Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data
[Display omitted] •For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at...
Saved in:
| Published in | ISPRS journal of photogrammetry and remote sensing Vol. 166; pp. 228 - 240 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-2716 1872-8235 |
| DOI | 10.1016/j.isprsjprs.2020.06.008 |
Cover
| Abstract | [Display omitted]
•For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at daily scale.•A decade long analysis across South eastern Arabian Sea and Bay of Bengal regions.
High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image. |
|---|---|
| AbstractList | [Display omitted]
•For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST estimations using MODIS Aqua.•Support vector regression outperforms other tested algorithms such as ANN and RF.•Very high resolution SST estimates at daily scale.•A decade long analysis across South eastern Arabian Sea and Bay of Bengal regions.
High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image. High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the past decades. However, the presence of clouds is a big stumbling block when physical approaches are used to derive SST. This problem is more prominent across tropical regions such as Arabian Sea(AS) and Bay of Bengal(BoB), restricting the availability of high-resolution SST data for ocean applications. The previous studies for developing daily high-resolution cloud-free SST products mainly focus on fusion of multiple satellites and in-situ data products that are computationally expensive and often time consuming. At the same time, it was observed that the capabilities of data-driven approaches are not yet fully explored in the estimation of cloud-free high-resolution SST data. Hence, in this study an attempt has been made for the first time to estimate daily cloud free SST from a single sensor (MODIS Aqua) dataset using advanced machine learning techniques. Here, three distinct machine learning techniques such as Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Random Forest (RF)-based algorithms were developed and evaluated over two different study areas within the AS and BoB using 10 years of MODIS data and in-situ reference data. Among the developed algorithms, the SVR-based algorithm performs consistently better. In AS region, while testing, the SVR-based SST estimates was able to achieve an adjusted coefficient of determination (Radj2) of 0.82 and root mean square error (RMSE) of 0.71 °C with respect to the in situ data. Similarly, in BoB too, the SVR algorithm outperforms the other algorithms with Radj2 of 0.78 with RMSE of 0.88 °C. Further, a spatio-temporal and visual analysis of the results as well as an inter-comparision with NOAA AVHRR daily optimally interpolated global SST (a standard SST product available in practice) the suggest that the proposed SVR-based algorithm has huge potential to produce operational high-resolution cloud-free SST estimates, even if there is cloud cover in the image. |
| Author | Sunder, Swathy Ramakrishnan, Balaji Ramsankaran, RAAJ |
| Author_xml | – sequence: 1 givenname: Swathy surname: Sunder fullname: Sunder, Swathy organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India – sequence: 2 givenname: RAAJ orcidid: 0000-0001-8602-1934 surname: Ramsankaran fullname: Ramsankaran, RAAJ email: ramsankaran@civil.iitb.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India – sequence: 3 givenname: Balaji surname: Ramakrishnan fullname: Ramakrishnan, Balaji email: rbalaji@iitb.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| BookMark | eNqNkM1u1DAUhS1UJKaFZ8BLNgn-S-IsWFTlr1KrLoC1deNcz3jkiQfbQeoL8Nx4OogFG1hcXenonCOd75JcLHFBQl5z1nLG-7f71udjyvt6rWCCtaxvGdPPyIbrQTRayO6CbNgoVCMG3r8glznvGWO86_WG_LwHu_ML0oCQFr9saUG7W_z3FTN1MdGEWx8XCDRbCEgxF3-AUiUaHd357a5JmGNYnyQb4jo3LiHSGXx4pBmB5jU5sFiLD0dMUNZ0qk7xQO8f3t9-qc4CL8lzByHjq9__inz7-OHrzefm7uHT7c31XWOl0qUZ9OzmDmHsAdxomZ6AuwmmsefKKcVBKpRiGOfJTtxpKZGhtANDMUqlJiWvyJtz7zHF08RiDj5bDAEWjGs2YtSd4t2gdLW-O1ttijkndMb68rS8pLrNcGZO_M3e_OFvTvwN603lX_PDX_ljqujS438kr89JrCR-eEwmW4-LxdkntMXM0f-z4xdxTqwQ |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3453908 crossref_primary_10_3390_rs13020192 crossref_primary_10_1016_j_infrared_2024_105129 crossref_primary_10_1016_j_envres_2023_116866 crossref_primary_10_1016_j_isprsjprs_2025_01_001 crossref_primary_10_1016_j_marenvres_2022_105701 crossref_primary_10_1109_TGRS_2024_3440912 crossref_primary_10_3390_rs15010088 crossref_primary_10_1016_j_isprsjprs_2022_03_007 crossref_primary_10_1016_j_jag_2024_104055 crossref_primary_10_1016_j_jag_2021_102458 crossref_primary_10_1109_TGRS_2024_3350998 crossref_primary_10_3390_jmse12061013 crossref_primary_10_3390_math9192523 crossref_primary_10_1002_smr_2365 crossref_primary_10_1038_s41597_024_04135_w crossref_primary_10_1016_j_rse_2022_113220 crossref_primary_10_3390_jmse11020340 crossref_primary_10_3390_jmse11091814 crossref_primary_10_3390_rs14030575 crossref_primary_10_1109_TGRS_2021_3051025 crossref_primary_10_5194_os_21_199_2025 |
| Cites_doi | 10.1016/j.csr.2010.08.016 10.1016/j.chemolab.2005.09.003 10.1016/j.isprsjprs.2020.01.015 10.1016/j.rse.2012.10.012 10.1080/01431161.2010.492249 10.1016/j.isprsjprs.2016.01.011 10.1016/j.gsf.2015.10.006 10.1080/01431161.2010.485218 10.1016/j.seares.2010.08.002 10.1016/j.gsf.2015.07.003 10.1016/j.isprsjprs.2018.07.017 10.1016/j.isprsjprs.2013.09.010 10.1016/j.isprsjprs.2019.11.008 10.1016/j.rse.2010.10.017 10.1016/j.isprsjprs.2010.11.001 10.1175/2010JCLI3294.1 10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2 10.1002/qj.319 10.1016/j.jmarsys.2007.09.002 10.1175/2008JTECHO560.1 10.1016/j.cageo.2013.10.008 10.1175/2009JTECHO592.1 10.1016/S0273-1177(01)00337-4 10.1080/01431161.2013.870680 10.1175/2007MWR2167.1 10.1109/TGRS.2008.2005993 10.1016/j.dsr2.2012.04.002 10.1175/2008BAMS2528.1 10.1016/j.cageo.2014.10.016 10.3389/fmars.2019.00420 10.5194/hess-24-269-2020 10.3389/fmars.2018.00121 10.1016/j.pce.2009.08.001 10.1175/2007JCLI1824.1 10.1080/01431161.2012.666638 10.1016/S0165-7836(00)00201-0 10.1007/BF02233989 10.1023/A:1010933404324 10.1016/j.rse.2017.07.029 10.3390/rs10020310 10.1029/01EO00109 10.1029/2000JC000679 10.1016/j.compbiolchem.2013.05.001 10.1109/TGRS.2012.2223217 10.1007/s10661-017-6010-7 10.1016/j.isprsjprs.2011.11.002 |
| ContentType | Journal Article |
| Copyright | 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| Copyright_xml | – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.isprsjprs.2020.06.008 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1872-8235 |
| EndPage | 240 |
| ExternalDocumentID | 10_1016_j_isprsjprs_2020_06_008 S0924271620301660 |
| GeographicLocations | Bay of Bengal Arabian Sea |
| GeographicLocations_xml | – name: Arabian Sea – name: Bay of Bengal |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-78dfd5ea96aaf9c08ba1fbab9614f441a34e3279dbcb1f833e0e3c70e29344b43 |
| IEDL.DBID | .~1 |
| ISSN | 0924-2716 |
| IngestDate | Sun Sep 28 08:48:32 EDT 2025 Thu Apr 24 23:13:14 EDT 2025 Thu Oct 16 04:27:54 EDT 2025 Fri Feb 23 02:47:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN RF cloud-free SST SVR MODIS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-78dfd5ea96aaf9c08ba1fbab9614f441a34e3279dbcb1f833e0e3c70e29344b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8602-1934 |
| PQID | 2985415748 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2985415748 crossref_citationtrail_10_1016_j_isprsjprs_2020_06_008 crossref_primary_10_1016_j_isprsjprs_2020_06_008 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Ge (bib284) 2013; 46 Williams, Sapoznik, Ocampo-Reinaldo, Solis, Narvarte, González, Esteves, Gagliardini (b0270) 2010; 31 Alavi, Gandomi, Lary (b0005) 2016; 7 Senatore, Furnari, Mendicino (b0215) 2020; 24 Miles, He (b0145) 2010; 30 Balachandran, Laluraj, Jyothibabu, Madhu, Muraleedharan, Vijay, Maheswaran, Ashraff, Nair, Achuthankutty (b0020) 2008; 73 Reynolds, Smith, Liu, Chelton, Casey, Schlax (b0195) 2007; 20 Vapnik, V., 1979. Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982). Zhao, He (b0280) 2012; 3 Mountrakis, Im, Ogole (b0155) 2011; 66 Baith, Lindsay, Fu, McClain (b0015) 2001; 82 Maturi, Harris, Merchant, Mittaz, Potash, Meng, Sapper (b0140) 2008; 89 Brasnett, B., 2008.“ The impact of satellite retrievals in a global sea‐surface‐temperature analysis”. Quarterly Journal of the Royal Meteorological Society, 134(636), pp.1745-1760. Autret, E. and Piolle, J.F., 2011. Product User Manual for ODYSSEA Level 3 and 4 global and regional products. MYO-PUM-SST-TAC-ODYSSEA, Ifremer/CERSAT.[Available online at: http://projets. ifremer. fr/cersat/Data/Discovery/By-parameter/Sea-surface-temperature/ODYSSEA-Global-SST-Analysis]. Barton (b0025) 2001; 28 Liu, Liu, Liu, Ding, Jiang (b0135) 2015; 75 Witten, Frank, Hall, Pal (b0275) 2016 Fablet, Viet, Lguensat, Horrein, Chapron (b0105) 2018; 10 Shenoi, Shankar, Shetye (b0220) 2002; 107 Lary, Alavi, Gandomi, Walker (b0130) 2016; 7 Thadathil, Gosh (b0235) 1992; 48 Kamir, Waldner, Hochman (b0120) 2020; 160 Picart, Tandeo, Autret, Gausset (b0185) 2018; 10 Barnes, Hu (bib282) 2013; 51 LaCasse, Splitt, Lazarus, Lapenta (b0125) 2008; 136 RSS (2019), Research-Quality Geophysical Products From Satellite Microwave Sensors.[online] Avaliable at http://remss.com/, [Accessed 05May.2019 ]. Dash, Ignatov, Martin, Donlon, Brasnett, Reynolds, Banzon (b0080) 2012; 77 O'Carroll, Armstrong, Beggs, Bouali, Casey, Corlett, Dash, Donlon, Gentemann, Høyer, Ignatov (b0180) 2019; 6 Fang, Li, Zhang, Chan (b0110) 2020; 161 CERSAT.2018, Sea Surface Temperature In Situ Data [online].available at http://cersat.ifremer.fr/data/tools-and-services/match-up-databases/item/298-sea-surface-temperature-in-situ-data, accessed on 29/07/2018. Wang, Jiao, and Zhiqiang Deng. 2017. “Development of MODIS Data-Based Algorithm for Retrieving Sea Surface Temperature in Coastal Waters.” Environmental Monitoring and Assessment 189 (6). Environmental Monitoring and Assessment. doi:10.1007/s10661-017-6010-7. Brown, Otis B, and Peter J Minnett. 1999. “MODIS Infrared Sea Surface Temperature Algorithm (ATBD 25, v2).” NASA Ocean Color [Available online at: http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod25.pdf]. Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (b0200) 2012; 67 Üstün, Melssen, Buydens (bib281) 2006; 81 Anderson (bib283) 1976; 104 Chao, Li, Farrara, Hung (b0060) 2009; 26 Chin, Vazquez-Cuervo, Armstrong (b0070) 2017; 200 Cracknell, Reading (b0075) 2014; 63 Deng, Wu (b0095) 2013; 86 Teluguntla, Thenkabail, Oliphant, Xiong, Gumma, Congalton, Yadav, Huete (b0245) 2018; 144 Tomazic, Kuzmic, Notarstefano, Mauri, Poulain (b0255) 2011; 32 Breiman (b0040) 2001; 45 NASA. 2019, Cloud Climatology, Global Distribution and Character of Clouds.[online] Avaliable at https://www.giss.nasa.gov/research/briefs/rossow_01/distrib.html, [Accessed 05 May,2019 ]. Stark, Donlon, O’Carroll, Corlett (b0230) 2008; 25 Delgado, Ana L., Cédric Jamet, Hubert Loisel, Vincent Vantrepotte, Gerardo M.E. Perillo, and M. Cintia Piccolo. 2014. “Evaluation of the MODIS-Aqua Sea-Surface Temperature Product in the Inner and Mid-Shelves of Southwest Buenos Aires Province, Argentina.” International Journal of Remote Sensing 35 (1). 306–20. 10.1080/01431161.2013.870680. Santos (b0210) 2000; 49 Moser, Serpico (b0150) 2009; 47 NASA Goddard Space Flight Center, Ocean Biology Processing Group. 2014. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level 0 Data; NASA OB.DAAC, Greenbelt, MD, USA. Available at : https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/, Accessed on 29/01/2018. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD. Thakur, Vanderstichel, Barrell, Stryhn, Patanasatienkul, Revie (b0240) 2018; 5 David John Lary (b0085) 2010; 1–24 NCEI. 2016. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset last accessed 29-08-2018 at http://dx.doi.org/10.5067/GHAAO-4BC02. Belgiu, Dra (b0030) 2016; 114 Buongiorno Nardelli, Tronconi, Pisano, Santoleri (b0050) 2013; 129 Sirjacobs, Alvera-Azcárate, Barth, Lacroix, Park, Nechad, Ruddick, Beckers (b0225) 2011; 65 Tomažić, Kuzmić, Notarstefano, Mauri, Poulain (b0250) 2011; 32 Reynolds, Chelton (b0190) 2010; 23 Chavula, Brezonik, Thenkabail, Johnson, Bauer (b0065) 2009; 34 Donlon, Martin, Stark, Roberts-Jones, Fiedler, Wimmer (b0100) 2012; 116 Barton (10.1016/j.isprsjprs.2020.06.008_b0025) 2001; 28 Deng (10.1016/j.isprsjprs.2020.06.008_b0095) 2013; 86 Maturi (10.1016/j.isprsjprs.2020.06.008_b0140) 2008; 89 Witten (10.1016/j.isprsjprs.2020.06.008_b0275) 2016 Fang (10.1016/j.isprsjprs.2020.06.008_b0110) 2020; 161 Chin (10.1016/j.isprsjprs.2020.06.008_b0070) 2017; 200 10.1016/j.isprsjprs.2020.06.008_b0265 Zhang (10.1016/j.isprsjprs.2020.06.008_bib284) 2013; 46 Chao (10.1016/j.isprsjprs.2020.06.008_b0060) 2009; 26 Teluguntla (10.1016/j.isprsjprs.2020.06.008_b0245) 2018; 144 10.1016/j.isprsjprs.2020.06.008_b0260 Alavi (10.1016/j.isprsjprs.2020.06.008_b0005) 2016; 7 Sirjacobs (10.1016/j.isprsjprs.2020.06.008_b0225) 2011; 65 David John Lary (10.1016/j.isprsjprs.2020.06.008_b0085) 2010; 1–24 LaCasse (10.1016/j.isprsjprs.2020.06.008_b0125) 2008; 136 O'Carroll (10.1016/j.isprsjprs.2020.06.008_b0180) 2019; 6 Senatore (10.1016/j.isprsjprs.2020.06.008_b0215) 2020; 24 Rodriguez-Galiano (10.1016/j.isprsjprs.2020.06.008_b0200) 2012; 67 Thakur (10.1016/j.isprsjprs.2020.06.008_b0240) 2018; 5 Reynolds (10.1016/j.isprsjprs.2020.06.008_b0195) 2007; 20 10.1016/j.isprsjprs.2020.06.008_b0010 10.1016/j.isprsjprs.2020.06.008_b0055 Lary (10.1016/j.isprsjprs.2020.06.008_b0130) 2016; 7 Breiman (10.1016/j.isprsjprs.2020.06.008_b0040) 2001; 45 Shenoi (10.1016/j.isprsjprs.2020.06.008_b0220) 2002; 107 Williams (10.1016/j.isprsjprs.2020.06.008_b0270) 2010; 31 10.1016/j.isprsjprs.2020.06.008_b0170 10.1016/j.isprsjprs.2020.06.008_b0090 Barnes (10.1016/j.isprsjprs.2020.06.008_bib282) 2013; 51 Cracknell (10.1016/j.isprsjprs.2020.06.008_b0075) 2014; 63 Chavula (10.1016/j.isprsjprs.2020.06.008_b0065) 2009; 34 Santos (10.1016/j.isprsjprs.2020.06.008_b0210) 2000; 49 Fablet (10.1016/j.isprsjprs.2020.06.008_b0105) 2018; 10 Üstün (10.1016/j.isprsjprs.2020.06.008_bib281) 2006; 81 Zhao (10.1016/j.isprsjprs.2020.06.008_b0280) 2012; 3 10.1016/j.isprsjprs.2020.06.008_b0205 Tomažić (10.1016/j.isprsjprs.2020.06.008_b0250) 2011; 32 Tomazic (10.1016/j.isprsjprs.2020.06.008_b0255) 2011; 32 Reynolds (10.1016/j.isprsjprs.2020.06.008_b0190) 2010; 23 10.1016/j.isprsjprs.2020.06.008_b0045 10.1016/j.isprsjprs.2020.06.008_b0165 Moser (10.1016/j.isprsjprs.2020.06.008_b0150) 2009; 47 10.1016/j.isprsjprs.2020.06.008_b0160 Donlon (10.1016/j.isprsjprs.2020.06.008_b0100) 2012; 116 Dash (10.1016/j.isprsjprs.2020.06.008_b0080) 2012; 77 Miles (10.1016/j.isprsjprs.2020.06.008_b0145) 2010; 30 Stark (10.1016/j.isprsjprs.2020.06.008_b0230) 2008; 25 Anderson (10.1016/j.isprsjprs.2020.06.008_bib283) 1976; 104 Thadathil (10.1016/j.isprsjprs.2020.06.008_b0235) 1992; 48 Belgiu (10.1016/j.isprsjprs.2020.06.008_b0030) 2016; 114 Mountrakis (10.1016/j.isprsjprs.2020.06.008_b0155) 2011; 66 Picart (10.1016/j.isprsjprs.2020.06.008_b0185) 2018; 10 Balachandran (10.1016/j.isprsjprs.2020.06.008_b0020) 2008; 73 10.1016/j.isprsjprs.2020.06.008_b0035 Buongiorno Nardelli (10.1016/j.isprsjprs.2020.06.008_b0050) 2013; 129 Liu (10.1016/j.isprsjprs.2020.06.008_b0135) 2015; 75 Kamir (10.1016/j.isprsjprs.2020.06.008_b0120) 2020; 160 Baith (10.1016/j.isprsjprs.2020.06.008_b0015) 2001; 82 |
| References_xml | – reference: Autret, E. and Piolle, J.F., 2011. Product User Manual for ODYSSEA Level 3 and 4 global and regional products. MYO-PUM-SST-TAC-ODYSSEA, Ifremer/CERSAT.[Available online at: http://projets. ifremer. fr/cersat/Data/Discovery/By-parameter/Sea-surface-temperature/ODYSSEA-Global-SST-Analysis]. – volume: 34 start-page: 749 year: 2009 end-page: 754 ident: b0065 article-title: Estimating the Surface Temperature of Lake Malawi Using AVHRR and MODIS Satellite Imagery publication-title: Phys. Chem. Earth. – volume: 10 start-page: 1 year: 2018 end-page: 11 ident: b0185 article-title: Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures publication-title: Remote Sensing – reference: RSS (2019), Research-Quality Geophysical Products From Satellite Microwave Sensors.[online] Avaliable at http://remss.com/, [Accessed 05May.2019 ]. – volume: 32 start-page: 4871 year: 2011 end-page: 4892 ident: b0255 article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature publication-title: Int. J. Remote Sens. – volume: 20 start-page: 5473 year: 2007 end-page: 5496 ident: b0195 article-title: Daily High-Resolution-Blended Analyses for Sea Surface Temperature publication-title: J. Clim. – volume: 77 start-page: 31 year: 2012 end-page: 43 ident: b0080 article-title: Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons-Part 2: Near Real Time Web-Based Level 4 SST Quality Monitor (L4-SQUAM) publication-title: Deep-Sea Res. Part II: Topical Stud. Oceanogr. – volume: 65 start-page: 114 year: 2011 end-page: 130 ident: b0225 article-title: Cloud Filling of Ocean Colour and Sea Surface Temperature Remote Sensing Products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions Methodology publication-title: J. Sea Res. – volume: 23 start-page: 3545 year: 2010 end-page: 3562 ident: b0190 article-title: Comparisons of Daily Sea Surface Temperature Analyses for 2007–08 publication-title: J. Clim. – volume: 7 start-page: 3 year: 2016 end-page: 10 ident: b0130 article-title: Machine Learning in Geosciences and Remote Sensing publication-title: Geosci. Front. – reference: Brasnett, B., 2008.“ The impact of satellite retrievals in a global sea‐surface‐temperature analysis”. Quarterly Journal of the Royal Meteorological Society, 134(636), pp.1745-1760. – reference: NASA. 2019, Cloud Climatology, Global Distribution and Character of Clouds.[online] Avaliable at https://www.giss.nasa.gov/research/briefs/rossow_01/distrib.html, [Accessed 05 May,2019 ]. – volume: 7 start-page: 1 year: 2016 end-page: 2 ident: b0005 article-title: Progress of Machine Learning in Geosciences: Preface publication-title: Geosci. Front. – volume: 82 year: 2001 ident: b0015 article-title: Data analysis system developed for ocean color satellite sensors publication-title: Eos, Transactions American Geophysical Union – volume: 129 start-page: 1 year: 2013 end-page: 16 ident: b0050 article-title: High and Ultra-High Resolution Processing of Satellite Sea Surface Temperature Data over Southern European Seas in the Framework of MyOcean Project publication-title: Remote Sens. Environ. – volume: 49 start-page: 1 year: 2000 end-page: 20 ident: b0210 article-title: Fisheries Oceanography Using Satellite and Airborne Remote Sensing Methods: A Review publication-title: Fish. Res. – volume: 28 start-page: 165 year: 2001 end-page: 170 ident: b0025 article-title: Interpretation of Satellite-Derived Sea Surface Temperatures publication-title: Adv. Space Res. – volume: 116 start-page: 140 year: 2012 end-page: 158 ident: b0100 article-title: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System publication-title: Remote Sens. Environ. – volume: 24 start-page: 269 year: 2020 end-page: 291 ident: b0215 article-title: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments' hydrological responses to heavy precipitation publication-title: Hydrol. Earth Syst. Sci. – reference: CERSAT.2018, Sea Surface Temperature In Situ Data [online].available at http://cersat.ifremer.fr/data/tools-and-services/match-up-databases/item/298-sea-surface-temperature-in-situ-data, accessed on 29/07/2018. – volume: 75 start-page: 44 year: 2015 end-page: 56 ident: b0135 article-title: Multivariable Integration Method for Estimating Sea Surface Salinity in Coastal Waters from in Situ Data and Remotely Sensed Data Using Random Forest Algorithm publication-title: Comput. Geosci. – volume: 25 start-page: 1208 year: 2008 end-page: 1217 ident: b0230 article-title: Determination of AATSR Biases Using the OSTIA SST Analysis System and a Matchup Database publication-title: J. Atmos. Oceanic Technol. – volume: 32 start-page: 4871 year: 2011 end-page: 4892 ident: b0250 article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature publication-title: Int. J. Remote Sens. – volume: 161 start-page: 164 year: 2020 end-page: 178 ident: b0110 article-title: Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 51 start-page: 3273 year: 2013 end-page: 3285 ident: bib282 article-title: A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the Eastern Gulf of Mexico publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 31 start-page: 4531 year: 2010 end-page: 4542 ident: b0270 article-title: Comparison of AVHRR and SeaWiFS Imagery with Fishing Activity and in Situ Data in San Matías Gulf, Argentina publication-title: Int. J. Remote Sens. – reference: Delgado, Ana L., Cédric Jamet, Hubert Loisel, Vincent Vantrepotte, Gerardo M.E. Perillo, and M. Cintia Piccolo. 2014. “Evaluation of the MODIS-Aqua Sea-Surface Temperature Product in the Inner and Mid-Shelves of Southwest Buenos Aires Province, Argentina.” International Journal of Remote Sensing 35 (1). 306–20. 10.1080/01431161.2013.870680. – volume: 6 start-page: 420 year: 2019 ident: b0180 article-title: Observational needs of sea surface temperature publication-title: Front. Mar. Sci. – volume: 1–24 year: 2010 ident: b0085 article-title: Artificial Intelligence in Geoscience and Remote Sensing publication-title: Geoscience and Remote Sensing, New Achievements – reference: NASA Goddard Space Flight Center, Ocean Biology Processing Group. 2014. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level 0 Data; NASA OB.DAAC, Greenbelt, MD, USA. Available at : https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/, Accessed on 29/01/2018. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD. – volume: 86 start-page: 100 year: 2013 end-page: 110 ident: b0095 article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: b0030 article-title: Random Forest in Remote Sensing : A Review of Applications and Future Directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 200 start-page: 154 year: 2017 end-page: 169 ident: b0070 article-title: A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature publication-title: Remote Sens. Environ. – volume: 107 start-page: 5 year: 2002 end-page: 11 ident: b0220 article-title: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon publication-title: J. Geophys. Res. Oceans – volume: 63 start-page: 22 year: 2014 end-page: 33 ident: b0075 article-title: Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information publication-title: Comput. Geosci. – volume: 48 start-page: 293 year: 1992 end-page: 304 ident: b0235 article-title: Surface layer temperature inversion in the Arabian Sea during winter publication-title: J. Oceanogr. – volume: 73 start-page: 76 year: 2008 end-page: 86 ident: b0020 article-title: Hydrography and biogeochemistry of the north western Bay of Bengal and the north eastern Arabian Sea during winter monsoon publication-title: J. Mar. Syst. – reference: Vapnik, V., 1979. Estimation of Dependences Based on Empirical Data. Nauka, Moscow, pp. 5165–5184, 27 (in Russian) (English translation: Springer Verlag, New York, 1982). – volume: 89 start-page: 1877 year: 2008 end-page: 1888 ident: b0140 article-title: NOAA’s Sea Surface Temperature Products from Operational Geostationary Satellites publication-title: Bull. Am. Meteorol. Soc. – volume: 3 start-page: 697 year: 2012 end-page: 706 ident: b0280 article-title: Cloud-Free Sea Surface Temperature and Colour Reconstruction for the Gulf of Mexico: 2003–2009 publication-title: Remote Sensing Letters – volume: 10 start-page: 310 year: 2018 ident: b0105 article-title: Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation publication-title: Remote Sensing – reference: NCEI. 2016. GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset last accessed 29-08-2018 at http://dx.doi.org/10.5067/GHAAO-4BC02. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0040 article-title: Random Forests publication-title: Machine Learning – year: 2016 ident: b0275 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: b0155 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 144 start-page: 325 year: 2018 end-page: 340 ident: b0245 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 5 start-page: 121 year: 2018 ident: b0240 article-title: Comparison of remotely-sensed sea surface temperature and salinity products with in situ measurements from British Columbia publication-title: Canada. Frontiers in Marine Science – volume: 26 start-page: 1415 year: 2009 end-page: 1426 ident: b0060 article-title: Blending Sea Surface Temperatures from Multiple Satellites and in Situ Observations for Coastal Oceans publication-title: J. Atmos. Oceanic Technol. – volume: 47 start-page: 909 year: 2009 end-page: 921 ident: b0150 article-title: Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Wang, Jiao, and Zhiqiang Deng. 2017. “Development of MODIS Data-Based Algorithm for Retrieving Sea Surface Temperature in Coastal Waters.” Environmental Monitoring and Assessment 189 (6). Environmental Monitoring and Assessment. doi:10.1007/s10661-017-6010-7. – volume: 104 start-page: 907 year: 1976 end-page: 921 ident: bib283 article-title: The low-level jet as a western boundary current publication-title: Monthly Weather Rev. – reference: Brown, Otis B, and Peter J Minnett. 1999. “MODIS Infrared Sea Surface Temperature Algorithm (ATBD 25, v2).” NASA Ocean Color [Available online at: http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod25.pdf]. – volume: 67 start-page: 93 year: 2012 end-page: 104 ident: b0200 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 81 start-page: 29 year: 2006 end-page: 40.Vancouver ident: bib281 article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel publication-title: Chemometr. Intell. Lab. Syst. – volume: 46 start-page: 16 year: 2013 end-page: 22 ident: bib284 article-title: Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins publication-title: Comput. Biol. Chem. – volume: 160 start-page: 124 year: 2020 end-page: 135 ident: b0120 article-title: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 136 start-page: 1349 year: 2008 end-page: 1372 ident: b0125 article-title: The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer publication-title: Mon. Weather Rev. – volume: 30 start-page: 1951 year: 2010 end-page: 1962 ident: b0145 article-title: Temporal and Spatial Variability of Chl-a and SST on the South Atlantic Bight: Revisiting with Cloud-Free Reconstructions of MODIS Satellite Imagery publication-title: Cont. Shelf Res. – volume: 30 start-page: 1951 issue: 18 year: 2010 ident: 10.1016/j.isprsjprs.2020.06.008_b0145 article-title: Temporal and Spatial Variability of Chl-a and SST on the South Atlantic Bight: Revisiting with Cloud-Free Reconstructions of MODIS Satellite Imagery publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2010.08.016 – volume: 1–24 year: 2010 ident: 10.1016/j.isprsjprs.2020.06.008_b0085 article-title: Artificial Intelligence in Geoscience and Remote Sensing publication-title: Geoscience and Remote Sensing, New Achievements – volume: 81 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.isprsjprs.2020.06.008_bib281 article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.09.003 – volume: 161 start-page: 164 year: 2020 ident: 10.1016/j.isprsjprs.2020.06.008_b0110 article-title: Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.015 – volume: 129 start-page: 1 issue: February year: 2013 ident: 10.1016/j.isprsjprs.2020.06.008_b0050 article-title: High and Ultra-High Resolution Processing of Satellite Sea Surface Temperature Data over Southern European Seas in the Framework of MyOcean Project publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.012 – volume: 32 start-page: 4871 issue: 17 year: 2011 ident: 10.1016/j.isprsjprs.2020.06.008_b0255 article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.492249 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.isprsjprs.2020.06.008_b0030 article-title: Random Forest in Remote Sensing : A Review of Applications and Future Directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – ident: 10.1016/j.isprsjprs.2020.06.008_b0165 – ident: 10.1016/j.isprsjprs.2020.06.008_b0010 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2020.06.008_b0005 article-title: Progress of Machine Learning in Geosciences: Preface publication-title: Geosci. Front. doi: 10.1016/j.gsf.2015.10.006 – volume: 31 start-page: 4531 issue: 17 year: 2010 ident: 10.1016/j.isprsjprs.2020.06.008_b0270 article-title: Comparison of AVHRR and SeaWiFS Imagery with Fishing Activity and in Situ Data in San Matías Gulf, Argentina publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.485218 – volume: 65 start-page: 114 issue: 1 year: 2011 ident: 10.1016/j.isprsjprs.2020.06.008_b0225 article-title: Cloud Filling of Ocean Colour and Sea Surface Temperature Remote Sensing Products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions Methodology publication-title: J. Sea Res. doi: 10.1016/j.seares.2010.08.002 – volume: 7 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2020.06.008_b0130 article-title: Machine Learning in Geosciences and Remote Sensing publication-title: Geosci. Front. doi: 10.1016/j.gsf.2015.07.003 – ident: 10.1016/j.isprsjprs.2020.06.008_b0260 – volume: 10 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2020.06.008_b0185 article-title: Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures publication-title: Remote Sensing – volume: 144 start-page: 325 year: 2018 ident: 10.1016/j.isprsjprs.2020.06.008_b0245 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.017 – volume: 86 start-page: 100 year: 2013 ident: 10.1016/j.isprsjprs.2020.06.008_b0095 article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.010 – volume: 160 start-page: 124 year: 2020 ident: 10.1016/j.isprsjprs.2020.06.008_b0120 article-title: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.008 – volume: 116 start-page: 140 year: 2012 ident: 10.1016/j.isprsjprs.2020.06.008_b0100 article-title: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.10.017 – volume: 66 start-page: 247 issue: 3 year: 2011 ident: 10.1016/j.isprsjprs.2020.06.008_b0155 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 23 start-page: 3545 issue: 13 year: 2010 ident: 10.1016/j.isprsjprs.2020.06.008_b0190 article-title: Comparisons of Daily Sea Surface Temperature Analyses for 2007–08 publication-title: J. Clim. doi: 10.1175/2010JCLI3294.1 – volume: 104 start-page: 907 issue: 7 year: 1976 ident: 10.1016/j.isprsjprs.2020.06.008_bib283 article-title: The low-level jet as a western boundary current publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2 – ident: 10.1016/j.isprsjprs.2020.06.008_b0035 doi: 10.1002/qj.319 – volume: 73 start-page: 76 issue: 1–2 year: 2008 ident: 10.1016/j.isprsjprs.2020.06.008_b0020 article-title: Hydrography and biogeochemistry of the north western Bay of Bengal and the north eastern Arabian Sea during winter monsoon publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2007.09.002 – volume: 25 start-page: 1208 issue: 7 year: 2008 ident: 10.1016/j.isprsjprs.2020.06.008_b0230 article-title: Determination of AATSR Biases Using the OSTIA SST Analysis System and a Matchup Database publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/2008JTECHO560.1 – volume: 63 start-page: 22 year: 2014 ident: 10.1016/j.isprsjprs.2020.06.008_b0075 article-title: Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.008 – volume: 26 start-page: 1415 issue: 7 year: 2009 ident: 10.1016/j.isprsjprs.2020.06.008_b0060 article-title: Blending Sea Surface Temperatures from Multiple Satellites and in Situ Observations for Coastal Oceans publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/2009JTECHO592.1 – volume: 32 start-page: 4871 issue: 17 year: 2011 ident: 10.1016/j.isprsjprs.2020.06.008_b0250 article-title: A Comparative Assessment of Satellite-Derived Adriatic Sea Surface Temperature publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.492249 – year: 2016 ident: 10.1016/j.isprsjprs.2020.06.008_b0275 – ident: 10.1016/j.isprsjprs.2020.06.008_b0205 – volume: 28 start-page: 165 issue: 1 year: 2001 ident: 10.1016/j.isprsjprs.2020.06.008_b0025 article-title: Interpretation of Satellite-Derived Sea Surface Temperatures publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(01)00337-4 – ident: 10.1016/j.isprsjprs.2020.06.008_b0090 doi: 10.1080/01431161.2013.870680 – volume: 136 start-page: 1349 issue: 4 year: 2008 ident: 10.1016/j.isprsjprs.2020.06.008_b0125 article-title: The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer publication-title: Mon. Weather Rev. doi: 10.1175/2007MWR2167.1 – volume: 47 start-page: 909 issue: 3 year: 2009 ident: 10.1016/j.isprsjprs.2020.06.008_b0150 article-title: Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2005993 – volume: 77 start-page: 31 year: 2012 ident: 10.1016/j.isprsjprs.2020.06.008_b0080 article-title: Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons-Part 2: Near Real Time Web-Based Level 4 SST Quality Monitor (L4-SQUAM) publication-title: Deep-Sea Res. Part II: Topical Stud. Oceanogr. doi: 10.1016/j.dsr2.2012.04.002 – volume: 89 start-page: 1877 issue: 12 year: 2008 ident: 10.1016/j.isprsjprs.2020.06.008_b0140 article-title: NOAA’s Sea Surface Temperature Products from Operational Geostationary Satellites publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2008BAMS2528.1 – volume: 75 start-page: 44 year: 2015 ident: 10.1016/j.isprsjprs.2020.06.008_b0135 article-title: Multivariable Integration Method for Estimating Sea Surface Salinity in Coastal Waters from in Situ Data and Remotely Sensed Data Using Random Forest Algorithm publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.016 – volume: 6 start-page: 420 year: 2019 ident: 10.1016/j.isprsjprs.2020.06.008_b0180 article-title: Observational needs of sea surface temperature publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00420 – volume: 24 start-page: 269 issue: 1 year: 2020 ident: 10.1016/j.isprsjprs.2020.06.008_b0215 article-title: Impact of high-resolution sea surface temperature representation on the forecast of small Mediterranean catchments' hydrological responses to heavy precipitation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-24-269-2020 – volume: 5 start-page: 121 year: 2018 ident: 10.1016/j.isprsjprs.2020.06.008_b0240 article-title: Comparison of remotely-sensed sea surface temperature and salinity products with in situ measurements from British Columbia publication-title: Canada. Frontiers in Marine Science doi: 10.3389/fmars.2018.00121 – volume: 34 start-page: 749 issue: 13–16 year: 2009 ident: 10.1016/j.isprsjprs.2020.06.008_b0065 article-title: Estimating the Surface Temperature of Lake Malawi Using AVHRR and MODIS Satellite Imagery publication-title: Phys. Chem. Earth. doi: 10.1016/j.pce.2009.08.001 – volume: 20 start-page: 5473 issue: 22 year: 2007 ident: 10.1016/j.isprsjprs.2020.06.008_b0195 article-title: Daily High-Resolution-Blended Analyses for Sea Surface Temperature publication-title: J. Clim. doi: 10.1175/2007JCLI1824.1 – volume: 3 start-page: 697 issue: 8 year: 2012 ident: 10.1016/j.isprsjprs.2020.06.008_b0280 article-title: Cloud-Free Sea Surface Temperature and Colour Reconstruction for the Gulf of Mexico: 2003–2009 publication-title: Remote Sensing Letters doi: 10.1080/01431161.2012.666638 – ident: 10.1016/j.isprsjprs.2020.06.008_b0045 – volume: 49 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.isprsjprs.2020.06.008_b0210 article-title: Fisheries Oceanography Using Satellite and Airborne Remote Sensing Methods: A Review publication-title: Fish. Res. doi: 10.1016/S0165-7836(00)00201-0 – volume: 48 start-page: 293 issue: 3 year: 1992 ident: 10.1016/j.isprsjprs.2020.06.008_b0235 article-title: Surface layer temperature inversion in the Arabian Sea during winter publication-title: J. Oceanogr. doi: 10.1007/BF02233989 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.isprsjprs.2020.06.008_b0040 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 200 start-page: 154 issue: July year: 2017 ident: 10.1016/j.isprsjprs.2020.06.008_b0070 article-title: A Multi-Scale High-Resolution Analysis of Global Sea Surface Temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.029 – volume: 10 start-page: 310 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2020.06.008_b0105 article-title: Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation publication-title: Remote Sensing doi: 10.3390/rs10020310 – ident: 10.1016/j.isprsjprs.2020.06.008_b0055 – volume: 82 issue: 18 year: 2001 ident: 10.1016/j.isprsjprs.2020.06.008_b0015 article-title: Data analysis system developed for ocean color satellite sensors publication-title: Eos, Transactions American Geophysical Union doi: 10.1029/01EO00109 – ident: 10.1016/j.isprsjprs.2020.06.008_b0160 – ident: 10.1016/j.isprsjprs.2020.06.008_b0170 – volume: 107 start-page: 5 issue: C6 year: 2002 ident: 10.1016/j.isprsjprs.2020.06.008_b0220 article-title: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon publication-title: J. Geophys. Res. Oceans doi: 10.1029/2000JC000679 – volume: 46 start-page: 16 year: 2013 ident: 10.1016/j.isprsjprs.2020.06.008_bib284 article-title: Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2013.05.001 – volume: 51 start-page: 3273 issue: 6 year: 2013 ident: 10.1016/j.isprsjprs.2020.06.008_bib282 article-title: A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the Eastern Gulf of Mexico publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2223217 – ident: 10.1016/j.isprsjprs.2020.06.008_b0265 doi: 10.1007/s10661-017-6010-7 – volume: 67 start-page: 93 year: 2012 ident: 10.1016/j.isprsjprs.2020.06.008_b0200 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 |
| SSID | ssj0001568 |
| Score | 2.4445744 |
| Snippet | [Display omitted]
•For the first time, machine learning were used for cloud-free SST estimations.•Single sensor algorithm for very high resolution SST... High-resolution sea surface temperature (SST) estimates are dependent on satellite-based infrared radiometers, which are proven to be highly accurate in the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 228 |
| SubjectTerms | algorithms ANN Arabian Sea artificial intelligence Bay of Bengal cloud cover cloud-free SST data collection infrared radiometers moderate resolution imaging spectroradiometer MODIS neural networks regression analysis satellites surface water temperature SVR tropics |
| Title | Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data |
| URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.06.008 https://www.proquest.com/docview/2985415748 |
| Volume | 166 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV0xb9QwFLaqdgCGCgqIUqgeUldzSeyLHbaqpbq2ajuUSt0i27HhquNySu6GLoz8bt5LnIMipA4MGRLZSeTn-H1P-fx9jB04H9JKVZJnOjdc2pByk7qCyypzuUgsZQ1iW1zmkxt5dju-3WBHw14YolXGtb9f07vVOl4ZxdEcLabT0XWCpUNGAkiE6vOc6nYpFbkYfPzxm-aR9tvhqDGn1g84XtN20bR3eGChmCWdkCf5TP47Q_21VncJ6OQ5247IEQ77l3vBNvx8hz37Q09whz2Jlubf7l-ynxcdTdJD9IX4Cmu51hYQqQJZMhAMhxbD5IHUNvptjFAHIBVjjpV4nJjgZvWq4qHxHioznd0DfiHQrppgnAeSt4razHjrpv4OF1fHp9dA7NNX7Obk85ejCY-mC9wJqZdc6SpUY2-K3JhQuERbkwZrbIF5PCB2MkJ6kamiss6mQQvhEy-cSjziBimtFK_Z5rye-zcMlE9DIYLS1gWyXzdYjQqq2BJlC-ntLsuHgS5dVCQnY4xZOVDP7sp1hEqKUNmR8PQuS9YdF70ox-NdPg2RLB_MrxJTx-OdPwyxL_Hro18qZu7rFTYq9BghkJL67f88YI89pbOeWPiObS6blX-PYGdp97vZvM-2Dk_PJ5e_AK14A-c |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPdAeUEtbFeiHK_XqbhJ7Y4dbRYuWj6UHQOJm2Y5NF203q2T3wIUjv7szibNAVYlDD7kkdhJ57Jk38vMbQr44H9JSloJlKjdM2JAyk7qCiTJzOU8sRg1kW5zmowtxdDm8XCP7_VkYpFVG39_59NZbxzuDOJqD-WQyOEsgdchQAAlRfZ5D3v5MDDOJGdjX23ueR9qdh8PWDJs_InlNmnndXMMFmWKWtEqeWGjy3yHqL2fdRqCDl2QzQkf6rfu7V2TNz7bIiweCgltkI9Y0_3XzmtyNW56kp7EwxBVd6bU2FKAqxZoMiMNpA3byFOU2unOMtAoUZYwZpOJxZlI3rZYlC7X3tDST6Q2FJUKbZR2M8xT1raI4M7y6rn7T8c_vh2cU6advyMXBj_P9EYtVF5jjQi2YVGUoh94UuTGhcImyJg3W2AICeQDwZLjwPJNFaZ1Ng-LcJ547mXgADkJYwd-S9Vk18-8IlT4NBQ9SWRew_rqBdJRjypZIWwhvt0neD7R2UZIcK2NMdc89u9YrC2m0kG5ZeGqbJKuO806V4-kue70l9aMJpiF2PN35c297DcsP91TMzFdLaFSoIWAgKdTO_3zgE9kYnY9P9Mnh6fEueY5POpbhe7K-qJf-AyCfhf3Yzuw_mswFfA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+techniques+for+regional+scale+estimation+of+high-resolution+cloud-free+daily+sea+surface+temperatures+from+MODIS+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Sunder%2C+Swathy&rft.au=Ramsankaran%2C+RAAJ&rft.au=Ramakrishnan%2C+Balaji&rft.date=2020-08-01&rft.issn=0924-2716&rft.volume=166+p.228-240&rft.spage=228&rft.epage=240&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.06.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |