Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to u...
Saved in:
| Published in | Ecological modelling Vol. 406; pp. 109 - 120 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
24.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0304-3800 1872-7026 |
| DOI | 10.1016/j.ecolmodel.2019.06.002 |
Cover
| Abstract | While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to unbiased performance estimation. One is the influence of spatial autocorrelation in both hyperparameter tuning and performance estimation. Grouped cross-validation strategies have been proposed in recent years in environmental as well as medical contexts to reduce bias in predictive performance. In this study we show the effects of spatial autocorrelation on hyperparameter tuning and performance estimation by comparing several widely used machine-learning algorithms such as boosted regression trees (BRT), k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) with traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like generalized additive models (GAM) in terms of predictive performance. Spatial and non-spatial cross-validation methods were used to evaluate model performances aiming to obtain bias-reduced performance estimates. A detailed analysis on the sensitivity of hyperparameter tuning when using different resampling methods (spatial/non-spatial) was performed. As a case study the spatial distribution of forest disease (Diplodia sapinea) in the Basque Country (Spain) was investigated using common environmental variables such as temperature, precipitation, soil and lithology as predictors. Random Forest (mean Brier score estimate of 0.166) outperformed all other methods with regard to predictive accuracy. Though the sensitivity to hyperparameter tuning differed between the ML algorithms, there were in most cases no substantial differences between spatial and non-spatial partitioning for hyperparameter tuning. However, spatial hyperparameter tuning maintains consistency with spatial estimation of classifier performance and should be favored over non-spatial hyperparameter optimization. High performance differences (up to 47%) between the bias-reduced (spatial cross-validation) and overoptimistic (non-spatial cross-validation) cross-validation settings showed the high need to account for the influence of spatial autocorrelation. Overoptimistic performance estimates may lead to false actions in ecological decision making based on biased model predictions. |
|---|---|
| AbstractList | While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages (such as R or Python), there are several practical challenges in the field of ecological modeling related to unbiased performance estimation. One is the influence of spatial autocorrelation in both hyperparameter tuning and performance estimation. Grouped cross-validation strategies have been proposed in recent years in environmental as well as medical contexts to reduce bias in predictive performance. In this study we show the effects of spatial autocorrelation on hyperparameter tuning and performance estimation by comparing several widely used machine-learning algorithms such as boosted regression trees (BRT), k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) with traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like generalized additive models (GAM) in terms of predictive performance. Spatial and non-spatial cross-validation methods were used to evaluate model performances aiming to obtain bias-reduced performance estimates. A detailed analysis on the sensitivity of hyperparameter tuning when using different resampling methods (spatial/non-spatial) was performed. As a case study the spatial distribution of forest disease (Diplodia sapinea) in the Basque Country (Spain) was investigated using common environmental variables such as temperature, precipitation, soil and lithology as predictors. Random Forest (mean Brier score estimate of 0.166) outperformed all other methods with regard to predictive accuracy. Though the sensitivity to hyperparameter tuning differed between the ML algorithms, there were in most cases no substantial differences between spatial and non-spatial partitioning for hyperparameter tuning. However, spatial hyperparameter tuning maintains consistency with spatial estimation of classifier performance and should be favored over non-spatial hyperparameter optimization. High performance differences (up to 47%) between the bias-reduced (spatial cross-validation) and overoptimistic (non-spatial cross-validation) cross-validation settings showed the high need to account for the influence of spatial autocorrelation. Overoptimistic performance estimates may lead to false actions in ecological decision making based on biased model predictions. |
| Author | Schratz, Patrick Richter, Jakob Brenning, Alexander Muenchow, Jannes Iturritxa, Eugenia |
| Author_xml | – sequence: 1 givenname: Patrick surname: Schratz fullname: Schratz, Patrick email: patrick.schratz@uni-jena.de organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany – sequence: 2 givenname: Jannes surname: Muenchow fullname: Muenchow, Jannes organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany – sequence: 3 givenname: Eugenia surname: Iturritxa fullname: Iturritxa, Eugenia organization: NEIKER, Granja Modelo-Arkaute, Apdo. 46, 01080 Vitoria-Gasteiz, Arab, Spain – sequence: 4 givenname: Jakob surname: Richter fullname: Richter, Jakob organization: Department of Statistics, TU Dortmund University, Dortmund, Germany – sequence: 5 givenname: Alexander surname: Brenning fullname: Brenning, Alexander organization: Department of Geography, GIScience Group, Grietgasse 6, 07743 Jena, Germany |
| BookMark | eNqNkEFv1DAQhS1UJLaF30COXBLGdjbxHjhUFbRIlXqBszVrT1qvHDt4vEj992RZxIELPY309L4nzXcpLlJOJMR7CZ0EOXw8dORynLOn2CmQuw6GDkC9EhtpRtWOoIYLsQENfasNwBtxyXwAAKmM2ohy97xQWbDgTJVKU48ppMcGk2_WfMplxuSoQWZininVJk8NV6yBa3AYfzdndE8hURsJyxmPj7mE-jRzc-RTwMtKrG2PFd-K1xNGpnd_7pX4_uXzt5u79v7h9uvN9X3rdG9qazQacFLrHeB28rtJqb3qRzl4rTRKT1s3OXJ7rV3vlZwcmB523rvB-71Z8yvx4by7lPzjSFztHNhRjJgoH9kqNUqjxq0Z1uqnc9WVzFxosi6cfsypFgzRSrAn1_Zg_7q2J9cWBru6XvnxH34pYcby_ALy-kzSauJnoGLZBVqV-1DIVetz-O_GL05tpM4 |
| CitedBy_id | crossref_primary_10_1007_s11103_025_01564_y crossref_primary_10_1111_ddi_13498 crossref_primary_10_1007_s11069_024_06887_5 crossref_primary_10_1016_j_ophoto_2022_100018 crossref_primary_10_1016_j_rsase_2021_100577 crossref_primary_10_1109_JSTARS_2022_3147356 crossref_primary_10_1007_s40899_024_01064_9 crossref_primary_10_1016_j_asoc_2022_109848 crossref_primary_10_1016_j_ijpvp_2025_105444 crossref_primary_10_3390_rs13224521 crossref_primary_10_1080_13549839_2024_2353058 crossref_primary_10_1016_j_marpetgeo_2024_106967 crossref_primary_10_3390_diagnostics13223439 crossref_primary_10_3389_fcimb_2021_688256 crossref_primary_10_1139_cjfr_2022_0198 crossref_primary_10_1038_s41598_024_60507_7 crossref_primary_10_1007_s12665_024_12041_y crossref_primary_10_7717_peerj_13728 crossref_primary_10_1016_j_gsf_2024_101822 crossref_primary_10_3390_rs13030401 crossref_primary_10_1016_j_geoen_2023_211511 crossref_primary_10_1016_j_rsase_2022_100724 crossref_primary_10_1007_s13042_022_01555_1 crossref_primary_10_1109_JSTARS_2021_3103585 crossref_primary_10_3390_su13073907 crossref_primary_10_1155_2024_5555105 crossref_primary_10_1002_esp_5421 crossref_primary_10_1007_s11042_024_19233_5 crossref_primary_10_2139_ssrn_4840403 crossref_primary_10_3390_rs12091369 crossref_primary_10_1029_2019WR026691 crossref_primary_10_1007_s10668_024_05340_8 crossref_primary_10_1007_s11146_022_09915_y crossref_primary_10_3390_min11111172 crossref_primary_10_1016_j_earscirev_2020_103359 crossref_primary_10_3390_ai4030039 crossref_primary_10_1016_j_ecoinf_2023_102253 crossref_primary_10_1007_s11227_023_05319_8 crossref_primary_10_1007_s10994_021_05972_1 crossref_primary_10_3390_app121910156 crossref_primary_10_1007_s11440_024_02384_y crossref_primary_10_1016_j_tbs_2025_100983 crossref_primary_10_3390_f15071114 crossref_primary_10_1016_j_array_2023_100326 crossref_primary_10_4018_JCIT_356504 crossref_primary_10_1088_2515_7620_ad2e44 crossref_primary_10_1109_ACCESS_2020_3048877 crossref_primary_10_1016_j_ecoinf_2024_102634 crossref_primary_10_1016_j_ecoinf_2024_102514 crossref_primary_10_5194_gmd_17_5897_2024 crossref_primary_10_1007_s00521_024_09562_9 crossref_primary_10_1016_j_atech_2024_100442 crossref_primary_10_3390_ma16124366 crossref_primary_10_1016_j_ecoinf_2021_101291 crossref_primary_10_1080_10494820_2023_2202698 crossref_primary_10_1016_j_geomorph_2019_106887 crossref_primary_10_1016_j_rse_2020_112033 crossref_primary_10_15575_join_v7i2_858 crossref_primary_10_1016_j_tafmec_2024_104826 crossref_primary_10_1002_ece3_10635 crossref_primary_10_1016_j_atmosres_2024_107261 crossref_primary_10_1016_j_jenvman_2025_125007 crossref_primary_10_3390_su14106110 crossref_primary_10_30516_bilgesci_1317525 crossref_primary_10_1016_j_ecoinf_2022_101647 crossref_primary_10_1002_adem_202402486 crossref_primary_10_3390_agriculture15050505 crossref_primary_10_1038_s41467_024_54572_9 crossref_primary_10_1109_ACCESS_2021_3134138 crossref_primary_10_1016_j_rinma_2025_100692 crossref_primary_10_1007_s12665_024_11442_3 crossref_primary_10_1139_facets_2023_0040 crossref_primary_10_3390_f14020317 crossref_primary_10_1002_esp_5890 crossref_primary_10_1016_j_heliyon_2024_e32495 crossref_primary_10_1016_j_foreco_2024_122132 crossref_primary_10_3390_rs14215425 crossref_primary_10_31202_ecjse_948557 crossref_primary_10_1016_j_jobe_2023_107285 crossref_primary_10_1016_j_scitotenv_2024_173425 crossref_primary_10_1016_j_geoderma_2024_116953 crossref_primary_10_1186_s13071_024_06636_4 crossref_primary_10_1007_s41748_024_00447_4 crossref_primary_10_1093_jrsssc_qlae047 crossref_primary_10_1088_2632_2153_acc1c0 crossref_primary_10_1016_j_ecolmodel_2019_108815 crossref_primary_10_1016_j_imu_2023_101341 crossref_primary_10_1016_j_geoderma_2024_116838 crossref_primary_10_1029_2023JD039076 crossref_primary_10_1007_s11069_022_05423_7 crossref_primary_10_1007_s00168_021_01101_x crossref_primary_10_1016_j_jclepro_2023_137188 crossref_primary_10_1080_17455030_2023_2226246 crossref_primary_10_1007_s41748_024_00518_6 crossref_primary_10_61186_jsaeh_11_3_1 crossref_primary_10_1371_journal_pone_0310809 crossref_primary_10_1016_j_agrformet_2023_109868 crossref_primary_10_12720_jait_15_12_1304_1314 crossref_primary_10_1016_j_asr_2024_08_046 crossref_primary_10_3390_f12030282 crossref_primary_10_1111_1752_1688_13121 crossref_primary_10_1126_sciadv_adi3268 crossref_primary_10_1016_j_landurbplan_2022_104671 crossref_primary_10_1007_s41885_022_00119_5 crossref_primary_10_2478_amns_2023_2_01430 crossref_primary_10_1080_01431161_2023_2205981 crossref_primary_10_1002_ese3_790 crossref_primary_10_1016_j_geodrs_2024_e00785 crossref_primary_10_1016_j_ttbdis_2024_102373 crossref_primary_10_3390_rs17020213 crossref_primary_10_3390_jcm13020603 crossref_primary_10_3390_ijgi8120551 crossref_primary_10_3390_math12243892 crossref_primary_10_1038_s41598_024_76607_3 crossref_primary_10_1088_1757_899X_1208_1_012039 crossref_primary_10_1016_j_renene_2022_09_132 crossref_primary_10_1111_gean_12351 crossref_primary_10_1007_s42107_024_00994_1 crossref_primary_10_3389_fpls_2022_858711 crossref_primary_10_3390_rs14133066 crossref_primary_10_1029_2024EF004540 crossref_primary_10_1016_j_spasta_2023_100775 crossref_primary_10_1007_s11135_024_01937_3 crossref_primary_10_1016_j_gsd_2024_101403 crossref_primary_10_1016_j_compag_2023_108064 crossref_primary_10_3390_rs13234832 crossref_primary_10_1109_ACCESS_2020_2985717 crossref_primary_10_1016_j_psep_2023_09_072 crossref_primary_10_1109_ACCESS_2024_3383911 crossref_primary_10_1016_j_matdes_2024_112841 crossref_primary_10_1088_1755_1315_1032_1_012008 crossref_primary_10_3390_app12062985 crossref_primary_10_1080_21642583_2024_2420927 crossref_primary_10_1016_j_jenvman_2024_121189 crossref_primary_10_3389_fams_2024_1441596 crossref_primary_10_1016_j_heliyon_2024_e37065 crossref_primary_10_3233_ADR_220081 crossref_primary_10_1109_JSEN_2024_3369062 crossref_primary_10_1016_j_compind_2021_103530 crossref_primary_10_1016_j_aap_2019_105398 crossref_primary_10_1186_s13071_023_06094_4 crossref_primary_10_1016_j_aiig_2024_100093 crossref_primary_10_1016_j_buildenv_2024_112127 crossref_primary_10_1016_j_ssci_2022_105722 crossref_primary_10_1016_j_geodrs_2025_e00941 crossref_primary_10_1088_1748_9326_ad845e crossref_primary_10_5194_nhess_24_4385_2024 crossref_primary_10_1186_s40663_021_00297_w crossref_primary_10_1016_j_jag_2022_103089 crossref_primary_10_1016_j_jobe_2024_109544 crossref_primary_10_1016_j_oceaneng_2023_115505 crossref_primary_10_1111_ddi_13898 crossref_primary_10_3390_land12020494 crossref_primary_10_3390_ijgi11040242 crossref_primary_10_23887_mi_v28i2_59979 crossref_primary_10_1016_j_jag_2023_103364 crossref_primary_10_3390_geomatics2030017 crossref_primary_10_3390_app11094290 crossref_primary_10_1016_j_fuel_2022_123821 crossref_primary_10_1016_j_jpowsour_2020_229233 crossref_primary_10_1016_j_scitotenv_2022_158633 crossref_primary_10_1007_s10346_021_01693_7 crossref_primary_10_3390_rs16040683 crossref_primary_10_3390_rs16142571 crossref_primary_10_1016_j_heliyon_2023_e14045 crossref_primary_10_1111_1462_2920_15462 crossref_primary_10_3390_app12168271 crossref_primary_10_1016_j_jag_2021_102381 crossref_primary_10_3390_fire5060180 crossref_primary_10_3390_rs16122060 crossref_primary_10_1016_j_advwatres_2024_104842 crossref_primary_10_3390_f13101737 crossref_primary_10_1016_j_chemer_2023_126026 crossref_primary_10_3390_rs12091523 crossref_primary_10_1038_s41538_023_00205_2 crossref_primary_10_1002_clc_24239 crossref_primary_10_3390_f15071198 crossref_primary_10_3389_fenvs_2024_1414461 crossref_primary_10_3390_w15244214 crossref_primary_10_1016_j_fuel_2025_134534 crossref_primary_10_1098_rspb_2024_0743 crossref_primary_10_1016_j_geoderma_2025_117223 crossref_primary_10_1016_j_envdev_2024_101100 crossref_primary_10_1016_j_jmst_2024_05_024 crossref_primary_10_1139_cjss_2022_0031 crossref_primary_10_5194_nhess_21_2543_2021 crossref_primary_10_1016_j_ecoinf_2024_102595 crossref_primary_10_3390_f14030511 crossref_primary_10_1145_3701740 crossref_primary_10_1155_2024_1788726 crossref_primary_10_1016_j_mlwa_2023_100505 crossref_primary_10_3390_w15122278 crossref_primary_10_1007_s10530_023_03176_3 crossref_primary_10_1016_j_geoderma_2021_114998 crossref_primary_10_1016_j_gsf_2021_101248 crossref_primary_10_1016_j_rse_2022_113040 crossref_primary_10_1186_s42490_024_00075_z crossref_primary_10_7717_peerj_19099 crossref_primary_10_3389_fmars_2021_631262 crossref_primary_10_3390_rs13112074 crossref_primary_10_1007_s11053_024_10393_7 crossref_primary_10_1080_15481603_2022_2079273 crossref_primary_10_1016_j_foreco_2022_120363 crossref_primary_10_1111_nph_17607 crossref_primary_10_1016_j_conbuildmat_2023_131519 crossref_primary_10_1371_journal_pone_0300201 crossref_primary_10_7746_jkros_2020_15_2_169 crossref_primary_10_1111_sjos_12636 crossref_primary_10_1109_TEM_2024_3522313 crossref_primary_10_1002_for_2960 crossref_primary_10_3390_min12060689 crossref_primary_10_1016_j_foreco_2021_119226 crossref_primary_10_1016_j_jclepro_2022_133778 crossref_primary_10_1016_j_autcon_2022_104714 crossref_primary_10_1016_j_isprsjprs_2020_06_006 crossref_primary_10_1038_s41586_021_03565_5 crossref_primary_10_1016_j_isprsjprs_2021_08_016 crossref_primary_10_1016_j_isprsjprs_2021_08_017 crossref_primary_10_3390_rs11212512 crossref_primary_10_1080_10916466_2021_1881114 crossref_primary_10_1371_journal_pone_0316174 crossref_primary_10_1002_edm2_472 crossref_primary_10_1016_j_compag_2024_109302 crossref_primary_10_1016_j_egyr_2022_06_003 crossref_primary_10_1175_AIES_D_22_0010_1 crossref_primary_10_1016_j_jenvman_2021_112625 crossref_primary_10_1016_j_scitotenv_2020_142291 crossref_primary_10_1111_geb_13639 crossref_primary_10_1038_s41598_021_85639_y crossref_primary_10_1109_ACCESS_2020_2979570 crossref_primary_10_1111_geb_13635 crossref_primary_10_1038_s41467_024_55240_8 crossref_primary_10_1016_j_engfracmech_2021_107750 crossref_primary_10_3390_su14148953 crossref_primary_10_1002_ece3_11571 crossref_primary_10_2166_wcc_2024_324 crossref_primary_10_1016_j_biosystems_2024_105387 crossref_primary_10_3390_rs13173459 crossref_primary_10_1016_j_earscirev_2024_104927 crossref_primary_10_1007_s12145_024_01480_7 crossref_primary_10_1016_j_compag_2024_109176 crossref_primary_10_3390_rs12020302 crossref_primary_10_1007_s13201_022_01790_5 crossref_primary_10_1016_j_fuel_2022_123229 crossref_primary_10_3389_fenvs_2022_1044706 crossref_primary_10_1016_j_autcon_2021_103719 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_1016_j_ecolind_2024_112736 crossref_primary_10_1111_ecog_05091 crossref_primary_10_1007_s10291_022_01307_2 crossref_primary_10_1016_j_cageo_2023_105361 crossref_primary_10_1016_j_autcon_2022_104541 crossref_primary_10_1016_j_chemer_2024_126128 crossref_primary_10_1016_j_agrformet_2021_108412 crossref_primary_10_1016_j_crm_2024_100686 crossref_primary_10_1016_j_jia_2023_02_027 crossref_primary_10_1016_j_isprsjprs_2020_06_023 crossref_primary_10_1007_s11227_024_05993_2 crossref_primary_10_3390_w14050717 crossref_primary_10_1080_10106049_2023_2245381 crossref_primary_10_1007_s10115_024_02202_7 crossref_primary_10_1109_MAP_2022_3143428 crossref_primary_10_1007_s11629_021_7254_9 crossref_primary_10_1007_s10999_023_09675_4 crossref_primary_10_3389_feart_2023_1285368 crossref_primary_10_3390_rs14061493 crossref_primary_10_1007_s41976_024_00103_5 crossref_primary_10_1038_s43856_024_00468_0 crossref_primary_10_3390_rs13194011 crossref_primary_10_1371_journal_pone_0271373 crossref_primary_10_1111_gcb_16400 crossref_primary_10_1016_j_scitotenv_2024_170765 crossref_primary_10_3390_ph17091120 crossref_primary_10_1057_s41599_022_01407_x crossref_primary_10_1111_2041_210X_13650 crossref_primary_10_3390_f15060975 crossref_primary_10_47164_ijngc_v13i1_385 crossref_primary_10_2166_wpt_2023_144 crossref_primary_10_1007_s11042_023_15399_6 crossref_primary_10_1109_ACCESS_2024_3370442 crossref_primary_10_3390_rs16010017 crossref_primary_10_1080_15230406_2024_2422593 crossref_primary_10_1007_s42979_022_01348_x crossref_primary_10_1016_j_eswa_2025_126718 crossref_primary_10_3390_info14010010 crossref_primary_10_3390_jmse12020356 crossref_primary_10_3390_f15050800 crossref_primary_10_3389_fgene_2021_667936 crossref_primary_10_1007_s10980_020_01013_9 crossref_primary_10_1016_j_scitotenv_2021_145935 crossref_primary_10_3233_JAD_240285 crossref_primary_10_3390_rs13173342 crossref_primary_10_1016_j_ufug_2023_127980 crossref_primary_10_1016_j_ecolmodel_2020_109030 crossref_primary_10_1007_s11030_024_10975_w crossref_primary_10_3390_en15145245 |
| Cites_doi | 10.1007/s10531-017-1465-y 10.1080/01621459.1993.10476299 10.1111/jav.01238 10.1016/j.ecolmodel.2016.02.021 10.1007/BF00048036 10.1198/016214506000001437 10.1016/j.ecolmodel.2013.03.006 10.2307/1939924 10.1002/ecs2.1824 10.1109/ACCESS.2017.2779794 10.1007/s00374-003-0579-4 10.18637/jss.v077.i01 10.1071/AP08036 10.1007/s11004-013-9511-0 10.1002/sim.3310 10.1016/j.ecolmodel.2018.07.001 10.1111/j.1600-0706.2012.00299.x 10.18637/jss.v011.i09 10.1016/j.renene.2016.12.095 10.1111/ppa.12328 10.1111/cod.12706 10.1111/j.2007.0906-7590.05171.x 10.1016/j.quascirev.2005.05.001 10.1080/13658816.2017.1346255 10.1093/biomet/81.2.351 10.1093/icesjms/fsp105 10.1007/s10661-015-5049-6 10.1007/978-3-642-25566-3_40 10.1016/j.rse.2015.10.029 10.1016/j.ecolmodel.2009.10.033 10.1016/j.patrec.2017.01.007 10.1214/16-EJS1109 10.2307/2530946 10.1111/j.1466-8238.2006.00279.x 10.1016/j.geoderma.2014.09.019 10.1111/j.1365-2699.2008.01965.x 10.1111/ecog.02881 10.1016/j.geomorph.2016.03.015 10.1111/jvs.12038 10.1139/X09-131 10.1016/j.ecolmodel.2017.02.029 10.1007/s10115-017-1116-3 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.1108/EC-11-2015-0350 10.1016/j.ecolmodel.2017.08.017 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1007/s10618-014-0368-8 10.1007/s10346-015-0667-1 10.1016/j.rse.2012.07.005 10.2307/143144 10.1080/01621459.1983.10477973 10.1023/A:1008306431147 10.1016/j.quascirev.2008.12.020 10.1016/S0304-4076(00)00030-0 10.1016/j.envsoft.2017.12.001 10.1023/A:1010933404324 10.1111/ppa.12830 10.1111/j.1365-2656.2008.01390.x 10.1016/j.ecolmodel.2011.12.007 10.1109/LGRS.2017.2747222 10.1016/j.ecolmodel.2018.06.004 10.1162/089976600300015187 10.5194/nhess-5-853-2005 10.1016/j.tree.2003.10.013 10.1186/s13040-017-0154-4 10.5194/nhess-15-45-2015 10.1145/2641190.2641198 10.1111/j.2041-210X.2011.00170.x 10.1109/TSMC.1976.5408784 10.1371/journal.pone.0169748 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.ecolmodel.2019.06.002 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Environmental Sciences |
| EISSN | 1872-7026 |
| EndPage | 120 |
| ExternalDocumentID | 10_1016_j_ecolmodel_2019_06_002 S0304380019302145 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEN SEW VH1 WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-83a80c13390a5fd9f22b24716d323a1de5cfcecb33c4d21fc08409ddc6ddb8cb3 |
| IEDL.DBID | .~1 |
| ISSN | 0304-3800 |
| IngestDate | Sat Sep 27 18:53:08 EDT 2025 Thu Oct 09 00:33:09 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Fri Feb 23 02:48:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spatial cross-validation Spatial autocorrelation Machine-learning Spatial modeling Hyperparameter tuning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-83a80c13390a5fd9f22b24716d323a1de5cfcecb33c4d21fc08409ddc6ddb8cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2271827586 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2271827586 crossref_citationtrail_10_1016_j_ecolmodel_2019_06_002 crossref_primary_10_1016_j_ecolmodel_2019_06_002 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_06_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-24 |
| PublicationDateYYYYMMDD | 2019-08-24 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationTitle | Ecological modelling |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pohjankukka, Pahikkala, Nevalainen, Heikkonen (bib0340) 2017; 31 Muenchow, Dieker, Kluge, Kessler, von Wehrden (bib0300) 2018; 27 Probst, Wright, Boulesteix (bib0350) 2018 Halvorsen, Mazzoni, Dirksen, Næsset, Gobakken, Ohlson (bib0195) 2016; 328 Henelius, Puolam”aki, Bostr“om, Asker, Papapetrou (bib0205) 2014; 28 Roberts, Bahn, Ciuti, Boyce, Elith, Guillera-Arroita, Hauenstein, Lahoz-Monfort, Schr“oder, Thuiller, Warton, Wintle, Hartig, Dormann (bib0380) 2017; 40 Shao (bib0415) 1993; 88 Iturritxa, Mesanza, Brenning (bib0225) 2014; 64 Ganley, Watt, Manning, Iturritxa (bib0155) 2009; 39 Smoliński, Radtke (bib0420) 2016 Jones, Schonlau, Welch (bib0245) 1998; 13 Micheletti, Foresti, Robert, Leuenberger, Pedrazzini, Jaboyedoff, Kanevski (bib0295) 2013; 46 Peña, Brenning (bib0335) 2015; 171 Schratz, Muenchow, Iturritxa, Richter, Brenning (bib0410) 2019 Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger, Guevara, Vargas, MacMillan, Batjes, Leenaars, Ribeiro, Wheeler, Mantel, Kempen (bib0210) 2017; 12 Bengio (bib0025) 2000; 12 Múgica, Murillo, Ikazuriaga, Peña, Rodríguez, Díaz (bib0310) 2016 Yang, Kim, Park, Song, Kim (bib0505) 2017; 34 Dormann, McPherson, Araújo, Bivand, Bolliger, Carl, Davies, Hirzel, Jetz, Kissling, K”uhn, Ohlemüller, Peres-Neto, Reineking, Schr”oder, Schurr, Wilson (bib0125) 2007; 30 Breiman (bib0050) 2001; 45 Vanschoren, van Rijn, Bischl, Torgo (bib0450) 2014; 15 Watanabe, Ortega (bib0470) 2014; 271 Elith, Leathwick, Hastie (bib0145) 2008; 77 Brenning (bib0055) 2005; 5 Baasch, Tyre, Millspaugh, Hygnstrom, Vercauteren (bib0015) 2010; 221 Birattari, St“utzle, Paquete, Varrentrapp (bib0035) 2002 Jarnevich, Talbert, Morisette, Aldridge, Brown, Kumar, Manier, Talbert, Holcombe (bib0235) 2017; 363 Mets, Armenteras, Dávalos (bib0285) 2017; 8 IPCC (bib0220) 2013 Bui, Tuan, Klempe, Pradhan, Revhaug (bib0095) 2015; 13 Brenning, Lausen (bib0065) 2008; 27 Brungard, Boettinger, Duniway, Wills, Edwards (bib0090) 2015; 239–240 De’Ath (bib0115) 2007; 88 Dudani (bib0135) 1976; 6 Brenning (bib0060) 2012 Richter (bib0370) 2017 European Commission (bib0150) 2010 Duarte, Wainer (bib0130) 2017; 88 Geiß, Pelizari, Schrade, Brenning, Taubenb“ock (bib0165) 2017; 14 Brochu, Cora, de Freitas (bib0085) 2010 Gneiting, Raftery (bib0175) 2007; 102 Stelmaszczuk-Górska, Thiel, Schmullius (bib0435) 2017 Bergstra, Bengio (bib0030) 2012; 13 Legendre, Fortin (bib0270) 1989; 80 James, Witten, Hastie, Tibshirani (bib0230) 2013 Racine (bib0365) 2000; 99 Cliff, Ord (bib0110) 1970; 46 Telford, Birks (bib0440) 2005; 24 Schratz (bib0405) 2016 Muenchow, Feilhauer, Br”auning, Rodríguez, Bayer, Rodríguez, Wehrden (bib0305) 2013; 24 Dormann (bib0120) 2007; 16 Adler, Gefeller, Uter (bib0010) 2017; 76 Wright, Ziegler (bib0500) 2017; 77 Ruß, Kruse (bib0395) 2010 Probst, Bischl, Boulesteix (bib0345) 2018 Adler, Falk, Friedler, Nix, Rybeck, Scheidegger, Smith, Venkatasubramanian (bib0005) 2018; 54 Vapnik (bib0455) 1998 Kohavi (bib0255) 1995; vol. 14 Malkomes, Schaff, Garnett (bib0280) 2016 Schliep, Hechenbichler (bib0400) 2016 Voyant, Notton, Kalogirou, Nivet, Paoli, Motte, Fouilloy (bib0465) 2017; 105 Rojas-Dominguez, Padierna, Valadez, Puga-Soberanes, Fraire (bib0385) 2018; 6 Bischl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio, Jones (bib0040) 2016; 17 Brenning, Schwinn, Ruiz-Páez, Muenchow (bib0075) 2015; 15 Ruß, Brenning (bib0390) 2010 Goetz, Cabrera, Brenning, Heiss, Leopold (bib0180) 2015; vol. 2 Olson, La Cava, Orzechowski, Urbanowicz, Moore (bib0330) 2017; 10 Brier (bib0080) 1950; 78 Loehle (bib0275) 2018; 384 Wenger, Olden (bib0475) 2012; 3 Efron (bib0140) 1983; 78 Heim, Wright, Chang, Carnegie, Pegg, Lancaster, Falster, Oldeland (bib0200) 2018; 67 Karatzoglou, Smola, Hornik, Zeileis (bib0250) 2004; 11 Murase, Nagashima, Yonezaki, Matsukura, Kitakado (bib0315) 2009; 66 Vorpahl, Elsenbeer, M”arker, Schr“oder (bib0460) 2012; 239 Wingfield, Hammerbacher, Ganley, Steenkamp, Gordon, Wingfield, Coutinho (bib0485) 2008; 37 Gordon, Breiman, Friedman, Olshen, Stone (bib0185) 1984; 40 Bahn, McGill (bib0020) 2012; 122 Meyer, Reudenbach, Hengl, Katurji, Nauss (bib0290) 2018; 101 Ridgeway (bib0375) 2017 Bischl, Richter, Bossek, Horn, Thomas, Lang (bib0045) 2017 Johnson, Omland (bib0240) 2004; 19 Naghibi, Pourghasemi, Dixon (bib0320) 2016; 188 R Core Team (bib0360) 2019 Grotzinger, Jordan (bib0190) 2016 Wood (bib0495) 2017 Kuhn, Johnson (bib0260) 2013 Steger, Brenning, Bell, Petschko, Glade (bib0430) 2016; 262 Byrne (bib0105) 2016; 10 Burman, Chow, Nolan (bib0100) 1994; 81 Telford, Birks (bib0445) 2009; 28 Brenning, Long, Fieguth (bib0070) 2012; 125 Wieland, Kerkow, Fr”uh, Kampen, Walther (bib0480) 2017; 352 Legendre (bib0265) 1993; 74 GeoEuskadi (bib0170) 1999 Ninyerola, Pons, Roure (bib0325) 2005 Srivastava, Griess, Padalia (bib0425) 2018; 385 Wollan, Bakkestuen, Kauserud, Gulden, Halvorsen (bib0490) 2008; 35 Ganuza, Almendros (bib0160) 2003; 37 Quillfeldt, Engler, Silk, Phillips (bib0355) 2017 Hutter, Hoos, Leyton-Brown (bib0215) 2011 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bib0510) 2015; 13 Voyant (10.1016/j.ecolmodel.2019.06.002_bib0465) 2017; 105 Wieland (10.1016/j.ecolmodel.2019.06.002_bib0480) 2017; 352 Peña (10.1016/j.ecolmodel.2019.06.002_bib0335) 2015; 171 Brier (10.1016/j.ecolmodel.2019.06.002_bib0080) 1950; 78 Halvorsen (10.1016/j.ecolmodel.2019.06.002_bib0195) 2016; 328 Murase (10.1016/j.ecolmodel.2019.06.002_bib0315) 2009; 66 Olson (10.1016/j.ecolmodel.2019.06.002_bib0330) 2017; 10 R Core Team (10.1016/j.ecolmodel.2019.06.002_bib0360) 2019 Watanabe (10.1016/j.ecolmodel.2019.06.002_bib0470) 2014; 271 Pohjankukka (10.1016/j.ecolmodel.2019.06.002_bib0340) 2017; 31 Kohavi (10.1016/j.ecolmodel.2019.06.002_bib0255) 1995; vol. 14 Muenchow (10.1016/j.ecolmodel.2019.06.002_bib0300) 2018; 27 Richter (10.1016/j.ecolmodel.2019.06.002_bib0370) 2017 Muenchow (10.1016/j.ecolmodel.2019.06.002_bib0305) 2013; 24 Wood (10.1016/j.ecolmodel.2019.06.002_bib0495) 2017 Naghibi (10.1016/j.ecolmodel.2019.06.002_bib0320) 2016; 188 Wenger (10.1016/j.ecolmodel.2019.06.002_bib0475) 2012; 3 Loehle (10.1016/j.ecolmodel.2019.06.002_bib0275) 2018; 384 Steger (10.1016/j.ecolmodel.2019.06.002_bib0430) 2016; 262 Birattari (10.1016/j.ecolmodel.2019.06.002_bib0035) 2002 Cliff (10.1016/j.ecolmodel.2019.06.002_bib0110) 1970; 46 Wright (10.1016/j.ecolmodel.2019.06.002_bib0500) 2017; 77 Youssef (10.1016/j.ecolmodel.2019.06.002_bib0510) 2015; 13 Brenning (10.1016/j.ecolmodel.2019.06.002_bib0055) 2005; 5 Dudani (10.1016/j.ecolmodel.2019.06.002_bib0135) 1976; 6 Hengl (10.1016/j.ecolmodel.2019.06.002_bib0210) 2017; 12 Brungard (10.1016/j.ecolmodel.2019.06.002_bib0090) 2015; 239–240 Srivastava (10.1016/j.ecolmodel.2019.06.002_bib0425) 2018; 385 Probst (10.1016/j.ecolmodel.2019.06.002_bib0350) 2018 Hutter (10.1016/j.ecolmodel.2019.06.002_bib0215) 2011 Múgica (10.1016/j.ecolmodel.2019.06.002_bib0310) 2016 Duarte (10.1016/j.ecolmodel.2019.06.002_bib0130) 2017; 88 Rojas-Dominguez (10.1016/j.ecolmodel.2019.06.002_bib0385) 2018; 6 Bahn (10.1016/j.ecolmodel.2019.06.002_bib0020) 2012; 122 Bischl (10.1016/j.ecolmodel.2019.06.002_bib0040) 2016; 17 Vorpahl (10.1016/j.ecolmodel.2019.06.002_bib0460) 2012; 239 Smoliński (10.1016/j.ecolmodel.2019.06.002_bib0420) 2016 Dormann (10.1016/j.ecolmodel.2019.06.002_bib0120) 2007; 16 Mets (10.1016/j.ecolmodel.2019.06.002_bib0285) 2017; 8 Karatzoglou (10.1016/j.ecolmodel.2019.06.002_bib0250) 2004; 11 Wingfield (10.1016/j.ecolmodel.2019.06.002_bib0485) 2008; 37 Bergstra (10.1016/j.ecolmodel.2019.06.002_bib0030) 2012; 13 Schratz (10.1016/j.ecolmodel.2019.06.002_bib0405) 2016 Brenning (10.1016/j.ecolmodel.2019.06.002_bib0070) 2012; 125 Schratz (10.1016/j.ecolmodel.2019.06.002_bib0410) 2019 Schliep (10.1016/j.ecolmodel.2019.06.002_bib0400) 2016 GeoEuskadi (10.1016/j.ecolmodel.2019.06.002_bib0170) 1999 James (10.1016/j.ecolmodel.2019.06.002_bib0230) 2013 Grotzinger (10.1016/j.ecolmodel.2019.06.002_bib0190) 2016 Adler (10.1016/j.ecolmodel.2019.06.002_bib0010) 2017; 76 Telford (10.1016/j.ecolmodel.2019.06.002_bib0445) 2009; 28 Jarnevich (10.1016/j.ecolmodel.2019.06.002_bib0235) 2017; 363 Wollan (10.1016/j.ecolmodel.2019.06.002_bib0490) 2008; 35 Probst (10.1016/j.ecolmodel.2019.06.002_bib0345) 2018 Quillfeldt (10.1016/j.ecolmodel.2019.06.002_bib0355) 2017 Ninyerola (10.1016/j.ecolmodel.2019.06.002_bib0325) 2005 De’Ath (10.1016/j.ecolmodel.2019.06.002_bib0115) 2007; 88 Efron (10.1016/j.ecolmodel.2019.06.002_bib0140) 1983; 78 IPCC (10.1016/j.ecolmodel.2019.06.002_bib0220) 2013 Ruß (10.1016/j.ecolmodel.2019.06.002_bib0390) 2010 Racine (10.1016/j.ecolmodel.2019.06.002_bib0365) 2000; 99 Geiß (10.1016/j.ecolmodel.2019.06.002_bib0165) 2017; 14 Gordon (10.1016/j.ecolmodel.2019.06.002_bib0185) 1984; 40 Roberts (10.1016/j.ecolmodel.2019.06.002_bib0380) 2017; 40 European Commission (10.1016/j.ecolmodel.2019.06.002_bib0150) 2010 Legendre (10.1016/j.ecolmodel.2019.06.002_bib0270) 1989; 80 Johnson (10.1016/j.ecolmodel.2019.06.002_bib0240) 2004; 19 Baasch (10.1016/j.ecolmodel.2019.06.002_bib0015) 2010; 221 Gneiting (10.1016/j.ecolmodel.2019.06.002_bib0175) 2007; 102 Vapnik (10.1016/j.ecolmodel.2019.06.002_bib0455) 1998 Kuhn (10.1016/j.ecolmodel.2019.06.002_bib0260) 2013 Malkomes (10.1016/j.ecolmodel.2019.06.002_bib0280) 2016 Shao (10.1016/j.ecolmodel.2019.06.002_bib0415) 1993; 88 Ridgeway (10.1016/j.ecolmodel.2019.06.002_bib0375) 2017 Brenning (10.1016/j.ecolmodel.2019.06.002_bib0075) 2015; 15 Henelius (10.1016/j.ecolmodel.2019.06.002_bib0205) 2014; 28 Brenning (10.1016/j.ecolmodel.2019.06.002_bib0060) 2012 Yang (10.1016/j.ecolmodel.2019.06.002_bib0505) 2017; 34 Ganley (10.1016/j.ecolmodel.2019.06.002_bib0155) 2009; 39 Brenning (10.1016/j.ecolmodel.2019.06.002_bib0065) 2008; 27 Byrne (10.1016/j.ecolmodel.2019.06.002_bib0105) 2016; 10 Micheletti (10.1016/j.ecolmodel.2019.06.002_bib0295) 2013; 46 Brochu (10.1016/j.ecolmodel.2019.06.002_bib0085) 2010 Elith (10.1016/j.ecolmodel.2019.06.002_bib0145) 2008; 77 Bengio (10.1016/j.ecolmodel.2019.06.002_bib0025) 2000; 12 Ruß (10.1016/j.ecolmodel.2019.06.002_bib0395) 2010 Bischl (10.1016/j.ecolmodel.2019.06.002_bib0045) 2017 Burman (10.1016/j.ecolmodel.2019.06.002_bib0100) 1994; 81 Adler (10.1016/j.ecolmodel.2019.06.002_bib0005) 2018; 54 Vanschoren (10.1016/j.ecolmodel.2019.06.002_bib0450) 2014; 15 Iturritxa (10.1016/j.ecolmodel.2019.06.002_bib0225) 2014; 64 Breiman (10.1016/j.ecolmodel.2019.06.002_bib0050) 2001; 45 Stelmaszczuk-Górska (10.1016/j.ecolmodel.2019.06.002_bib0435) 2017 Dormann (10.1016/j.ecolmodel.2019.06.002_bib0125) 2007; 30 Bui (10.1016/j.ecolmodel.2019.06.002_bib0095) 2015; 13 Legendre (10.1016/j.ecolmodel.2019.06.002_bib0265) 1993; 74 Meyer (10.1016/j.ecolmodel.2019.06.002_bib0290) 2018; 101 Heim (10.1016/j.ecolmodel.2019.06.002_bib0200) 2018; 67 Goetz (10.1016/j.ecolmodel.2019.06.002_bib0180) 2015; vol. 2 Jones (10.1016/j.ecolmodel.2019.06.002_bib0245) 1998; 13 Ganuza (10.1016/j.ecolmodel.2019.06.002_bib0160) 2003; 37 Telford (10.1016/j.ecolmodel.2019.06.002_bib0440) 2005; 24 |
| References_xml | – volume: 105 start-page: 569 year: 2017 end-page: 582 ident: bib0465 article-title: Machine learning methods for solar radiation forecasting: a review publication-title: Renew. Energy – volume: 76 start-page: 247 year: 2017 end-page: 251 ident: bib0010 article-title: Positive reactions to pairs of allergens associated with polysensitization: analysis of IVDK data with machine-learning techniques publication-title: Contact Dermat. – year: 2019 ident: bib0360 article-title: R: A Language and Environment for Statistical Computing – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bib0145 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – year: 1999 ident: bib0170 article-title: Litologia y Permeabilidad – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0050 article-title: Random forests publication-title: Mach. Learn. – volume: 239–240 start-page: 68 year: 2015 end-page: 83 ident: bib0090 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 328 start-page: 108 year: 2016 end-page: 118 ident: bib0195 article-title: How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? publication-title: Ecol. Model. – volume: 39 start-page: 2246 year: 2009 end-page: 2256 ident: bib0155 article-title: A global climatic risk assessment of pitch canker disease publication-title: Can. J. For. Res. – volume: 262 start-page: 8 year: 2016 end-page: 23 ident: bib0430 article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps publication-title: Geomorphology – start-page: 184 year: 2010 end-page: 195 ident: bib0390 article-title: Spatial variable importance assessment for yield prediction in precision agriculture publication-title: Advances in Intelligent Data Analysis IX Lecture Notes in Computer Science – year: 2010 ident: bib0150 article-title: ‘Map of Soil pH in Europe’, Land Resources Management Unit – start-page: 1 year: 2013 end-page: 30 ident: bib0220 article-title: Summary for policymakers publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Book Section SPM – year: 2017 ident: bib0495 article-title: Generalized Additive Models: An Introduction with R – volume: 13 start-page: 361 year: 2015 end-page: 378 ident: bib0095 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – year: 2017 ident: bib0045 article-title: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions – volume: 74 start-page: 1659 year: 1993 end-page: 1673 ident: bib0265 article-title: Spatial autocorrelation: trouble or new paradigm? publication-title: Ecology – volume: 122 start-page: 321 year: 2012 end-page: 331 ident: bib0020 article-title: Testing the predictive performance of distribution models publication-title: Oikos – volume: 80 start-page: 107 year: 1989 end-page: 138 ident: bib0270 article-title: Spatial pattern and ecological analysis publication-title: Vegetatio – volume: 8 start-page: e01824 year: 2017 ident: bib0285 article-title: Spatial autocorrelation reduces model precision and predictive power in deforestation analyses publication-title: Ecosphere – volume: 14 start-page: 2008 year: 2017 end-page: 2012 ident: bib0165 article-title: On the effect of spatially non-disjoint training and test samples on estimated model generalization capabilities in supervised classification with spatial features publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 6 start-page: 7164 year: 2018 end-page: 7176 ident: bib0385 article-title: Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis publication-title: IEEE Access – year: 2018 ident: bib0350 article-title: Hyperparameters and Tuning Strategies for Random Forest publication-title: JMLR – volume: 171 start-page: 234 year: 2015 end-page: 244 ident: bib0335 article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile publication-title: Remote Sens. Environ. – volume: 188 start-page: 44 year: 2016 ident: bib0320 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. – year: 2018 ident: bib0345 article-title: Tunability: Importance of Hyperparameters of Machine Learning Algorithms publication-title: JMLR – volume: 34 start-page: 2054 year: 2017 end-page: 2062 ident: bib0505 article-title: Hyperparameter tuning for hidden unit conditional random fields publication-title: Eng. Comput. – volume: 64 start-page: 880 year: 2014 end-page: 889 ident: bib0225 article-title: Spatial analysis of the risk of major forest diseases in Monterey pine plantations publication-title: Plant Pathol. – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: bib0175 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. – volume: 54 start-page: 95 year: 2018 end-page: 122 ident: bib0005 article-title: Auditing black-box models for indirect influence publication-title: Knowl. Inf. Syst. – volume: 67 start-page: 1114 year: 2018 end-page: 1121 ident: bib0200 article-title: Detecting myrtle rust ( publication-title: Plant Pathol. – year: 2016 ident: bib0405 article-title: Modeling the Spatial Distribution of Hail Damage in Pine Plantations of Northern Spain as a Major Risk Factor for Forest Disease (Ph.D. thesis) – volume: 271 start-page: 113 year: 2014 end-page: 131 ident: bib0470 article-title: Dynamic energy accounting of water and carbon ecosystem services: a model to simulate the impacts of land-use change publication-title: Ecol. Model. – volume: 46 start-page: 33 year: 2013 end-page: 57 ident: bib0295 article-title: Machine learning feature selection methods for landslide susceptibility mapping publication-title: Math. Geosci. – volume: 6 start-page: 325 year: 1976 end-page: 327 ident: bib0135 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib0030 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – year: 2005 ident: bib0325 article-title: Atlas Climático Digital de Lapenínsula Ibérica. Metodología y Aplicaciones En Bioclimatología y Geobotánica – volume: 15 start-page: 49 year: 2014 end-page: 60 ident: bib0450 article-title: OpenML: networked science in machine learning publication-title: ACM SIGKDD Explor. Newsl. – volume: 78 start-page: 1 year: 1950 end-page: 3 ident: bib0080 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon. Weather Rev. – volume: 27 start-page: 4515 year: 2008 end-page: 4531 ident: bib0065 article-title: Estimating error rates in the classification of paired organs publication-title: Stat. Med. – volume: 99 start-page: 39 year: 2000 end-page: 61 ident: bib0365 article-title: Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation publication-title: J. Econom. – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: bib0245 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. – volume: 40 start-page: 874 year: 1984 ident: bib0185 article-title: Classification and regression trees publication-title: Biometrics – start-page: 113 year: 2016 end-page: 144 ident: bib0190 article-title: Sedimente und Sedimentgesteine publication-title: Press/Siever Allgemeine Geologie – volume: 77 start-page: 1 year: 2017 end-page: 17 ident: bib0500 article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. – year: 2017 ident: bib0370 article-title: mlrHyperopt: Easy Hyperparameter Optimization with mlr and mlrMBO – volume: 384 start-page: 23 year: 2018 end-page: 29 ident: bib0275 article-title: Disequilibrium and relaxation times for species responses to climate change publication-title: Ecol. Model. – year: 2017 ident: bib0355 article-title: Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses publication-title: J. Avian Biol. – volume: 101 start-page: 1 year: 2018 end-page: 9 ident: bib0290 article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation publication-title: Environ. Model. Softw. – volume: 28 start-page: 1503 year: 2014 end-page: 1529 ident: bib0205 article-title: A peek into the black box: exploring classifiers by randomization publication-title: Data Min. Knowl. Discov. – volume: 10 year: 2017 ident: bib0330 article-title: PMLB: A large benchmark suite for machine learning evaluation and comparison publication-title: BioData Min. – volume: 35 start-page: 2298 year: 2008 end-page: 2310 ident: bib0490 article-title: Modelling and predicting fungal distribution patterns using herbarium data publication-title: J. Biogeogr. – volume: 28 start-page: 1309 year: 2009 end-page: 1316 ident: bib0445 article-title: Evaluation of transfer functions in spatially structured environments publication-title: Quat. Sci. Rev. – volume: 40 start-page: 913 year: 2017 end-page: 929 ident: bib0380 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography – volume: 11 start-page: 1 year: 2004 end-page: 20 ident: bib0250 article-title: Kernlab – an S4 package for kernel methods in R publication-title: J. Stat. Softw. – start-page: 2900 year: 2016 end-page: 2908 ident: bib0280 article-title: Bayesian optimization for automated model selection publication-title: Advances in Neural Information Processing Systems 29 – volume: 13 start-page: 1315 year: 2015 end-page: 1318 ident: bib0510 article-title: Erratum to: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – volume: 30 start-page: 609 year: 2007 end-page: 628 ident: bib0125 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review publication-title: Ecography – volume: 12 start-page: e0169748 year: 2017 ident: bib0210 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: vol. 14 start-page: 1137 year: 1995 end-page: 1145 ident: bib0255 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: IJCAI – volume: 37 start-page: 319 year: 2008 ident: bib0485 article-title: Pitch canker caused by publication-title: Australas. Plant Pathol. – year: 2019 ident: bib0410 article-title: Analyzing the importance of spatial autocorrelation in hyperparameter tuning and performance estimation of machine-learning algorithms for spatial data – volume: 31 start-page: 2001 year: 2017 end-page: 2019 ident: bib0340 article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation publication-title: Int. J. Geogr. Inf. Sci. – year: 2010 ident: bib0085 article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning – start-page: 450 year: 2010 end-page: 463 ident: bib0395 article-title: Regression models for spatial data: an example from precision agriculture publication-title: Advances in Data Mining. Applications and Theoretical Aspects – year: 2013 ident: bib0230 article-title: An Introduction to Statistical Learning – volume: 88 start-page: 6 year: 2017 end-page: 11 ident: bib0130 article-title: Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters publication-title: Pattern Recogn. Lett. – volume: 81 start-page: 351 year: 1994 end-page: 358 ident: bib0100 article-title: A cross-validatory method for dependent data publication-title: Biometrika – volume: 24 start-page: 1154 year: 2013 end-page: 1166 ident: bib0305 article-title: Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability publication-title: J. Veg. Sci. – start-page: fsw136 year: 2016 ident: bib0420 article-title: Spatial prediction of demersal fish diversity in the Baltic Sea: comparison of machine learning and regression-based techniques publication-title: ICES J. Mar. Sci.: J. Conseil – volume: 15 start-page: 45 year: 2015 end-page: 57 ident: bib0075 article-title: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province publication-title: Nat. Hazards Earth Syst. Sci. – volume: 17 start-page: 1 year: 2016 end-page: 5 ident: bib0040 article-title: mlr: machine learning in R publication-title: J. Mach. Learn. Res. – volume: 352 start-page: 108 year: 2017 end-page: 112 ident: bib0480 article-title: Automated feature selection for a machine learning approach toward modeling a mosquito distribution publication-title: Ecol. Model. – volume: 88 start-page: 243 year: 2007 end-page: 251 ident: bib0115 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology – year: 2016 ident: bib0310 article-title: Libro Blanco Del Sector de La Madera: Actividad Forestal e Industria de Transformación de La Madera. Evolución Reciente y Perspectivas En Euskadi publication-title: Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, Servicio Central de Publicaciones del Gobierno VAsco, C/Donostia-San Sebastián 1, 01010 Vitoria-Gasteiz – year: 2012 ident: bib0060 article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest publication-title: 2012 IEEE International Geoscience and Remote Sensing Symposium – volume: 3 start-page: 260 year: 2012 end-page: 267 ident: bib0475 article-title: Assessing transferability of ecological models: an underappreciated aspect of statistical validation publication-title: Methods Ecol. Evol. – start-page: 11 year: 2002 end-page: 18 ident: bib0035 article-title: A racing algorithm for configuring metaheuristics publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation – volume: 19 start-page: 101 year: 2004 end-page: 108 ident: bib0240 article-title: Model selection in ecology and evolution publication-title: Trends Ecol. Evol. – volume: 239 start-page: 27 year: 2012 end-page: 39 ident: bib0460 article-title: How can statistical models help to determine driving factors of landslides? publication-title: Ecol. Model. – year: 2017 ident: bib0375 article-title: gbm: Generalized Boosted Regression Models – start-page: 507 year: 2011 end-page: 523 ident: bib0215 article-title: Sequential model-based optimization for general algorithm configuration publication-title: Lecture Notes in Computer Science – volume: 10 start-page: 380 year: 2016 end-page: 393 ident: bib0105 article-title: A note on the use of empirical AUC for evaluating probabilistic forecasts publication-title: Electron. J. Stat. – year: 2013 ident: bib0260 article-title: Applied Predictive Modeling – year: 2016 ident: bib0400 article-title: kknn: Weighted k-Nearest Neighbors – volume: 37 start-page: 154 year: 2003 end-page: 162 ident: bib0160 article-title: Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables publication-title: Biol. Fertil. Soils – volume: 46 start-page: 269 year: 1970 ident: bib0110 article-title: Spatial autocorrelation: a review of existing and new measures with applications publication-title: Econ. Geogr. – volume: 16 start-page: 129 year: 2007 end-page: 138 ident: bib0120 article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data publication-title: Glob. Ecol. Biogeogr. – volume: 27 start-page: 273 year: 2018 end-page: 285 ident: bib0300 article-title: A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities publication-title: Biodivers. Conserv. – start-page: 55 year: 1998 end-page: 85 ident: bib0455 article-title: The support vector method of function estimation publication-title: Nonlinear Modeling – volume: 12 start-page: 1889 year: 2000 end-page: 1900 ident: bib0025 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. – volume: 363 start-page: 48 year: 2017 end-page: 56 ident: bib0235 article-title: Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: an example with background selection publication-title: Ecol. Model. – volume: 66 start-page: 1417 year: 2009 end-page: 1424 ident: bib0315 article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan publication-title: ICES J. Mar. Sci. – volume: vol. 2 start-page: 927 year: 2015 end-page: 930 ident: bib0180 article-title: Modelling landslide susceptibility for a large geographical area using weights of evidence in lower Austria, Austria publication-title: Engineering Geology for Society and Territory – volume: 88 start-page: 486 year: 1993 ident: bib0415 article-title: Linear model selection by cross-validation publication-title: J. Am. Stat. Assoc. – volume: 5 start-page: 853 year: 2005 end-page: 862 ident: bib0055 article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation publication-title: Nat. Hazards Earth Syst. Sci. – start-page: 33 year: 2017 end-page: 55 ident: bib0435 article-title: Remote sensing for aboveground biomass estimation in boreal forests publication-title: Earth Observation for Land and Emergency Monitoring – volume: 385 start-page: 35 year: 2018 end-page: 44 ident: bib0425 article-title: Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas publication-title: Ecol. Model. – volume: 78 start-page: 316 year: 1983 ident: bib0140 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J. Am. Stat. Assoc. – volume: 125 start-page: 227 year: 2012 end-page: 237 ident: bib0070 article-title: Detecting rock glacier flow structures using Gabor filters and IKONOS imagery publication-title: Remote Sens. Environ. – volume: 24 start-page: 2173 year: 2005 end-page: 2179 ident: bib0440 article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance publication-title: Quat. Sci. Rev. – volume: 221 start-page: 565 year: 2010 end-page: 574 ident: bib0015 article-title: An evaluation of three statistical methods used to model resource selection publication-title: Ecol. Model. – volume: 27 start-page: 273 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0300 article-title: A review of ecological gradient research in the Tropics: identifying research gaps, future directions, and conservation priorities publication-title: Biodivers. Conserv. doi: 10.1007/s10531-017-1465-y – year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0370 – volume: 88 start-page: 486 year: 1993 ident: 10.1016/j.ecolmodel.2019.06.002_bib0415 article-title: Linear model selection by cross-validation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476299 – year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0355 article-title: Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black-browed albatrosses publication-title: J. Avian Biol. doi: 10.1111/jav.01238 – volume: 328 start-page: 108 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0195 article-title: How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2016.02.021 – volume: 80 start-page: 107 year: 1989 ident: 10.1016/j.ecolmodel.2019.06.002_bib0270 article-title: Spatial pattern and ecological analysis publication-title: Vegetatio doi: 10.1007/BF00048036 – volume: vol. 14 start-page: 1137 year: 1995 ident: 10.1016/j.ecolmodel.2019.06.002_bib0255 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 102 start-page: 359 year: 2007 ident: 10.1016/j.ecolmodel.2019.06.002_bib0175 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001437 – volume: 271 start-page: 113 year: 2014 ident: 10.1016/j.ecolmodel.2019.06.002_bib0470 article-title: Dynamic energy accounting of water and carbon ecosystem services: a model to simulate the impacts of land-use change publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2013.03.006 – volume: 74 start-page: 1659 year: 1993 ident: 10.1016/j.ecolmodel.2019.06.002_bib0265 article-title: Spatial autocorrelation: trouble or new paradigm? publication-title: Ecology doi: 10.2307/1939924 – year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0045 – volume: 8 start-page: e01824 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0285 article-title: Spatial autocorrelation reduces model precision and predictive power in deforestation analyses publication-title: Ecosphere doi: 10.1002/ecs2.1824 – volume: 6 start-page: 7164 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0385 article-title: Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2779794 – volume: 37 start-page: 154 year: 2003 ident: 10.1016/j.ecolmodel.2019.06.002_bib0160 article-title: Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-003-0579-4 – volume: 77 start-page: 1 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0500 article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J. Stat. Softw. doi: 10.18637/jss.v077.i01 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0030 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.ecolmodel.2019.06.002_bib0260 – volume: 37 start-page: 319 year: 2008 ident: 10.1016/j.ecolmodel.2019.06.002_bib0485 article-title: Pitch canker caused by Fusarium circinatum – a growing threat to pine plantations and forests worldwide publication-title: Australas. Plant Pathol. doi: 10.1071/AP08036 – volume: 46 start-page: 33 year: 2013 ident: 10.1016/j.ecolmodel.2019.06.002_bib0295 article-title: Machine learning feature selection methods for landslide susceptibility mapping publication-title: Math. Geosci. doi: 10.1007/s11004-013-9511-0 – volume: 27 start-page: 4515 year: 2008 ident: 10.1016/j.ecolmodel.2019.06.002_bib0065 article-title: Estimating error rates in the classification of paired organs publication-title: Stat. Med. doi: 10.1002/sim.3310 – volume: 385 start-page: 35 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0425 article-title: Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2018.07.001 – start-page: 113 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0190 article-title: Sedimente und Sedimentgesteine – volume: 122 start-page: 321 year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0020 article-title: Testing the predictive performance of distribution models publication-title: Oikos doi: 10.1111/j.1600-0706.2012.00299.x – volume: 11 start-page: 1 year: 2004 ident: 10.1016/j.ecolmodel.2019.06.002_bib0250 article-title: Kernlab – an S4 package for kernel methods in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v011.i09 – volume: 105 start-page: 569 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0465 article-title: Machine learning methods for solar radiation forecasting: a review publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.095 – start-page: fsw136 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0420 article-title: Spatial prediction of demersal fish diversity in the Baltic Sea: comparison of machine learning and regression-based techniques publication-title: ICES J. Mar. Sci.: J. Conseil – volume: 64 start-page: 880 year: 2014 ident: 10.1016/j.ecolmodel.2019.06.002_bib0225 article-title: Spatial analysis of the risk of major forest diseases in Monterey pine plantations publication-title: Plant Pathol. doi: 10.1111/ppa.12328 – volume: 76 start-page: 247 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0010 article-title: Positive reactions to pairs of allergens associated with polysensitization: analysis of IVDK data with machine-learning techniques publication-title: Contact Dermat. doi: 10.1111/cod.12706 – year: 1999 ident: 10.1016/j.ecolmodel.2019.06.002_bib0170 – volume: 30 start-page: 609 year: 2007 ident: 10.1016/j.ecolmodel.2019.06.002_bib0125 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review publication-title: Ecography doi: 10.1111/j.2007.0906-7590.05171.x – start-page: 55 year: 1998 ident: 10.1016/j.ecolmodel.2019.06.002_bib0455 article-title: The support vector method of function estimation – year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0495 – volume: 24 start-page: 2173 year: 2005 ident: 10.1016/j.ecolmodel.2019.06.002_bib0440 article-title: The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2005.05.001 – year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0060 article-title: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest – volume: 31 start-page: 2001 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0340 article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2017.1346255 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0040 article-title: mlr: machine learning in R publication-title: J. Mach. Learn. Res. – start-page: 450 year: 2010 ident: 10.1016/j.ecolmodel.2019.06.002_bib0395 article-title: Regression models for spatial data: an example from precision agriculture – volume: 81 start-page: 351 year: 1994 ident: 10.1016/j.ecolmodel.2019.06.002_bib0100 article-title: A cross-validatory method for dependent data publication-title: Biometrika doi: 10.1093/biomet/81.2.351 – volume: 66 start-page: 1417 year: 2009 ident: 10.1016/j.ecolmodel.2019.06.002_bib0315 article-title: Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsp105 – volume: 188 start-page: 44 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0320 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-5049-6 – start-page: 507 year: 2011 ident: 10.1016/j.ecolmodel.2019.06.002_bib0215 article-title: Sequential model-based optimization for general algorithm configuration doi: 10.1007/978-3-642-25566-3_40 – year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0375 – volume: 171 start-page: 234 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0335 article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.029 – volume: 221 start-page: 565 year: 2010 ident: 10.1016/j.ecolmodel.2019.06.002_bib0015 article-title: An evaluation of three statistical methods used to model resource selection publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.10.033 – volume: 88 start-page: 6 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0130 article-title: Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.01.007 – volume: 10 start-page: 380 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0105 article-title: A note on the use of empirical AUC for evaluating probabilistic forecasts publication-title: Electron. J. Stat. doi: 10.1214/16-EJS1109 – year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0405 – start-page: 11 year: 2002 ident: 10.1016/j.ecolmodel.2019.06.002_bib0035 article-title: A racing algorithm for configuring metaheuristics publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation – start-page: 184 year: 2010 ident: 10.1016/j.ecolmodel.2019.06.002_bib0390 article-title: Spatial variable importance assessment for yield prediction in precision agriculture – volume: 40 start-page: 874 year: 1984 ident: 10.1016/j.ecolmodel.2019.06.002_bib0185 article-title: Classification and regression trees publication-title: Biometrics doi: 10.2307/2530946 – start-page: 1 year: 2013 ident: 10.1016/j.ecolmodel.2019.06.002_bib0220 article-title: Summary for policymakers – year: 2019 ident: 10.1016/j.ecolmodel.2019.06.002_bib0360 – volume: 16 start-page: 129 year: 2007 ident: 10.1016/j.ecolmodel.2019.06.002_bib0120 article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2006.00279.x – year: 2005 ident: 10.1016/j.ecolmodel.2019.06.002_bib0325 – volume: 239–240 start-page: 68 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0090 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0400 – volume: 35 start-page: 2298 year: 2008 ident: 10.1016/j.ecolmodel.2019.06.002_bib0490 article-title: Modelling and predicting fungal distribution patterns using herbarium data publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2008.01965.x – volume: 40 start-page: 913 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0380 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography doi: 10.1111/ecog.02881 – volume: 262 start-page: 8 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0430 article-title: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.03.015 – volume: 24 start-page: 1154 year: 2013 ident: 10.1016/j.ecolmodel.2019.06.002_bib0305 article-title: Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability publication-title: J. Veg. Sci. doi: 10.1111/jvs.12038 – volume: 39 start-page: 2246 year: 2009 ident: 10.1016/j.ecolmodel.2019.06.002_bib0155 article-title: A global climatic risk assessment of pitch canker disease publication-title: Can. J. For. Res. doi: 10.1139/X09-131 – volume: 352 start-page: 108 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0480 article-title: Automated feature selection for a machine learning approach toward modeling a mosquito distribution publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2017.02.029 – volume: 13 start-page: 361 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0095 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – volume: vol. 2 start-page: 927 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0180 article-title: Modelling landslide susceptibility for a large geographical area using weights of evidence in lower Austria, Austria – volume: 54 start-page: 95 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0005 article-title: Auditing black-box models for indirect influence publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-017-1116-3 – volume: 88 start-page: 243 year: 2007 ident: 10.1016/j.ecolmodel.2019.06.002_bib0115 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0310 article-title: Libro Blanco Del Sector de La Madera: Actividad Forestal e Industria de Transformación de La Madera. Evolución Reciente y Perspectivas En Euskadi publication-title: Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia, Servicio Central de Publicaciones del Gobierno VAsco, C/Donostia-San Sebastián 1, 01010 Vitoria-Gasteiz – volume: 34 start-page: 2054 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0505 article-title: Hyperparameter tuning for hidden unit conditional random fields publication-title: Eng. Comput. doi: 10.1108/EC-11-2015-0350 – year: 2013 ident: 10.1016/j.ecolmodel.2019.06.002_bib0230 – volume: 363 start-page: 48 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0235 article-title: Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: an example with background selection publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2017.08.017 – volume: 78 start-page: 1 year: 1950 ident: 10.1016/j.ecolmodel.2019.06.002_bib0080 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 28 start-page: 1503 year: 2014 ident: 10.1016/j.ecolmodel.2019.06.002_bib0205 article-title: A peek into the black box: exploring classifiers by randomization publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-014-0368-8 – volume: 13 start-page: 1315 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0510 article-title: Erratum to: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0667-1 – volume: 125 start-page: 227 year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0070 article-title: Detecting rock glacier flow structures using Gabor filters and IKONOS imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.005 – year: 2010 ident: 10.1016/j.ecolmodel.2019.06.002_bib0085 – year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0350 article-title: Hyperparameters and Tuning Strategies for Random Forest publication-title: JMLR – volume: 46 start-page: 269 year: 1970 ident: 10.1016/j.ecolmodel.2019.06.002_bib0110 article-title: Spatial autocorrelation: a review of existing and new measures with applications publication-title: Econ. Geogr. doi: 10.2307/143144 – volume: 78 start-page: 316 year: 1983 ident: 10.1016/j.ecolmodel.2019.06.002_bib0140 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10477973 – year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0345 article-title: Tunability: Importance of Hyperparameters of Machine Learning Algorithms publication-title: JMLR – year: 2019 ident: 10.1016/j.ecolmodel.2019.06.002_bib0410 – volume: 13 start-page: 455 year: 1998 ident: 10.1016/j.ecolmodel.2019.06.002_bib0245 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 28 start-page: 1309 year: 2009 ident: 10.1016/j.ecolmodel.2019.06.002_bib0445 article-title: Evaluation of transfer functions in spatially structured environments publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2008.12.020 – volume: 99 start-page: 39 year: 2000 ident: 10.1016/j.ecolmodel.2019.06.002_bib0365 article-title: Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation publication-title: J. Econom. doi: 10.1016/S0304-4076(00)00030-0 – volume: 101 start-page: 1 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0290 article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.12.001 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ecolmodel.2019.06.002_bib0050 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 2900 year: 2016 ident: 10.1016/j.ecolmodel.2019.06.002_bib0280 article-title: Bayesian optimization for automated model selection – volume: 67 start-page: 1114 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0200 article-title: Detecting myrtle rust (Austropuccinia psidii) on lemon myrtle trees using spectral signatures and machine learning publication-title: Plant Pathol. doi: 10.1111/ppa.12830 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.ecolmodel.2019.06.002_bib0145 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 239 start-page: 27 year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0460 article-title: How can statistical models help to determine driving factors of landslides? publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.12.007 – volume: 14 start-page: 2008 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0165 article-title: On the effect of spatially non-disjoint training and test samples on estimated model generalization capabilities in supervised classification with spatial features publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2747222 – volume: 384 start-page: 23 year: 2018 ident: 10.1016/j.ecolmodel.2019.06.002_bib0275 article-title: Disequilibrium and relaxation times for species responses to climate change publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2018.06.004 – start-page: 33 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0435 article-title: Remote sensing for aboveground biomass estimation in boreal forests – volume: 12 start-page: 1889 year: 2000 ident: 10.1016/j.ecolmodel.2019.06.002_bib0025 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. doi: 10.1162/089976600300015187 – volume: 5 start-page: 853 year: 2005 ident: 10.1016/j.ecolmodel.2019.06.002_bib0055 article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-5-853-2005 – volume: 19 start-page: 101 year: 2004 ident: 10.1016/j.ecolmodel.2019.06.002_bib0240 article-title: Model selection in ecology and evolution publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2003.10.013 – volume: 10 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0330 article-title: PMLB: A large benchmark suite for machine learning evaluation and comparison publication-title: BioData Min. doi: 10.1186/s13040-017-0154-4 – volume: 15 start-page: 45 year: 2015 ident: 10.1016/j.ecolmodel.2019.06.002_bib0075 article-title: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-15-45-2015 – year: 2010 ident: 10.1016/j.ecolmodel.2019.06.002_bib0150 – volume: 15 start-page: 49 year: 2014 ident: 10.1016/j.ecolmodel.2019.06.002_bib0450 article-title: OpenML: networked science in machine learning publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/2641190.2641198 – volume: 3 start-page: 260 year: 2012 ident: 10.1016/j.ecolmodel.2019.06.002_bib0475 article-title: Assessing transferability of ecological models: an underappreciated aspect of statistical validation publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2011.00170.x – volume: 6 start-page: 325 year: 1976 ident: 10.1016/j.ecolmodel.2019.06.002_bib0135 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1976.5408784 – volume: 12 start-page: e0169748 year: 2017 ident: 10.1016/j.ecolmodel.2019.06.002_bib0210 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 |
| SSID | ssj0001282 |
| Score | 2.6888728 |
| Snippet | While the application of machine-learning algorithms has been highly simplified in the last years due to their well-documented integration in commonly used... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109 |
| SubjectTerms | autocorrelation case studies computer software decision making Diplodia pinea environmental factors forest diseases Hyperparameter tuning Machine-learning prediction regression analysis soil Spain Spatial autocorrelation Spatial cross-validation spatial data Spatial modeling support vector machines temperature |
| Title | Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data |
| URI | https://dx.doi.org/10.1016/j.ecolmodel.2019.06.002 https://www.proquest.com/docview/2271827586 |
| Volume | 406 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 issn: 0304-3800 databaseCode: AKRWK dateStart: 19750501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iCF7EJz5LBK9rd5PsNvVWSqUqeNFCbyFNslppt6XdHrz4251Jsy2K4MHjhpndJY-ZTPLNN4RcWyuEhiAtQjazSCTaRjJvwnJPZSzzJHZce7bPp6zbEw_9tL9B2lUuDMIqg-1f2nRvrUNLPfRmfToc1p_xUo9L3KNwJP7CRHMhGljF4OZzDfMA-xtuEkSE0t8wXhDhjXzFGcR4NT2RZzhf-cVD_bDV3gHd7ZHdsHOkreXP7ZMNVxyQ7Y5nnf44IMeddcoaiIU1Oz8ksy6EmjOk-B4j9IWWCzwKobqwdLrOGqB6RdFJJznFPCNP4QyvQsmxx1y6KBSZAPXR62Q2LN_Gc4rQ-Vc6R2g2SCPk9Ij07jov7W4UKi1EhgtZRpJrGRsIV5uxTnPbzBkbMHBbmeWM68S61OTGmQHnRliW5CbGuNBak1k7kNB-TDaLSeFOCE1j10gcbziQEIZZ2WDappLnsE9KU6dPSVb1rjKBhhyrYYxUhTd7V6thUTgsyiPv2CmJV4rTJRPH3yq31fCpb5NKgb_4W_mqGnAFSw7vUXThJou5YgwcOoNAKzv7zwfOyQ4-4QE1Exdks5wt3CXscMpBzU_hGtlq3T92n74AByf_jQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RUNVeqkKLSl-4Etdtdv3YOL1VKCjldSlI3CzH9kKqZBMlmwMXfntnHG8iUCUOvXpndld-zMP-_A3AkfdSWkzSMmIzy2RhfaarHi53pXNdFXkQNrJ9XpaDa3l6o2624Li9C0OwymT7VzY9WuvU0km92ZmNRp3fdKgnNMUogoi_1AvYkYp3KQP7_rDBeaABTkcJMiPxRyAvTPHGseQMgbx6kckzbbD8w0U9MdbRA528hTcpdGQ_V3-3C1uh3oOX_Ug7fb8H-_3NnTUUS4t28Q7mA8w158TxPSHsC2uWtBfCbO3ZbHNtgNk1RyebVowuGkUOZ3wVSU4i6DJkqcoEqo9vp_NRczdZMMLO37IFYbNRmjCn7-H6pH91PMhSqYXMCambTAurc4f5ai-3qvK9ivMhR79VesGFLXxQrnLBDYVw0vOicjklht670vuhxvZ92K6ndfgATOWhWwTRDSghHfe6y61XWlQYKCkV7AGUbe8al3jIqRzG2LSAsz9mPSyGhsVE6B0_gHytOFtRcTyv8qMdPvNoVhl0GM8rf2sH3OCao4MUW4fpcmE4R4_OMdMqP_7PBw7h1eDq4tyc_7o8-wSv6QntVnP5Gbab-TJ8wXCnGX6N0_kv394BMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+tuning+and+performance+assessment+of+statistical+and+machine-learning+algorithms+using+spatial+data&rft.jtitle=Ecological+modelling&rft.au=Schratz%2C+Patrick&rft.au=M%C3%BCnchow%2C+Jannes&rft.au=Iturritxa%2C+Eugenia&rft.au=Richter%2C+Jakob&rft.date=2019-08-24&rft.issn=0304-3800&rft.volume=406+p.109-120&rft.spage=109&rft.epage=120&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.06.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |