Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data

While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to u...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 406; pp. 109 - 120
Main Authors Schratz, Patrick, Muenchow, Jannes, Iturritxa, Eugenia, Richter, Jakob, Brenning, Alexander
Format Journal Article
LanguageEnglish
Published Elsevier B.V 24.08.2019
Subjects
Online AccessGet full text
ISSN0304-3800
1872-7026
DOI10.1016/j.ecolmodel.2019.06.002

Cover

Abstract While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to unbiased performance estimation. One is the influence of spatial autocorrelation in both hyperparameter tuning and performance estimation. Grouped cross-validation strategies have been proposed in recent years in environmental as well as medical contexts to reduce bias in predictive performance. In this study we show the effects of spatial autocorrelation on hyperparameter tuning and performance estimation by comparing several widely used machine-learning algorithms such as boosted regression trees (BRT), k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) with traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like generalized additive models (GAM) in terms of predictive performance. Spatial and non-spatial cross-validation methods were used to evaluate model performances aiming to obtain bias-reduced performance estimates. A detailed analysis on the sensitivity of hyperparameter tuning when using different resampling methods (spatial/non-spatial) was performed. As a case study the spatial distribution of forest disease (Diplodia sapinea) in the Basque Country (Spain) was investigated using common environmental variables such as temperature, precipitation, soil and lithology as predictors. Random Forest (mean Brier score estimate of 0.166) outperformed all other methods with regard to predictive accuracy. Though the sensitivity to hyperparameter tuning differed between the ML algorithms, there were in most cases no substantial differences between spatial and non-spatial partitioning for hyperparameter tuning. However, spatial hyperparameter tuning maintains consistency with spatial estimation of classifier performance and should be favored over non-spatial hyperparameter optimization. High performance differences (up to 47%) between the bias-reduced (spatial cross-validation) and overoptimistic (non-spatial cross-validation) cross-validation settings showed the high need to account for the influence of spatial autocorrelation. Overoptimistic performance estimates may lead to false actions in ecological decision making based on biased model predictions.
AbstractList While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to unbiased performance estimation. One is the influence of spatial autocorrelation in both hyperparameter tuning and performance estimation. Grouped cross-validation strategies have been proposed in recent years in environmental as well as medical contexts to reduce bias in predictive performance. In this study we show the effects of spatial autocorrelation on hyperparameter tuning and performance estimation by comparing several widely used machine-learning algorithms such as boosted regression trees (BRT), k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) with traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like generalized additive models (GAM) in terms of predictive performance. Spatial and non-spatial cross-validation methods were used to evaluate model performances aiming to obtain bias-reduced performance estimates. A detailed analysis on the sensitivity of hyperparameter tuning when using different resampling methods (spatial/non-spatial) was performed. As a case study the spatial distribution of forest disease (Diplodia sapinea) in the Basque Country (Spain) was investigated using common environmental variables such as temperature, precipitation, soil and lithology as predictors. Random Forest (mean Brier score estimate of 0.166) outperformed all other methods with regard to predictive accuracy. Though the sensitivity to hyperparameter tuning differed between the ML algorithms, there were in most cases no substantial differences between spatial and non-spatial partitioning for hyperparameter tuning. However, spatial hyperparameter tuning maintains consistency with spatial estimation of classifier performance and should be favored over non-spatial hyperparameter optimization. High performance differences (up to 47%) between the bias-reduced (spatial cross-validation) and overoptimistic (non-spatial cross-validation) cross-validation settings showed the high need to account for the influence of spatial autocorrelation. Overoptimistic performance estimates may lead to false actions in ecological decision making based on biased model predictions.
Author Schratz, Patrick
Richter, Jakob
Brenning, Alexander
Muenchow, Jannes
Iturritxa, Eugenia
Author_xml – sequence: 1
  givenname: Patrick
  surname: Schratz
  fullname: Schratz, Patrick
  email: patrick.schratz@uni-jena.de
  organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany
– sequence: 2
  givenname: Jannes
  surname: Muenchow
  fullname: Muenchow, Jannes
  organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany
– sequence: 3
  givenname: Eugenia
  surname: Iturritxa
  fullname: Iturritxa, Eugenia
  organization: NEIKER, Granja Modelo-Arkaute, Apdo. 46, 01080 Vitoria-Gasteiz, Arab, Spain
– sequence: 4
  givenname: Jakob
  surname: Richter
  fullname: Richter, Jakob
  organization: Department of Statistics, TU Dortmund University, Dortmund, Germany
– sequence: 5
  givenname: Alexander
  surname: Brenning
  fullname: Brenning, Alexander
  organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany
BookMark eNqNkEFv1DAQhS1UJLaF30COXBLGdjbxHjhUFbRIlXqBszVrT1qvHDt4vEj992RZxIELPY309L4nzXcpLlJOJMR7CZ0EOXw8dORynLOn2CmQuw6GDkC9EhtpRtWOoIYLsQENfasNwBtxyXwAAKmM2ohy97xQWbDgTJVKU48ppMcGk2_WfMplxuSoQWZininVJk8NV6yBa3AYfzdndE8hURsJyxmPj7mE-jRzc-RTwMtKrG2PFd-K1xNGpnd_7pX4_uXzt5u79v7h9uvN9X3rdG9qazQacFLrHeB28rtJqb3qRzl4rTRKT1s3OXJ7rV3vlZwcmB523rvB-71Z8yvx4by7lPzjSFztHNhRjJgoH9kqNUqjxq0Z1uqnc9WVzFxosi6cfsypFgzRSrAn1_Zg_7q2J9cWBru6XvnxH34pYcby_ALy-kzSauJnoGLZBVqV-1DIVetz-O_GL05tpM4
CitedBy_id crossref_primary_10_1007_s11103_025_01564_y
crossref_primary_10_1111_ddi_13498
crossref_primary_10_1007_s11069_024_06887_5
crossref_primary_10_1016_j_ophoto_2022_100018
crossref_primary_10_1016_j_rsase_2021_100577
crossref_primary_10_1109_JSTARS_2022_3147356
crossref_primary_10_1007_s40899_024_01064_9
crossref_primary_10_1016_j_asoc_2022_109848
crossref_primary_10_1016_j_ijpvp_2025_105444
crossref_primary_10_3390_rs13224521
crossref_primary_10_1080_13549839_2024_2353058
crossref_primary_10_1016_j_marpetgeo_2024_106967
crossref_primary_10_3390_diagnostics13223439
crossref_primary_10_3389_fcimb_2021_688256
crossref_primary_10_1139_cjfr_2022_0198
crossref_primary_10_1038_s41598_024_60507_7
crossref_primary_10_1007_s12665_024_12041_y
crossref_primary_10_7717_peerj_13728
crossref_primary_10_1016_j_gsf_2024_101822
crossref_primary_10_3390_rs13030401
crossref_primary_10_1016_j_geoen_2023_211511
crossref_primary_10_1016_j_rsase_2022_100724
crossref_primary_10_1007_s13042_022_01555_1
crossref_primary_10_1109_JSTARS_2021_3103585
crossref_primary_10_3390_su13073907
crossref_primary_10_1155_2024_5555105
crossref_primary_10_1002_esp_5421
crossref_primary_10_1007_s11042_024_19233_5
crossref_primary_10_2139_ssrn_4840403
crossref_primary_10_3390_rs12091369
crossref_primary_10_1029_2019WR026691
crossref_primary_10_1007_s10668_024_05340_8
crossref_primary_10_1007_s11146_022_09915_y
crossref_primary_10_3390_min11111172
crossref_primary_10_1016_j_earscirev_2020_103359
crossref_primary_10_3390_ai4030039
crossref_primary_10_1016_j_ecoinf_2023_102253
crossref_primary_10_1007_s11227_023_05319_8
crossref_primary_10_1007_s10994_021_05972_1
crossref_primary_10_3390_app121910156
crossref_primary_10_1007_s11440_024_02384_y
crossref_primary_10_1016_j_tbs_2025_100983
crossref_primary_10_3390_f15071114
crossref_primary_10_1016_j_array_2023_100326
crossref_primary_10_4018_JCIT_356504
crossref_primary_10_1088_2515_7620_ad2e44
crossref_primary_10_1109_ACCESS_2020_3048877
crossref_primary_10_1016_j_ecoinf_2024_102634
crossref_primary_10_1016_j_ecoinf_2024_102514
crossref_primary_10_5194_gmd_17_5897_2024
crossref_primary_10_1007_s00521_024_09562_9
crossref_primary_10_1016_j_atech_2024_100442
crossref_primary_10_3390_ma16124366
crossref_primary_10_1016_j_ecoinf_2021_101291
crossref_primary_10_1080_10494820_2023_2202698
crossref_primary_10_1016_j_geomorph_2019_106887
crossref_primary_10_1016_j_rse_2020_112033
crossref_primary_10_15575_join_v7i2_858
crossref_primary_10_1016_j_tafmec_2024_104826
crossref_primary_10_1002_ece3_10635
crossref_primary_10_1016_j_atmosres_2024_107261
crossref_primary_10_1016_j_jenvman_2025_125007
crossref_primary_10_3390_su14106110
crossref_primary_10_30516_bilgesci_1317525
crossref_primary_10_1016_j_ecoinf_2022_101647
crossref_primary_10_1002_adem_202402486
crossref_primary_10_3390_agriculture15050505
crossref_primary_10_1038_s41467_024_54572_9
crossref_primary_10_1109_ACCESS_2021_3134138
crossref_primary_10_1016_j_rinma_2025_100692
crossref_primary_10_1007_s12665_024_11442_3
crossref_primary_10_1139_facets_2023_0040
crossref_primary_10_3390_f14020317
crossref_primary_10_1002_esp_5890
crossref_primary_10_1016_j_heliyon_2024_e32495
crossref_primary_10_1016_j_foreco_2024_122132
crossref_primary_10_3390_rs14215425
crossref_primary_10_31202_ecjse_948557
crossref_primary_10_1016_j_jobe_2023_107285
crossref_primary_10_1016_j_scitotenv_2024_173425
crossref_primary_10_1016_j_geoderma_2024_116953
crossref_primary_10_1186_s13071_024_06636_4
crossref_primary_10_1007_s41748_024_00447_4
crossref_primary_10_1093_jrsssc_qlae047
crossref_primary_10_1088_2632_2153_acc1c0
crossref_primary_10_1016_j_ecolmodel_2019_108815
crossref_primary_10_1016_j_imu_2023_101341
crossref_primary_10_1016_j_geoderma_2024_116838
crossref_primary_10_1029_2023JD039076
crossref_primary_10_1007_s11069_022_05423_7
crossref_primary_10_1007_s00168_021_01101_x
crossref_primary_10_1016_j_jclepro_2023_137188
crossref_primary_10_1080_17455030_2023_2226246
crossref_primary_10_1007_s41748_024_00518_6
crossref_primary_10_61186_jsaeh_11_3_1
crossref_primary_10_1371_journal_pone_0310809
crossref_primary_10_1016_j_agrformet_2023_109868
crossref_primary_10_12720_jait_15_12_1304_1314
crossref_primary_10_1016_j_asr_2024_08_046
crossref_primary_10_3390_f12030282
crossref_primary_10_1111_1752_1688_13121
crossref_primary_10_1126_sciadv_adi3268
crossref_primary_10_1016_j_landurbplan_2022_104671
crossref_primary_10_1007_s41885_022_00119_5
crossref_primary_10_2478_amns_2023_2_01430
crossref_primary_10_1080_01431161_2023_2205981
crossref_primary_10_1002_ese3_790
crossref_primary_10_1016_j_geodrs_2024_e00785
crossref_primary_10_1016_j_ttbdis_2024_102373
crossref_primary_10_3390_rs17020213
crossref_primary_10_3390_jcm13020603
crossref_primary_10_3390_ijgi8120551
crossref_primary_10_3390_math12243892
crossref_primary_10_1038_s41598_024_76607_3
crossref_primary_10_1088_1757_899X_1208_1_012039
crossref_primary_10_1016_j_renene_2022_09_132
crossref_primary_10_1111_gean_12351
crossref_primary_10_1007_s42107_024_00994_1
crossref_primary_10_3389_fpls_2022_858711
crossref_primary_10_3390_rs14133066
crossref_primary_10_1029_2024EF004540
crossref_primary_10_1016_j_spasta_2023_100775
crossref_primary_10_1007_s11135_024_01937_3
crossref_primary_10_1016_j_gsd_2024_101403
crossref_primary_10_1016_j_compag_2023_108064
crossref_primary_10_3390_rs13234832
crossref_primary_10_1109_ACCESS_2020_2985717
crossref_primary_10_1016_j_psep_2023_09_072
crossref_primary_10_1109_ACCESS_2024_3383911
crossref_primary_10_1016_j_matdes_2024_112841
crossref_primary_10_1088_1755_1315_1032_1_012008
crossref_primary_10_3390_app12062985
crossref_primary_10_1080_21642583_2024_2420927
crossref_primary_10_1016_j_jenvman_2024_121189
crossref_primary_10_3389_fams_2024_1441596
crossref_primary_10_1016_j_heliyon_2024_e37065
crossref_primary_10_3233_ADR_220081
crossref_primary_10_1109_JSEN_2024_3369062
crossref_primary_10_1016_j_compind_2021_103530
crossref_primary_10_1016_j_aap_2019_105398
crossref_primary_10_1186_s13071_023_06094_4
crossref_primary_10_1016_j_aiig_2024_100093
crossref_primary_10_1016_j_buildenv_2024_112127
crossref_primary_10_1016_j_ssci_2022_105722
crossref_primary_10_1016_j_geodrs_2025_e00941
crossref_primary_10_1088_1748_9326_ad845e
crossref_primary_10_5194_nhess_24_4385_2024
crossref_primary_10_1186_s40663_021_00297_w
crossref_primary_10_1016_j_jag_2022_103089
crossref_primary_10_1016_j_jobe_2024_109544
crossref_primary_10_1016_j_oceaneng_2023_115505
crossref_primary_10_1111_ddi_13898
crossref_primary_10_3390_land12020494
crossref_primary_10_3390_ijgi11040242
crossref_primary_10_23887_mi_v28i2_59979
crossref_primary_10_1016_j_jag_2023_103364
crossref_primary_10_3390_geomatics2030017
crossref_primary_10_3390_app11094290
crossref_primary_10_1016_j_fuel_2022_123821
crossref_primary_10_1016_j_jpowsour_2020_229233
crossref_primary_10_1016_j_scitotenv_2022_158633
crossref_primary_10_1007_s10346_021_01693_7
crossref_primary_10_3390_rs16040683
crossref_primary_10_3390_rs16142571
crossref_primary_10_1016_j_heliyon_2023_e14045
crossref_primary_10_1111_1462_2920_15462
crossref_primary_10_3390_app12168271
crossref_primary_10_1016_j_jag_2021_102381
crossref_primary_10_3390_fire5060180
crossref_primary_10_3390_rs16122060
crossref_primary_10_1016_j_advwatres_2024_104842
crossref_primary_10_3390_f13101737
crossref_primary_10_1016_j_chemer_2023_126026
crossref_primary_10_3390_rs12091523
crossref_primary_10_1038_s41538_023_00205_2
crossref_primary_10_1002_clc_24239
crossref_primary_10_3390_f15071198
crossref_primary_10_3389_fenvs_2024_1414461
crossref_primary_10_3390_w15244214
crossref_primary_10_1016_j_fuel_2025_134534
crossref_primary_10_1098_rspb_2024_0743
crossref_primary_10_1016_j_geoderma_2025_117223
crossref_primary_10_1016_j_envdev_2024_101100
crossref_primary_10_1016_j_jmst_2024_05_024
crossref_primary_10_1139_cjss_2022_0031
crossref_primary_10_5194_nhess_21_2543_2021
crossref_primary_10_1016_j_ecoinf_2024_102595
crossref_primary_10_3390_f14030511
crossref_primary_10_1145_3701740
crossref_primary_10_1155_2024_1788726
crossref_primary_10_1016_j_mlwa_2023_100505
crossref_primary_10_3390_w15122278
crossref_primary_10_1007_s10530_023_03176_3
crossref_primary_10_1016_j_geoderma_2021_114998
crossref_primary_10_1016_j_gsf_2021_101248
crossref_primary_10_1016_j_rse_2022_113040
crossref_primary_10_1186_s42490_024_00075_z
crossref_primary_10_7717_peerj_19099
crossref_primary_10_3389_fmars_2021_631262
crossref_primary_10_3390_rs13112074
crossref_primary_10_1007_s11053_024_10393_7
crossref_primary_10_1080_15481603_2022_2079273
crossref_primary_10_1016_j_foreco_2022_120363
crossref_primary_10_1111_nph_17607
crossref_primary_10_1016_j_conbuildmat_2023_131519
crossref_primary_10_1371_journal_pone_0300201
crossref_primary_10_7746_jkros_2020_15_2_169
crossref_primary_10_1111_sjos_12636
crossref_primary_10_1109_TEM_2024_3522313
crossref_primary_10_1002_for_2960
crossref_primary_10_3390_min12060689
crossref_primary_10_1016_j_foreco_2021_119226
crossref_primary_10_1016_j_jclepro_2022_133778
crossref_primary_10_1016_j_autcon_2022_104714
crossref_primary_10_1016_j_isprsjprs_2020_06_006
crossref_primary_10_1038_s41586_021_03565_5
crossref_primary_10_1016_j_isprsjprs_2021_08_016
crossref_primary_10_1016_j_isprsjprs_2021_08_017
crossref_primary_10_3390_rs11212512
crossref_primary_10_1080_10916466_2021_1881114
crossref_primary_10_1371_journal_pone_0316174
crossref_primary_10_1002_edm2_472
crossref_primary_10_1016_j_compag_2024_109302
crossref_primary_10_1016_j_egyr_2022_06_003
crossref_primary_10_1175_AIES_D_22_0010_1
crossref_primary_10_1016_j_jenvman_2021_112625
crossref_primary_10_1016_j_scitotenv_2020_142291
crossref_primary_10_1111_geb_13639
crossref_primary_10_1038_s41598_021_85639_y
crossref_primary_10_1109_ACCESS_2020_2979570
crossref_primary_10_1111_geb_13635
crossref_primary_10_1038_s41467_024_55240_8
crossref_primary_10_1016_j_engfracmech_2021_107750
crossref_primary_10_3390_su14148953
crossref_primary_10_1002_ece3_11571
crossref_primary_10_2166_wcc_2024_324
crossref_primary_10_1016_j_biosystems_2024_105387
crossref_primary_10_3390_rs13173459
crossref_primary_10_1016_j_earscirev_2024_104927
crossref_primary_10_1007_s12145_024_01480_7
crossref_primary_10_1016_j_compag_2024_109176
crossref_primary_10_3390_rs12020302
crossref_primary_10_1007_s13201_022_01790_5
crossref_primary_10_1016_j_fuel_2022_123229
crossref_primary_10_3389_fenvs_2022_1044706
crossref_primary_10_1016_j_autcon_2021_103719
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_1016_j_ecolind_2024_112736
crossref_primary_10_1111_ecog_05091
crossref_primary_10_1007_s10291_022_01307_2
crossref_primary_10_1016_j_cageo_2023_105361
crossref_primary_10_1016_j_autcon_2022_104541
crossref_primary_10_1016_j_chemer_2024_126128
crossref_primary_10_1016_j_agrformet_2021_108412
crossref_primary_10_1016_j_crm_2024_100686
crossref_primary_10_1016_j_jia_2023_02_027
crossref_primary_10_1016_j_isprsjprs_2020_06_023
crossref_primary_10_1007_s11227_024_05993_2
crossref_primary_10_3390_w14050717
crossref_primary_10_1080_10106049_2023_2245381
crossref_primary_10_1007_s10115_024_02202_7
crossref_primary_10_1109_MAP_2022_3143428
crossref_primary_10_1007_s11629_021_7254_9
crossref_primary_10_1007_s10999_023_09675_4
crossref_primary_10_3389_feart_2023_1285368
crossref_primary_10_3390_rs14061493
crossref_primary_10_1007_s41976_024_00103_5
crossref_primary_10_1038_s43856_024_00468_0
crossref_primary_10_3390_rs13194011
crossref_primary_10_1371_journal_pone_0271373
crossref_primary_10_1111_gcb_16400
crossref_primary_10_1016_j_scitotenv_2024_170765
crossref_primary_10_3390_ph17091120
crossref_primary_10_1057_s41599_022_01407_x
crossref_primary_10_1111_2041_210X_13650
crossref_primary_10_3390_f15060975
crossref_primary_10_47164_ijngc_v13i1_385
crossref_primary_10_2166_wpt_2023_144
crossref_primary_10_1007_s11042_023_15399_6
crossref_primary_10_1109_ACCESS_2024_3370442
crossref_primary_10_3390_rs16010017
crossref_primary_10_1080_15230406_2024_2422593
crossref_primary_10_1007_s42979_022_01348_x
crossref_primary_10_1016_j_eswa_2025_126718
crossref_primary_10_3390_info14010010
crossref_primary_10_3390_jmse12020356
crossref_primary_10_3390_f15050800
crossref_primary_10_3389_fgene_2021_667936
crossref_primary_10_1007_s10980_020_01013_9
crossref_primary_10_1016_j_scitotenv_2021_145935
crossref_primary_10_3233_JAD_240285
crossref_primary_10_3390_rs13173342
crossref_primary_10_1016_j_ufug_2023_127980
crossref_primary_10_1016_j_ecolmodel_2020_109030
crossref_primary_10_1007_s11030_024_10975_w
crossref_primary_10_3390_en15145245
Cites_doi 10.1007/s10531-017-1465-y
10.1080/01621459.1993.10476299
10.1111/jav.01238
10.1016/j.ecolmodel.2016.02.021
10.1007/BF00048036
10.1198/016214506000001437
10.1016/j.ecolmodel.2013.03.006
10.2307/1939924
10.1002/ecs2.1824
10.1109/ACCESS.2017.2779794
10.1007/s00374-003-0579-4
10.18637/jss.v077.i01
10.1071/AP08036
10.1007/s11004-013-9511-0
10.1002/sim.3310
10.1016/j.ecolmodel.2018.07.001
10.1111/j.1600-0706.2012.00299.x
10.18637/jss.v011.i09
10.1016/j.renene.2016.12.095
10.1111/ppa.12328
10.1111/cod.12706
10.1111/j.2007.0906-7590.05171.x
10.1016/j.quascirev.2005.05.001
10.1080/13658816.2017.1346255
10.1093/biomet/81.2.351
10.1093/icesjms/fsp105
10.1007/s10661-015-5049-6
10.1007/978-3-642-25566-3_40
10.1016/j.rse.2015.10.029
10.1016/j.ecolmodel.2009.10.033
10.1016/j.patrec.2017.01.007
10.1214/16-EJS1109
10.2307/2530946
10.1111/j.1466-8238.2006.00279.x
10.1016/j.geoderma.2014.09.019
10.1111/j.1365-2699.2008.01965.x
10.1111/ecog.02881
10.1016/j.geomorph.2016.03.015
10.1111/jvs.12038
10.1139/X09-131
10.1016/j.ecolmodel.2017.02.029
10.1007/s10115-017-1116-3
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.1108/EC-11-2015-0350
10.1016/j.ecolmodel.2017.08.017
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1007/s10618-014-0368-8
10.1007/s10346-015-0667-1
10.1016/j.rse.2012.07.005
10.2307/143144
10.1080/01621459.1983.10477973
10.1023/A:1008306431147
10.1016/j.quascirev.2008.12.020
10.1016/S0304-4076(00)00030-0
10.1016/j.envsoft.2017.12.001
10.1023/A:1010933404324
10.1111/ppa.12830
10.1111/j.1365-2656.2008.01390.x
10.1016/j.ecolmodel.2011.12.007
10.1109/LGRS.2017.2747222
10.1016/j.ecolmodel.2018.06.004
10.1162/089976600300015187
10.5194/nhess-5-853-2005
10.1016/j.tree.2003.10.013
10.1186/s13040-017-0154-4
10.5194/nhess-15-45-2015
10.1145/2641190.2641198
10.1111/j.2041-210X.2011.00170.x
10.1109/TSMC.1976.5408784
10.1371/journal.pone.0169748
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2019.06.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
EndPage 120
ExternalDocumentID 10_1016_j_ecolmodel_2019_06_002
S0304380019302145
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEN
SEW
VH1
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-83a80c13390a5fd9f22b24716d323a1de5cfcecb33c4d21fc08409ddc6ddb8cb3
IEDL.DBID .~1
ISSN 0304-3800
IngestDate Sat Sep 27 18:53:08 EDT 2025
Thu Oct 09 00:33:09 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Fri Feb 23 02:48:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial cross-validation
Spatial autocorrelation
Machine-learning
Spatial modeling
Hyperparameter tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-83a80c13390a5fd9f22b24716d323a1de5cfcecb33c4d21fc08409ddc6ddb8cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2271827586
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2271827586
crossref_citationtrail_10_1016_j_ecolmodel_2019_06_002
crossref_primary_10_1016_j_ecolmodel_2019_06_002
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_06_002
PublicationCentury 2000
PublicationDate 2019-08-24
PublicationDateYYYYMMDD 2019-08-24
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-24
  day: 24
PublicationDecade 2010
PublicationTitle Ecological modelling
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pohjankukka, Pahikkala, Nevalainen, Heikkonen (bib0340) 2017; 31
Muenchow, Dieker, Kluge, Kessler, von Wehrden (bib0300) 2018; 27
Probst, Wright, Boulesteix (bib0350) 2018
Halvorsen, Mazzoni, Dirksen, Næsset, Gobakken, Ohlson (bib0195) 2016; 328
Henelius, Puolam&rdquo;aki, Bostr&ldquo;om, Asker, Papapetrou (bib0205) 2014; 28
Roberts, Bahn, Ciuti, Boyce, Elith, Guillera-Arroita, Hauenstein, Lahoz-Monfort, Schr&ldquo;oder, Thuiller, Warton, Wintle, Hartig, Dormann (bib0380) 2017; 40
Shao (bib0415) 1993; 88
Iturritxa, Mesanza, Brenning (bib0225) 2014; 64
Ganley, Watt, Manning, Iturritxa (bib0155) 2009; 39
Smoliński, Radtke (bib0420) 2016
Jones, Schonlau, Welch (bib0245) 1998; 13
Micheletti, Foresti, Robert, Leuenberger, Pedrazzini, Jaboyedoff, Kanevski (bib0295) 2013; 46
Peña, Brenning (bib0335) 2015; 171
Schratz, Muenchow, Iturritxa, Richter, Brenning (bib0410) 2019
Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bib0210) 2017; 12
Bengio (bib0025) 2000; 12
Múgica, Murillo, Ikazuriaga, Peña, Rodríguez, Díaz (bib0310) 2016
Yang, Kim, Park, Song, Kim (bib0505) 2017; 34
Dormann, McPherson, Araújo, Bivand, Bolliger, Carl, Davies, Hirzel, Jetz, Kissling, K&rdquo;uhn, Ohlemüller, Peres-Neto, Reineking, Schr&rdquo;oder, Schurr, Wilson (bib0125) 2007; 30
Breiman (bib0050) 2001; 45
Vanschoren, van Rijn, Bischl, Torgo (bib0450) 2014; 15
Watanabe, Ortega (bib0470) 2014; 271
Elith, Leathwick, Hastie (bib0145) 2008; 77
Brenning (bib0055) 2005; 5
Baasch, Tyre, Millspaugh, Hygnstrom, Vercauteren (bib0015) 2010; 221
Birattari, St&ldquo;utzle, Paquete, Varrentrapp (bib0035) 2002
Jarnevich, Talbert, Morisette, Aldridge, Brown, Kumar, Manier, Talbert, Holcombe (bib0235) 2017; 363
Mets, Armenteras, Dávalos (bib0285) 2017; 8
IPCC (bib0220) 2013
Bui, Tuan, Klempe, Pradhan, Revhaug (bib0095) 2015; 13
Brenning, Lausen (bib0065) 2008; 27
Brungard, Boettinger, Duniway, Wills, Edwards (bib0090) 2015; 239–240
De’Ath (bib0115) 2007; 88
Dudani (bib0135) 1976; 6
Brenning (bib0060) 2012
Richter (bib0370) 2017
European Commission (bib0150) 2010
Duarte, Wainer (bib0130) 2017; 88
Geiß, Pelizari, Schrade, Brenning, Taubenb&ldquo;ock (bib0165) 2017; 14
Brochu, Cora, de Freitas (bib0085) 2010
Gneiting, Raftery (bib0175) 2007; 102
Stelmaszczuk-Górska, Thiel, Schmullius (bib0435) 2017
Bergstra, Bengio (bib0030) 2012; 13
Legendre, Fortin (bib0270) 1989; 80
James, Witten, Hastie, Tibshirani (bib0230) 2013
Racine (bib0365) 2000; 99
Cliff, Ord (bib0110) 1970; 46
Telford, Birks (bib0440) 2005; 24
Schratz (bib0405) 2016
Muenchow, Feilhauer, Br&rdquo;auning, Rodríguez, Bayer, Rodríguez, Wehrden (bib0305) 2013; 24
Dormann (bib0120) 2007; 16
Adler, Gefeller, Uter (bib0010) 2017; 76
Wright, Ziegler (bib0500) 2017; 77
Ruß, Kruse (bib0395) 2010
Probst, Bischl, Boulesteix (bib0345) 2018
Adler, Falk, Friedler, Nix, Rybeck, Scheidegger, Smith, Venkatasubramanian (bib0005) 2018; 54
Vapnik (bib0455) 1998
Kohavi (bib0255) 1995; vol. 14
Malkomes, Schaff, Garnett (bib0280) 2016
Schliep, Hechenbichler (bib0400) 2016
Voyant, Notton, Kalogirou, Nivet, Paoli, Motte, Fouilloy (bib0465) 2017; 105
Rojas-Dominguez, Padierna, Valadez, Puga-Soberanes, Fraire (bib0385) 2018; 6
Bischl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio, Jones (bib0040) 2016; 17
Brenning, Schwinn, Ruiz-Páez, Muenchow (bib0075) 2015; 15
Ruß, Brenning (bib0390) 2010
Goetz, Cabrera, Brenning, Heiss, Leopold (bib0180) 2015; vol. 2
Olson, La Cava, Orzechowski, Urbanowicz, Moore (bib0330) 2017; 10
Brier (bib0080) 1950; 78
Loehle (bib0275) 2018; 384
Wenger, Olden (bib0475) 2012; 3
Efron (bib0140) 1983; 78
Heim, Wright, Chang, Carnegie, Pegg, Lancaster, Falster, Oldeland (bib0200) 2018; 67
Karatzoglou, Smola, Hornik, Zeileis (bib0250) 2004; 11
Murase, Nagashima, Yonezaki, Matsukura, Kitakado (bib0315) 2009; 66
Vorpahl, Elsenbeer, M&rdquo;arker, Schr&ldquo;oder (bib0460) 2012; 239
Wingfield, Hammerbacher, Ganley, Steenkamp, Gordon, Wingfield, Coutinho (bib0485) 2008; 37
Gordon, Breiman, Friedman, Olshen, Stone (bib0185) 1984; 40
Bahn, McGill (bib0020) 2012; 122
Meyer, Reudenbach, Hengl, Katurji, Nauss (bib0290) 2018; 101
Ridgeway (bib0375) 2017
Bischl, Richter, Bossek, Horn, Thomas, Lang (bib0045) 2017
Johnson, Omland (bib0240) 2004; 19
Naghibi, Pourghasemi, Dixon (bib0320) 2016; 188
R Core Team (bib0360) 2019
Grotzinger, Jordan (bib0190) 2016
Wood (bib0495) 2017
Kuhn, Johnson (bib0260) 2013
Steger, Brenning, Bell, Petschko, Glade (bib0430) 2016; 262
Byrne (bib0105) 2016; 10
Burman, Chow, Nolan (bib0100) 1994; 81
Telford, Birks (bib0445) 2009; 28
Brenning, Long, Fieguth (bib0070) 2012; 125
Wieland, Kerkow, Fr&rdquo;uh, Kampen, Walther (bib0480) 2017; 352
Legendre (bib0265) 1993; 74
GeoEuskadi (bib0170) 1999
Ninyerola, Pons, Roure (bib0325) 2005
Srivastava, Griess, Padalia (bib0425) 2018; 385
Wollan, Bakkestuen, Kauserud, Gulden, Halvorsen (bib0490) 2008; 35
Ganuza, Almendros (bib0160) 2003; 37
Quillfeldt, Engler, Silk, Phillips (bib0355) 2017
Hutter, Hoos, Leyton-Brown (bib0215) 2011
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bib0510) 2015; 13
Voyant (10.1016/j.ecolmodel.2019.06.002_bib0465) 2017; 105
Wieland (10.1016/j.ecolmodel.2019.06.002_bib0480) 2017; 352
Peña (10.1016/j.ecolmodel.2019.06.002_bib0335) 2015; 171
Brier (10.1016/j.ecolmodel.2019.06.002_bib0080) 1950; 78
Halvorsen (10.1016/j.ecolmodel.2019.06.002_bib0195) 2016; 328
Murase (10.1016/j.ecolmodel.2019.06.002_bib0315) 2009; 66
Olson (10.1016/j.ecolmodel.2019.06.002_bib0330) 2017; 10
R Core Team (10.1016/j.ecolmodel.2019.06.002_bib0360) 2019
Watanabe (10.1016/j.ecolmodel.2019.06.002_bib0470) 2014; 271
Pohjankukka (10.1016/j.ecolmodel.2019.06.002_bib0340) 2017; 31
Kohavi (10.1016/j.ecolmodel.2019.06.002_bib0255) 1995; vol. 14
Muenchow (10.1016/j.ecolmodel.2019.06.002_bib0300) 2018; 27
Richter (10.1016/j.ecolmodel.2019.06.002_bib0370) 2017
Muenchow (10.1016/j.ecolmodel.2019.06.002_bib0305) 2013; 24
Wood (10.1016/j.ecolmodel.2019.06.002_bib0495) 2017
Naghibi (10.1016/j.ecolmodel.2019.06.002_bib0320) 2016; 188
Wenger (10.1016/j.ecolmodel.2019.06.002_bib0475) 2012; 3
Loehle (10.1016/j.ecolmodel.2019.06.002_bib0275) 2018; 384
Steger (10.1016/j.ecolmodel.2019.06.002_bib0430) 2016; 262
Birattari (10.1016/j.ecolmodel.2019.06.002_bib0035) 2002
Cliff (10.1016/j.ecolmodel.2019.06.002_bib0110) 1970; 46
Wright (10.1016/j.ecolmodel.2019.06.002_bib0500) 2017; 77
Youssef (10.1016/j.ecolmodel.2019.06.002_bib0510) 2015; 13
Brenning (10.1016/j.ecolmodel.2019.06.002_bib0055) 2005; 5
Dudani (10.1016/j.ecolmodel.2019.06.002_bib0135) 1976; 6
Hengl (10.1016/j.ecolmodel.2019.06.002_bib0210) 2017; 12
Brungard (10.1016/j.ecolmodel.2019.06.002_bib0090) 2015; 239–240
Srivastava (10.1016/j.ecolmodel.2019.06.002_bib0425) 2018; 385
Probst (10.1016/j.ecolmodel.2019.06.002_bib0350) 2018
Hutter (10.1016/j.ecolmodel.2019.06.002_bib0215) 2011
Múgica (10.1016/j.ecolmodel.2019.06.002_bib0310) 2016
Duarte (10.1016/j.ecolmodel.2019.06.002_bib0130) 2017; 88
Rojas-Dominguez (10.1016/j.ecolmodel.2019.06.002_bib0385) 2018; 6
Bahn (10.1016/j.ecolmodel.2019.06.002_bib0020) 2012; 122
Bischl (10.1016/j.ecolmodel.2019.06.002_bib0040) 2016; 17
Vorpahl (10.1016/j.ecolmodel.2019.06.002_bib0460) 2012; 239
Smoliński (10.1016/j.ecolmodel.2019.06.002_bib0420) 2016
Dormann (10.1016/j.ecolmodel.2019.06.002_bib0120) 2007; 16
Mets (10.1016/j.ecolmodel.2019.06.002_bib0285) 2017; 8
Karatzoglou (10.1016/j.ecolmodel.2019.06.002_bib0250) 2004; 11
Wingfield (10.1016/j.ecolmodel.2019.06.002_bib0485) 2008; 37
Bergstra (10.1016/j.ecolmodel.2019.06.002_bib0030) 2012; 13
Schratz (10.1016/j.ecolmodel.2019.06.002_bib0405) 2016
Brenning (10.1016/j.ecolmodel.2019.06.002_bib0070) 2012; 125
Schratz (10.1016/j.ecolmodel.2019.06.002_bib0410) 2019
Schliep (10.1016/j.ecolmodel.2019.06.002_bib0400) 2016
GeoEuskadi (10.1016/j.ecolmodel.2019.06.002_bib0170) 1999
James (10.1016/j.ecolmodel.2019.06.002_bib0230) 2013
Grotzinger (10.1016/j.ecolmodel.2019.06.002_bib0190) 2016
Adler (10.1016/j.ecolmodel.2019.06.002_bib0010) 2017; 76
Telford (10.1016/j.ecolmodel.2019.06.002_bib0445) 2009; 28
Jarnevich (10.1016/j.ecolmodel.2019.06.002_bib0235) 2017; 363
Wollan (10.1016/j.ecolmodel.2019.06.002_bib0490) 2008; 35
Probst (10.1016/j.ecolmodel.2019.06.002_bib0345) 2018
Quillfeldt (10.1016/j.ecolmodel.2019.06.002_bib0355) 2017
Ninyerola (10.1016/j.ecolmodel.2019.06.002_bib0325) 2005
De’Ath (10.1016/j.ecolmodel.2019.06.002_bib0115) 2007; 88
Efron (10.1016/j.ecolmodel.2019.06.002_bib0140) 1983; 78
IPCC (10.1016/j.ecolmodel.2019.06.002_bib0220) 2013
Ruß (10.1016/j.ecolmodel.2019.06.002_bib0390) 2010
Racine (10.1016/j.ecolmodel.2019.06.002_bib0365) 2000; 99
Geiß (10.1016/j.ecolmodel.2019.06.002_bib0165) 2017; 14
Gordon (10.1016/j.ecolmodel.2019.06.002_bib0185) 1984; 40
Roberts (10.1016/j.ecolmodel.2019.06.002_bib0380) 2017; 40
European Commission (10.1016/j.ecolmodel.2019.06.002_bib0150) 2010
Legendre (10.1016/j.ecolmodel.2019.06.002_bib0270) 1989; 80
Johnson (10.1016/j.ecolmodel.2019.06.002_bib0240) 2004; 19
Baasch (10.1016/j.ecolmodel.2019.06.002_bib0015) 2010; 221
Gneiting (10.1016/j.ecolmodel.2019.06.002_bib0175) 2007; 102
Vapnik (10.1016/j.ecolmodel.2019.06.002_bib0455) 1998
Kuhn (10.1016/j.ecolmodel.2019.06.002_bib0260) 2013
Malkomes (10.1016/j.ecolmodel.2019.06.002_bib0280) 2016
Shao (10.1016/j.ecolmodel.2019.06.002_bib0415) 1993; 88
Ridgeway (10.1016/j.ecolmodel.2019.06.002_bib0375) 2017
Brenning (10.1016/j.ecolmodel.2019.06.002_bib0075) 2015; 15
Henelius (10.1016/j.ecolmodel.2019.06.002_bib0205) 2014; 28
Brenning (10.1016/j.ecolmodel.2019.06.002_bib0060) 2012
Yang (10.1016/j.ecolmodel.2019.06.002_bib0505) 2017; 34
Ganley (10.1016/j.ecolmodel.2019.06.002_bib0155) 2009; 39
Brenning (10.1016/j.ecolmodel.2019.06.002_bib0065) 2008; 27
Byrne (10.1016/j.ecolmodel.2019.06.002_bib0105) 2016; 10
Micheletti (10.1016/j.ecolmodel.2019.06.002_bib0295) 2013; 46
Brochu (10.1016/j.ecolmodel.2019.06.002_bib0085) 2010
Elith (10.1016/j.ecolmodel.2019.06.002_bib0145) 2008; 77
Bengio (10.1016/j.ecolmodel.2019.06.002_bib0025) 2000; 12
Ruß (10.1016/j.ecolmodel.2019.06.002_bib0395) 2010
Bischl (10.1016/j.ecolmodel.2019.06.002_bib0045) 2017
Burman (10.1016/j.ecolmodel.2019.06.002_bib0100) 1994; 81
Adler (10.1016/j.ecolmodel.2019.06.002_bib0005) 2018; 54
Vanschoren (10.1016/j.ecolmodel.2019.06.002_bib0450) 2014; 15
Iturritxa (10.1016/j.ecolmodel.2019.06.002_bib0225) 2014; 64
Breiman (10.1016/j.ecolmodel.2019.06.002_bib0050) 2001; 45
Stelmaszczuk-Górska (10.1016/j.ecolmodel.2019.06.002_bib0435) 2017
Dormann (10.1016/j.ecolmodel.2019.06.002_bib0125) 2007; 30
Bui (10.1016/j.ecolmodel.2019.06.002_bib0095) 2015; 13
Legendre (10.1016/j.ecolmodel.2019.06.002_bib0265) 1993; 74
Meyer (10.1016/j.ecolmodel.2019.06.002_bib0290) 2018; 101
Heim (10.1016/j.ecolmodel.2019.06.002_bib0200) 2018; 67
Goetz (10.1016/j.ecolmodel.2019.06.002_bib0180) 2015; vol. 2
Jones (10.1016/j.ecolmodel.2019.06.002_bib0245) 1998; 13
Ganuza (10.1016/j.ecolmodel.2019.06.002_bib0160) 2003; 37
Telford (10.1016/j.ecolmodel.2019.06.002_bib0440) 2005; 24
References_xml – volume: 105
  start-page: 569
  year: 2017
  end-page: 582
  ident: bib0465
  article-title: Machine learning methods for solar radiation forecasting: a review
  publication-title: Renew. Energy
– volume: 76
  start-page: 247
  year: 2017
  end-page: 251
  ident: bib0010
  article-title: Positive reactions to pairs of allergens associated with polysensitization: analysis of IVDK data with machine-learning techniques
  publication-title: Contact Dermat.
– year: 2019
  ident: bib0360
  article-title: R: A Language and Environment for Statistical Computing
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bib0145
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– year: 1999
  ident: bib0170
  article-title: Litologia y Permeabilidad
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0050
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 239–240
  start-page: 68
  year: 2015
  end-page: 83
  ident: bib0090
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 328
  start-page: 108
  year: 2016
  end-page: 118
  ident: bib0195
  article-title: How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?
  publication-title: Ecol. Model.
– volume: 39
  start-page: 2246
  year: 2009
  end-page: 2256
  ident: bib0155
  article-title: A global climatic risk assessment of pitch canker disease
  publication-title: Can. J. For. Res.
– volume: 262
  start-page: 8
  year: 2016
  end-page: 23
  ident: bib0430
  article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps
  publication-title: Geomorphology
– start-page: 184
  year: 2010
  end-page: 195
  ident: bib0390
  article-title: Spatial variable importance assessment for yield prediction in precision agriculture
  publication-title: Advances in Intelligent Data Analysis IX Lecture Notes in Computer Science
– year: 2010
  ident: bib0150
  article-title: ‘Map of Soil pH in Europe’, Land Resources Management Unit
– start-page: 1
  year: 2013
  end-page: 30
  ident: bib0220
  article-title: Summary for policymakers
  publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Book Section SPM
– year: 2017
  ident: bib0495
  article-title: Generalized Additive Models: An Introduction with R
– volume: 13
  start-page: 361
  year: 2015
  end-page: 378
  ident: bib0095
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– year: 2017
  ident: bib0045
  article-title: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions
– volume: 74
  start-page: 1659
  year: 1993
  end-page: 1673
  ident: bib0265
  article-title: Spatial autocorrelation: trouble or new paradigm?
  publication-title: Ecology
– volume: 122
  start-page: 321
  year: 2012
  end-page: 331
  ident: bib0020
  article-title: Testing the predictive performance of distribution models
  publication-title: Oikos
– volume: 80
  start-page: 107
  year: 1989
  end-page: 138
  ident: bib0270
  article-title: Spatial pattern and ecological analysis
  publication-title: Vegetatio
– volume: 8
  start-page: e01824
  year: 2017
  ident: bib0285
  article-title: Spatial autocorrelation reduces model precision and predictive power in deforestation analyses
  publication-title: Ecosphere
– volume: 14
  start-page: 2008
  year: 2017
  end-page: 2012
  ident: bib0165
  article-title: On the effect of spatially non-disjoint training and test samples on estimated model generalization capabilities in supervised classification with spatial features
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 6
  start-page: 7164
  year: 2018
  end-page: 7176
  ident: bib0385
  article-title: Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis
  publication-title: IEEE Access
– year: 2018
  ident: bib0350
  article-title: Hyperparameters and Tuning Strategies for Random Forest
  publication-title: JMLR
– volume: 171
  start-page: 234
  year: 2015
  end-page: 244
  ident: bib0335
  article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile
  publication-title: Remote Sens. Environ.
– volume: 188
  start-page: 44
  year: 2016
  ident: bib0320
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
– year: 2018
  ident: bib0345
  article-title: Tunability: Importance of Hyperparameters of Machine Learning Algorithms
  publication-title: JMLR
– volume: 34
  start-page: 2054
  year: 2017
  end-page: 2062
  ident: bib0505
  article-title: Hyperparameter tuning for hidden unit conditional random fields
  publication-title: Eng. Comput.
– volume: 64
  start-page: 880
  year: 2014
  end-page: 889
  ident: bib0225
  article-title: Spatial analysis of the risk of major forest diseases in Monterey pine plantations
  publication-title: Plant Pathol.
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: bib0175
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
– volume: 54
  start-page: 95
  year: 2018
  end-page: 122
  ident: bib0005
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowl. Inf. Syst.
– volume: 67
  start-page: 1114
  year: 2018
  end-page: 1121
  ident: bib0200
  article-title: Detecting myrtle rust (
  publication-title: Plant Pathol.
– year: 2016
  ident: bib0405
  article-title: Modeling the Spatial Distribution of Hail Damage in Pine Plantations of Northern Spain as a Major Risk Factor for Forest Disease (Ph.D. thesis)
– volume: 271
  start-page: 113
  year: 2014
  end-page: 131
  ident: bib0470
  article-title: Dynamic energy accounting of water and carbon ecosystem services: a model to simulate the impacts of land-use change
  publication-title: Ecol. Model.
– volume: 46
  start-page: 33
  year: 2013
  end-page: 57
  ident: bib0295
  article-title: Machine learning feature selection methods for landslide susceptibility mapping
  publication-title: Math. Geosci.
– volume: 6
  start-page: 325
  year: 1976
  end-page: 327
  ident: bib0135
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0030
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2005
  ident: bib0325
  article-title: Atlas Climático Digital de Lapenínsula Ibérica. Metodología y Aplicaciones En Bioclimatología y Geobotánica
– volume: 15
  start-page: 49
  year: 2014
  end-page: 60
  ident: bib0450
  article-title: OpenML: networked science in machine learning
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  ident: bib0080
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
– volume: 27
  start-page: 4515
  year: 2008
  end-page: 4531
  ident: bib0065
  article-title: Estimating error rates in the classification of paired organs
  publication-title: Stat. Med.
– volume: 99
  start-page: 39
  year: 2000
  end-page: 61
  ident: bib0365
  article-title: Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation
  publication-title: J. Econom.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0245
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– volume: 40
  start-page: 874
  year: 1984
  ident: bib0185
  article-title: Classification and regression trees
  publication-title: Biometrics
– start-page: 113
  year: 2016
  end-page: 144
  ident: bib0190
  article-title: Sedimente und Sedimentgesteine
  publication-title: Press/Siever Allgemeine Geologie
– volume: 77
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0500
  article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
– year: 2017
  ident: bib0370
  article-title: mlrHyperopt: Easy Hyperparameter Optimization with mlr and mlrMBO
– volume: 384
  start-page: 23
  year: 2018
  end-page: 29
  ident: bib0275
  article-title: Disequilibrium and relaxation times for species responses to climate change
  publication-title: Ecol. Model.
– year: 2017
  ident: bib0355
  article-title: Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses
  publication-title: J. Avian Biol.
– volume: 101
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0290
  article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation
  publication-title: Environ. Model. Softw.
– volume: 28
  start-page: 1503
  year: 2014
  end-page: 1529
  ident: bib0205
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data Min. Knowl. Discov.
– volume: 10
  year: 2017
  ident: bib0330
  article-title: PMLB: A large benchmark suite for machine learning evaluation and comparison
  publication-title: BioData Min.
– volume: 35
  start-page: 2298
  year: 2008
  end-page: 2310
  ident: bib0490
  article-title: Modelling and predicting fungal distribution patterns using herbarium data
  publication-title: J. Biogeogr.
– volume: 28
  start-page: 1309
  year: 2009
  end-page: 1316
  ident: bib0445
  article-title: Evaluation of transfer functions in spatially structured environments
  publication-title: Quat. Sci. Rev.
– volume: 40
  start-page: 913
  year: 2017
  end-page: 929
  ident: bib0380
  article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
– volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  ident: bib0250
  article-title: Kernlab – an S4 package for kernel methods in R
  publication-title: J. Stat. Softw.
– start-page: 2900
  year: 2016
  end-page: 2908
  ident: bib0280
  article-title: Bayesian optimization for automated model selection
  publication-title: Advances in Neural Information Processing Systems 29
– volume: 13
  start-page: 1315
  year: 2015
  end-page: 1318
  ident: bib0510
  article-title: Erratum to: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
– volume: 30
  start-page: 609
  year: 2007
  end-page: 628
  ident: bib0125
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
  publication-title: Ecography
– volume: 12
  start-page: e0169748
  year: 2017
  ident: bib0210
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: vol. 14
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: bib0255
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: IJCAI
– volume: 37
  start-page: 319
  year: 2008
  ident: bib0485
  article-title: Pitch canker caused by
  publication-title: Australas. Plant Pathol.
– year: 2019
  ident: bib0410
  article-title: Analyzing the importance of spatial autocorrelation in hyperparameter tuning and performance estimation of machine-learning algorithms for spatial data
– volume: 31
  start-page: 2001
  year: 2017
  end-page: 2019
  ident: bib0340
  article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation
  publication-title: Int. J. Geogr. Inf. Sci.
– year: 2010
  ident: bib0085
  article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
– start-page: 450
  year: 2010
  end-page: 463
  ident: bib0395
  article-title: Regression models for spatial data: an example from precision agriculture
  publication-title: Advances in Data Mining. Applications and Theoretical Aspects
– year: 2013
  ident: bib0230
  article-title: An Introduction to Statistical Learning
– volume: 88
  start-page: 6
  year: 2017
  end-page: 11
  ident: bib0130
  article-title: Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters
  publication-title: Pattern Recogn. Lett.
– volume: 81
  start-page: 351
  year: 1994
  end-page: 358
  ident: bib0100
  article-title: A cross-validatory method for dependent data
  publication-title: Biometrika
– volume: 24
  start-page: 1154
  year: 2013
  end-page: 1166
  ident: bib0305
  article-title: Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability
  publication-title: J. Veg. Sci.
– start-page: fsw136
  year: 2016
  ident: bib0420
  article-title: Spatial prediction of demersal fish diversity in the Baltic Sea: comparison of machine learning and regression-based techniques
  publication-title: ICES J. Mar. Sci.: J. Conseil
– volume: 15
  start-page: 45
  year: 2015
  end-page: 57
  ident: bib0075
  article-title: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib0040
  article-title: mlr: machine learning in R
  publication-title: J. Mach. Learn. Res.
– volume: 352
  start-page: 108
  year: 2017
  end-page: 112
  ident: bib0480
  article-title: Automated feature selection for a machine learning approach toward modeling a mosquito distribution
  publication-title: Ecol. Model.
– volume: 88
  start-page: 243
  year: 2007
  end-page: 251
  ident: bib0115
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
– year: 2016
  ident: bib0310
  article-title: Libro Blanco Del Sector de La Madera: Actividad Forestal e Industria de Transformación de La Madera. Evolución Reciente y Perspectivas En Euskadi
  publication-title: Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, Servicio Central de Publicaciones del Gobierno VAsco, C/Donostia-San Sebastián 1, 01010 Vitoria-Gasteiz
– year: 2012
  ident: bib0060
  article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest
  publication-title: 2012 IEEE International Geoscience and Remote Sensing Symposium
– volume: 3
  start-page: 260
  year: 2012
  end-page: 267
  ident: bib0475
  article-title: Assessing transferability of ecological models: an underappreciated aspect of statistical validation
  publication-title: Methods Ecol. Evol.
– start-page: 11
  year: 2002
  end-page: 18
  ident: bib0035
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation
– volume: 19
  start-page: 101
  year: 2004
  end-page: 108
  ident: bib0240
  article-title: Model selection in ecology and evolution
  publication-title: Trends Ecol. Evol.
– volume: 239
  start-page: 27
  year: 2012
  end-page: 39
  ident: bib0460
  article-title: How can statistical models help to determine driving factors of landslides?
  publication-title: Ecol. Model.
– year: 2017
  ident: bib0375
  article-title: gbm: Generalized Boosted Regression Models
– start-page: 507
  year: 2011
  end-page: 523
  ident: bib0215
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Lecture Notes in Computer Science
– volume: 10
  start-page: 380
  year: 2016
  end-page: 393
  ident: bib0105
  article-title: A note on the use of empirical AUC for evaluating probabilistic forecasts
  publication-title: Electron. J. Stat.
– year: 2013
  ident: bib0260
  article-title: Applied Predictive Modeling
– year: 2016
  ident: bib0400
  article-title: kknn: Weighted k-Nearest Neighbors
– volume: 37
  start-page: 154
  year: 2003
  end-page: 162
  ident: bib0160
  article-title: Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables
  publication-title: Biol. Fertil. Soils
– volume: 46
  start-page: 269
  year: 1970
  ident: bib0110
  article-title: Spatial autocorrelation: a review of existing and new measures with applications
  publication-title: Econ. Geogr.
– volume: 16
  start-page: 129
  year: 2007
  end-page: 138
  ident: bib0120
  article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data
  publication-title: Glob. Ecol. Biogeogr.
– volume: 27
  start-page: 273
  year: 2018
  end-page: 285
  ident: bib0300
  article-title: A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities
  publication-title: Biodivers. Conserv.
– start-page: 55
  year: 1998
  end-page: 85
  ident: bib0455
  article-title: The support vector method of function estimation
  publication-title: Nonlinear Modeling
– volume: 12
  start-page: 1889
  year: 2000
  end-page: 1900
  ident: bib0025
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
– volume: 363
  start-page: 48
  year: 2017
  end-page: 56
  ident: bib0235
  article-title: Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: an example with background selection
  publication-title: Ecol. Model.
– volume: 66
  start-page: 1417
  year: 2009
  end-page: 1424
  ident: bib0315
  article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan
  publication-title: ICES J. Mar. Sci.
– volume: vol. 2
  start-page: 927
  year: 2015
  end-page: 930
  ident: bib0180
  article-title: Modelling landslide susceptibility for a large geographical area using weights of evidence in lower Austria, Austria
  publication-title: Engineering Geology for Society and Territory
– volume: 88
  start-page: 486
  year: 1993
  ident: bib0415
  article-title: Linear model selection by cross-validation
  publication-title: J. Am. Stat. Assoc.
– volume: 5
  start-page: 853
  year: 2005
  end-page: 862
  ident: bib0055
  article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation
  publication-title: Nat. Hazards Earth Syst. Sci.
– start-page: 33
  year: 2017
  end-page: 55
  ident: bib0435
  article-title: Remote sensing for aboveground biomass estimation in boreal forests
  publication-title: Earth Observation for Land and Emergency Monitoring
– volume: 385
  start-page: 35
  year: 2018
  end-page: 44
  ident: bib0425
  article-title: Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas
  publication-title: Ecol. Model.
– volume: 78
  start-page: 316
  year: 1983
  ident: bib0140
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J. Am. Stat. Assoc.
– volume: 125
  start-page: 227
  year: 2012
  end-page: 237
  ident: bib0070
  article-title: Detecting rock glacier flow structures using Gabor filters and IKONOS imagery
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 2173
  year: 2005
  end-page: 2179
  ident: bib0440
  article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance
  publication-title: Quat. Sci. Rev.
– volume: 221
  start-page: 565
  year: 2010
  end-page: 574
  ident: bib0015
  article-title: An evaluation of three statistical methods used to model resource selection
  publication-title: Ecol. Model.
– volume: 27
  start-page: 273
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0300
  article-title: A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-017-1465-y
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0370
– volume: 88
  start-page: 486
  year: 1993
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0415
  article-title: Linear model selection by cross-validation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476299
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0355
  article-title: Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses
  publication-title: J. Avian Biol.
  doi: 10.1111/jav.01238
– volume: 328
  start-page: 108
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0195
  article-title: How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2016.02.021
– volume: 80
  start-page: 107
  year: 1989
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0270
  article-title: Spatial pattern and ecological analysis
  publication-title: Vegetatio
  doi: 10.1007/BF00048036
– volume: vol. 14
  start-page: 1137
  year: 1995
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0255
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 102
  start-page: 359
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0175
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000001437
– volume: 271
  start-page: 113
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0470
  article-title: Dynamic energy accounting of water and carbon ecosystem services: a model to simulate the impacts of land-use change
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.03.006
– volume: 74
  start-page: 1659
  year: 1993
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0265
  article-title: Spatial autocorrelation: trouble or new paradigm?
  publication-title: Ecology
  doi: 10.2307/1939924
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0045
– volume: 8
  start-page: e01824
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0285
  article-title: Spatial autocorrelation reduces model precision and predictive power in deforestation analyses
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1824
– volume: 6
  start-page: 7164
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0385
  article-title: Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779794
– volume: 37
  start-page: 154
  year: 2003
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0160
  article-title: Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-003-0579-4
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0500
  article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0030
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0260
– volume: 37
  start-page: 319
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0485
  article-title: Pitch canker caused by Fusarium circinatum – a growing threat to pine plantations and forests worldwide
  publication-title: Australas. Plant Pathol.
  doi: 10.1071/AP08036
– volume: 46
  start-page: 33
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0295
  article-title: Machine learning feature selection methods for landslide susceptibility mapping
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-013-9511-0
– volume: 27
  start-page: 4515
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0065
  article-title: Estimating error rates in the classification of paired organs
  publication-title: Stat. Med.
  doi: 10.1002/sim.3310
– volume: 385
  start-page: 35
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0425
  article-title: Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2018.07.001
– start-page: 113
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0190
  article-title: Sedimente und Sedimentgesteine
– volume: 122
  start-page: 321
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0020
  article-title: Testing the predictive performance of distribution models
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2012.00299.x
– volume: 11
  start-page: 1
  year: 2004
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0250
  article-title: Kernlab – an S4 package for kernel methods in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v011.i09
– volume: 105
  start-page: 569
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0465
  article-title: Machine learning methods for solar radiation forecasting: a review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.095
– start-page: fsw136
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0420
  article-title: Spatial prediction of demersal fish diversity in the Baltic Sea: comparison of machine learning and regression-based techniques
  publication-title: ICES J. Mar. Sci.: J. Conseil
– volume: 64
  start-page: 880
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0225
  article-title: Spatial analysis of the risk of major forest diseases in Monterey pine plantations
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12328
– volume: 76
  start-page: 247
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0010
  article-title: Positive reactions to pairs of allergens associated with polysensitization: analysis of IVDK data with machine-learning techniques
  publication-title: Contact Dermat.
  doi: 10.1111/cod.12706
– year: 1999
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0170
– volume: 30
  start-page: 609
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0125
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
  publication-title: Ecography
  doi: 10.1111/j.2007.0906-7590.05171.x
– start-page: 55
  year: 1998
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0455
  article-title: The support vector method of function estimation
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0495
– volume: 24
  start-page: 2173
  year: 2005
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0440
  article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2005.05.001
– year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0060
  article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest
– volume: 31
  start-page: 2001
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0340
  article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1346255
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0040
  article-title: mlr: machine learning in R
  publication-title: J. Mach. Learn. Res.
– start-page: 450
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0395
  article-title: Regression models for spatial data: an example from precision agriculture
– volume: 81
  start-page: 351
  year: 1994
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0100
  article-title: A cross-validatory method for dependent data
  publication-title: Biometrika
  doi: 10.1093/biomet/81.2.351
– volume: 66
  start-page: 1417
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0315
  article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsp105
– volume: 188
  start-page: 44
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0320
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-5049-6
– start-page: 507
  year: 2011
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0215
  article-title: Sequential model-based optimization for general algorithm configuration
  doi: 10.1007/978-3-642-25566-3_40
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0375
– volume: 171
  start-page: 234
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0335
  article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.029
– volume: 221
  start-page: 565
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0015
  article-title: An evaluation of three statistical methods used to model resource selection
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.10.033
– volume: 88
  start-page: 6
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0130
  article-title: Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.01.007
– volume: 10
  start-page: 380
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0105
  article-title: A note on the use of empirical AUC for evaluating probabilistic forecasts
  publication-title: Electron. J. Stat.
  doi: 10.1214/16-EJS1109
– year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0405
– start-page: 11
  year: 2002
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0035
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation
– start-page: 184
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0390
  article-title: Spatial variable importance assessment for yield prediction in precision agriculture
– volume: 40
  start-page: 874
  year: 1984
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0185
  article-title: Classification and regression trees
  publication-title: Biometrics
  doi: 10.2307/2530946
– start-page: 1
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0220
  article-title: Summary for policymakers
– year: 2019
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0360
– volume: 16
  start-page: 129
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0120
  article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2006.00279.x
– year: 2005
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0325
– volume: 239–240
  start-page: 68
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0090
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0400
– volume: 35
  start-page: 2298
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0490
  article-title: Modelling and predicting fungal distribution patterns using herbarium data
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2008.01965.x
– volume: 40
  start-page: 913
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0380
  article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
  doi: 10.1111/ecog.02881
– volume: 262
  start-page: 8
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0430
  article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.015
– volume: 24
  start-page: 1154
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0305
  article-title: Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability
  publication-title: J. Veg. Sci.
  doi: 10.1111/jvs.12038
– volume: 39
  start-page: 2246
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0155
  article-title: A global climatic risk assessment of pitch canker disease
  publication-title: Can. J. For. Res.
  doi: 10.1139/X09-131
– volume: 352
  start-page: 108
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0480
  article-title: Automated feature selection for a machine learning approach toward modeling a mosquito distribution
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2017.02.029
– volume: 13
  start-page: 361
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0095
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: vol. 2
  start-page: 927
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0180
  article-title: Modelling landslide susceptibility for a large geographical area using weights of evidence in lower Austria, Austria
– volume: 54
  start-page: 95
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0005
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1116-3
– volume: 88
  start-page: 243
  year: 2007
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0115
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0310
  article-title: Libro Blanco Del Sector de La Madera: Actividad Forestal e Industria de Transformación de La Madera. Evolución Reciente y Perspectivas En Euskadi
  publication-title: Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, Servicio Central de Publicaciones del Gobierno VAsco, C/Donostia-San Sebastián 1, 01010 Vitoria-Gasteiz
– volume: 34
  start-page: 2054
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0505
  article-title: Hyperparameter tuning for hidden unit conditional random fields
  publication-title: Eng. Comput.
  doi: 10.1108/EC-11-2015-0350
– year: 2013
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0230
– volume: 363
  start-page: 48
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0235
  article-title: Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: an example with background selection
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2017.08.017
– volume: 78
  start-page: 1
  year: 1950
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0080
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 28
  start-page: 1503
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0205
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0368-8
– volume: 13
  start-page: 1315
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0510
  article-title: Erratum to: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0667-1
– volume: 125
  start-page: 227
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0070
  article-title: Detecting rock glacier flow structures using Gabor filters and IKONOS imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.07.005
– year: 2010
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0085
– year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0350
  article-title: Hyperparameters and Tuning Strategies for Random Forest
  publication-title: JMLR
– volume: 46
  start-page: 269
  year: 1970
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0110
  article-title: Spatial autocorrelation: a review of existing and new measures with applications
  publication-title: Econ. Geogr.
  doi: 10.2307/143144
– volume: 78
  start-page: 316
  year: 1983
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0140
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10477973
– year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0345
  article-title: Tunability: Importance of Hyperparameters of Machine Learning Algorithms
  publication-title: JMLR
– year: 2019
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0410
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0245
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 28
  start-page: 1309
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0445
  article-title: Evaluation of transfer functions in spatially structured environments
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2008.12.020
– volume: 99
  start-page: 39
  year: 2000
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0365
  article-title: Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(00)00030-0
– volume: 101
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0290
  article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.12.001
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0050
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 2900
  year: 2016
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0280
  article-title: Bayesian optimization for automated model selection
– volume: 67
  start-page: 1114
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0200
  article-title: Detecting myrtle rust (Austropuccinia psidii) on lemon myrtle trees using spectral signatures and machine learning
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12830
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0145
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 239
  start-page: 27
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0460
  article-title: How can statistical models help to determine driving factors of landslides?
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2011.12.007
– volume: 14
  start-page: 2008
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0165
  article-title: On the effect of spatially non-disjoint training and test samples on estimated model generalization capabilities in supervised classification with spatial features
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2747222
– volume: 384
  start-page: 23
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0275
  article-title: Disequilibrium and relaxation times for species responses to climate change
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2018.06.004
– start-page: 33
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0435
  article-title: Remote sensing for aboveground biomass estimation in boreal forests
– volume: 12
  start-page: 1889
  year: 2000
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0025
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015187
– volume: 5
  start-page: 853
  year: 2005
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0055
  article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-5-853-2005
– volume: 19
  start-page: 101
  year: 2004
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0240
  article-title: Model selection in ecology and evolution
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2003.10.013
– volume: 10
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0330
  article-title: PMLB: A large benchmark suite for machine learning evaluation and comparison
  publication-title: BioData Min.
  doi: 10.1186/s13040-017-0154-4
– volume: 15
  start-page: 45
  year: 2015
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0075
  article-title: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-15-45-2015
– year: 2010
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0150
– volume: 15
  start-page: 49
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0450
  article-title: OpenML: networked science in machine learning
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/2641190.2641198
– volume: 3
  start-page: 260
  year: 2012
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0475
  article-title: Assessing transferability of ecological models: an underappreciated aspect of statistical validation
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00170.x
– volume: 6
  start-page: 325
  year: 1976
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0135
  article-title: The distance-weighted k-nearest-neighbor rule
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1976.5408784
– volume: 12
  start-page: e0169748
  year: 2017
  ident: 10.1016/j.ecolmodel.2019.06.002_bib0210
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
SSID ssj0001282
Score 2.6888728
Snippet While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms autocorrelation
case studies
computer software
decision making
Diplodia pinea
environmental factors
forest diseases
Hyperparameter tuning
Machine-learning
prediction
regression analysis
soil
Spain
Spatial autocorrelation
Spatial cross-validation
spatial data
Spatial modeling
support vector machines
temperature
Title Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
URI https://dx.doi.org/10.1016/j.ecolmodel.2019.06.002
https://www.proquest.com/docview/2271827586
Volume 406
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  issn: 0304-3800
  databaseCode: AKRWK
  dateStart: 19750501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iCF7EJz5LBK9rd5PsNvVWSqUqeNFCbyFNslppt6XdHrz4251Jsy2K4MHjhpndJY-ZTPLNN4RcWyuEhiAtQjazSCTaRjJvwnJPZSzzJHZce7bPp6zbEw_9tL9B2lUuDMIqg-1f2nRvrUNLPfRmfToc1p_xUo9L3KNwJP7CRHMhGljF4OZzDfMA-xtuEkSE0t8wXhDhjXzFGcR4NT2RZzhf-cVD_bDV3gHd7ZHdsHOkreXP7ZMNVxyQ7Y5nnf44IMeddcoaiIU1Oz8ksy6EmjOk-B4j9IWWCzwKobqwdLrOGqB6RdFJJznFPCNP4QyvQsmxx1y6KBSZAPXR62Q2LN_Gc4rQ-Vc6R2g2SCPk9Ij07jov7W4UKi1EhgtZRpJrGRsIV5uxTnPbzBkbMHBbmeWM68S61OTGmQHnRliW5CbGuNBak1k7kNB-TDaLSeFOCE1j10gcbziQEIZZ2WDappLnsE9KU6dPSVb1rjKBhhyrYYxUhTd7V6thUTgsyiPv2CmJV4rTJRPH3yq31fCpb5NKgb_4W_mqGnAFSw7vUXThJou5YgwcOoNAKzv7zwfOyQ4-4QE1Exdks5wt3CXscMpBzU_hGtlq3T92n74AByf_jQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RUNVeqkKLSl-4Etdtdv3YOL1VKCjldSlI3CzH9kKqZBMlmwMXfntnHG8iUCUOvXpndld-zMP-_A3AkfdSWkzSMmIzy2RhfaarHi53pXNdFXkQNrJ9XpaDa3l6o2624Li9C0OwymT7VzY9WuvU0km92ZmNRp3fdKgnNMUogoi_1AvYkYp3KQP7_rDBeaABTkcJMiPxRyAvTPHGseQMgbx6kckzbbD8w0U9MdbRA528hTcpdGQ_V3-3C1uh3oOX_Ug7fb8H-_3NnTUUS4t28Q7mA8w158TxPSHsC2uWtBfCbO3ZbHNtgNk1RyebVowuGkUOZ3wVSU4i6DJkqcoEqo9vp_NRczdZMMLO37IFYbNRmjCn7-H6pH91PMhSqYXMCambTAurc4f5ai-3qvK9ivMhR79VesGFLXxQrnLBDYVw0vOicjklht670vuhxvZ92K6ndfgATOWhWwTRDSghHfe6y61XWlQYKCkV7AGUbe8al3jIqRzG2LSAsz9mPSyGhsVE6B0_gHytOFtRcTyv8qMdPvNoVhl0GM8rf2sH3OCao4MUW4fpcmE4R4_OMdMqP_7PBw7h1eDq4tyc_7o8-wSv6QntVnP5Gbab-TJ8wXCnGX6N0_kv394BMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+tuning+and+performance+assessment+of+statistical+and+machine-learning+algorithms+using+spatial+data&rft.jtitle=Ecological+modelling&rft.au=Schratz%2C+Patrick&rft.au=M%C3%BCnchow%2C+Jannes&rft.au=Iturritxa%2C+Eugenia&rft.au=Richter%2C+Jakob&rft.date=2019-08-24&rft.issn=0304-3800&rft.volume=406+p.109-120&rft.spage=109&rft.epage=120&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.06.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon