A deep learning algorithm to accelerate algebraic multigrid methods in finite element solvers of 3D elliptic PDEs

Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters t...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 167; pp. 217 - 231
Main Authors Caldana, Matteo, Antonietti, Paola F., Dede', Luca
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN0898-1221
1873-7668
1873-7668
DOI10.1016/j.camwa.2024.05.013

Cover

Abstract Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters that require to be fine-tuned. In particular, the strong threshold parameter is the most relevant since it stands at the basis of the construction of successively coarser grids needed by the AMG methods. We introduce a novel deep learning algorithm that minimizes the computational cost of the AMG method when used as a finite element solver. We show that our algorithm requires minimal changes to any existing code. The proposed Artificial Neural Network (ANN) tunes the value of the strong threshold parameter by interpreting the sparse matrix of the linear system as a gray scale image and exploiting a pooling operator to transform it into a small multi-channel image. We experimentally prove that the pooling successfully reduces the computational cost of processing a large sparse matrix and preserves the features needed for the regression task at hand. We train the proposed algorithm on a large dataset containing problems with a strongly heterogeneous diffusion coefficient defined in different three-dimensional geometries and discretized with unstructured grids and linear elasticity problems with a strongly heterogeneous Young's modulus. When tested on problems with coefficients or geometries not present in the training dataset, our approach reduces the computational time by up to 30%.
AbstractList Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems stemming from the discretization of Partial Differential Equations (PDEs). A severe limitation of AMG methods is the dependence on parameters that require to be fine-tuned. In particular, the strong threshold parameter is the most relevant since it stands at the basis of the construction of successively coarser grids needed by the AMG methods. We introduce a novel deep learning algorithm that minimizes the computational cost of the AMG method when used as a finite element solver. We show that our algorithm requires minimal changes to any existing code. The proposed Artificial Neural Network (ANN) tunes the value of the strong threshold parameter by interpreting the sparse matrix of the linear system as a gray scale image and exploiting a pooling operator to transform it into a small multi-channel image. We experimentally prove that the pooling successfully reduces the computational cost of processing a large sparse matrix and preserves the features needed for the regression task at hand. We train the proposed algorithm on a large dataset containing problems with a strongly heterogeneous diffusion coefficient defined in different three-dimensional geometries and discretized with unstructured grids and linear elasticity problems with a strongly heterogeneous Young's modulus. When tested on problems with coefficients or geometries not present in the training dataset, our approach reduces the computational time by up to 30%.
Author Dede', Luca
Caldana, Matteo
Antonietti, Paola F.
Author_xml – sequence: 1
  givenname: Matteo
  surname: Caldana
  fullname: Caldana, Matteo
  email: matteo.caldana@polimi.it
– sequence: 2
  givenname: Paola F.
  orcidid: 0000-0002-2138-3878
  surname: Antonietti
  fullname: Antonietti, Paola F.
  email: paola.antonietti@polimi.it
– sequence: 3
  givenname: Luca
  surname: Dede'
  fullname: Dede', Luca
  email: luca.dede@polimi.it
BookMark eNqNkMtOHDEQRa0IpAyEL2DjH-iOHz0e9yILBOQhIZFFsraq3eXBI7c9sQ2Iv48nwyoLklVJV3Xqcc7ISUwRCbnkrOeMq4-73sLyDL1gYujZumdcviMrrjey2yilT8iK6VF3XAj-npyVsmOMDVKwFfl1RWfEPQ0IOfq4pRC2Kfv6sNCaKFiLATNUPOQ4ZfCWLo-h-m32M12wPqS5UB-p89G3rta9YKy0pPCEudDkqLxpafD72tDvN7flAzl1EApevNZz8vPz7Y_rr93d_Zdv11d3nZWDrp2eYa25A-Ekb2c4Dcox0HIUk1NrGDajkqgnKfSISgmtlFU46c3AkE-zVfKcDMe5j3EPL88Qgtlnv0B-MZyZgzazM3-0mYM2w9amaWvYeMRsTqVkdMb6CtWnWNv34R-s_Iv9v42fjhQ2G08esynWY7Q4-4y2mjn5N_nfL8OetQ
CitedBy_id crossref_primary_10_1016_j_jcp_2025_113773
Cites_doi 10.1016/j.cma.2022.114825
10.1515/jnma-2020-0043
10.1137/S1064827599361047
10.1016/j.jcp.2022.111531
10.1137/151006135
10.1090/S0894-0347-02-00398-3
10.2514/2.689
10.1021/ac60214a047
10.1137/S1064827598344303
10.1017/S0962492917000083
10.1137/21M1466864
10.1137/S1064827502407706
10.1145/3065386
10.1007/s211-001-8015-y
10.1137/040614402
10.1007/s00791-004-0147-y
10.1137/S106482750139892X
10.1137/S1064827502407810
10.1090/conm/218/03002
10.1002/nla.437
10.1016/j.cma.2019.112575
10.1038/s43588-022-00264-7
10.1007/s10915-018-0783-x
10.1051/m2an/2018007
10.1137/0722039
10.1137/S0036142903429742
10.1007/s10092-017-0223-6
10.1137/21M1429849
10.1016/j.patcog.2017.10.013
10.1016/0096-3003(86)90095-0
10.1007/BF02238511
10.1137/18M1204383
10.1016/j.camwa.2020.02.022
10.1137/18M1205364
10.1038/nature14539
10.1007/s42967-021-00142-5
10.1137/1034116
10.1016/j.jcp.2023.112421
10.1002/nla.1930
10.1016/S0168-9274(01)00115-5
10.1016/j.cam.2019.112524
10.1007/s10013-022-00597-w
10.1007/s00365-021-09551-4
10.1007/s10596-020-09979-w
10.1002/nla.504
10.1016/j.jcp.2019.07.050
10.1090/S0025-5718-1991-1079008-4
10.1063/5.0104605
10.1002/gamm.202100001
10.1002/nla.1816
10.1007/s00466-019-01740-0
10.1002/nla.556
10.1016/j.cma.2020.113268
10.1007/s10915-021-01462-7
10.1016/j.jcp.2021.110900
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.camwa.2024.05.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 231
ExternalDocumentID 10.1016/j.camwa.2024.05.013
10_1016_j_camwa_2024_05_013
S0898122124002256
GrantInformation_xml – fundername: MUR
  grantid: 20204LN5N5
  funderid: https://doi.org/10.13039/501100021856
– fundername: NextGenerationEU program
  grantid: M4C2
– fundername: European Union
  grantid: 101115663
  funderid: https://doi.org/10.13039/501100000780
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
R2-
SSZ
TAE
WUQ
ZY4
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c348t-8da581fa2f31accf8a6f0a8392bf65a47963e8b3289e662866c6eb8740e1bdc63
IEDL.DBID UNPAY
ISSN 0898-1221
1873-7668
IngestDate Tue Aug 19 23:34:22 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Oct 01 04:16:31 EDT 2025
Tue Jun 18 08:52:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Deep learning
Elliptic problems
Algebraic multigrid methods
Partial differential equations
Convolutional neural networks
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-8da581fa2f31accf8a6f0a8392bf65a47963e8b3289e662866c6eb8740e1bdc63
ORCID 0000-0002-2138-3878
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.camwa.2024.05.013
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_camwa_2024_05_013
crossref_citationtrail_10_1016_j_camwa_2024_05_013
crossref_primary_10_1016_j_camwa_2024_05_013
elsevier_sciencedirect_doi_10_1016_j_camwa_2024_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Siek, Lee, Lumsdaine (br0820) 2001
Arndt, Bangerth, Davydov, Heister, Heltai, Kronbichler, Maier, Pelteret, Turcksin, Wells (br0780) 2021; 81
Falgout, Vassilevski, Zikatanov (br0440) 2005; 12
Antonietti, Manuzzi (br0670) 2022; 452
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai (br0600) 2018; 77
Heinlein, Klawonn, Lanser, Weber (br0720) 2019; 41
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (br0580) 2016
Katrutsa, Daulbaev, Oseledets (br0650) 2020; 368
Arrarás, Gaspar, Portero, Rodrigo (br0350) 2021; 25
Antonietti, Pennesi (br0040) 2019; 78
Brandt (br0090) 1984
Arndt, Bangerth, Blais, Clevenger, Fehling, Grayver, Heister, Heltai, Kronbichler, Maier (br0790) 2020; 28
Baker, Falgout, Kolev, Yang (br0070) 2012
Brezina, Falgout, MacLachlan, Manteuffel, McCormick, Ruge (br0750) 2006; 27
Jones, Vassilevski (br0200) 2001; 23
MacLachlan, Olson (br0450) 2014; 21
Falgout, Vassilevski (br0430) 2004; 42
Antonietti, Farenga, Manuzzi, Martinelli, Saverio (br0680) 2022
Vaněk, Brezina, Mandel (br0180) 2001; 88
Bastian, Blatt, Scheichl (br0230) 2012; 19
Ruge, Stüben (br0110) 1987
Mishra (br0490) 2018
Vassilevski (br0150) 2008
Dobrev, Lazarov, Vassilevski, Zikatanov (br0220) 2006; 13
Antonietti, Houston, Hu, Sarti, Verani (br0030) 2017; 54
Vaněk, Mandel, Brezina (br0160) 1996; 56
Antonietti, Dassi, Manuzzi (br0660) 2022; 469
Falgout (br0140) 2006
Quarteroni, Valli (br0460) 2008
Heinlein, Klawonn, Lanser, Weber (br0730) 2021; 44
Brandt, McCormick, Ruge (br0080) 1983
Trottenberg, Oosterlee, Schuller (br0130) 2000
Chartier, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge, Vassilevski (br0210) 2003; 25
Wesseling (br0010) 2004
White, Castelletto, Klevtsov, Bui, Osei-Kuffuor, Tchelepi (br0340) 2019; 357
Brandt (br0100) 1986; 19
Antonietti, Berrone, Busetto, Verani (br0060) 2023; 61
LeCun, Bengio, Hinton (br0470) 2015; 521
Eichinger, Heinlein, Klawonn (br0630) 2020
Regazzoni, Salvador, Dedè, Quarteroni (br0540) 2022; 393
Cleary, Falgout, Henson, Jones (br0760) 1998
Regazzoni, Dede, Quarteroni (br0530) 2020; 370
Bochev, Garasi, Hu, Robinson, Tuminaro (br0290) 2003; 25
Xu, Zikatanov (br0400) 2017; 26
Di Pietro, Hülsemann, Matalon, Mycek, Rüde (br0260) 2023
Hu, Shen, Sun (br0570) 2018
Antonietti, Caldana, Dede (br0740) 2023
McCormick (br0410) 1985; 22
Zikatanov (br0420) 2008; 15
Berrone, Oberto (br0550) 2022; 34
Luz, Galun, Maron, Basri, Yavneh (br0690) 2020
Botti, Di Pietro (br0250) 2022; 4
Kolev, Vassilevski (br0300) 2009
Barnafi, Pavarino, Scacchi (br0320) 2023
Greenfeld, Galun, Basri, Yavneh, Kimmel (br0640) 2019
He, Zhang, Ren, Sun (br0830) 2016
Xu (br0370) 1992; 34
Kutyniok, Petersen, Raslan, Schneider (br0480) 2022; 55
Yang (br0800) 2002; 41
Krizhevsky, Sutskever, Hinton (br0590) 2017; 60
Savitzky, Golay (br0770) 1964; 36
Falgout, Yang (br0810) 2002
Griebel, Oeltz, Schweitzer (br0310) 2003; 25
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (br0610) 2020
Briggs, Henson, McCormick (br0120) 2000
Brezina, Cleary, Falgout, Henson, Jones, Manteuffel, McCormick, Ruge (br0190) 2001; 22
Raw (br0270) 1996
Xu, Zikatanov (br0380) 2002; 15
Xu, Zikatanov (br0390) 2004; 7
Weiss, Maruszewski, Smith (br0280) 1999; 37
Fresca, Dede, Manzoni (br0520) 2021; 87
Moore, Cyr, Siefert (br0700) 2022
Antonietti, Mascotto, Verani (br0050) 2018; 52
Regazzoni, Dede, Quarteroni (br0510) 2019; 397
Goodfellow, Bengio, Courville (br0840) 2016
Taghibakhshi, MacLachlan, Olson, West (br0710) 2021; 34
Adler, Benson, Cyr, MacLachlan, Tuminaro (br0330) 2016; 38
Bramble, Pasciak, Wang, Xu (br0360) 1991; 57
Vinuesa, Brunton (br0500) 2022; 2
LeCun, Bengio (br0560) 1995
Antonietti, Melas (br0240) 2020; 42
Bramble (br0020) 2019
Chan, Xu, Zikatanov (br0170) 1998; 218
Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (br0620) 2019; 64
Jones (10.1016/j.camwa.2024.05.013_br0200) 2001; 23
Xu (10.1016/j.camwa.2024.05.013_br0370) 1992; 34
Xu (10.1016/j.camwa.2024.05.013_br0380) 2002; 15
White (10.1016/j.camwa.2024.05.013_br0340) 2019; 357
Ruge (10.1016/j.camwa.2024.05.013_br0110) 1987
Vaněk (10.1016/j.camwa.2024.05.013_br0160) 1996; 56
Kolev (10.1016/j.camwa.2024.05.013_br0300) 2009
Falgout (10.1016/j.camwa.2024.05.013_br0440) 2005; 12
Brandt (10.1016/j.camwa.2024.05.013_br0100) 1986; 19
Antonietti (10.1016/j.camwa.2024.05.013_br0680)
Antonietti (10.1016/j.camwa.2024.05.013_br0030) 2017; 54
Bochev (10.1016/j.camwa.2024.05.013_br0290) 2003; 25
Vaněk (10.1016/j.camwa.2024.05.013_br0180) 2001; 88
Quarteroni (10.1016/j.camwa.2024.05.013_br0460) 2008
Dosovitskiy (10.1016/j.camwa.2024.05.013_br0610)
Bramble (10.1016/j.camwa.2024.05.013_br0020) 2019
Siek (10.1016/j.camwa.2024.05.013_br0820) 2001
McCormick (10.1016/j.camwa.2024.05.013_br0410) 1985; 22
Greenfeld (10.1016/j.camwa.2024.05.013_br0640) 2019
Weiss (10.1016/j.camwa.2024.05.013_br0280) 1999; 37
Berrone (10.1016/j.camwa.2024.05.013_br0550) 2022; 34
Hu (10.1016/j.camwa.2024.05.013_br0570) 2018
Antonietti (10.1016/j.camwa.2024.05.013_br0660) 2022; 469
Briggs (10.1016/j.camwa.2024.05.013_br0120) 2000
Antonietti (10.1016/j.camwa.2024.05.013_br0040) 2019; 78
Krizhevsky (10.1016/j.camwa.2024.05.013_br0590) 2017; 60
Savitzky (10.1016/j.camwa.2024.05.013_br0770) 1964; 36
He (10.1016/j.camwa.2024.05.013_br0830) 2016
Bhatnagar (10.1016/j.camwa.2024.05.013_br0620) 2019; 64
Antonietti (10.1016/j.camwa.2024.05.013_br0240) 2020; 42
Botti (10.1016/j.camwa.2024.05.013_br0250) 2022; 4
Arndt (10.1016/j.camwa.2024.05.013_br0780) 2021; 81
Luz (10.1016/j.camwa.2024.05.013_br0690) 2020
Taghibakhshi (10.1016/j.camwa.2024.05.013_br0710) 2021; 34
LeCun (10.1016/j.camwa.2024.05.013_br0560) 1995
Chartier (10.1016/j.camwa.2024.05.013_br0210) 2003; 25
Mishra (10.1016/j.camwa.2024.05.013_br0490)
Bramble (10.1016/j.camwa.2024.05.013_br0360) 1991; 57
Falgout (10.1016/j.camwa.2024.05.013_br0140) 2006
Cleary (10.1016/j.camwa.2024.05.013_br0760) 1998
Arrarás (10.1016/j.camwa.2024.05.013_br0350) 2021; 25
Antonietti (10.1016/j.camwa.2024.05.013_br0670) 2022; 452
Regazzoni (10.1016/j.camwa.2024.05.013_br0530) 2020; 370
Goodfellow (10.1016/j.camwa.2024.05.013_br0840) 2016
Falgout (10.1016/j.camwa.2024.05.013_br0430) 2004; 42
Di Pietro (10.1016/j.camwa.2024.05.013_br0260) 2023
Iandola (10.1016/j.camwa.2024.05.013_br0580)
Dobrev (10.1016/j.camwa.2024.05.013_br0220) 2006; 13
Moore (10.1016/j.camwa.2024.05.013_br0700) 2022
Antonietti (10.1016/j.camwa.2024.05.013_br0060) 2023; 61
Brezina (10.1016/j.camwa.2024.05.013_br0750) 2006; 27
Fresca (10.1016/j.camwa.2024.05.013_br0520) 2021; 87
Katrutsa (10.1016/j.camwa.2024.05.013_br0650) 2020; 368
Baker (10.1016/j.camwa.2024.05.013_br0070) 2012
Antonietti (10.1016/j.camwa.2024.05.013_br0050) 2018; 52
Kutyniok (10.1016/j.camwa.2024.05.013_br0480) 2022; 55
Chan (10.1016/j.camwa.2024.05.013_br0170) 1998; 218
Raw (10.1016/j.camwa.2024.05.013_br0270) 1996
Eichinger (10.1016/j.camwa.2024.05.013_br0630) 2020
Heinlein (10.1016/j.camwa.2024.05.013_br0720) 2019; 41
Falgout (10.1016/j.camwa.2024.05.013_br0810) 2002
Xu (10.1016/j.camwa.2024.05.013_br0390) 2004; 7
Bastian (10.1016/j.camwa.2024.05.013_br0230) 2012; 19
Griebel (10.1016/j.camwa.2024.05.013_br0310) 2003; 25
Vassilevski (10.1016/j.camwa.2024.05.013_br0150) 2008
Brandt (10.1016/j.camwa.2024.05.013_br0080) 1983
Wesseling (10.1016/j.camwa.2024.05.013_br0010) 2004
Brandt (10.1016/j.camwa.2024.05.013_br0090) 1984
Yang (10.1016/j.camwa.2024.05.013_br0800) 2002; 41
Zikatanov (10.1016/j.camwa.2024.05.013_br0420) 2008; 15
Arndt (10.1016/j.camwa.2024.05.013_br0790) 2020; 28
Antonietti (10.1016/j.camwa.2024.05.013_br0740) 2023
Xu (10.1016/j.camwa.2024.05.013_br0400) 2017; 26
Heinlein (10.1016/j.camwa.2024.05.013_br0730) 2021; 44
MacLachlan (10.1016/j.camwa.2024.05.013_br0450) 2014; 21
Vinuesa (10.1016/j.camwa.2024.05.013_br0500) 2022; 2
Regazzoni (10.1016/j.camwa.2024.05.013_br0510) 2019; 397
Adler (10.1016/j.camwa.2024.05.013_br0330) 2016; 38
Regazzoni (10.1016/j.camwa.2024.05.013_br0540) 2022; 393
Barnafi (10.1016/j.camwa.2024.05.013_br0320) 2023
LeCun (10.1016/j.camwa.2024.05.013_br0470) 2015; 521
Brezina (10.1016/j.camwa.2024.05.013_br0190) 2001; 22
Gu (10.1016/j.camwa.2024.05.013_br0600) 2018; 77
Trottenberg (10.1016/j.camwa.2024.05.013_br0130) 2000
References_xml – start-page: 770
  year: 2016
  end-page: 778
  ident: br0830
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2415
  year: 2019
  end-page: 2423
  ident: br0640
  article-title: Learning to optimize multigrid PDE solvers
  publication-title: International Conference on Machine Learning
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: br0770
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– year: 2004
  ident: br0010
  article-title: An Introduction to Multigrid Methods, An Introduction to Multigrid Methods
– year: 2008
  ident: br0150
  article-title: Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations
– volume: 42
  start-page: A1147
  year: 2020
  end-page: A1173
  ident: br0240
  article-title: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods
  publication-title: SIAM J. Sci. Comput.
– volume: 34
  start-page: 581
  year: 1992
  end-page: 613
  ident: br0370
  article-title: Iterative methods by space decomposition and subspace correction
  publication-title: SIAM Rev.
– year: 2019
  ident: br0020
  article-title: Multigrid Methods
– volume: 469
  year: 2022
  ident: br0660
  article-title: Machine learning based refinement strategies for polyhedral grids with applications to virtual element and polyhedral discontinuous Galerkin methods
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 634
  year: 1985
  end-page: 643
  ident: br0410
  article-title: Multigrid methods for variational problems: general theory for the V-cycle
  publication-title: SIAM J. Numer. Anal.
– volume: 21
  start-page: 194
  year: 2014
  end-page: 220
  ident: br0450
  article-title: Theoretical bounds for algebraic multigrid performance: review and analysis
  publication-title: Numer. Linear Algebra Appl.
– volume: 27
  start-page: 1261
  year: 2006
  end-page: 1286
  ident: br0750
  article-title: Adaptive algebraic multigrid
  publication-title: SIAM J. Sci. Comput.
– volume: 393
  year: 2022
  ident: br0540
  article-title: A machine learning method for real-time numerical simulations of cardiac electromechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 34
  start-page: 12129
  year: 2021
  end-page: 12140
  ident: br0710
  article-title: Optimization-based algebraic multigrid coarsening using reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 439
  year: 2008
  end-page: 454
  ident: br0420
  article-title: Two-sided bounds on the convergence rate of two-level methods
  publication-title: Numer. Linear Algebra Appl.
– volume: 12
  start-page: 471
  year: 2005
  end-page: 494
  ident: br0440
  article-title: On two-grid convergence estimates
  publication-title: Numer. Linear Algebra Appl.
– volume: 41
  start-page: A3887
  year: 2019
  end-page: A3912
  ident: br0720
  article-title: Machine learning in adaptive domain decomposition methods–predicting the geometric location of constraints
  publication-title: SIAM J. Sci. Comput.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: br0590
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– start-page: 261
  year: 2012
  end-page: 279
  ident: br0070
  article-title: Scaling hypre's multigrid solvers to 100,000 cores
  publication-title: High-Performance Scientific Computing: Algorithms and Applications
– volume: 4
  start-page: 783
  year: 2022
  end-page: 822
  ident: br0250
  article-title: p-Multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation
  publication-title: Commun. Appl. Math. Comput. Sci.
– start-page: S329
  year: 2023
  end-page: S350
  ident: br0260
  article-title: Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations
  publication-title: SIAM J. Sci. Comput.
– start-page: 604
  year: 2009
  end-page: 623
  ident: br0300
  article-title: Parallel auxiliary space AMG for H (curl) problems
  publication-title: J. Comput. Math.
– volume: 357
  year: 2019
  ident: br0340
  article-title: A two-stage preconditioner for multiphase poromechanics in reservoir simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 25
  start-page: 623
  year: 2003
  end-page: 642
  ident: br0290
  article-title: An improved algebraic multigrid method for solving Maxwell's equations
  publication-title: SIAM J. Sci. Comput.
– volume: 15
  start-page: 573
  year: 2002
  end-page: 597
  ident: br0380
  article-title: The method of alternating projections and the method of subspace corrections in Hilbert space
  publication-title: J. Am. Math. Soc.
– volume: 397
  year: 2019
  ident: br0510
  article-title: Machine learning for fast and reliable solution of time-dependent differential equations
  publication-title: J. Comput. Phys.
– volume: 22
  start-page: 1570
  year: 2001
  end-page: 1592
  ident: br0190
  article-title: Algebraic multigrid based on element interpolation (AMGe)
  publication-title: SIAM J. Sci. Comput.
– volume: 25
  start-page: 1
  year: 2003
  end-page: 26
  ident: br0210
  article-title: Spectral AMGe (
  publication-title: SIAM J. Sci. Comput.
– volume: 42
  start-page: 1669
  year: 2004
  end-page: 1693
  ident: br0430
  article-title: On generalizing the algebraic multigrid framework
  publication-title: SIAM J. Numer. Anal.
– volume: 2
  start-page: 358
  year: 2022
  end-page: 366
  ident: br0500
  article-title: Enhancing computational fluid dynamics with machine learning
  publication-title: Nat. Comput. Sci.
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: br0600
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– year: 2001
  ident: br0820
  article-title: The Boost Graph Library: User Guide and Reference Manual
– volume: 370
  year: 2020
  ident: br0530
  article-title: Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 81
  start-page: 407
  year: 2021
  end-page: 422
  ident: br0780
  article-title: The deal.II finite element library: design, features, and insights
  publication-title: Comput. Math. Appl.
– volume: 7
  start-page: 121
  year: 2004
  end-page: 127
  ident: br0390
  article-title: On an energy minimizing basis for algebraic multigrid methods
  publication-title: Comput. Vis. Sci.
– year: 2022
  ident: br0680
  article-title: Agglomeration of polygonal grids using graph neural networks with applications to multigrid solvers
– volume: 368
  year: 2020
  ident: br0650
  article-title: Black-box learning of multigrid parameters
  publication-title: J. Comput. Appl. Math.
– volume: 55
  start-page: 73
  year: 2022
  end-page: 125
  ident: br0480
  article-title: A theoretical analysis of deep neural networks and parametric PDEs
  publication-title: Constr. Approx.
– volume: 54
  start-page: 1169
  year: 2017
  end-page: 1198
  ident: br0030
  article-title: Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes
  publication-title: Calcolo
– volume: 38
  start-page: B1
  year: 2016
  end-page: B24
  ident: br0330
  article-title: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
  publication-title: SIAM J. Sci. Comput.
– year: 2006
  ident: br0140
  article-title: An introduction to Algebraic Multigrid
– start-page: 632
  year: 2002
  end-page: 641
  ident: br0810
  article-title: hypre: a library of high performance preconditioners
  publication-title: International Conference on Computational Science
– volume: 218
  start-page: 67
  year: 1998
  end-page: 81
  ident: br0170
  article-title: An agglomeration multigrid method for unstructured grids
  publication-title: Contemp. Math.
– volume: 25
  start-page: 385
  year: 2003
  end-page: 407
  ident: br0310
  article-title: An algebraic multigrid method for linear elasticity
  publication-title: SIAM J. Sci. Comput.
– year: 2020
  ident: br0610
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
– volume: 56
  start-page: 179
  year: 1996
  end-page: 196
  ident: br0160
  article-title: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems
  publication-title: Computing
– volume: 19
  start-page: 23
  year: 1986
  end-page: 56
  ident: br0100
  article-title: Algebraic multigrid theory: the symmetric case
  publication-title: Appl. Math. Comput.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0470
  article-title: Deep learning
  publication-title: Nature
– volume: 37
  start-page: 29
  year: 1999
  end-page: 36
  ident: br0280
  article-title: Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid
  publication-title: AIAA J.
– volume: 13
  start-page: 753
  year: 2006
  end-page: 770
  ident: br0220
  article-title: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations
  publication-title: Numer. Linear Algebra Appl.
– year: 2008
  ident: br0460
  article-title: Numerical Approximation of Partial Differential Equations, vol. 23
– start-page: 1
  year: 2023
  end-page: 36
  ident: br0740
  article-title: Accelerating algebraic multigrid methods via artificial neural networks
  publication-title: Vietnam J. Math.
– start-page: 104
  year: 1998
  end-page: 115
  ident: br0760
  article-title: Coarse-grid selection for parallel algebraic multigrid
  publication-title: Solving Irregularly Structured Problems in Parallel: 5th International Symposium, IRREGULAR'98 Berkeley, California, USA, August 9–11, 1998 Proceedings 5
– year: 2016
  ident: br0840
  article-title: Deep Learning
– volume: 88
  start-page: 559
  year: 2001
  end-page: 579
  ident: br0180
  article-title: Convergence of algebraic multigrid based on smoothed aggregation
  publication-title: Numer. Math.
– volume: 44
  year: 2021
  ident: br0730
  article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review
  publication-title: GAMM-Mitt.
– year: 2018
  ident: br0490
  article-title: A machine learning framework for data driven acceleration of computations of differential equations
– start-page: 541
  year: 2020
  end-page: 549
  ident: br0630
  article-title: Stationary flow predictions using convolutional neural networks
  publication-title: Numerical Mathematics and Advanced Applications ENUMATH 2019: European Conference
– volume: 452
  year: 2022
  ident: br0670
  article-title: Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods
  publication-title: J. Comput. Phys.
– volume: 41
  start-page: 155
  year: 2002
  end-page: 177
  ident: br0800
  article-title: BoomerAMG: a parallel algebraic multigrid solver and preconditioner
  publication-title: Appl. Numer. Math.
– volume: 78
  start-page: 625
  year: 2019
  end-page: 652
  ident: br0040
  article-title: V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes
  publication-title: J. Sci. Comput.
– year: 2000
  ident: br0120
  article-title: A Multigrid Tutorial
– year: 1983
  ident: br0080
  article-title: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations
  publication-title: National Geodetic Survey and Air Force Office of Scientific Research and National Science Foundation
– volume: 57
  start-page: 23
  year: 1991
  end-page: 45
  ident: br0360
  article-title: Convergence estimates for multigrid algorithms without regularity assumptions
  publication-title: Math. Comput.
– year: 2022
  ident: br0700
  article-title: Learning an Algebraic Multrigrid Interpolation Operator Using a Modified GraphNet Architecture
– volume: 34
  year: 2022
  ident: br0550
  article-title: An invariances-preserving vector basis neural network for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the Reynolds stress tensor
  publication-title: Phys. Fluids
– volume: 28
  start-page: 131
  year: 2020
  end-page: 146
  ident: br0790
  article-title: The deal.II library, version 9.2
  publication-title: J. Numer. Math.
– volume: 19
  start-page: 367
  year: 2012
  end-page: 388
  ident: br0230
  article-title: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
  publication-title: Numer. Linear Algebra Appl.
– year: 2023
  ident: br0320
  article-title: A comparative study of scalable multilevel preconditioners for cardiac mechanics
  publication-title: J. Comput. Phys.
– start-page: 73
  year: 1987
  end-page: 130
  ident: br0110
  article-title: Algebraic Multigrid, in: Multigrid Methods
– volume: 25
  start-page: 715
  year: 2021
  end-page: 730
  ident: br0350
  article-title: Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids
  publication-title: Comput. Geosci.
– start-page: 257
  year: 1984
  end-page: 284
  ident: br0090
  article-title: Algebraic multigrid (AMG) for sparse matrix equations
  publication-title: Sparsity and Its Applications
– start-page: 1995
  year: 1995
  ident: br0560
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks, vol. 3361
– volume: 61
  start-page: 223
  year: 2023
  end-page: 249
  ident: br0060
  article-title: Agglomeration-based geometric multigrid schemes for the virtual element method
  publication-title: SIAM J. Numer. Anal.
– start-page: 297
  year: 1996
  ident: br0270
  article-title: Robustness of coupled algebraic multigrid for the Navier-Stokes equations
  publication-title: 34th Aerospace Sciences Meeting and Exhibit
– year: 2016
  ident: br0580
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size
– volume: 26
  start-page: 591
  year: 2017
  end-page: 721
  ident: br0400
  article-title: Algebraic multigrid methods
  publication-title: Acta Numer.
– volume: 23
  start-page: 109
  year: 2001
  end-page: 133
  ident: br0200
  article-title: AMGe based on element agglomeration
  publication-title: SIAM J. Sci. Comput.
– volume: 87
  start-page: 1
  year: 2021
  end-page: 36
  ident: br0520
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
– year: 2000
  ident: br0130
  article-title: Multigrid
– volume: 52
  start-page: 337
  year: 2018
  end-page: 364
  ident: br0050
  article-title: A multigrid algorithm for the p-version of the virtual element method
  publication-title: Modél. Math. Anal. Numér.
– start-page: 6489
  year: 2020
  end-page: 6499
  ident: br0690
  article-title: Learning algebraic multigrid using graph neural networks
  publication-title: International Conference on Machine Learning
– volume: 64
  start-page: 525
  year: 2019
  end-page: 545
  ident: br0620
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: br0570
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 393
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0540
  article-title: A machine learning method for real-time numerical simulations of cardiac electromechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114825
– volume: 28
  start-page: 131
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0790
  article-title: The deal.II library, version 9.2
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2020-0043
– volume: 23
  start-page: 109
  year: 2001
  ident: 10.1016/j.camwa.2024.05.013_br0200
  article-title: AMGe based on element agglomeration
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827599361047
– year: 2006
  ident: 10.1016/j.camwa.2024.05.013_br0140
– start-page: 6489
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0690
  article-title: Learning algebraic multigrid using graph neural networks
– volume: 469
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0660
  article-title: Machine learning based refinement strategies for polyhedral grids with applications to virtual element and polyhedral discontinuous Galerkin methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111531
– year: 2001
  ident: 10.1016/j.camwa.2024.05.013_br0820
– volume: 38
  start-page: B1
  year: 2016
  ident: 10.1016/j.camwa.2024.05.013_br0330
  article-title: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/151006135
– volume: 15
  start-page: 573
  year: 2002
  ident: 10.1016/j.camwa.2024.05.013_br0380
  article-title: The method of alternating projections and the method of subspace corrections in Hilbert space
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-02-00398-3
– volume: 37
  start-page: 29
  year: 1999
  ident: 10.1016/j.camwa.2024.05.013_br0280
  article-title: Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid
  publication-title: AIAA J.
  doi: 10.2514/2.689
– ident: 10.1016/j.camwa.2024.05.013_br0680
– start-page: 632
  year: 2002
  ident: 10.1016/j.camwa.2024.05.013_br0810
  article-title: hypre: a library of high performance preconditioners
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1016/j.camwa.2024.05.013_br0770
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 22
  start-page: 1570
  year: 2001
  ident: 10.1016/j.camwa.2024.05.013_br0190
  article-title: Algebraic multigrid based on element interpolation (AMGe)
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827598344303
– volume: 26
  start-page: 591
  year: 2017
  ident: 10.1016/j.camwa.2024.05.013_br0400
  article-title: Algebraic multigrid methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492917000083
– year: 1983
  ident: 10.1016/j.camwa.2024.05.013_br0080
  article-title: Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations
– volume: 61
  start-page: 223
  year: 2023
  ident: 10.1016/j.camwa.2024.05.013_br0060
  article-title: Agglomeration-based geometric multigrid schemes for the virtual element method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/21M1466864
– start-page: 257
  year: 1984
  ident: 10.1016/j.camwa.2024.05.013_br0090
  article-title: Algebraic multigrid (AMG) for sparse matrix equations
– start-page: 297
  year: 1996
  ident: 10.1016/j.camwa.2024.05.013_br0270
  article-title: Robustness of coupled algebraic multigrid for the Navier-Stokes equations
– volume: 25
  start-page: 623
  year: 2003
  ident: 10.1016/j.camwa.2024.05.013_br0290
  article-title: An improved algebraic multigrid method for solving Maxwell's equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502407706
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.camwa.2024.05.013_br0590
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 88
  start-page: 559
  year: 2001
  ident: 10.1016/j.camwa.2024.05.013_br0180
  article-title: Convergence of algebraic multigrid based on smoothed aggregation
  publication-title: Numer. Math.
  doi: 10.1007/s211-001-8015-y
– year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0020
– volume: 27
  start-page: 1261
  year: 2006
  ident: 10.1016/j.camwa.2024.05.013_br0750
  article-title: Adaptive algebraic multigrid
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040614402
– volume: 7
  start-page: 121
  year: 2004
  ident: 10.1016/j.camwa.2024.05.013_br0390
  article-title: On an energy minimizing basis for algebraic multigrid methods
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-004-0147-y
– year: 2008
  ident: 10.1016/j.camwa.2024.05.013_br0460
– start-page: 541
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0630
  article-title: Stationary flow predictions using convolutional neural networks
– volume: 25
  start-page: 1
  year: 2003
  ident: 10.1016/j.camwa.2024.05.013_br0210
  article-title: Spectral AMGe (ρ AMGe)
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482750139892X
– volume: 25
  start-page: 385
  year: 2003
  ident: 10.1016/j.camwa.2024.05.013_br0310
  article-title: An algebraic multigrid method for linear elasticity
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502407810
– volume: 218
  start-page: 67
  year: 1998
  ident: 10.1016/j.camwa.2024.05.013_br0170
  article-title: An agglomeration multigrid method for unstructured grids
  publication-title: Contemp. Math.
  doi: 10.1090/conm/218/03002
– ident: 10.1016/j.camwa.2024.05.013_br0490
– volume: 12
  start-page: 471
  year: 2005
  ident: 10.1016/j.camwa.2024.05.013_br0440
  article-title: On two-grid convergence estimates
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.437
– start-page: 1995
  year: 1995
  ident: 10.1016/j.camwa.2024.05.013_br0560
  article-title: Convolutional networks for images, speech, and time series
– start-page: 604
  year: 2009
  ident: 10.1016/j.camwa.2024.05.013_br0300
  article-title: Parallel auxiliary space AMG for H (curl) problems
  publication-title: J. Comput. Math.
– volume: 357
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0340
  article-title: A two-stage preconditioner for multiphase poromechanics in reservoir simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112575
– year: 2004
  ident: 10.1016/j.camwa.2024.05.013_br0010
– volume: 2
  start-page: 358
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0500
  article-title: Enhancing computational fluid dynamics with machine learning
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00264-7
– volume: 78
  start-page: 625
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0040
  article-title: V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0783-x
– volume: 52
  start-page: 337
  year: 2018
  ident: 10.1016/j.camwa.2024.05.013_br0050
  article-title: A multigrid algorithm for the p-version of the virtual element method
  publication-title: Modél. Math. Anal. Numér.
  doi: 10.1051/m2an/2018007
– volume: 22
  start-page: 634
  year: 1985
  ident: 10.1016/j.camwa.2024.05.013_br0410
  article-title: Multigrid methods for variational problems: general theory for the V-cycle
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0722039
– volume: 42
  start-page: 1669
  year: 2004
  ident: 10.1016/j.camwa.2024.05.013_br0430
  article-title: On generalizing the algebraic multigrid framework
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142903429742
– volume: 54
  start-page: 1169
  year: 2017
  ident: 10.1016/j.camwa.2024.05.013_br0030
  article-title: Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes
  publication-title: Calcolo
  doi: 10.1007/s10092-017-0223-6
– start-page: S329
  year: 2023
  ident: 10.1016/j.camwa.2024.05.013_br0260
  article-title: Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M1429849
– year: 2008
  ident: 10.1016/j.camwa.2024.05.013_br0150
– volume: 77
  start-page: 354
  year: 2018
  ident: 10.1016/j.camwa.2024.05.013_br0600
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– volume: 19
  start-page: 23
  year: 1986
  ident: 10.1016/j.camwa.2024.05.013_br0100
  article-title: Algebraic multigrid theory: the symmetric case
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(86)90095-0
– volume: 56
  start-page: 179
  year: 1996
  ident: 10.1016/j.camwa.2024.05.013_br0160
  article-title: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems
  publication-title: Computing
  doi: 10.1007/BF02238511
– volume: 42
  start-page: A1147
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0240
  article-title: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1204383
– start-page: 770
  year: 2016
  ident: 10.1016/j.camwa.2024.05.013_br0830
  article-title: Deep residual learning for image recognition
– volume: 81
  start-page: 407
  year: 2021
  ident: 10.1016/j.camwa.2024.05.013_br0780
  article-title: The deal.II finite element library: design, features, and insights
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.02.022
– volume: 41
  start-page: A3887
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0720
  article-title: Machine learning in adaptive domain decomposition methods–predicting the geometric location of constraints
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1205364
– start-page: 7132
  year: 2018
  ident: 10.1016/j.camwa.2024.05.013_br0570
  article-title: Squeeze-and-excitation networks
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.camwa.2024.05.013_br0470
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 4
  start-page: 783
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0250
  article-title: p-Multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.1007/s42967-021-00142-5
– volume: 34
  start-page: 581
  year: 1992
  ident: 10.1016/j.camwa.2024.05.013_br0370
  article-title: Iterative methods by space decomposition and subspace correction
  publication-title: SIAM Rev.
  doi: 10.1137/1034116
– year: 2023
  ident: 10.1016/j.camwa.2024.05.013_br0320
  article-title: A comparative study of scalable multilevel preconditioners for cardiac mechanics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2023.112421
– volume: 21
  start-page: 194
  year: 2014
  ident: 10.1016/j.camwa.2024.05.013_br0450
  article-title: Theoretical bounds for algebraic multigrid performance: review and analysis
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1930
– ident: 10.1016/j.camwa.2024.05.013_br0610
– volume: 41
  start-page: 155
  year: 2002
  ident: 10.1016/j.camwa.2024.05.013_br0800
  article-title: BoomerAMG: a parallel algebraic multigrid solver and preconditioner
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(01)00115-5
– volume: 368
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0650
  article-title: Black-box learning of multigrid parameters
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112524
– start-page: 1
  year: 2023
  ident: 10.1016/j.camwa.2024.05.013_br0740
  article-title: Accelerating algebraic multigrid methods via artificial neural networks
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-022-00597-w
– volume: 55
  start-page: 73
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0480
  article-title: A theoretical analysis of deep neural networks and parametric PDEs
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09551-4
– volume: 25
  start-page: 715
  year: 2021
  ident: 10.1016/j.camwa.2024.05.013_br0350
  article-title: Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09979-w
– ident: 10.1016/j.camwa.2024.05.013_br0580
– volume: 13
  start-page: 753
  year: 2006
  ident: 10.1016/j.camwa.2024.05.013_br0220
  article-title: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.504
– volume: 397
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0510
  article-title: Machine learning for fast and reliable solution of time-dependent differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.050
– start-page: 261
  year: 2012
  ident: 10.1016/j.camwa.2024.05.013_br0070
  article-title: Scaling hypre's multigrid solvers to 100,000 cores
– volume: 57
  start-page: 23
  year: 1991
  ident: 10.1016/j.camwa.2024.05.013_br0360
  article-title: Convergence estimates for multigrid algorithms without regularity assumptions
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1991-1079008-4
– volume: 34
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0550
  article-title: An invariances-preserving vector basis neural network for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the Reynolds stress tensor
  publication-title: Phys. Fluids
  doi: 10.1063/5.0104605
– start-page: 104
  year: 1998
  ident: 10.1016/j.camwa.2024.05.013_br0760
  article-title: Coarse-grid selection for parallel algebraic multigrid
– start-page: 2415
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0640
  article-title: Learning to optimize multigrid PDE solvers
– year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0700
– volume: 44
  year: 2021
  ident: 10.1016/j.camwa.2024.05.013_br0730
  article-title: Combining machine learning and domain decomposition methods for the solution of partial differential equations–a review
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.202100001
– year: 2000
  ident: 10.1016/j.camwa.2024.05.013_br0130
– volume: 34
  start-page: 12129
  year: 2021
  ident: 10.1016/j.camwa.2024.05.013_br0710
  article-title: Optimization-based algebraic multigrid coarsening using reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 367
  year: 2012
  ident: 10.1016/j.camwa.2024.05.013_br0230
  article-title: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1816
– volume: 64
  start-page: 525
  year: 2019
  ident: 10.1016/j.camwa.2024.05.013_br0620
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– start-page: 73
  year: 1987
  ident: 10.1016/j.camwa.2024.05.013_br0110
– volume: 15
  start-page: 439
  year: 2008
  ident: 10.1016/j.camwa.2024.05.013_br0420
  article-title: Two-sided bounds on the convergence rate of two-level methods
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.556
– volume: 370
  year: 2020
  ident: 10.1016/j.camwa.2024.05.013_br0530
  article-title: Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113268
– year: 2000
  ident: 10.1016/j.camwa.2024.05.013_br0120
– volume: 87
  start-page: 1
  year: 2021
  ident: 10.1016/j.camwa.2024.05.013_br0520
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01462-7
– volume: 452
  year: 2022
  ident: 10.1016/j.camwa.2024.05.013_br0670
  article-title: Refinement of polygonal grids using convolutional neural networks with applications to polygonal discontinuous Galerkin and virtual element methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110900
– year: 2016
  ident: 10.1016/j.camwa.2024.05.013_br0840
SSID ssj0004320
Score 2.4643166
Snippet Algebraic multigrid (AMG) methods are among the most efficient solvers for linear systems of equations and they are widely used for the solution of problems...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Algebraic multigrid methods
Convolutional neural networks
Deep learning
Elliptic problems
Finite element method
Partial differential equations
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQF7iwI3bNgSOmab0kOVYsQkggJEDiFo1duwSVtJSiigvfjicLywGEOMay48hjz4zj5_cY20dlNWoZc-m84HRQxA0Ky42JbILehSyVfuhfXOqzW3l-p-5m2FFzF4ZglbXvr3x66a3rklY9mq1RnreuoyQN0Sm4XkmBSBHttpQxqRgcvn3CPKSoqBlDZU61G-ahEuNl8XFK5EMdWdF3ip-i09xLMcLXKQ4GX6LP6RJbqNNG6FZftsxmXLHCFhtJBqhX6Cp76kLPuRHUYhB9wEF_GPb_948wGQJaG6IMkUNQOR0Z5xZKSGF_nPegUpN-hrwAn1MuCq4Cl0OYoATfgKEHcQzE4Rk8jYWr45PnNXZ7enJzdMZrVQVuhUwmPOmhStoeO160Q7c-Qe0jpDzJeK1QxmFJusSIsBNzmi6uaqudIeU-1zY9q8U6my2GhdtggEpi7EyKsUepbGqETtsYpSa8DpWxm6zTjGZma8pxUr4YZA227CErTZCRCbJIZcEEm-zgo9GoYtz4vbpuzJR9mzhZiAm_N-QfRv1LR1v_7WibzdNThRrcYbOT8YvbDZnMxOyVU_UdGz_ydA
  priority: 102
  providerName: Elsevier
Title A deep learning algorithm to accelerate algebraic multigrid methods in finite element solvers of 3D elliptic PDEs
URI https://dx.doi.org/10.1016/j.camwa.2024.05.013
https://doi.org/10.1016/j.camwa.2024.05.013
UnpaywallVersion publishedVersion
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 1873-7668
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 1873-7668
  databaseCode: ACRLP
  dateStart: 20211101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 1873-7668
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 1873-7668
  databaseCode: AIKHN
  dateStart: 20211101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 1873-7668
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaa5NBTH3ugHdqAhx2nII4s2T4GS4u0w4IcGiA9GZQiZd5cJ0scBOuhv72SH0U7rEF3NfSAScr8ZJIfCfmMXAkUfkB9bRh1gSIqkSkqZVeFaLRFqe6H_veRGE786ymfVjzbrhbmRfy-yMNSeLd1BEE9v6TYZA3SEtwC7yZpTUbj_m2BEyN7F-qVVVZhwGggRFhzDP17ldf80P4mW-KfLabpMz9zeVgWcK8LekKXXvKrs8llR93_Rd74xlc4IgcV3oR-aSDHZE9n78hh3csBqqP9nvzuw0zrJVRdJOaA6XyxSvIfd5AvAJWy7smxSrjnLtacKChyEeerZAZlG-o1JBmYxIFY0GVWOljLdnkfsDDABuDIP-0nSsF4cLH-QCaXFzdfh7Rqx0AV88OchjPkoWewZ5hntzUhCtNFB7CkERz9wJ5lHUpmr3BauIpXoYSWruWf9uRMCfaRNLNFpk8IIPcx0DLCwKDPVSSZiDzsRtIuh1yqU9KrlROriqvctcxI4zop7WdcCDV2Qo27PLZCPSVfniYtS6qO3cNFrfW4QhslioitAndPpE828paNPv3n-DPSzFcbfW7BTi7bpNF58Nqk1b_6Nhy1K5N_BJvE_qc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAL9EEFLW3n0GPNZtePJEfEQ9sWEFJB4maNvfYStJvdLkGoF347njx4HIqqXh07E3nGM-P48zeMfUXlNGqZcumD4HRQxC0Kx61NXIbBxyyVfugfHevhmfxxrs6X2G53F4Zgla3vb3x67a3bll47m715UfR-JVkeo1N0vZICkdIv2EupBintwLZvH3AeUjTcjLE3p-4d9VAN8nI4vSH2oYFs-DvF38LTynU5xz83OJk8Cj8Hr9lqmzfCTvNpb9iSL9-yta4mA7RL9B37vQMj7-fQVoMYA07Gs0VRXUyhmgE6F8MMsUNQO50ZFw5qTOF4UYygKSd9BUUJoaBkFHyDLodooYTfgFkAsQdE4hldjYOTvf2rdXZ2sH-6O-RtWQXuhMwqno1QZf2AgyD6UWzIUIcEKVGyQSuUaVyTPrMibsW8ppur2mlvqXSf79uR0-I9Wy5npd9ggEpi6m2OaUCpXG6FzvuY5Da-DpV1m2zQzaZxLec4lb6YmA5cdmlqFRhSgUmUiSrYZN_uB80byo3nu-tOTeaJ5ZgYFJ4fyO-V-i-CPvyvoC9sZXh6dGgOvx___Mhe0ZMGQrjFlqvFtf8U05rKfq7N9g5auPWX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHDjxRgwB8oEjmbalSdvjxDYhJCYOTIJT5WTJKIx2bJ0Q_HqSPhAgQONa5aHaTv2ltj8TcopcCRSeTz1tGHWBIiqRKSplUwVotEWp7of-1UBcDL3LW35b8my7Wpgv8fs8D0vh04sjCGp7BcUmWyVrglvgXSNrw8F15y7HiaG9C7WLKqvAZ9QXIqg4hn5e5Tc_tL5Ipvj6gpPJJz_T3ywKuOc5PaFLL3lsLDLZUG_fyBuXfIUtslHiTegUBrJNVnSyQzarXg5QHu1d8tyBkdZTKLtIjAEn43QWZ_dPkKWASln35Fgl3HMXa44V5LmI41k8gqIN9RziBEzsQCzoIisdrGW7vA9IDbAuOPJP-4lScN3tzffIsN-7Ob-gZTsGqpgXZDQYIQ9aBtuGtey2JkBhmugAljSCo-fbs6wDyewVTgtX8SqU0NK1_NMtOVKC7ZNakib6gAByD30tQ_QNelyFkomwhc1Q2uWQS1Un7Uo5kSq5yl3LjElUJaU9RLlQIyfUqMkjK9Q6OfuYNC2oOv4eLiqtRyXaKFBEZBX490T6YSPLbHT4z_FHpJbNFvrYgp1MnpRG_g7FG_wb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+to+accelerate+algebraic+multigrid+methods+in+finite+element+solvers+of+3D+elliptic+PDEs&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Caldana%2C+Matteo&rft.au=Antonietti%2C+Paola+F.&rft.au=Dede%27%2C+Luca&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=167&rft.spage=217&rft.epage=231&rft_id=info:doi/10.1016%2Fj.camwa.2024.05.013&rft.externalDocID=S0898122124002256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon