Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data

[Display omitted] •For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 166; pp. 228 - 240
Main Authors Sunder, Swathy, Ramsankaran, RAAJ, Ramakrishnan, Balaji
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2020.06.008

Cover

Abstract [Display omitted] •For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at daily scale.•A decade long analysis across South eastern Arabian Sea and Bay of Bengal regions. High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image.
AbstractList [Display omitted] •For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at daily scale.•A decade long analysis across South eastern Arabian Sea and Bay of Bengal regions. High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image.
High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image.
Author Sunder, Swathy
Ramakrishnan, Balaji
Ramsankaran, RAAJ
Author_xml – sequence: 1
  givenname: Swathy
  surname: Sunder
  fullname: Sunder, Swathy
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
– sequence: 2
  givenname: RAAJ
  orcidid: 0000-0001-8602-1934
  surname: Ramsankaran
  fullname: Ramsankaran, RAAJ
  email: ramsankaran@civil.iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
– sequence: 3
  givenname: Balaji
  surname: Ramakrishnan
  fullname: Ramakrishnan, Balaji
  email: rbalaji@iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
BookMark eNqNkM1u1DAUhS1UJKaFZ8BLNgn-S-IsWFTlr1KrLoC1deNcz3jkiQfbQeoL8Nx4OogFG1hcXenonCOd75JcLHFBQl5z1nLG-7f71udjyvt6rWCCtaxvGdPPyIbrQTRayO6CbNgoVCMG3r8glznvGWO86_WG_LwHu_ML0oCQFr9saUG7W_z3FTN1MdGEWx8XCDRbCEgxF3-AUiUaHd357a5JmGNYnyQb4jo3LiHSGXx4pBmB5jU5sFiLD0dMUNZ0qk7xQO8f3t9-qc4CL8lzByHjq9__inz7-OHrzefm7uHT7c31XWOl0qUZ9OzmDmHsAdxomZ6AuwmmsefKKcVBKpRiGOfJTtxpKZGhtANDMUqlJiWvyJtz7zHF08RiDj5bDAEWjGs2YtSd4t2gdLW-O1ttijkndMb68rS8pLrNcGZO_M3e_OFvTvwN603lX_PDX_ljqujS438kr89JrCR-eEwmW4-LxdkntMXM0f-z4xdxTqwQ
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3453908
crossref_primary_10_3390_rs13020192
crossref_primary_10_1016_j_infrared_2024_105129
crossref_primary_10_1016_j_envres_2023_116866
crossref_primary_10_1016_j_isprsjprs_2025_01_001
crossref_primary_10_1016_j_marenvres_2022_105701
crossref_primary_10_1109_TGRS_2024_3440912
crossref_primary_10_3390_rs15010088
crossref_primary_10_1016_j_isprsjprs_2022_03_007
crossref_primary_10_1016_j_jag_2024_104055
crossref_primary_10_1016_j_jag_2021_102458
crossref_primary_10_1109_TGRS_2024_3350998
crossref_primary_10_3390_jmse12061013
crossref_primary_10_3390_math9192523
crossref_primary_10_1002_smr_2365
crossref_primary_10_1038_s41597_024_04135_w
crossref_primary_10_1016_j_rse_2022_113220
crossref_primary_10_3390_jmse11020340
crossref_primary_10_3390_jmse11091814
crossref_primary_10_3390_rs14030575
crossref_primary_10_1109_TGRS_2021_3051025
crossref_primary_10_5194_os_21_199_2025
Cites_doi 10.1016/j.csr.2010.08.016
10.1016/j.chemolab.2005.09.003
10.1016/j.isprsjprs.2020.01.015
10.1016/j.rse.2012.10.012
10.1080/01431161.2010.492249
10.1016/j.isprsjprs.2016.01.011
10.1016/j.gsf.2015.10.006
10.1080/01431161.2010.485218
10.1016/j.seares.2010.08.002
10.1016/j.gsf.2015.07.003
10.1016/j.isprsjprs.2018.07.017
10.1016/j.isprsjprs.2013.09.010
10.1016/j.isprsjprs.2019.11.008
10.1016/j.rse.2010.10.017
10.1016/j.isprsjprs.2010.11.001
10.1175/2010JCLI3294.1
10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2
10.1002/qj.319
10.1016/j.jmarsys.2007.09.002
10.1175/2008JTECHO560.1
10.1016/j.cageo.2013.10.008
10.1175/2009JTECHO592.1
10.1016/S0273-1177(01)00337-4
10.1080/01431161.2013.870680
10.1175/2007MWR2167.1
10.1109/TGRS.2008.2005993
10.1016/j.dsr2.2012.04.002
10.1175/2008BAMS2528.1
10.1016/j.cageo.2014.10.016
10.3389/fmars.2019.00420
10.5194/hess-24-269-2020
10.3389/fmars.2018.00121
10.1016/j.pce.2009.08.001
10.1175/2007JCLI1824.1
10.1080/01431161.2012.666638
10.1016/S0165-7836(00)00201-0
10.1007/BF02233989
10.1023/A:1010933404324
10.1016/j.rse.2017.07.029
10.3390/rs10020310
10.1029/01EO00109
10.1029/2000JC000679
10.1016/j.compbiolchem.2013.05.001
10.1109/TGRS.2012.2223217
10.1007/s10661-017-6010-7
10.1016/j.isprsjprs.2011.11.002
ContentType Journal Article
Copyright 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.06.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 240
ExternalDocumentID 10_1016_j_isprsjprs_2020_06_008
S0924271620301660
GeographicLocations Bay of Bengal
Arabian Sea
GeographicLocations_xml – name: Arabian Sea
– name: Bay of Bengal
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-78dfd5ea96aaf9c08ba1fbab9614f441a34e3279dbcb1f833e0e3c70e29344b43
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Sun Sep 28 08:48:32 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Thu Oct 16 04:27:54 EDT 2025
Fri Feb 23 02:47:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
RF
cloud-free SST
SVR
MODIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-78dfd5ea96aaf9c08ba1fbab9614f441a34e3279dbcb1f833e0e3c70e29344b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8602-1934
PQID 2985415748
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2985415748
crossref_citationtrail_10_1016_j_isprsjprs_2020_06_008
crossref_primary_10_1016_j_isprsjprs_2020_06_008
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_06_008
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Ge (bib284) 2013; 46
Williams, Sapoznik, Ocampo-Reinaldo, Solis, Narvarte, González, Esteves, Gagliardini (b0270) 2010; 31
Alavi, Gandomi, Lary (b0005) 2016; 7
Senatore, Furnari, Mendicino (b0215) 2020; 24
Miles, He (b0145) 2010; 30
Balachandran, Laluraj, Jyothibabu, Madhu, Muraleedharan, Vijay, Maheswaran, Ashraff, Nair, Achuthankutty (b0020) 2008; 73
Reynolds, Smith, Liu, Chelton, Casey, Schlax (b0195) 2007; 20
Vapnik, V., 1979. Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982).
Zhao, He (b0280) 2012; 3
Mountrakis, Im, Ogole (b0155) 2011; 66
Baith, Lindsay, Fu, McClain (b0015) 2001; 82
Maturi, Harris, Merchant, Mittaz, Potash, Meng, Sapper (b0140) 2008; 89
Brasnett, B., 2008.“ The impact of satellite retrievals in a global sea‐surface‐temperature analysis”. Quarterly Journal of the Royal Meteorological Society, 134(636), pp.1745-1760.
Autret, E. and Piolle, J.F., 2011. Product User Manual for ODYSSEA Level 3 and 4 global and regional products. MYO-PUM-SST-TAC-ODYSSEA, Ifremer/CERSAT.[Available online at: http://projets. ifremer. fr/cersat/Data/Discovery/By-parameter/Sea-surface-temperature/ODYSSEA-Global-SST-Analysis].
Barton (b0025) 2001; 28
Liu, Liu, Liu, Ding, Jiang (b0135) 2015; 75
Witten, Frank, Hall, Pal (b0275) 2016
Fablet, Viet, Lguensat, Horrein, Chapron (b0105) 2018; 10
Shenoi, Shankar, Shetye (b0220) 2002; 107
Lary, Alavi, Gandomi, Walker (b0130) 2016; 7
Thadathil, Gosh (b0235) 1992; 48
Kamir, Waldner, Hochman (b0120) 2020; 160
Picart, Tandeo, Autret, Gausset (b0185) 2018; 10
Barnes, Hu (bib282) 2013; 51
LaCasse, Splitt, Lazarus, Lapenta (b0125) 2008; 136
RSS (2019), Research-Quality Geophysical Products From Satellite Microwave Sensors.[online] Avaliable at http://remss.com/, [Accessed 05May.2019 ].
Dash, Ignatov, Martin, Donlon, Brasnett, Reynolds, Banzon (b0080) 2012; 77
O'Carroll, Armstrong, Beggs, Bouali, Casey, Corlett, Dash, Donlon, Gentemann, Høyer, Ignatov (b0180) 2019; 6
Fang, Li, Zhang, Chan (b0110) 2020; 161
CERSAT.2018, Sea Surface Temperature In Situ Data [online].available at http://cersat.ifremer.fr/data/tools-and-services/match-up-databases/item/298-sea-surface-temperature-in-situ-data, accessed on 29/07/2018.
Wang, Jiao, and Zhiqiang Deng. 2017. “Development of MODIS Data-Based Algorithm for Retrieving Sea Surface Temperature in Coastal Waters.” Environmental Monitoring and Assessment 189 (6). Environmental Monitoring and Assessment. doi:10.1007/s10661-017-6010-7.
Brown, Otis B, and Peter J Minnett. 1999. “MODIS Infrared Sea Surface Temperature Algorithm (ATBD 25, v2).” NASA Ocean Color [Available online at: http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod25.pdf].
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (b0200) 2012; 67
Üstün, Melssen, Buydens (bib281) 2006; 81
Anderson (bib283) 1976; 104
Chao, Li, Farrara, Hung (b0060) 2009; 26
Chin, Vazquez-Cuervo, Armstrong (b0070) 2017; 200
Cracknell, Reading (b0075) 2014; 63
Deng, Wu (b0095) 2013; 86
Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0245) 2018; 144
Tomazic, Kuzmic, Notarstefano, Mauri, Poulain (b0255) 2011; 32
Breiman (b0040) 2001; 45
NASA. 2019, Cloud Climatology, Global Distribution and Character of Clouds.[online] Avaliable at https://www.giss.nasa.gov/research/briefs/rossow_01/distrib.html, [Accessed 05 May,2019 ].
Stark, Donlon, O’Carroll, Corlett (b0230) 2008; 25
Delgado, Ana L., Cédric Jamet, Hubert Loisel, Vincent Vantrepotte, Gerardo M.E. Perillo, and M. Cintia Piccolo. 2014. “Evaluation of the MODIS-Aqua Sea-Surface Temperature Product in the Inner and Mid-Shelves of Southwest Buenos Aires Province, Argentina.” International Journal of Remote Sensing 35 (1). 306–20. 10.1080/01431161.2013.870680.
Santos (b0210) 2000; 49
Moser, Serpico (b0150) 2009; 47
NASA Goddard Space Flight Center, Ocean Biology Processing Group. 2014. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level 0 Data; NASA OB.DAAC, Greenbelt, MD, USA. Available at : https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/, Accessed on 29/01/2018. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD.
Thakur, Vanderstichel, Barrell, Stryhn, Patanasatienkul, Revie (b0240) 2018; 5
David John Lary (b0085) 2010; 1–24
NCEI. 2016. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset last accessed 29-08-2018 at http://dx.doi.org/10.5067/GHAAO-4BC02.
Belgiu, Dra (b0030) 2016; 114
Buongiorno Nardelli, Tronconi, Pisano, Santoleri (b0050) 2013; 129
Sirjacobs, Alvera-Azcárate, Barth, Lacroix, Park, Nechad, Ruddick, Beckers (b0225) 2011; 65
Tomažić, Kuzmić, Notarstefano, Mauri, Poulain (b0250) 2011; 32
Reynolds, Chelton (b0190) 2010; 23
Chavula, Brezonik, Thenkabail, Johnson, Bauer (b0065) 2009; 34
Donlon, Martin, Stark, Roberts-Jones, Fiedler, Wimmer (b0100) 2012; 116
Barton (10.1016/j.isprsjprs.2020.06.008_b0025) 2001; 28
Deng (10.1016/j.isprsjprs.2020.06.008_b0095) 2013; 86
Maturi (10.1016/j.isprsjprs.2020.06.008_b0140) 2008; 89
Witten (10.1016/j.isprsjprs.2020.06.008_b0275) 2016
Fang (10.1016/j.isprsjprs.2020.06.008_b0110) 2020; 161
Chin (10.1016/j.isprsjprs.2020.06.008_b0070) 2017; 200
10.1016/j.isprsjprs.2020.06.008_b0265
Zhang (10.1016/j.isprsjprs.2020.06.008_bib284) 2013; 46
Chao (10.1016/j.isprsjprs.2020.06.008_b0060) 2009; 26
Teluguntla (10.1016/j.isprsjprs.2020.06.008_b0245) 2018; 144
10.1016/j.isprsjprs.2020.06.008_b0260
Alavi (10.1016/j.isprsjprs.2020.06.008_b0005) 2016; 7
Sirjacobs (10.1016/j.isprsjprs.2020.06.008_b0225) 2011; 65
David John Lary (10.1016/j.isprsjprs.2020.06.008_b0085) 2010; 1–24
LaCasse (10.1016/j.isprsjprs.2020.06.008_b0125) 2008; 136
O'Carroll (10.1016/j.isprsjprs.2020.06.008_b0180) 2019; 6
Senatore (10.1016/j.isprsjprs.2020.06.008_b0215) 2020; 24
Rodriguez-Galiano (10.1016/j.isprsjprs.2020.06.008_b0200) 2012; 67
Thakur (10.1016/j.isprsjprs.2020.06.008_b0240) 2018; 5
Reynolds (10.1016/j.isprsjprs.2020.06.008_b0195) 2007; 20
10.1016/j.isprsjprs.2020.06.008_b0010
10.1016/j.isprsjprs.2020.06.008_b0055
Lary (10.1016/j.isprsjprs.2020.06.008_b0130) 2016; 7
Breiman (10.1016/j.isprsjprs.2020.06.008_b0040) 2001; 45
Shenoi (10.1016/j.isprsjprs.2020.06.008_b0220) 2002; 107
Williams (10.1016/j.isprsjprs.2020.06.008_b0270) 2010; 31
10.1016/j.isprsjprs.2020.06.008_b0170
10.1016/j.isprsjprs.2020.06.008_b0090
Barnes (10.1016/j.isprsjprs.2020.06.008_bib282) 2013; 51
Cracknell (10.1016/j.isprsjprs.2020.06.008_b0075) 2014; 63
Chavula (10.1016/j.isprsjprs.2020.06.008_b0065) 2009; 34
Santos (10.1016/j.isprsjprs.2020.06.008_b0210) 2000; 49
Fablet (10.1016/j.isprsjprs.2020.06.008_b0105) 2018; 10
Üstün (10.1016/j.isprsjprs.2020.06.008_bib281) 2006; 81
Zhao (10.1016/j.isprsjprs.2020.06.008_b0280) 2012; 3
10.1016/j.isprsjprs.2020.06.008_b0205
Tomažić (10.1016/j.isprsjprs.2020.06.008_b0250) 2011; 32
Tomazic (10.1016/j.isprsjprs.2020.06.008_b0255) 2011; 32
Reynolds (10.1016/j.isprsjprs.2020.06.008_b0190) 2010; 23
10.1016/j.isprsjprs.2020.06.008_b0045
10.1016/j.isprsjprs.2020.06.008_b0165
Moser (10.1016/j.isprsjprs.2020.06.008_b0150) 2009; 47
10.1016/j.isprsjprs.2020.06.008_b0160
Donlon (10.1016/j.isprsjprs.2020.06.008_b0100) 2012; 116
Dash (10.1016/j.isprsjprs.2020.06.008_b0080) 2012; 77
Miles (10.1016/j.isprsjprs.2020.06.008_b0145) 2010; 30
Stark (10.1016/j.isprsjprs.2020.06.008_b0230) 2008; 25
Anderson (10.1016/j.isprsjprs.2020.06.008_bib283) 1976; 104
Thadathil (10.1016/j.isprsjprs.2020.06.008_b0235) 1992; 48
Belgiu (10.1016/j.isprsjprs.2020.06.008_b0030) 2016; 114
Mountrakis (10.1016/j.isprsjprs.2020.06.008_b0155) 2011; 66
Picart (10.1016/j.isprsjprs.2020.06.008_b0185) 2018; 10
Balachandran (10.1016/j.isprsjprs.2020.06.008_b0020) 2008; 73
10.1016/j.isprsjprs.2020.06.008_b0035
Buongiorno Nardelli (10.1016/j.isprsjprs.2020.06.008_b0050) 2013; 129
Liu (10.1016/j.isprsjprs.2020.06.008_b0135) 2015; 75
Kamir (10.1016/j.isprsjprs.2020.06.008_b0120) 2020; 160
Baith (10.1016/j.isprsjprs.2020.06.008_b0015) 2001; 82
References_xml – reference: Autret, E. and Piolle, J.F., 2011. Product User Manual for ODYSSEA Level 3 and 4 global and regional products. MYO-PUM-SST-TAC-ODYSSEA, Ifremer/CERSAT.[Available online at: http://projets. ifremer. fr/cersat/Data/Discovery/By-parameter/Sea-surface-temperature/ODYSSEA-Global-SST-Analysis].
– volume: 34
  start-page: 749
  year: 2009
  end-page: 754
  ident: b0065
  article-title: Estimating the Surface Temperature of Lake Malawi Using AVHRR and MODIS Satellite Imagery
  publication-title: Phys. Chem. Earth.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0185
  article-title: Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures
  publication-title: Remote Sensing
– reference: RSS (2019), Research-Quality Geophysical Products From Satellite Microwave Sensors.[online] Avaliable at http://remss.com/, [Accessed 05May.2019 ].
– volume: 32
  start-page: 4871
  year: 2011
  end-page: 4892
  ident: b0255
  article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature
  publication-title: Int. J. Remote Sens.
– volume: 20
  start-page: 5473
  year: 2007
  end-page: 5496
  ident: b0195
  article-title: Daily High-Resolution-Blended Analyses for Sea Surface Temperature
  publication-title: J. Clim.
– volume: 77
  start-page: 31
  year: 2012
  end-page: 43
  ident: b0080
  article-title: Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons-Part 2: Near Real Time Web-Based Level 4 SST Quality Monitor (L4-SQUAM)
  publication-title: Deep-Sea Res. Part II: Topical Stud. Oceanogr.
– volume: 65
  start-page: 114
  year: 2011
  end-page: 130
  ident: b0225
  article-title: Cloud Filling of Ocean Colour and Sea Surface Temperature Remote Sensing Products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions Methodology
  publication-title: J. Sea Res.
– volume: 23
  start-page: 3545
  year: 2010
  end-page: 3562
  ident: b0190
  article-title: Comparisons of Daily Sea Surface Temperature Analyses for 2007–08
  publication-title: J. Clim.
– volume: 7
  start-page: 3
  year: 2016
  end-page: 10
  ident: b0130
  article-title: Machine Learning in Geosciences and Remote Sensing
  publication-title: Geosci. Front.
– reference: Brasnett, B., 2008.“ The impact of satellite retrievals in a global sea‐surface‐temperature analysis”. Quarterly Journal of the Royal Meteorological Society, 134(636), pp.1745-1760.
– reference: NASA. 2019, Cloud Climatology, Global Distribution and Character of Clouds.[online] Avaliable at https://www.giss.nasa.gov/research/briefs/rossow_01/distrib.html, [Accessed 05 May,2019 ].
– volume: 7
  start-page: 1
  year: 2016
  end-page: 2
  ident: b0005
  article-title: Progress of Machine Learning in Geosciences: Preface
  publication-title: Geosci. Front.
– volume: 82
  year: 2001
  ident: b0015
  article-title: Data analysis system developed for ocean color satellite sensors
  publication-title: Eos, Transactions American Geophysical Union
– volume: 129
  start-page: 1
  year: 2013
  end-page: 16
  ident: b0050
  article-title: High and Ultra-High Resolution Processing of Satellite Sea Surface Temperature Data over Southern European Seas in the Framework of MyOcean Project
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 1
  year: 2000
  end-page: 20
  ident: b0210
  article-title: Fisheries Oceanography Using Satellite and Airborne Remote Sensing Methods: A Review
  publication-title: Fish. Res.
– volume: 28
  start-page: 165
  year: 2001
  end-page: 170
  ident: b0025
  article-title: Interpretation of Satellite-Derived Sea Surface Temperatures
  publication-title: Adv. Space Res.
– volume: 116
  start-page: 140
  year: 2012
  end-page: 158
  ident: b0100
  article-title: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 269
  year: 2020
  end-page: 291
  ident: b0215
  article-title: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments' hydrological responses to heavy precipitation
  publication-title: Hydrol. Earth Syst. Sci.
– reference: CERSAT.2018, Sea Surface Temperature In Situ Data [online].available at http://cersat.ifremer.fr/data/tools-and-services/match-up-databases/item/298-sea-surface-temperature-in-situ-data, accessed on 29/07/2018.
– volume: 75
  start-page: 44
  year: 2015
  end-page: 56
  ident: b0135
  article-title: Multivariable Integration Method for Estimating Sea Surface Salinity in Coastal Waters from in Situ Data and Remotely Sensed Data Using Random Forest Algorithm
  publication-title: Comput. Geosci.
– volume: 25
  start-page: 1208
  year: 2008
  end-page: 1217
  ident: b0230
  article-title: Determination of AATSR Biases Using the OSTIA SST Analysis System and a Matchup Database
  publication-title: J. Atmos. Oceanic Technol.
– volume: 32
  start-page: 4871
  year: 2011
  end-page: 4892
  ident: b0250
  article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature
  publication-title: Int. J. Remote Sens.
– volume: 161
  start-page: 164
  year: 2020
  end-page: 178
  ident: b0110
  article-title: Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 51
  start-page: 3273
  year: 2013
  end-page: 3285
  ident: bib282
  article-title: A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the Eastern Gulf of Mexico
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 31
  start-page: 4531
  year: 2010
  end-page: 4542
  ident: b0270
  article-title: Comparison of AVHRR and SeaWiFS Imagery with Fishing Activity and in Situ Data in San Matías Gulf, Argentina
  publication-title: Int. J. Remote Sens.
– reference: Delgado, Ana L., Cédric Jamet, Hubert Loisel, Vincent Vantrepotte, Gerardo M.E. Perillo, and M. Cintia Piccolo. 2014. “Evaluation of the MODIS-Aqua Sea-Surface Temperature Product in the Inner and Mid-Shelves of Southwest Buenos Aires Province, Argentina.” International Journal of Remote Sensing 35 (1). 306–20. 10.1080/01431161.2013.870680.
– volume: 6
  start-page: 420
  year: 2019
  ident: b0180
  article-title: Observational needs of sea surface temperature
  publication-title: Front. Mar. Sci.
– volume: 1–24
  year: 2010
  ident: b0085
  article-title: Artificial Intelligence in Geoscience and Remote Sensing
  publication-title: Geoscience and Remote Sensing, New Achievements
– reference: NASA Goddard Space Flight Center, Ocean Biology Processing Group. 2014. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level 0 Data; NASA OB.DAAC, Greenbelt, MD, USA. Available at : https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/, Accessed on 29/01/2018. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD.
– volume: 86
  start-page: 100
  year: 2013
  end-page: 110
  ident: b0095
  article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: b0030
  article-title: Random Forest in Remote Sensing : A Review of Applications and Future Directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 200
  start-page: 154
  year: 2017
  end-page: 169
  ident: b0070
  article-title: A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature
  publication-title: Remote Sens. Environ.
– volume: 107
  start-page: 5
  year: 2002
  end-page: 11
  ident: b0220
  article-title: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon
  publication-title: J. Geophys. Res. Oceans
– volume: 63
  start-page: 22
  year: 2014
  end-page: 33
  ident: b0075
  article-title: Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information
  publication-title: Comput. Geosci.
– volume: 48
  start-page: 293
  year: 1992
  end-page: 304
  ident: b0235
  article-title: Surface layer temperature inversion in the Arabian Sea during winter
  publication-title: J. Oceanogr.
– volume: 73
  start-page: 76
  year: 2008
  end-page: 86
  ident: b0020
  article-title: Hydrography and biogeochemistry of the north western Bay of Bengal and the north eastern Arabian Sea during winter monsoon
  publication-title: J. Mar. Syst.
– reference: Vapnik, V., 1979. Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982).
– volume: 89
  start-page: 1877
  year: 2008
  end-page: 1888
  ident: b0140
  article-title: NOAA’s Sea Surface Temperature Products from Operational Geostationary Satellites
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 3
  start-page: 697
  year: 2012
  end-page: 706
  ident: b0280
  article-title: Cloud-Free Sea Surface Temperature and Colour Reconstruction for the Gulf of Mexico: 2003–2009
  publication-title: Remote Sensing Letters
– volume: 10
  start-page: 310
  year: 2018
  ident: b0105
  article-title: Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation
  publication-title: Remote Sensing
– reference: NCEI. 2016. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset last accessed 29-08-2018 at http://dx.doi.org/10.5067/GHAAO-4BC02.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0040
  article-title: Random Forests
  publication-title: Machine Learning
– year: 2016
  ident: b0275
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: b0155
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 144
  start-page: 325
  year: 2018
  end-page: 340
  ident: b0245
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 5
  start-page: 121
  year: 2018
  ident: b0240
  article-title: Comparison of remotely-sensed sea surface temperature and salinity products with in situ measurements from British Columbia
  publication-title: Canada. Frontiers in Marine Science
– volume: 26
  start-page: 1415
  year: 2009
  end-page: 1426
  ident: b0060
  article-title: Blending Sea Surface Temperatures from Multiple Satellites and in Situ Observations for Coastal Oceans
  publication-title: J. Atmos. Oceanic Technol.
– volume: 47
  start-page: 909
  year: 2009
  end-page: 921
  ident: b0150
  article-title: Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Wang, Jiao, and Zhiqiang Deng. 2017. “Development of MODIS Data-Based Algorithm for Retrieving Sea Surface Temperature in Coastal Waters.” Environmental Monitoring and Assessment 189 (6). Environmental Monitoring and Assessment. doi:10.1007/s10661-017-6010-7.
– volume: 104
  start-page: 907
  year: 1976
  end-page: 921
  ident: bib283
  article-title: The low-level jet as a western boundary current
  publication-title: Monthly Weather Rev.
– reference: Brown, Otis B, and Peter J Minnett. 1999. “MODIS Infrared Sea Surface Temperature Algorithm (ATBD 25, v2).” NASA Ocean Color [Available online at: http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod25.pdf].
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: b0200
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 81
  start-page: 29
  year: 2006
  end-page: 40.Vancouver
  ident: bib281
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 46
  start-page: 16
  year: 2013
  end-page: 22
  ident: bib284
  article-title: Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins
  publication-title: Comput. Biol. Chem.
– volume: 160
  start-page: 124
  year: 2020
  end-page: 135
  ident: b0120
  article-title: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 136
  start-page: 1349
  year: 2008
  end-page: 1372
  ident: b0125
  article-title: The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer
  publication-title: Mon. Weather Rev.
– volume: 30
  start-page: 1951
  year: 2010
  end-page: 1962
  ident: b0145
  article-title: Temporal and Spatial Variability of Chl-a and SST on the South Atlantic Bight: Revisiting with Cloud-Free Reconstructions of MODIS Satellite Imagery
  publication-title: Cont. Shelf Res.
– volume: 30
  start-page: 1951
  issue: 18
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.008_b0145
  article-title: Temporal and Spatial Variability of Chl-a and SST on the South Atlantic Bight: Revisiting with Cloud-Free Reconstructions of MODIS Satellite Imagery
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2010.08.016
– volume: 1–24
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.008_b0085
  article-title: Artificial Intelligence in Geoscience and Remote Sensing
  publication-title: Geoscience and Remote Sensing, New Achievements
– volume: 81
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.isprsjprs.2020.06.008_bib281
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.09.003
– volume: 161
  start-page: 164
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.06.008_b0110
  article-title: Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.015
– volume: 129
  start-page: 1
  issue: February
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.06.008_b0050
  article-title: High and Ultra-High Resolution Processing of Satellite Sea Surface Temperature Data over Southern European Seas in the Framework of MyOcean Project
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.012
– volume: 32
  start-page: 4871
  issue: 17
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.06.008_b0255
  article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.492249
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.06.008_b0030
  article-title: Random Forest in Remote Sensing : A Review of Applications and Future Directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: 10.1016/j.isprsjprs.2020.06.008_b0165
– ident: 10.1016/j.isprsjprs.2020.06.008_b0010
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.06.008_b0005
  article-title: Progress of Machine Learning in Geosciences: Preface
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2015.10.006
– volume: 31
  start-page: 4531
  issue: 17
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.008_b0270
  article-title: Comparison of AVHRR and SeaWiFS Imagery with Fishing Activity and in Situ Data in San Matías Gulf, Argentina
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.485218
– volume: 65
  start-page: 114
  issue: 1
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.06.008_b0225
  article-title: Cloud Filling of Ocean Colour and Sea Surface Temperature Remote Sensing Products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions Methodology
  publication-title: J. Sea Res.
  doi: 10.1016/j.seares.2010.08.002
– volume: 7
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.06.008_b0130
  article-title: Machine Learning in Geosciences and Remote Sensing
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2015.07.003
– ident: 10.1016/j.isprsjprs.2020.06.008_b0260
– volume: 10
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.008_b0185
  article-title: Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures
  publication-title: Remote Sensing
– volume: 144
  start-page: 325
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.008_b0245
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.017
– volume: 86
  start-page: 100
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.06.008_b0095
  article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.09.010
– volume: 160
  start-page: 124
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.06.008_b0120
  article-title: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.008
– volume: 116
  start-page: 140
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.06.008_b0100
  article-title: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.017
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.06.008_b0155
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 23
  start-page: 3545
  issue: 13
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.06.008_b0190
  article-title: Comparisons of Daily Sea Surface Temperature Analyses for 2007–08
  publication-title: J. Clim.
  doi: 10.1175/2010JCLI3294.1
– volume: 104
  start-page: 907
  issue: 7
  year: 1976
  ident: 10.1016/j.isprsjprs.2020.06.008_bib283
  article-title: The low-level jet as a western boundary current
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2
– ident: 10.1016/j.isprsjprs.2020.06.008_b0035
  doi: 10.1002/qj.319
– volume: 73
  start-page: 76
  issue: 1–2
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.06.008_b0020
  article-title: Hydrography and biogeochemistry of the north western Bay of Bengal and the north eastern Arabian Sea during winter monsoon
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2007.09.002
– volume: 25
  start-page: 1208
  issue: 7
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.06.008_b0230
  article-title: Determination of AATSR Biases Using the OSTIA SST Analysis System and a Matchup Database
  publication-title: J. Atmos. Oceanic Technol.
  doi: 10.1175/2008JTECHO560.1
– volume: 63
  start-page: 22
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.06.008_b0075
  article-title: Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.10.008
– volume: 26
  start-page: 1415
  issue: 7
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.06.008_b0060
  article-title: Blending Sea Surface Temperatures from Multiple Satellites and in Situ Observations for Coastal Oceans
  publication-title: J. Atmos. Oceanic Technol.
  doi: 10.1175/2009JTECHO592.1
– volume: 32
  start-page: 4871
  issue: 17
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.06.008_b0250
  article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.492249
– year: 2016
  ident: 10.1016/j.isprsjprs.2020.06.008_b0275
– ident: 10.1016/j.isprsjprs.2020.06.008_b0205
– volume: 28
  start-page: 165
  issue: 1
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.06.008_b0025
  article-title: Interpretation of Satellite-Derived Sea Surface Temperatures
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(01)00337-4
– ident: 10.1016/j.isprsjprs.2020.06.008_b0090
  doi: 10.1080/01431161.2013.870680
– volume: 136
  start-page: 1349
  issue: 4
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.06.008_b0125
  article-title: The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2007MWR2167.1
– volume: 47
  start-page: 909
  issue: 3
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.06.008_b0150
  article-title: Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2005993
– volume: 77
  start-page: 31
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.06.008_b0080
  article-title: Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons-Part 2: Near Real Time Web-Based Level 4 SST Quality Monitor (L4-SQUAM)
  publication-title: Deep-Sea Res. Part II: Topical Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2012.04.002
– volume: 89
  start-page: 1877
  issue: 12
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.06.008_b0140
  article-title: NOAA’s Sea Surface Temperature Products from Operational Geostationary Satellites
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2008BAMS2528.1
– volume: 75
  start-page: 44
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.06.008_b0135
  article-title: Multivariable Integration Method for Estimating Sea Surface Salinity in Coastal Waters from in Situ Data and Remotely Sensed Data Using Random Forest Algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.016
– volume: 6
  start-page: 420
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.06.008_b0180
  article-title: Observational needs of sea surface temperature
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00420
– volume: 24
  start-page: 269
  issue: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.06.008_b0215
  article-title: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments' hydrological responses to heavy precipitation
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-24-269-2020
– volume: 5
  start-page: 121
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.008_b0240
  article-title: Comparison of remotely-sensed sea surface temperature and salinity products with in situ measurements from British Columbia
  publication-title: Canada. Frontiers in Marine Science
  doi: 10.3389/fmars.2018.00121
– volume: 34
  start-page: 749
  issue: 13–16
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.06.008_b0065
  article-title: Estimating the Surface Temperature of Lake Malawi Using AVHRR and MODIS Satellite Imagery
  publication-title: Phys. Chem. Earth.
  doi: 10.1016/j.pce.2009.08.001
– volume: 20
  start-page: 5473
  issue: 22
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.06.008_b0195
  article-title: Daily High-Resolution-Blended Analyses for Sea Surface Temperature
  publication-title: J. Clim.
  doi: 10.1175/2007JCLI1824.1
– volume: 3
  start-page: 697
  issue: 8
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.06.008_b0280
  article-title: Cloud-Free Sea Surface Temperature and Colour Reconstruction for the Gulf of Mexico: 2003–2009
  publication-title: Remote Sensing Letters
  doi: 10.1080/01431161.2012.666638
– ident: 10.1016/j.isprsjprs.2020.06.008_b0045
– volume: 49
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.isprsjprs.2020.06.008_b0210
  article-title: Fisheries Oceanography Using Satellite and Airborne Remote Sensing Methods: A Review
  publication-title: Fish. Res.
  doi: 10.1016/S0165-7836(00)00201-0
– volume: 48
  start-page: 293
  issue: 3
  year: 1992
  ident: 10.1016/j.isprsjprs.2020.06.008_b0235
  article-title: Surface layer temperature inversion in the Arabian Sea during winter
  publication-title: J. Oceanogr.
  doi: 10.1007/BF02233989
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.06.008_b0040
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 200
  start-page: 154
  issue: July
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.06.008_b0070
  article-title: A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.029
– volume: 10
  start-page: 310
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.06.008_b0105
  article-title: Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation
  publication-title: Remote Sensing
  doi: 10.3390/rs10020310
– ident: 10.1016/j.isprsjprs.2020.06.008_b0055
– volume: 82
  issue: 18
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.06.008_b0015
  article-title: Data analysis system developed for ocean color satellite sensors
  publication-title: Eos, Transactions American Geophysical Union
  doi: 10.1029/01EO00109
– ident: 10.1016/j.isprsjprs.2020.06.008_b0160
– ident: 10.1016/j.isprsjprs.2020.06.008_b0170
– volume: 107
  start-page: 5
  issue: C6
  year: 2002
  ident: 10.1016/j.isprsjprs.2020.06.008_b0220
  article-title: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2000JC000679
– volume: 46
  start-page: 16
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.06.008_bib284
  article-title: Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2013.05.001
– volume: 51
  start-page: 3273
  issue: 6
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.06.008_bib282
  article-title: A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the Eastern Gulf of Mexico
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2223217
– ident: 10.1016/j.isprsjprs.2020.06.008_b0265
  doi: 10.1007/s10661-017-6010-7
– volume: 67
  start-page: 93
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.06.008_b0200
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
SSID ssj0001568
Score 2.4445744
Snippet [Display omitted] •For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST...
High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 228
SubjectTerms algorithms
ANN
Arabian Sea
artificial intelligence
Bay of Bengal
cloud cover
cloud-free SST
data collection
infrared radiometers
moderate resolution imaging spectroradiometer
MODIS
neural networks
regression analysis
satellites
surface water temperature
SVR
tropics
Title Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.06.008
https://www.proquest.com/docview/2985415748
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV0xb9QwFLaqdgCGCgqIUqgeUldzSeyLHbaqpbq2ajuUSt0i27HhquNySu6GLoz8bt5LnIMipA4MGRLZSeTn-H1P-fx9jB04H9JKVZJnOjdc2pByk7qCyypzuUgsZQ1iW1zmkxt5dju-3WBHw14YolXGtb9f07vVOl4ZxdEcLabT0XWCpUNGAkiE6vOc6nYpFbkYfPzxm-aR9tvhqDGn1g84XtN20bR3eGChmCWdkCf5TP47Q_21VncJ6OQ5247IEQ77l3vBNvx8hz37Q09whz2Jlubf7l-ynxcdTdJD9IX4Cmu51hYQqQJZMhAMhxbD5IHUNvptjFAHIBVjjpV4nJjgZvWq4qHxHioznd0DfiHQrppgnAeSt4razHjrpv4OF1fHp9dA7NNX7Obk85ejCY-mC9wJqZdc6SpUY2-K3JhQuERbkwZrbIF5PCB2MkJ6kamiss6mQQvhEy-cSjziBimtFK_Z5rye-zcMlE9DIYLS1gWyXzdYjQqq2BJlC-ntLsuHgS5dVCQnY4xZOVDP7sp1hEqKUNmR8PQuS9YdF70ox-NdPg2RLB_MrxJTx-OdPwyxL_Hro18qZu7rFTYq9BghkJL67f88YI89pbOeWPiObS6blX-PYGdp97vZvM-2Dk_PJ5e_AK14A-c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPdAeUEtbFeiHK_XqbhJ7Y4dbRYuWj6UHQOJm2Y5NF203q2T3wIUjv7szibNAVYlDD7kkdhJ57Jk38vMbQr44H9JSloJlKjdM2JAyk7qCiTJzOU8sRg1kW5zmowtxdDm8XCP7_VkYpFVG39_59NZbxzuDOJqD-WQyOEsgdchQAAlRfZ5D3v5MDDOJGdjX23ueR9qdh8PWDJs_InlNmnndXMMFmWKWtEqeWGjy3yHqL2fdRqCDl2QzQkf6rfu7V2TNz7bIiweCgltkI9Y0_3XzmtyNW56kp7EwxBVd6bU2FKAqxZoMiMNpA3byFOU2unOMtAoUZYwZpOJxZlI3rZYlC7X3tDST6Q2FJUKbZR2M8xT1raI4M7y6rn7T8c_vh2cU6advyMXBj_P9EYtVF5jjQi2YVGUoh94UuTGhcImyJg3W2AICeQDwZLjwPJNFaZ1Ng-LcJ547mXgADkJYwd-S9Vk18-8IlT4NBQ9SWRew_rqBdJRjypZIWwhvt0neD7R2UZIcK2NMdc89u9YrC2m0kG5ZeGqbJKuO806V4-kue70l9aMJpiF2PN35c297DcsP91TMzFdLaFSoIWAgKdTO_3zgE9kYnY9P9Mnh6fEueY5POpbhe7K-qJf-AyCfhf3Yzuw_mswFfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+techniques+for+regional+scale+estimation+of+high-resolution+cloud-free+daily+sea+surface+temperatures+from+MODIS+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Sunder%2C+Swathy&rft.au=Ramsankaran%2C+RAAJ&rft.au=Ramakrishnan%2C+Balaji&rft.date=2020-08-01&rft.issn=0924-2716&rft.volume=166+p.228-240&rft.spage=228&rft.epage=240&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.06.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon