55 Chan (10.1016/j.camwa.2024.05.013_br0170) 1998; 218 Raw (10.1016/j.camwa.2024.05.013_br0270) 1996 Eichinger (10.1016/j.camwa.2024.05.013_br0630) 2020 Heinlein (10.1016/j.camwa.2024.05.013_br0720) 2019; 41 Falgout (10.1016/j.camwa.2024.05.013_br0810) 2002 Xu (10.1016/j.camwa.2024.05.013_br0390) 2004; 7 Bastian (10.1016/j.camwa.2024.05.013_br0230) 2012; 19 Griebel (10.1016/j.camwa.2024.05.013_br0310) 2003; 25 Vassilevski (10.1016/j.camwa.2024.05.013_br0150) 2008 Brandt (10.1016/j.camwa.2024.05.013_br0080) 1983 Wesseling (10.1016/j.camwa.2024.05.013_br0010) 2004 Brandt (10.1016/j.camwa.2024.05.013_br0090) 1984 Yang (10.1016/j.camwa.2024.05.013_br0800) 2002; 41 Zikatanov (10.1016/j.camwa.2024.05.013_br0420) 2008; 15 Arndt (10.1016/j.camwa.2024.05.013_br0790) 2020; 28 Antonietti (10.1016/j.camwa.2024.05.013_br0740) 2023 Xu (10.1016/j.camwa.2024.05.013_br0400) 2017; 26 Heinlein (10.1016/j.camwa.2024.05.013_br0730) 2021; 44 MacLachlan (10.1016/j.camwa.2024.05.013_br0450) 2014; 21 Vinuesa (10.1016/j.camwa.2024.05.013_br0500) 2022; 2 Regazzoni (10.1016/j.camwa.2024.05.013_br0510) 2019; 397 Adler (10.1016/j.camwa.2024.05.013_br0330) 2016; 38 Regazzoni (10.1016/j.camwa.2024.05.013_br0540) 2022; 393 Barnafi (10.1016/j.camwa.2024.05.013_br0320) 2023 LeCun (10.1016/j.camwa.2024.05.013_br0470) 2015; 521 Brezina (10.1016/j.camwa.2024.05.013_br0190) 2001; 22 Gu (10.1016/j.camwa.2024.05.013_br0600) 2018; 77 Trottenberg (10.1016/j.camwa.2024.05.013_br0130) 2000 |
| References_xml | – start-page: 770 year: 2016 end-page: 778 ident: br0830 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2415 year: 2019 end-page: 2423 ident: br0640 article-title: Learning to optimize multigrid PDE solvers publication-title: International Conference on Machine Learning – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: br0770 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – year: 2004 ident: br0010 article-title: An Introduction to Multigrid Methods, An Introduction to Multigrid Methods – year: 2008 ident: br0150 article-title: Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations – volume: 42 start-page: A1147 year: 2020 end-page: A1173 ident: br0240 article-title: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods publication-title: SIAM J. Sci. Comput. – volume: 34 start-page: 581 year: 1992 end-page: 613 ident: br0370 article-title: Iterative methods by space decomposition and subspace correction publication-title: SIAM Rev. – year: 2019 ident: br0020 article-title: Multigrid Methods – volume: 469 year: 2022 ident: br0660 article-title: Machine learning based refinement strategies for polyhedral grids with applications to virtual element and polyhedral discontinuous Galerkin methods publication-title: J. Comput. Phys. – volume: 22 start-page: 634 year: 1985 end-page: 643 ident: br0410 article-title: Multigrid methods for variational problems: general theory for the V-cycle publication-title: SIAM J. Numer. Anal. – volume: 21 start-page: 194 year: 2014 end-page: 220 ident: br0450 article-title: Theoretical bounds for algebraic multigrid performance: review and analysis publication-title: Numer. Linear Algebra Appl. – volume: 27 start-page: 1261 year: 2006 end-page: 1286 ident: br0750 article-title: Adaptive algebraic multigrid publication-title: SIAM J. Sci. Comput. – volume: 393 year: 2022 ident: br0540 article-title: A machine learning method for real-time numerical simulations of cardiac electromechanics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 34 start-page: 12129 year: 2021 end-page: 12140 ident: br0710 article-title: Optimization-based algebraic multigrid coarsening using reinforcement learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 439 year: 2008 end-page: 454 ident: br0420 article-title: Two-sided bounds on the convergence rate of two-level methods publication-title: Numer. Linear Algebra Appl. – volume: 12 start-page: 471 year: 2005 end-page: 494 ident: br0440 article-title: On two-grid convergence estimates publication-title: Numer. Linear Algebra Appl. – volume: 41 start-page: A3887 year: 2019 end-page: A3912 ident: br0720 article-title: Machine learning in adaptive domain decomposition methods–predicting the geometric location of constraints publication-title: SIAM J. Sci. Comput. – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: br0590 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – start-page: 261 year: 2012 end-page: 279 ident: br0070 article-title: Scaling hypre's multigrid solvers to 100,000 cores publication-title: High-Performance Scientific Computing: Algorithms and Applications – volume: 4 start-page: 783 year: 2022 end-page: 822 ident: br0250 article-title: p-Multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation publication-title: Commun. Appl. Math. Comput. Sci. – start-page: S329 year: 2023 end-page: S350 ident: br0260 article-title: Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations publication-title: SIAM J. Sci. Comput. – start-page: 604 year: 2009 end-page: 623 ident: br0300 article-title: Parallel auxiliary space AMG for H (curl) problems publication-title: J. Comput. Math. – volume: 357 year: 2019 ident: br0340 article-title: A two-stage preconditioner for multiphase poromechanics in reservoir simulation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 25 start-page: 623 year: 2003 end-page: 642 ident: br0290 article-title: An improved algebraic multigrid method for solving Maxwell's equations publication-title: SIAM J. Sci. Comput. – volume: 15 start-page: 573 year: 2002 end-page: 597 ident: br0380 article-title: The method of alternating projections and the method of subspace corrections in Hilbert space publication-title: J. Am. Math. Soc. – volume: 397 year: 2019 ident: br0510 article-title: Machine learning for fast and reliable solution of time-dependent differential equations publication-title: J. Comput. Phys. – volume: 22 start-page: 1570 year: 2001 end-page: 1592 ident: br0190 article-title: Algebraic multigrid based on element interpolation (AMGe) publication-title: SIAM J. Sci. Comput. – volume: 25 start-page: 1 year: 2003 end-page: 26 ident: br0210 article-title: Spectral AMGe ( publication-title: SIAM J. Sci. Comput. – volume: 42 start-page: 1669 year: 2004 end-page: 1693 ident: br0430 article-title: On generalizing the algebraic multigrid framework publication-title: SIAM J. Numer. Anal. – volume: 2 start-page: 358 year: 2022 end-page: 366 ident: br0500 article-title: Enhancing computational fluid dynamics with machine learning publication-title: Nat. Comput. Sci. – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: br0600 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. – year: 2001 ident: br0820 article-title: The Boost Graph Library: User Guide and Reference Manual – volume: 370 year: 2020 ident: br0530 article-title: Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 81 start-page: 407 year: 2021 end-page: 422 ident: br0780 article-title: The deal.II finite element library: design, features, and insights publication-title: Comput. Math. Appl. – volume: 7 start-page: 121 year: 2004 end-page: 127 ident: br0390 article-title: On an energy minimizing basis for algebraic multigrid methods publication-title: Comput. Vis. Sci. – year: 2022 ident: br0680 article-title: Agglomeration of polygonal grids using graph neural networks with applications to multigrid solvers – volume: 368 year: 2020 ident: br0650 article-title: Black-box learning of multigrid parameters publication-title: J. Comput. Appl. Math. – volume: 55 start-page: 73 year: 2022 end-page: 125 ident: br0480 article-title: A theoretical analysis of deep neural networks and parametric PDEs publication-title: Constr. Approx. – volume: 54 start-page: 1169 year: 2017 end-page: 1198 ident: br0030 article-title: Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes publication-title: Calcolo – volume: 38 start-page: B1 year: 2016 end-page: B24 ident: br0330 article-title: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics publication-title: SIAM J. Sci. Comput. – year: 2006 ident: br0140 article-title: An introduction to Algebraic Multigrid – start-page: 632 year: 2002 end-page: 641 ident: br0810 article-title: hypre: a library of high performance preconditioners publication-title: International Conference on Computational Science – volume: 218 start-page: 67 year: 1998 end-page: 81 ident: br0170 article-title: An agglomeration multigrid method for unstructured grids publication-title: Contemp. Math. – volume: 25 start-page: 385 year: 2003 end-page: 407 ident: br0310 article-title: An algebraic multigrid method for linear elasticity publication-title: SIAM J. Sci. Comput. – year: 2020 ident: br0610 article-title: An image is worth 16x16 words: transformers for image recognition at scale – volume: 56 start-page: 179 year: 1996 end-page: 196 ident: br0160 article-title: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems publication-title: Computing – volume: 19 start-page: 23 year: 1986 end-page: 56 ident: br0100 article-title: Algebraic multigrid theory: the symmetric case publication-title: Appl. Math. Comput. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0470 article-title: Deep learning publication-title: Nature – volume: 37 start-page: 29 year: 1999 end-page: 36 ident: br0280 article-title: Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid publication-title: AIAA J. – volume: 13 start-page: 753 year: 2006 end-page: 770 ident: br0220 article-title: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations publication-title: Numer. Linear Algebra Appl. – year: 2008 ident: br0460 article-title: Numerical Approximation of Partial Differential Equations, vol. 23 – start-page: 1 year: 2023 end-page: 36 ident: br0740 article-title: Accelerating algebraic multigrid methods via artificial neural networks publication-title: Vietnam J. Math. – start-page: 104 year: 1998 end-page: 115 ident: br0760 article-title: Coarse-grid selection for parallel algebraic multigrid publication-title: Solving Irregularly Structured Problems in Parallel: 5th International Symposium, IRREGULAR'98 Berkeley, California, USA, August 9–11, 1998 Proceedings 5 – year: 2016 ident: br0840 article-title: Deep Learning – volume: 88 start-page: 559 year: 2001 end-page: 579 ident: br0180 article-title: Convergence of algebraic multigrid based on smoothed aggregation publication-title: Numer. Math. – volume: 44 year: 2021 ident: br0730 article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review publication-title: GAMM-Mitt. – year: 2018 ident: br0490 article-title: A machine learning framework for data driven acceleration of computations of differential equations – start-page: 541 year: 2020 end-page: 549 ident: br0630 article-title: Stationary flow predictions using convolutional neural networks publication-title: Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference – volume: 452 year: 2022 ident: br0670 article-title: Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods publication-title: J. Comput. Phys. – volume: 41 start-page: 155 year: 2002 end-page: 177 ident: br0800 article-title: BoomerAMG: a parallel algebraic multigrid solver and preconditioner publication-title: Appl. Numer. Math. – volume: 78 start-page: 625 year: 2019 end-page: 652 ident: br0040 article-title: V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes publication-title: J. Sci. Comput. – year: 2000 ident: br0120 article-title: A Multigrid Tutorial – year: 1983 ident: br0080 article-title: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations publication-title: National Geodetic Survey and Air Force Office of Scientific Research and National Science Foundation – volume: 57 start-page: 23 year: 1991 end-page: 45 ident: br0360 article-title: Convergence estimates for multigrid algorithms without regularity assumptions publication-title: Math. Comput. – year: 2022 ident: br0700 article-title: Learning an Algebraic Multrigrid Interpolation Operator Using a Modified GraphNet Architecture – volume: 34 year: 2022 ident: br0550 article-title: An invariances-preserving vector basis neural network for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the Reynolds stress tensor publication-title: Phys. Fluids – volume: 28 start-page: 131 year: 2020 end-page: 146 ident: br0790 article-title: The deal.II library, version 9.2 publication-title: J. Numer. Math. – volume: 19 start-page: 367 year: 2012 end-page: 388 ident: br0230 article-title: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems publication-title: Numer. Linear Algebra Appl. – year: 2023 ident: br0320 article-title: A comparative study of scalable multilevel preconditioners for cardiac mechanics publication-title: J. Comput. Phys. – start-page: 73 year: 1987 end-page: 130 ident: br0110 article-title: Algebraic Multigrid, in: Multigrid Methods – volume: 25 start-page: 715 year: 2021 end-page: 730 ident: br0350 article-title: Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids publication-title: Comput. Geosci. – start-page: 257 year: 1984 end-page: 284 ident: br0090 article-title: Algebraic multigrid (AMG) for sparse matrix equations publication-title: Sparsity and Its Applications – start-page: 1995 year: 1995 ident: br0560 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks, vol. 3361 – volume: 61 start-page: 223 year: 2023 end-page: 249 ident: br0060 article-title: Agglomeration-based geometric multigrid schemes for the virtual element method publication-title: SIAM J. Numer. Anal. – start-page: 297 year: 1996 ident: br0270 article-title: Robustness of coupled algebraic multigrid for the Navier-Stokes equations publication-title: 34th Aerospace Sciences Meeting and Exhibit – year: 2016 ident: br0580 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size – volume: 26 start-page: 591 year: 2017 end-page: 721 ident: br0400 article-title: Algebraic multigrid methods publication-title: Acta Numer. – volume: 23 start-page: 109 year: 2001 end-page: 133 ident: br0200 article-title: AMGe based on element agglomeration publication-title: SIAM J. Sci. Comput. – volume: 87 start-page: 1 year: 2021 end-page: 36 ident: br0520 article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs publication-title: J. Sci. Comput. – year: 2000 ident: br0130 article-title: Multigrid – volume: 52 start-page: 337 year: 2018 end-page: 364 ident: br0050 article-title: A multigrid algorithm for the p-version of the virtual element method publication-title: Modél. Math. Anal. Numér. – start-page: 6489 year: 2020 end-page: 6499 ident: br0690 article-title: Learning algebraic multigrid using graph neural networks publication-title: International Conference on Machine Learning – volume: 64 start-page: 525 year: 2019 end-page: 545 ident: br0620 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. – start-page: 7132 year: 2018 end-page: 7141 ident: br0570 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 393 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0540 article-title: A machine learning method for real-time numerical simulations of cardiac electromechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114825 – volume: 28 start-page: 131 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0790 article-title: The deal.II library, version 9.2 publication-title: J. Numer. Math. doi: 10.1515/jnma-2020-0043 – volume: 23 start-page: 109 year: 2001 ident: 10.1016/j.camwa.2024.05.013_br0200 article-title: AMGe based on element agglomeration publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827599361047 – year: 2006 ident: 10.1016/j.camwa.2024.05.013_br0140 – start-page: 6489 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0690 article-title: Learning algebraic multigrid using graph neural networks – volume: 469 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0660 article-title: Machine learning based refinement strategies for polyhedral grids with applications to virtual element and polyhedral discontinuous Galerkin methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111531 – year: 2001 ident: 10.1016/j.camwa.2024.05.013_br0820 – volume: 38 start-page: B1 year: 2016 ident: 10.1016/j.camwa.2024.05.013_br0330 article-title: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics publication-title: SIAM J. Sci. Comput. doi: 10.1137/151006135 – volume: 15 start-page: 573 year: 2002 ident: 10.1016/j.camwa.2024.05.013_br0380 article-title: The method of alternating projections and the method of subspace corrections in Hilbert space publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-02-00398-3 – volume: 37 start-page: 29 year: 1999 ident: 10.1016/j.camwa.2024.05.013_br0280 article-title: Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid publication-title: AIAA J. doi: 10.2514/2.689 – ident: 10.1016/j.camwa.2024.05.013_br0680 – start-page: 632 year: 2002 ident: 10.1016/j.camwa.2024.05.013_br0810 article-title: hypre: a library of high performance preconditioners – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.camwa.2024.05.013_br0770 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 22 start-page: 1570 year: 2001 ident: 10.1016/j.camwa.2024.05.013_br0190 article-title: Algebraic multigrid based on element interpolation (AMGe) publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827598344303 – volume: 26 start-page: 591 year: 2017 ident: 10.1016/j.camwa.2024.05.013_br0400 article-title: Algebraic multigrid methods publication-title: Acta Numer. doi: 10.1017/S0962492917000083 – year: 1983 ident: 10.1016/j.camwa.2024.05.013_br0080 article-title: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations – volume: 61 start-page: 223 year: 2023 ident: 10.1016/j.camwa.2024.05.013_br0060 article-title: Agglomeration-based geometric multigrid schemes for the virtual element method publication-title: SIAM J. Numer. Anal. doi: 10.1137/21M1466864 – start-page: 257 year: 1984 ident: 10.1016/j.camwa.2024.05.013_br0090 article-title: Algebraic multigrid (AMG) for sparse matrix equations – start-page: 297 year: 1996 ident: 10.1016/j.camwa.2024.05.013_br0270 article-title: Robustness of coupled algebraic multigrid for the Navier-Stokes equations – volume: 25 start-page: 623 year: 2003 ident: 10.1016/j.camwa.2024.05.013_br0290 article-title: An improved algebraic multigrid method for solving Maxwell's equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502407706 – volume: 60 start-page: 84 year: 2017 ident: 10.1016/j.camwa.2024.05.013_br0590 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 88 start-page: 559 year: 2001 ident: 10.1016/j.camwa.2024.05.013_br0180 article-title: Convergence of algebraic multigrid based on smoothed aggregation publication-title: Numer. Math. doi: 10.1007/s211-001-8015-y – year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0020 – volume: 27 start-page: 1261 year: 2006 ident: 10.1016/j.camwa.2024.05.013_br0750 article-title: Adaptive algebraic multigrid publication-title: SIAM J. Sci. Comput. doi: 10.1137/040614402 – volume: 7 start-page: 121 year: 2004 ident: 10.1016/j.camwa.2024.05.013_br0390 article-title: On an energy minimizing basis for algebraic multigrid methods publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-004-0147-y – year: 2008 ident: 10.1016/j.camwa.2024.05.013_br0460 – start-page: 541 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0630 article-title: Stationary flow predictions using convolutional neural networks – volume: 25 start-page: 1 year: 2003 ident: 10.1016/j.camwa.2024.05.013_br0210 article-title: Spectral AMGe (ρ AMGe) publication-title: SIAM J. Sci. Comput. doi: 10.1137/S106482750139892X – volume: 25 start-page: 385 year: 2003 ident: 10.1016/j.camwa.2024.05.013_br0310 article-title: An algebraic multigrid method for linear elasticity publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502407810 – volume: 218 start-page: 67 year: 1998 ident: 10.1016/j.camwa.2024.05.013_br0170 article-title: An agglomeration multigrid method for unstructured grids publication-title: Contemp. Math. doi: 10.1090/conm/218/03002 – ident: 10.1016/j.camwa.2024.05.013_br0490 – volume: 12 start-page: 471 year: 2005 ident: 10.1016/j.camwa.2024.05.013_br0440 article-title: On two-grid convergence estimates publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.437 – start-page: 1995 year: 1995 ident: 10.1016/j.camwa.2024.05.013_br0560 article-title: Convolutional networks for images, speech, and time series – start-page: 604 year: 2009 ident: 10.1016/j.camwa.2024.05.013_br0300 article-title: Parallel auxiliary space AMG for H (curl) problems publication-title: J. Comput. Math. – volume: 357 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0340 article-title: A two-stage preconditioner for multiphase poromechanics in reservoir simulation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112575 – year: 2004 ident: 10.1016/j.camwa.2024.05.013_br0010 – volume: 2 start-page: 358 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0500 article-title: Enhancing computational fluid dynamics with machine learning publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00264-7 – volume: 78 start-page: 625 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0040 article-title: V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0783-x – volume: 52 start-page: 337 year: 2018 ident: 10.1016/j.camwa.2024.05.013_br0050 article-title: A multigrid algorithm for the p-version of the virtual element method publication-title: Modél. Math. Anal. Numér. doi: 10.1051/m2an/2018007 – volume: 22 start-page: 634 year: 1985 ident: 10.1016/j.camwa.2024.05.013_br0410 article-title: Multigrid methods for variational problems: general theory for the V-cycle publication-title: SIAM J. Numer. Anal. doi: 10.1137/0722039 – volume: 42 start-page: 1669 year: 2004 ident: 10.1016/j.camwa.2024.05.013_br0430 article-title: On generalizing the algebraic multigrid framework publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142903429742 – volume: 54 start-page: 1169 year: 2017 ident: 10.1016/j.camwa.2024.05.013_br0030 article-title: Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes publication-title: Calcolo doi: 10.1007/s10092-017-0223-6 – start-page: S329 year: 2023 ident: 10.1016/j.camwa.2024.05.013_br0260 article-title: Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations publication-title: SIAM J. Sci. Comput. doi: 10.1137/21M1429849 – year: 2008 ident: 10.1016/j.camwa.2024.05.013_br0150 – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.camwa.2024.05.013_br0600 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – volume: 19 start-page: 23 year: 1986 ident: 10.1016/j.camwa.2024.05.013_br0100 article-title: Algebraic multigrid theory: the symmetric case publication-title: Appl. Math. Comput. doi: 10.1016/0096-3003(86)90095-0 – volume: 56 start-page: 179 year: 1996 ident: 10.1016/j.camwa.2024.05.013_br0160 article-title: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems publication-title: Computing doi: 10.1007/BF02238511 – volume: 42 start-page: A1147 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0240 article-title: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1204383 – start-page: 770 year: 2016 ident: 10.1016/j.camwa.2024.05.013_br0830 article-title: Deep residual learning for image recognition – volume: 81 start-page: 407 year: 2021 ident: 10.1016/j.camwa.2024.05.013_br0780 article-title: The deal.II finite element library: design, features, and insights publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.02.022 – volume: 41 start-page: A3887 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0720 article-title: Machine learning in adaptive domain decomposition methods–predicting the geometric location of constraints publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1205364 – start-page: 7132 year: 2018 ident: 10.1016/j.camwa.2024.05.013_br0570 article-title: Squeeze-and-excitation networks – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.camwa.2024.05.013_br0470 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 4 start-page: 783 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0250 article-title: p-Multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation publication-title: Commun. Appl. Math. Comput. Sci. doi: 10.1007/s42967-021-00142-5 – volume: 34 start-page: 581 year: 1992 ident: 10.1016/j.camwa.2024.05.013_br0370 article-title: Iterative methods by space decomposition and subspace correction publication-title: SIAM Rev. doi: 10.1137/1034116 – year: 2023 ident: 10.1016/j.camwa.2024.05.013_br0320 article-title: A comparative study of scalable multilevel preconditioners for cardiac mechanics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2023.112421 – volume: 21 start-page: 194 year: 2014 ident: 10.1016/j.camwa.2024.05.013_br0450 article-title: Theoretical bounds for algebraic multigrid performance: review and analysis publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1930 – ident: 10.1016/j.camwa.2024.05.013_br0610 – volume: 41 start-page: 155 year: 2002 ident: 10.1016/j.camwa.2024.05.013_br0800 article-title: BoomerAMG: a parallel algebraic multigrid solver and preconditioner publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(01)00115-5 – volume: 368 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0650 article-title: Black-box learning of multigrid parameters publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112524 – start-page: 1 year: 2023 ident: 10.1016/j.camwa.2024.05.013_br0740 article-title: Accelerating algebraic multigrid methods via artificial neural networks publication-title: Vietnam J. Math. doi: 10.1007/s10013-022-00597-w – volume: 55 start-page: 73 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0480 article-title: A theoretical analysis of deep neural networks and parametric PDEs publication-title: Constr. Approx. doi: 10.1007/s00365-021-09551-4 – volume: 25 start-page: 715 year: 2021 ident: 10.1016/j.camwa.2024.05.013_br0350 article-title: Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09979-w – ident: 10.1016/j.camwa.2024.05.013_br0580 – volume: 13 start-page: 753 year: 2006 ident: 10.1016/j.camwa.2024.05.013_br0220 article-title: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.504 – volume: 397 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0510 article-title: Machine learning for fast and reliable solution of time-dependent differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.050 – start-page: 261 year: 2012 ident: 10.1016/j.camwa.2024.05.013_br0070 article-title: Scaling hypre's multigrid solvers to 100,000 cores – volume: 57 start-page: 23 year: 1991 ident: 10.1016/j.camwa.2024.05.013_br0360 article-title: Convergence estimates for multigrid algorithms without regularity assumptions publication-title: Math. Comput. doi: 10.1090/S0025-5718-1991-1079008-4 – volume: 34 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0550 article-title: An invariances-preserving vector basis neural network for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the Reynolds stress tensor publication-title: Phys. Fluids doi: 10.1063/5.0104605 – start-page: 104 year: 1998 ident: 10.1016/j.camwa.2024.05.013_br0760 article-title: Coarse-grid selection for parallel algebraic multigrid – start-page: 2415 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0640 article-title: Learning to optimize multigrid PDE solvers – year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0700 – volume: 44 year: 2021 ident: 10.1016/j.camwa.2024.05.013_br0730 article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review publication-title: GAMM-Mitt. doi: 10.1002/gamm.202100001 – year: 2000 ident: 10.1016/j.camwa.2024.05.013_br0130 – volume: 34 start-page: 12129 year: 2021 ident: 10.1016/j.camwa.2024.05.013_br0710 article-title: Optimization-based algebraic multigrid coarsening using reinforcement learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 367 year: 2012 ident: 10.1016/j.camwa.2024.05.013_br0230 article-title: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1816 – volume: 64 start-page: 525 year: 2019 ident: 10.1016/j.camwa.2024.05.013_br0620 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. doi: 10.1007/s00466-019-01740-0 – start-page: 73 year: 1987 ident: 10.1016/j.camwa.2024.05.013_br0110 – volume: 15 start-page: 439 year: 2008 ident: 10.1016/j.camwa.2024.05.013_br0420 article-title: Two-sided bounds on the convergence rate of two-level methods publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.556 – volume: 370 year: 2020 ident: 10.1016/j.camwa.2024.05.013_br0530 article-title: Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113268 – year: 2000 ident: 10.1016/j.camwa.2024.05.013_br0120 – volume: 87 start-page: 1 year: 2021 ident: 10.1016/j.camwa.2024.05.013_br0520 article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01462-7 – volume: 452 year: 2022 ident: 10.1016/j.camwa.2024.05.013_br0670 article-title: Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110900 – year: 2016 ident: 10.1016/j.camwa.2024.05.013_br0840 |
| SSID | ssj0004320 |
| Score | 2.4643166 |
| Snippet | Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 217 |
| SubjectTerms | Algebraic multigrid methods Convolutional neural networks Deep learning Elliptic problems Finite element method Partial differential equations |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQF7iwI3bNgSOmab0kOVYsQkggJEDiFo1duwSVtJSiigvfjicLywGEOMay48hjz4zj5_cY20dlNWoZc-m84HRQxA0Ky42JbILehSyVfuhfXOqzW3l-p-5m2FFzF4ZglbXvr3x66a3rklY9mq1RnreuoyQN0Sm4XkmBSBHttpQxqRgcvn3CPKSoqBlDZU61G-ahEuNl8XFK5EMdWdF3ip-i09xLMcLXKQ4GX6LP6RJbqNNG6FZftsxmXLHCFhtJBqhX6Cp76kLPuRHUYhB9wEF_GPb_948wGQJaG6IMkUNQOR0Z5xZKSGF_nPegUpN-hrwAn1MuCq4Cl0OYoATfgKEHcQzE4Rk8jYWr45PnNXZ7enJzdMZrVQVuhUwmPOmhStoeO160Q7c-Qe0jpDzJeK1QxmFJusSIsBNzmi6uaqudIeU-1zY9q8U6my2GhdtggEpi7EyKsUepbGqETtsYpSa8DpWxm6zTjGZma8pxUr4YZA227CErTZCRCbJIZcEEm-zgo9GoYtz4vbpuzJR9mzhZiAm_N-QfRv1LR1v_7WibzdNThRrcYbOT8YvbDZnMxOyVU_UdGz_ydA priority: 102 providerName: Elsevier |
| Title | A deep learning algorithm to accelerate algebraic multigrid methods in finite element solvers of 3D elliptic PDEs |
| URI | https://dx.doi.org/10.1016/j.camwa.2024.05.013 https://doi.org/10.1016/j.camwa.2024.05.013 |
| UnpaywallVersion | publishedVersion |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004320 issn: 1873-7668 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1873-7668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004320 issn: 1873-7668 databaseCode: ACRLP dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004320 issn: 1873-7668 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004320 issn: 1873-7668 databaseCode: AIKHN dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004320 issn: 1873-7668 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaa5NBTH3ugHdqAhx2nII4s2T4GS4u0w4IcGiA9GZQiZd5cJ0scBOuhv72SH0U7rEF3NfSAScr8ZJIfCfmMXAkUfkB9bRh1gSIqkSkqZVeFaLRFqe6H_veRGE786ymfVjzbrhbmRfy-yMNSeLd1BEE9v6TYZA3SEtwC7yZpTUbj_m2BEyN7F-qVVVZhwGggRFhzDP17ldf80P4mW-KfLabpMz9zeVgWcK8LekKXXvKrs8llR93_Rd74xlc4IgcV3oR-aSDHZE9n78hh3csBqqP9nvzuw0zrJVRdJOaA6XyxSvIfd5AvAJWy7smxSrjnLtacKChyEeerZAZlG-o1JBmYxIFY0GVWOljLdnkfsDDABuDIP-0nSsF4cLH-QCaXFzdfh7Rqx0AV88OchjPkoWewZ5hntzUhCtNFB7CkERz9wJ5lHUpmr3BauIpXoYSWruWf9uRMCfaRNLNFpk8IIPcx0DLCwKDPVSSZiDzsRtIuh1yqU9KrlROriqvctcxI4zop7WdcCDV2Qo27PLZCPSVfniYtS6qO3cNFrfW4QhslioitAndPpE828paNPv3n-DPSzFcbfW7BTi7bpNF58Nqk1b_6Nhy1K5N_BJvE_qc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAL9EEFLW3n0GPNZtePJEfEQ9sWEFJB4maNvfYStJvdLkGoF347njx4HIqqXh07E3nGM-P48zeMfUXlNGqZcumD4HRQxC0Kx61NXIbBxyyVfugfHevhmfxxrs6X2G53F4Zgla3vb3x67a3bll47m715UfR-JVkeo1N0vZICkdIv2EupBintwLZvH3AeUjTcjLE3p-4d9VAN8nI4vSH2oYFs-DvF38LTynU5xz83OJk8Cj8Hr9lqmzfCTvNpb9iSL9-yta4mA7RL9B37vQMj7-fQVoMYA07Gs0VRXUyhmgE6F8MMsUNQO50ZFw5qTOF4UYygKSd9BUUJoaBkFHyDLodooYTfgFkAsQdE4hldjYOTvf2rdXZ2sH-6O-RtWQXuhMwqno1QZf2AgyD6UWzIUIcEKVGyQSuUaVyTPrMibsW8ppur2mlvqXSf79uR0-I9Wy5npd9ggEpi6m2OaUCpXG6FzvuY5Da-DpV1m2zQzaZxLec4lb6YmA5cdmlqFRhSgUmUiSrYZN_uB80byo3nu-tOTeaJ5ZgYFJ4fyO-V-i-CPvyvoC9sZXh6dGgOvx___Mhe0ZMGQrjFlqvFtf8U05rKfq7N9g5auPWX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHDjxRgwB8oEjmbalSdvjxDYhJCYOTIJT5WTJKIx2bJ0Q_HqSPhAgQONa5aHaTv2ltj8TcopcCRSeTz1tGHWBIiqRKSplUwVotEWp7of-1UBcDL3LW35b8my7Wpgv8fs8D0vh04sjCGp7BcUmWyVrglvgXSNrw8F15y7HiaG9C7WLKqvAZ9QXIqg4hn5e5Tc_tL5Ipvj6gpPJJz_T3ywKuOc5PaFLL3lsLDLZUG_fyBuXfIUtslHiTegUBrJNVnSyQzarXg5QHu1d8tyBkdZTKLtIjAEn43QWZ_dPkKWASln35Fgl3HMXa44V5LmI41k8gqIN9RziBEzsQCzoIisdrGW7vA9IDbAuOPJP-4lScN3tzffIsN-7Ob-gZTsGqpgXZDQYIQ9aBtuGtey2JkBhmugAljSCo-fbs6wDyewVTgtX8SqU0NK1_NMtOVKC7ZNakib6gAByD30tQ_QNelyFkomwhc1Q2uWQS1Un7Uo5kSq5yl3LjElUJaU9RLlQIyfUqMkjK9Q6OfuYNC2oOv4eLiqtRyXaKFBEZBX490T6YSPLbHT4z_FHpJbNFvrYgp1MnpRG_g7FG_wb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+to+accelerate+algebraic+multigrid+methods+in+finite+element+solvers+of+3D+elliptic+PDEs&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Caldana%2C+Matteo&rft.au=Antonietti%2C+Paola+F.&rft.au=Dede%27%2C+Luca&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=167&rft.spage=217&rft.epage=231&rft_id=info:doi/10.1016%2Fj.camwa.2024.05.013&rft.externalDocID=S0898122124002256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon |