Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy

Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 194; p. 110487
Main Authors Hong, Xiaotong, Wang, Fanghu, Sun, Hao, Arabi, Hossein, Lu, Lijun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2025.110487

Cover

Abstract Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k2, k3). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: 82Rb data using the 1-tissue compartment (1 TC) model and 18F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k2 and the 2 TC k3, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real 18F-FDG scan from a male subject. For the 1 TC model, OTEM performed well in K1 reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k2. The DIP-only method suppressed noise in k2, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k2, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K1, k2, k3), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k3 (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC Ki images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K1, k2 and k3 while preserving myocardial structures. The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images. [Display omitted] •DIP-PM is an effective unsupervised deep learning method for reconstructing multiple parametric images in dynamic PET.•DIP-PM enhances the estimation of nonlinear and/or small-value parameters by magnifying their gradients in optimization.•We investigated DIP-PM in reconstructing nonlinear parametric images of the 1-tissue 2-tissue compartmental models.•DIP-PM achieved superior performance in preserving structural details and suppressing noise in nonlinear parametric images.•This study suggests that DIP-PM provides a promising approach for multi-latent-variable estimation challenges in inverse problems.
AbstractList Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k2, k3). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters.BACKGROUND/PURPOSEMultiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k2, k3). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters.We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: 82Rb data using the 1-tissue compartment (1 TC) model and 18F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k2 and the 2 TC k3, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real 18F-FDG scan from a male subject.METHODSWe proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: 82Rb data using the 1-tissue compartment (1 TC) model and 18F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k2 and the 2 TC k3, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real 18F-FDG scan from a male subject.For the 1 TC model, OTEM performed well in K1 reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k2. The DIP-only method suppressed noise in k2, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k2, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K1, k2, k3), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k3 (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC Ki images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K1, k2 and k3 while preserving myocardial structures.RESULTSFor the 1 TC model, OTEM performed well in K1 reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k2. The DIP-only method suppressed noise in k2, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k2, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K1, k2, k3), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k3 (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC Ki images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K1, k2 and k3 while preserving myocardial structures.The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.CONCLUSIONSThe results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.
Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k2, k3). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: 82Rb data using the 1-tissue compartment (1 TC) model and 18F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k2 and the 2 TC k3, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real 18F-FDG scan from a male subject. For the 1 TC model, OTEM performed well in K1 reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k2. The DIP-only method suppressed noise in k2, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k2, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K1, k2, k3), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k3 (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC Ki images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K1, k2 and k3 while preserving myocardial structures. The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images. [Display omitted] •DIP-PM is an effective unsupervised deep learning method for reconstructing multiple parametric images in dynamic PET.•DIP-PM enhances the estimation of nonlinear and/or small-value parameters by magnifying their gradients in optimization.•We investigated DIP-PM in reconstructing nonlinear parametric images of the 1-tissue 2-tissue compartmental models.•DIP-PM achieved superior performance in preserving structural details and suppressing noise in nonlinear parametric images.•This study suggests that DIP-PM provides a promising approach for multi-latent-variable estimation challenges in inverse problems.
AbstractBackground/PurposeMultiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k 2, k 3). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. MethodsWe proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: 82Rb data using the 1-tissue compartment (1 TC) model and 18F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k 2 and the 2 TC k 3, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real 18F-FDG scan from a male subject. ResultsFor the 1 TC model, OTEM performed well in K 1 reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k 2. The DIP-only method suppressed noise in k 2, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k 2, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K 1, k 2, k 3), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k 3 (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC K i images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K 1, k 2 and k 3 while preserving myocardial structures. ConclusionsThe results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.
Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k , k ). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: Rb data using the 1-tissue compartment (1 TC) model and F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k and the 2 TC k , respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real F-FDG scan from a male subject. For the 1 TC model, OTEM performed well in K reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k . The DIP-only method suppressed noise in k , but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k , achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K , k , k ), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC K images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K , k and k while preserving myocardial structures. The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.
ArticleNumber 110487
Author Lu, Lijun
Hong, Xiaotong
Arabi, Hossein
Sun, Hao
Wang, Fanghu
Author_xml – sequence: 1
  givenname: Xiaotong
  orcidid: 0000-0002-6079-8638
  surname: Hong
  fullname: Hong, Xiaotong
  organization: School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
– sequence: 2
  givenname: Fanghu
  surname: Wang
  fullname: Wang, Fanghu
  organization: The WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
– sequence: 3
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
– sequence: 4
  givenname: Hossein
  orcidid: 0000-0001-6526-0960
  surname: Arabi
  fullname: Arabi, Hossein
  organization: Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH.1211, Geneva 4, Switzerland
– sequence: 5
  givenname: Lijun
  orcidid: 0000-0002-7001-4892
  surname: Lu
  fullname: Lu, Lijun
  email: ljlubme@gmail.com
  organization: School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40460562$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4B85JLFf-PkgoBSClIlkChny7EnKy-JHeyk0n57nG5bJCSknmZGfvOT570zdBJiAIQwJVtKaP12v7VxnDofR3BbRpjcUkpEo56hDW1UWxHJxQnaEEJJJRomT9FZzntCiCCcvECngoiayJptUP7kE9gZTyaZEebkLS5zDHlOi519DNgH7A7BjOXl--UNXrIPO-wAJuxHswM8JR8TNsFhg0O8heGBBQkXQfC9t-aOVJhmht3hJXremyHDq_t6jn5-vry5-FJdf7v6evHhurJcNHOllADWti2VTnW2ZkLRMrQ1l9C5mrtacGZYa3umZMdNaZWTlClX16rvjOPn6M2RO6X4e4E869FnC8NgAsQla86olGr1qkhf30uXrniqy1GjSQf9YFQRNEeBTTHnBP2jhBK9ZqL3-m8mes1EHzMpqx-Pq1BuvfWQdLYeggV3Z7120T8F8u4fiB18KM4Ov-AAeR-XFIqXmurMNNE_1ujX5JkkpOFNUwDv_w942h_-AJGGxM4
Cites_doi 10.1007/s00259-007-0478-2
10.7150/thno.5130
10.1006/nimg.1996.0066
10.1137/0111030
10.2967/jnumed.119.230565
10.1007/1-84628-007-9_6
10.1118/1.3480985
10.1007/s00259-022-05867-w
10.1016/j.ejmp.2021.03.008
10.1016/j.neuroimage.2017.02.009
10.1016/j.neuroimage.2008.09.021
10.1016/j.media.2019.101611
10.1088/0031-9155/60/15/6013
10.1088/1361-6560/abb1d8
10.1109/TMI.2017.2776324
10.1088/0031-9155/61/9/3443
10.1088/0031-9155/55/15/005
10.1109/TMI.2012.2212203
10.1088/0031-9155/60/22/8643
10.1109/TMI.2012.2212451
10.1016/j.media.2022.102519
10.1002/mp.16139
10.1186/s41824-020-00086-8
10.1007/s00259-024-06826-3
10.1007/s00259-005-0063-5
10.1109/TMI.2005.845317
10.1088/0031-9155/60/22/R363
10.1097/00004647-200106000-00002
10.1007/s12149-014-0881-2
10.1109/TRPMS.2019.2908633
10.1109/23.682002
10.1007/s00259-020-05173-3
10.1016/j.ejmp.2024.103315
10.1007/s00259-019-04468-4
10.1007/s10278-023-00815-y
10.1109/TMI.2021.3120913
10.1088/0031-9155/51/17/007
10.1109/TMI.2019.2922448
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.110487
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110487
ExternalDocumentID 40460562
10_1016_j_compbiomed_2025_110487
S0010482525008388
1_s2_0_S0010482525008388
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
77I
AAYXX
ACLOT
CITATION
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c348t-774e299915d7bc624719919635ebd63d6432a29cf275b3aa297d5127d667fbad3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Sep 05 15:56:23 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Wed Oct 01 05:58:17 EDT 2025
Sat Jul 19 17:10:56 EDT 2025
Sat Jul 12 02:45:32 EDT 2025
Tue Aug 26 16:44:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep image prior
Dynamic PET
Multiparametric imaging
Compartmental model
Parameter magnification
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-774e299915d7bc624719919635ebd63d6432a29cf275b3aa297d5127d667fbad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7001-4892
0000-0001-6526-0960
0000-0002-6079-8638
PMID 40460562
PQID 3215570534
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3215570534
pubmed_primary_40460562
crossref_primary_10_1016_j_compbiomed_2025_110487
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110487
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525008388
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sanaei, Faghihi, Arabi (bib5) 2023; 36
Tang, Kuwabara, Wong, Rahmim (bib16) 2010; 55
Torizuka, Tamaki, Inokuma, Magata, Sasayama, Yonekura, Tanaka, Yamaoka, Yamamoto, Konishi (bib35) 1995; 36
Arabi, Zaidi (bib22) 2020; 4
Zhou, Ye, Brasic, Crabb, Hilton, Wong (bib45) 2009; 44
Zhang, Xie, Berg, Judenhofer, Liu, Xu, Ding, Lv, Dong, Deng, Tang, Shi, Hu, Chen, Bao, Li, Zhou, Wang, Cherry, Badawi, Qi (bib10) 2020; 61
Karakatsanis, Zhou, Lodge, Casey, Wahl, Zaidi, Rahmim (bib34) 2015; 60
Gunn, Slifstein, Searle, Price (bib1) 2015; 60
Segars, Sturgeon, Mendonca, Grimes, Tsui (bib33) 2010; 37
Kotasidis, Mehranian, Zaidi (bib43) 2015
Angelis, Matthews, Kotasidis, Markiewicz, Lionheart, Reader (bib27) 2014; 28
Gunn, Gunn, Cunningham (bib28) 2001; 21
Cui, Gong, Guo, Wu, Meng, Kim, Zheng, Wu, Fu, Xu, Zhu, Tian, Liu, Li (bib31) 2019; 46
Dimitrakopoulou-Strauss, Georgoulias, Eisenhut, Herth, Koukouraki, Macke, Haberkorn, Strauss (bib36) 2006; 33
Ulyanov, Vedaldi, Lempitsky (bib25) 2018
Kamasak, Bouman, Morris, Sauer (bib7) 2005; 24
Qayyum, Ilahi, Shamshad, Boussaid, Bennamoun, Qadir (bib24) 2023; 45
Lange, Carson (bib40) 1984; 8
Huang, Zhou (bib13) 1998; 45
Zaker, Haddad, Faghihi, Arabi, Zaidi (bib4) 2022; 49
Castellaro, Rizzo, Tonietto, Veronese, Turkheimer, Chappell, Bertoldo (bib19) 2017; 150
Gong, Catana, Qi, Li (bib26) 2022; 41
Wang, Qi (bib38) 2012; 31
He, Li, Wang, Deng, Wang (bib18) 2023; 50
Huang (bib12) 2020; 65
Hong, Sanaat, Salimi, Nkoulou, Arabi, Lu, Zaidi (bib14) 2025; 8
Liu, Hu, Yu, Tan, Zhang, Yin, Hu, Gu, Shi (bib37) 2021; 48
Kotasidis, Mehranian, Zaidi (bib44) 2016; 61
Cui, Gong, Guo, Kim, Liu, Li (bib32) 2022; 80
Gong, Cheng-Liao, Wang, Chen, Catana, Qi (bib15) 2018; 37
Lortie, Beanlands, Yoshinaga, Klein, Dasilva, DeKemp (bib42) 2007; 34
Lammertsma, Hume (bib17) 1996; 4
Mohy-Ud-Din, Lodge, Rahmim (bib3) 2015; 60
Wang, Qi (bib8) 2013; 3
Yan, Planeta-Wilson, Carson (bib9) 2012; 31
Kim, El Fakhri, Li (bib11) 2016
Scipioni, Pedemonte, Santarelli, Landini (bib21) 2020; 39
Gallezot, Lu, Naganawa, Carson (bib2) 2019; 4
Marquardt (bib39) 1963; 11
R.E. Carson, Tracer kinetic modeling in PET, Positron Emission Tomography: Basic sciences, Springer2005, pp. 127-159.
Azimi, Kamali-Asl, Ay, Zeraatkar, Hosseini, Sanaat, Arabi (bib30) 2024; 119
Scannell, Chiribiri, Villa, Breeuwer, Lee (bib20) 2020; 60
Liu, Gu, Chen, Gu, Yu, Shi (bib41) 2024; 51
Yaqub, Boellaard, Kropholler, Lammertsma (bib6) 2006; 51
Arabi, AkhavanAllaf, Sanaat, Shiri, Zaidi (bib23) 2021; 83
Kamasak (10.1016/j.compbiomed.2025.110487_bib7) 2005; 24
Segars (10.1016/j.compbiomed.2025.110487_bib33) 2010; 37
Karakatsanis (10.1016/j.compbiomed.2025.110487_bib34) 2015; 60
Ulyanov (10.1016/j.compbiomed.2025.110487_bib25) 2018
Tang (10.1016/j.compbiomed.2025.110487_bib16) 2010; 55
Wang (10.1016/j.compbiomed.2025.110487_bib38) 2012; 31
Arabi (10.1016/j.compbiomed.2025.110487_bib22) 2020; 4
Angelis (10.1016/j.compbiomed.2025.110487_bib27) 2014; 28
Cui (10.1016/j.compbiomed.2025.110487_bib31) 2019; 46
Scipioni (10.1016/j.compbiomed.2025.110487_bib21) 2020; 39
He (10.1016/j.compbiomed.2025.110487_bib18) 2023; 50
10.1016/j.compbiomed.2025.110487_bib29
Arabi (10.1016/j.compbiomed.2025.110487_bib23) 2021; 83
Kotasidis (10.1016/j.compbiomed.2025.110487_bib43) 2015
Huang (10.1016/j.compbiomed.2025.110487_bib13) 1998; 45
Gong (10.1016/j.compbiomed.2025.110487_bib15) 2018; 37
Gunn (10.1016/j.compbiomed.2025.110487_bib1) 2015; 60
Castellaro (10.1016/j.compbiomed.2025.110487_bib19) 2017; 150
Gong (10.1016/j.compbiomed.2025.110487_bib26) 2022; 41
Azimi (10.1016/j.compbiomed.2025.110487_bib30) 2024; 119
Mohy-Ud-Din (10.1016/j.compbiomed.2025.110487_bib3) 2015; 60
Huang (10.1016/j.compbiomed.2025.110487_bib12) 2020; 65
Lortie (10.1016/j.compbiomed.2025.110487_bib42) 2007; 34
Gallezot (10.1016/j.compbiomed.2025.110487_bib2) 2019; 4
Dimitrakopoulou-Strauss (10.1016/j.compbiomed.2025.110487_bib36) 2006; 33
Zaker (10.1016/j.compbiomed.2025.110487_bib4) 2022; 49
Yaqub (10.1016/j.compbiomed.2025.110487_bib6) 2006; 51
Zhang (10.1016/j.compbiomed.2025.110487_bib10) 2020; 61
Liu (10.1016/j.compbiomed.2025.110487_bib41) 2024; 51
Gunn (10.1016/j.compbiomed.2025.110487_bib28) 2001; 21
Marquardt (10.1016/j.compbiomed.2025.110487_bib39) 1963; 11
Lange (10.1016/j.compbiomed.2025.110487_bib40) 1984; 8
Sanaei (10.1016/j.compbiomed.2025.110487_bib5) 2023; 36
Wang (10.1016/j.compbiomed.2025.110487_bib8) 2013; 3
Kim (10.1016/j.compbiomed.2025.110487_bib11) 2016
Scannell (10.1016/j.compbiomed.2025.110487_bib20) 2020; 60
Qayyum (10.1016/j.compbiomed.2025.110487_bib24) 2023; 45
Cui (10.1016/j.compbiomed.2025.110487_bib32) 2022; 80
Kotasidis (10.1016/j.compbiomed.2025.110487_bib44) 2016; 61
Lammertsma (10.1016/j.compbiomed.2025.110487_bib17) 1996; 4
Zhou (10.1016/j.compbiomed.2025.110487_bib45) 2009; 44
Hong (10.1016/j.compbiomed.2025.110487_bib14) 2025; 8
Yan (10.1016/j.compbiomed.2025.110487_bib9) 2012; 31
Torizuka (10.1016/j.compbiomed.2025.110487_bib35) 1995; 36
Liu (10.1016/j.compbiomed.2025.110487_bib37) 2021; 48
References_xml – volume: 44
  start-page: 661
  year: 2009
  end-page: 670
  ident: bib45
  article-title: A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies
  publication-title: Neuroimage
– volume: 37
  start-page: 4902
  year: 2010
  end-page: 4915
  ident: bib33
  article-title: 4D XCAT phantom for multimodality imaging research
  publication-title: Med. Phys.
– volume: 3
  start-page: 802
  year: 2013
  end-page: 815
  ident: bib8
  article-title: Direct estimation of kinetic parametric images for dynamic PET
  publication-title: Theranostics
– volume: 49
  start-page: 4048
  year: 2022
  end-page: 4063
  ident: bib4
  article-title: Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 37
  start-page: 955
  year: 2018
  end-page: 965
  ident: bib15
  article-title: Direct patlak reconstruction from dynamic PET data using the kernel method with MRI information based on structural similarity
  publication-title: IEEE Trans. Med. Imag.
– volume: 60
  year: 2020
  ident: bib20
  article-title: Hierarchical Bayesian myocardial perfusion quantification
  publication-title: Med. Image Anal.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib39
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 119
  start-page: 103315
  year: 2024
  ident: bib30
  article-title: Attention-based deep neural network for partial volume correction in brain 18F-FDG PET imaging
  publication-title: Phys Med.
– volume: 61
  start-page: 285
  year: 2020
  end-page: 291
  ident: bib10
  article-title: Total-body dynamic reconstruction and parametric imaging on the uEXPLORER
  publication-title: J. Nucl. Med.
– volume: 50
  start-page: 2860
  year: 2023
  end-page: 2871
  ident: bib18
  article-title: Kinetic parameter estimation of hepatocellular carcinoma on (18) F-FDG PET/CT based on Bayesian method
  publication-title: Med. Phys.
– volume: 60
  start-page: R363
  year: 2015
  end-page: R411
  ident: bib1
  article-title: Quantitative imaging of protein targets in the human brain with PET
  publication-title: Phys. Med. Biol.
– volume: 46
  start-page: 2780
  year: 2019
  end-page: 2789
  ident: bib31
  article-title: PET image denoising using unsupervised deep learning
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 60
  start-page: 8643
  year: 2015
  end-page: 8673
  ident: bib34
  article-title: Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET
  publication-title: Phys. Med. Biol.
– volume: 8
  start-page: 306
  year: 1984
  end-page: 316
  ident: bib40
  article-title: EM reconstruction algorithms for emission and transmission tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 45
  start-page: 1194
  year: 1998
  end-page: 1199
  ident: bib13
  article-title: Spatially-coordinated regression for image-wise model fitting to dynamic PET data for generating parametric images
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 21
  start-page: 635
  year: 2001
  end-page: 652
  ident: bib28
  article-title: Positron emission tomography compartmental models
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 31
  start-page: 1977
  year: 2012
  end-page: 1988
  ident: bib38
  article-title: An optimization transfer algorithm for nonlinear parametric image reconstruction from dynamic PET data
  publication-title: IEEE Trans. Med. Imag.
– volume: 28
  start-page: 860
  year: 2014
  end-page: 873
  ident: bib27
  article-title: Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps
  publication-title: Ann. Nucl. Med.
– volume: 39
  start-page: 152
  year: 2020
  end-page: 160
  ident: bib21
  article-title: Probabilistic graphical models for dynamic PET: a novel approach to direct parametric map estimation and image reconstruction
  publication-title: IEEE Trans. Med. Imag.
– volume: 34
  start-page: 1765
  year: 2007
  end-page: 1774
  ident: bib42
  article-title: Quantification of myocardial blood flow with 82Rb dynamic PET imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 51
  start-page: 4217
  year: 2006
  end-page: 4232
  ident: bib6
  article-title: Optimization algorithms and weighting factors for analysis of dynamic PET studies
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 823
  year: 2006
  end-page: 830
  ident: bib36
  article-title: Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– start-page: 9446
  year: 2018
  end-page: 9454
  ident: bib25
  article-title: Deep image prior
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 80
  year: 2022
  ident: bib32
  article-title: Unsupervised PET logan parametric image estimation using conditional deep image prior
  publication-title: Med. Image Anal.
– volume: 8
  start-page: 1
  year: 2025
  end-page: 17
  ident: bib14
  article-title: Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study
  publication-title: Med Phys, May
– volume: 45
  start-page: 6511
  year: 2023
  end-page: 6536
  ident: bib24
  article-title: Untrained neural network priors for inverse imaging problems: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 636
  year: 2005
  end-page: 650
  ident: bib7
  article-title: Direct reconstruction of kinetic parameter images from dynamic PET data
  publication-title: IEEE Trans. Med. Imag.
– volume: 4
  start-page: 153
  year: 1996
  end-page: 158
  ident: bib17
  article-title: Simplified reference tissue model for PET receptor studies
  publication-title: Neuroimage
– volume: 55
  start-page: 4261
  year: 2010
  end-page: 4272
  ident: bib16
  article-title: Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy
  publication-title: Phys. Med. Biol.
– volume: 4
  start-page: 1
  year: 2019
  end-page: 23
  ident: bib2
  article-title: Parametric imaging with PET and SPECT
  publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences
– volume: 31
  start-page: 2213
  year: 2012
  end-page: 2223
  ident: bib9
  article-title: Direct 4-D PET list mode parametric reconstruction with a novel EM algorithm
  publication-title: IEEE Trans. Med. Imag.
– volume: 150
  start-page: 136
  year: 2017
  end-page: 149
  ident: bib19
  article-title: A Variational Bayesian inference method for parametric imaging of PET data
  publication-title: Neuroimage
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib11
  article-title: Direct parametric imaging of reversible tracers using partial dynamic data
  publication-title: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop
– start-page: 1
  year: 2015
  end-page: 4
  ident: bib43
  article-title: Error propagation reduction in direct 4D image reconstruction using time-of-flight PET
  publication-title: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
– volume: 36
  start-page: 1588
  year: 2023
  end-page: 1596
  ident: bib5
  article-title: Employing multiple low-dose PET images (at different dose levels) as prior knowledge to predict standard-dose PET images
  publication-title: J. Digit. Imag.
– volume: 65
  year: 2020
  ident: bib12
  article-title: Kernel-based curve-fitting method with spatial regularization for generation of parametric images in dynamic PET
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 3443
  year: 2016
  end-page: 3471
  ident: bib44
  article-title: Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data
  publication-title: Phys. Med. Biol.
– volume: 48
  start-page: 2373
  year: 2021
  end-page: 2383
  ident: bib37
  article-title: Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 60
  start-page: 6013
  year: 2015
  end-page: 6037
  ident: bib3
  article-title: Quantitative myocardial perfusion PET parametric imaging at the voxel-level
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 1811
  year: 1995
  end-page: 1817
  ident: bib35
  article-title: In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET
  publication-title: J. Nucl. Med.
– volume: 83
  start-page: 122
  year: 2021
  end-page: 137
  ident: bib23
  article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging
  publication-title: Phys. Med.
– volume: 4
  start-page: 17
  year: 2020
  ident: bib22
  article-title: Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy
  publication-title: European Journal of Hybrid Imaging
– volume: 41
  start-page: 680
  year: 2022
  end-page: 689
  ident: bib26
  article-title: Direct reconstruction of linear parametric images from dynamic PET using nonlocal deep image prior
  publication-title: IEEE Trans. Med. Imag.
– reference: R.E. Carson, Tracer kinetic modeling in PET, Positron Emission Tomography: Basic sciences, Springer2005, pp. 127-159.
– volume: 51
  start-page: 3888
  year: 2024
  end-page: 3899
  ident: bib41
  article-title: Total-body dynamic PET/CT imaging reveals kinetic distribution of [(13)N]NH(3) in normal organs
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 34
  start-page: 1765
  year: 2007
  ident: 10.1016/j.compbiomed.2025.110487_bib42
  article-title: Quantification of myocardial blood flow with 82Rb dynamic PET imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-007-0478-2
– volume: 3
  start-page: 802
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110487_bib8
  article-title: Direct estimation of kinetic parametric images for dynamic PET
  publication-title: Theranostics
  doi: 10.7150/thno.5130
– volume: 4
  start-page: 153
  year: 1996
  ident: 10.1016/j.compbiomed.2025.110487_bib17
  article-title: Simplified reference tissue model for PET receptor studies
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0066
– volume: 11
  start-page: 431
  year: 1963
  ident: 10.1016/j.compbiomed.2025.110487_bib39
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 61
  start-page: 285
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110487_bib10
  article-title: Total-body dynamic reconstruction and parametric imaging on the uEXPLORER
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.119.230565
– volume: 45
  start-page: 6511
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110487_bib24
  article-title: Untrained neural network priors for inverse imaging problems: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.compbiomed.2025.110487_bib29
  doi: 10.1007/1-84628-007-9_6
– volume: 37
  start-page: 4902
  year: 2010
  ident: 10.1016/j.compbiomed.2025.110487_bib33
  article-title: 4D XCAT phantom for multimodality imaging research
  publication-title: Med. Phys.
  doi: 10.1118/1.3480985
– volume: 36
  start-page: 1811
  year: 1995
  ident: 10.1016/j.compbiomed.2025.110487_bib35
  article-title: In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET
  publication-title: J. Nucl. Med.
– volume: 49
  start-page: 4048
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110487_bib4
  article-title: Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-022-05867-w
– volume: 83
  start-page: 122
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110487_bib23
  article-title: The promise of artificial intelligence and deep learning in PET and SPECT imaging
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2021.03.008
– volume: 150
  start-page: 136
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110487_bib19
  article-title: A Variational Bayesian inference method for parametric imaging of PET data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.009
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110487_bib11
  article-title: Direct parametric imaging of reversible tracers using partial dynamic data
– volume: 44
  start-page: 661
  year: 2009
  ident: 10.1016/j.compbiomed.2025.110487_bib45
  article-title: A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.021
– volume: 60
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110487_bib20
  article-title: Hierarchical Bayesian myocardial perfusion quantification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101611
– volume: 60
  start-page: 6013
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110487_bib3
  article-title: Quantitative myocardial perfusion PET parametric imaging at the voxel-level
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/15/6013
– volume: 65
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110487_bib12
  article-title: Kernel-based curve-fitting method with spatial regularization for generation of parametric images in dynamic PET
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abb1d8
– volume: 37
  start-page: 955
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110487_bib15
  article-title: Direct patlak reconstruction from dynamic PET data using the kernel method with MRI information based on structural similarity
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2017.2776324
– volume: 61
  start-page: 3443
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110487_bib44
  article-title: Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/9/3443
– volume: 55
  start-page: 4261
  year: 2010
  ident: 10.1016/j.compbiomed.2025.110487_bib16
  article-title: Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/15/005
– volume: 31
  start-page: 1977
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110487_bib38
  article-title: An optimization transfer algorithm for nonlinear parametric image reconstruction from dynamic PET data
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2012.2212203
– volume: 60
  start-page: 8643
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110487_bib34
  article-title: Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/22/8643
– volume: 31
  start-page: 2213
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110487_bib9
  article-title: Direct 4-D PET list mode parametric reconstruction with a novel EM algorithm
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2012.2212451
– volume: 80
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110487_bib32
  article-title: Unsupervised PET logan parametric image estimation using conditional deep image prior
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102519
– volume: 50
  start-page: 2860
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110487_bib18
  article-title: Kinetic parameter estimation of hepatocellular carcinoma on (18) F-FDG PET/CT based on Bayesian method
  publication-title: Med. Phys.
  doi: 10.1002/mp.16139
– volume: 4
  start-page: 17
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110487_bib22
  article-title: Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy
  publication-title: European Journal of Hybrid Imaging
  doi: 10.1186/s41824-020-00086-8
– volume: 8
  start-page: 1
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110487_bib14
  article-title: Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study
  publication-title: Med Phys, May
– volume: 51
  start-page: 3888
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110487_bib41
  article-title: Total-body dynamic PET/CT imaging reveals kinetic distribution of [(13)N]NH(3) in normal organs
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-024-06826-3
– volume: 33
  start-page: 823
  year: 2006
  ident: 10.1016/j.compbiomed.2025.110487_bib36
  article-title: Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-005-0063-5
– volume: 8
  start-page: 306
  year: 1984
  ident: 10.1016/j.compbiomed.2025.110487_bib40
  article-title: EM reconstruction algorithms for emission and transmission tomography
  publication-title: J. Comput. Assist. Tomogr.
– start-page: 9446
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110487_bib25
  article-title: Deep image prior
– volume: 24
  start-page: 636
  year: 2005
  ident: 10.1016/j.compbiomed.2025.110487_bib7
  article-title: Direct reconstruction of kinetic parameter images from dynamic PET data
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2005.845317
– volume: 60
  start-page: R363
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110487_bib1
  article-title: Quantitative imaging of protein targets in the human brain with PET
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/22/R363
– volume: 21
  start-page: 635
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110487_bib28
  article-title: Positron emission tomography compartmental models
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1097/00004647-200106000-00002
– volume: 28
  start-page: 860
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110487_bib27
  article-title: Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/s12149-014-0881-2
– volume: 4
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110487_bib2
  article-title: Parametric imaging with PET and SPECT
  publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences
  doi: 10.1109/TRPMS.2019.2908633
– volume: 45
  start-page: 1194
  year: 1998
  ident: 10.1016/j.compbiomed.2025.110487_bib13
  article-title: Spatially-coordinated regression for image-wise model fitting to dynamic PET data for generating parametric images
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.682002
– volume: 48
  start-page: 2373
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110487_bib37
  article-title: Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-020-05173-3
– volume: 119
  start-page: 103315
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110487_bib30
  article-title: Attention-based deep neural network for partial volume correction in brain 18F-FDG PET imaging
  publication-title: Phys Med.
  doi: 10.1016/j.ejmp.2024.103315
– volume: 46
  start-page: 2780
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110487_bib31
  article-title: PET image denoising using unsupervised deep learning
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-019-04468-4
– volume: 36
  start-page: 1588
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110487_bib5
  article-title: Employing multiple low-dose PET images (at different dose levels) as prior knowledge to predict standard-dose PET images
  publication-title: J. Digit. Imag.
  doi: 10.1007/s10278-023-00815-y
– volume: 41
  start-page: 680
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110487_bib26
  article-title: Direct reconstruction of linear parametric images from dynamic PET using nonlocal deep image prior
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2021.3120913
– volume: 51
  start-page: 4217
  year: 2006
  ident: 10.1016/j.compbiomed.2025.110487_bib6
  article-title: Optimization algorithms and weighting factors for analysis of dynamic PET studies
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/17/007
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110487_bib43
  article-title: Error propagation reduction in direct 4D image reconstruction using time-of-flight PET
– volume: 39
  start-page: 152
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110487_bib21
  article-title: Probabilistic graphical models for dynamic PET: a novel approach to direct parametric map estimation and image reconstruction
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2922448
SSID ssj0004030
Score 2.4201202
Snippet Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters....
AbstractBackground/PurposeMultiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110487
SubjectTerms Algorithms
Compartmental model
Deep image prior
Deep Learning
Dynamic PET
Humans
Image Processing, Computer-Assisted - methods
Internal Medicine
Multiparametric imaging
Other
Parameter magnification
Phantoms, Imaging
Positron-Emission Tomography - methods
Title Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525008388
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525008388
https://dx.doi.org/10.1016/j.compbiomed.2025.110487
https://www.ncbi.nlm.nih.gov/pubmed/40460562
https://www.proquest.com/docview/3215570534
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7IBPEi_rb-GBG8Vtc0bVo8iWxOxeFBwVtomlQqrhvrFLz4t_vStBviBMFLaUvSlOTly_fI914ATjxPIS8PtNvhWrpMZpkbR5msNA1eyplk1Y7u3SDsP7Kbp-BpCS6bWBgjq6yx32J6hdb1m7O6N8_GeW5ifNGVQAcHF3HkEZEJ-DXZv9CmTz_nMg_W8W0YCuKNKV2reazGy8i2bZg7eoo0MJp4ZsR1i5eo3yhotRT11mGt5pDkwv7mBizpYhNW7upd8i0oLY4Rk9Z7aE7MSknl985yxZK8IMoeRU_uuw_EiN-fidJ6TPIhAgwZT_LRhCSFIgkpRu_6tfmWnhAsUBh9UTWkpLTZbT-24bHXfbjsu_XhCm7qs2iKrJppathhoLhMQ4qLFD7gdAy0VKGvkKnQhMZpRnkg_QRvuUJywFUY8kwmyt-BVjEq9B4QliLto0hlgihjKkafMdLIHJnULPaSxHfAa_pTjG0ODdGIy17EfAyEGQNhx8CBuOl40cSIIqoJBPo_1OWL6uqynp6l8ERJRUf8MCEHzmc1v1nhH9s9bixE4CQ1Oy9JoUdvpfCRWAUc8Y45sGtNZ9YTrNqaDun-v9o-gFXzZKWJh9BCg9JHSJemsl3NB7xGvas2LF9c3_YHX6FeFUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB50BfVFvB1drznga3GbJk2LTyLKetnlPKzgW2ia9FDR7rJVwX_vpElXRAXBt97SlmTmyzfkmwnAURhq5OXcBD1hVMBUUQRpUqhG0xDmginWrOgOhnH_ll3d8bs5OGtzYays0mO_w_QGrf2VY9-bx5OytDm-GEpggIOTOPKIJJmHBcYRkzuwcHp53R--p0f2IpeJgpBjG3hBj5N5WeW2y3THYJFyK4tnVl_39Sz1HQttZqOLVVjxNJKcuj9dgzlTrcPiwC-Ub0DtoIzYyt6PdtOsnDSh76xcLCkrot1u9OTf-YhY_ft_oo2ZkPIRMYZMpuV4SrJKk4xU4xfz0L7LTAk-UFmJUTOqpHYFbl834fbifHTWD_z-CkEeseQJiTUz1BJEroXKY4rzFJ6gR3KjdBxpJCs0o2leUMFVlOGh0MgPhI5jUahMR3-gU40rsw2E5cj8KLIZnhRMpxg2JgbJI1OGpWGWRV0I2_6UE1dGQ7b6snv5PgbSjoF0Y9CFtO142aaJIrBJxPoftBVftTW199BahrKmsic_WVEXTmYtPxjiD7_7t7UQiX5qF1-yyoyfaxkht-ICIY91YcuZzqwnWLM6HdOdX337EJb6o8GNvLkcXu_Csr3jlIp70EHjMvvInp7UgfeON305Fw0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+parametric+reconstruction+in+dynamic+PET+using+deep+image+prior+and+a+novel+parameter+magnification+strategy&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hong%2C+Xiaotong&rft.au=Wang%2C+Fanghu&rft.au=Sun%2C+Hao&rft.au=Arabi%2C+Hossein&rft.date=2025-08-01&rft.issn=0010-4825&rft.volume=194&rft.spage=110487&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2025_110487
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif