Global comparison of diverse scaling factors and regression models for downscaling Landsat-8 thermal data

•A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Land...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 169; pp. 44 - 56
Main Authors Dong, Pan, Gao, Lun, Zhan, Wenfeng, Liu, Zihan, Li, Jiufeng, Lai, Jiameng, Li, Hua, Huang, Fan, Tamang, Sagar K., Zhao, Limin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2020.08.018

Cover

Abstract •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Landsat-8 LST. Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications.
AbstractList •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Landsat-8 LST. Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications.
Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications.
Author Tamang, Sagar K.
Liu, Zihan
Li, Hua
Dong, Pan
Gao, Lun
Zhan, Wenfeng
Li, Jiufeng
Lai, Jiameng
Huang, Fan
Zhao, Limin
Author_xml – sequence: 1
  givenname: Pan
  surname: Dong
  fullname: Dong, Pan
  email: dongpan0920@foxmail.com
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 2
  givenname: Lun
  orcidid: 0000-0002-6382-7684
  surname: Gao
  fullname: Gao, Lun
  email: gaoxx996@umn.edu
  organization: Saint Anthony Falls Laboratory, Department of Civil Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55414, USA
– sequence: 3
  givenname: Wenfeng
  orcidid: 0000-0001-7487-821X
  surname: Zhan
  fullname: Zhan, Wenfeng
  email: zhanwenfeng@nju.edu.cn
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 4
  givenname: Zihan
  surname: Liu
  fullname: Liu, Zihan
  email: liuzihan_trs@foxmail.com
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 5
  givenname: Jiufeng
  surname: Li
  fullname: Li, Jiufeng
  email: Jiufengli@smail.nju.edu.cn
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 6
  givenname: Jiameng
  surname: Lai
  fullname: Lai, Jiameng
  email: NJULJM@126.com
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 7
  givenname: Hua
  orcidid: 0000-0003-3834-2682
  surname: Li
  fullname: Li, Hua
  email: lihua@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 8
  givenname: Fan
  surname: Huang
  fullname: Huang, Fan
  email: nju_huangfan@163.com
  organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
– sequence: 9
  givenname: Sagar K.
  surname: Tamang
  fullname: Tamang, Sagar K.
  email: taman011@umn.edu
  organization: Saint Anthony Falls Laboratory, Department of Civil Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55414, USA
– sequence: 10
  givenname: Limin
  surname: Zhao
  fullname: Zhao, Limin
  email: zhaolm@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
BookMark eNqNkDFvFDEQRi2USFxCfkNc0uwytvd83oIiiiBBOokGastrjxOfdteHxwni3-PogIIGCmua9z7J74KdrXlFxq4F9AKEfnfoEx0LHdrrJUjowfQgzCu2EWYnOyPV9oxtYJRDJ3dCv2YXRAcAEFttNizdzXlyM_d5ObqSKK88Rx7SMxZCTt7NaX3g0fmaC3G3Bl7woSBRauSSA87EYy485O_rb3rfMHK1M7w-YlnaenDVvWHn0c2EV7_uJfv68cOX2_tu__nu0-3NvvNqMLXb6QFGjdMwOUSNSowDCCekF1EqpcCYMW4DKONikAMK4WNUkxfTMAJoo9Ule3vaPZb87Qmp2iWRx3l2K-YnsnI0Wm6FAtXQ9yfUl0xUMFqfqqvta7W4NFsB9iWxPdg_ie1LYgvGtsTN3_3lH0taXPnxH-bNyWz98DlhseQTrh5DKuirDTn9c-Mnn2SgAA
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_10_011
crossref_primary_10_1016_j_catena_2021_105949
crossref_primary_10_1109_JSTARS_2021_3091125
crossref_primary_10_1016_j_uclim_2025_102345
crossref_primary_10_3390_rs16071158
crossref_primary_10_3390_urbansci9020028
crossref_primary_10_3390_rs16142542
crossref_primary_10_1016_j_jag_2022_102827
crossref_primary_10_1016_j_buildenv_2022_109105
crossref_primary_10_3390_rs17040694
crossref_primary_10_1016_j_rse_2021_112642
crossref_primary_10_1016_j_jhydrol_2023_130036
crossref_primary_10_1016_j_rsase_2025_101519
crossref_primary_10_1109_JSTARS_2022_3209012
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1029_2024EA003888
crossref_primary_10_1109_TGRS_2023_3315316
crossref_primary_10_1016_j_isprsjprs_2022_03_009
crossref_primary_10_1016_j_rse_2024_114141
crossref_primary_10_1109_TGRS_2024_3505933
crossref_primary_10_1109_JSTARS_2024_3447033
crossref_primary_10_1109_LGRS_2023_3293831
crossref_primary_10_1016_j_jag_2023_103408
crossref_primary_10_1080_01431161_2023_2238327
crossref_primary_10_3390_rs13071306
crossref_primary_10_1007_s13762_022_04510_3
crossref_primary_10_1016_j_xplc_2022_100344
crossref_primary_10_3390_f13122122
Cites_doi 10.1109/LGRS.2012.2227930
10.1117/1.JRS.10.025013
10.3390/rs11010048
10.3390/rs8120975
10.1016/j.rse.2019.01.020
10.1109/JSTARS.2018.2790002
10.3390/rs11192304
10.1109/LGRS.2013.2257668
10.1109/JSTARS.2019.2896923
10.3390/rs4103184
10.1016/j.rse.2015.11.005
10.1016/j.isprsjprs.2019.02.004
10.1016/j.rse.2012.12.014
10.1007/BF01589116
10.1080/01431161.2018.1489164
10.1007/s10712-008-9037-z
10.3390/rs9080789
10.1109/JSTARS.2016.2514367
10.3390/rs6109829
10.1038/s41598-018-27905-0
10.1109/TGRS.2016.2608987
10.1016/j.rse.2011.03.008
10.1080/17538947.2013.783131
10.1016/j.isprsjprs.2009.03.007
10.1016/j.rse.2019.02.015
10.1016/j.isprsjprs.2014.08.009
10.3390/rs4113287
10.1109/LGRS.2016.2630798
10.3390/rs9010023
10.1109/LGRS.2011.2174453
10.1016/j.rse.2017.12.003
10.1023/A:1008168910634
10.1371/journal.pone.0117755
10.1016/j.rse.2014.02.003
10.1016/j.rse.2006.10.006
10.1109/TGRS.2016.2585198
10.3390/rs11111319
10.1109/ACCESS.2019.2896241
10.1016/j.rse.2019.02.006
10.1016/j.isprsjprs.2014.07.003
10.1109/JSTARS.2019.2919936
10.3390/rs11060634
10.3390/rs10091382
10.1080/17538947.2019.1593527
10.1016/j.heliyon.2019.e01923
10.1109/JSTARS.2019.2955551
10.1080/01431161.2019.1677969
10.1109/TGRS.2013.2294031
10.1127/0941-2948/2006/0130
10.1080/01431161.2012.748992
10.1021/ci025626i
10.1016/j.rse.2011.05.027
10.1016/j.rse.2014.09.013
10.1080/01431161.2014.903442
10.1109/TGRS.2010.2060342
10.1016/j.asoc.2004.12.005
10.1016/S0022-1694(98)00253-4
10.1016/j.isprsjprs.2017.03.014
10.3390/rs11101251
10.1029/2019JG005227
10.3390/rs10040633
10.1023/A:1010933404324
10.3390/rs10010105
10.3390/rs10020249
10.3390/rs8040274
10.1080/014311698214848
10.1080/01431161.2013.825384
10.1016/j.infrared.2017.11.027
10.1080/01431161.2019.1697009
10.1002/2016JD024891
10.1109/TGRS.2011.2169802
10.3390/rs9121243
10.1029/2007GL032195
10.1016/j.rse.2016.10.049
10.1007/s41324-019-00299-5
10.1016/0893-6080(92)90012-8
10.1016/S0034-4257(03)00036-1
10.1080/01431161.2019.1579386
10.1007/978-981-13-3501-3_16
10.1109/LGRS.2015.2414897
10.1080/01431161.2016.1145363
10.1016/j.rse.2012.12.008
10.1016/0034-4257(96)00039-9
10.1080/01431161.2015.1041175
10.3390/s17040744
10.1016/j.cageo.2019.01.004
10.1016/S0034-4257(03)00079-8
10.1023/B:STCO.0000035301.49549.88
10.1016/j.rse.2016.03.006
10.1016/j.isprsjprs.2020.01.014
10.1109/TGRS.2019.2895351
10.1016/j.rse.2016.06.019
ContentType Journal Article
Copyright 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.08.018
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 56
ExternalDocumentID 10_1016_j_isprsjprs_2020_08_018
S092427162030232X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c348t-764096eb4baee6e319401a12c1f23330889f5d038afd24e11cff3bc1b49006863
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Oct 02 04:14:25 EDT 2025
Thu Apr 24 22:49:57 EDT 2025
Thu Oct 16 04:27:47 EDT 2025
Sun Apr 21 12:55:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Landsat-8
Thermal remote sensing
Land surface temperature
Downscaling
Spatial resolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-764096eb4baee6e319401a12c1f23330889f5d038afd24e11cff3bc1b49006863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6382-7684
0000-0003-3834-2682
0000-0001-7487-821X
PQID 2986251303
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2986251303
crossref_citationtrail_10_1016_j_isprsjprs_2020_08_018
crossref_primary_10_1016_j_isprsjprs_2020_08_018
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_08_018
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Choe, Yom (b0080) 2019; 28
Zhang, Zhan, Chen, Li, Yu (b0480) 2018; 88
Weng (b0375) 2009; 64
Hawkins, Basak, Mills (b0160) 2003; 43
Wang, Chow, Wang (b0370) 2020; 41
Weng, Fu (b0385) 2014; 97
Chen, Zhan, Quan, Zhou, Zhu, Sun (b0070) 2014; 52
Kolios, Georgoulas, Stylios (b0205) 2013; 34
Zhan, Chen, Zhou, Wang, Liu, Voogt, Zhu, Quan, Li (b0465) 2013; 131
Dominguez, Kleissl, Luvall, Rickman (b0090) 2011; 115
Wu, Shen, Zhang, Göttsche (b0405) 2015; 156
Gan, Kang, Yang, Bu, Feng, Gao (b0125) 2019; 223
Yang, Cao, Pan, Li, Zhu (b0435) 2017; 9
Zawadzka, Corstanje, Harris, Truckell (b0455) 2020; 13
Cracknell (b0085) 1998; 19
Li, Ni, Li, Duan, Wu (b0230) 2019; 12
Yang, Zhan, Lv, Liu (b0430) 2019; 12
Voogt, Oke (b0360) 2003; 86
Quattrochi, Luvall (b0325) 1999; 14
Qi, Hu, Zhang, Guo (b0315) 2016; 10
Amazirh, Merlin, Er-Raki (b0025) 2019; 150
Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu (b0145) 2013; 34
Gao, Kustas, Anderson (b0130) 2012; 4
Liu, Su, Li, Chen, Zhang, Wang, Yang, Liang, Yang (b0250) 2018; 11
Breiman (b0060) 2001; 45
Pereira, Melfi, Montes, Lucas (b0310) 2018; 10
Quan, Zhan, Ma, Du, Guo, Qin (b0320) 2018; 206
Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0235) 2013; 131
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b0300) 2011; 12
Essa, Verbeiren, van der Kwast, Van de Voorde, Batelaan (b0105) 2012; 19
Jeganathan, Hamm, Mukherjee, Atkinson, Raju, Dadhwal (b0185) 2011; 13
Jiang, Fu, Weng (b0190) 2015; 12
Yang, Li, Pan, Zhang, Cao (b0440) 2017; 17
Zhan, Chen, Zhou, Li, Liu (b0460) 2010; 49
Kalma, McVicar, McCabe (b0195) 2008; 29
Agam, Kustas, Anderson, Li, Neale (b0005) 2007; 107
Olivera-Guerra, Mattar, Merlin, Durán-Alarcón, Santamaría-Artigas, Fuster (b0290) 2017; 128
Li, Du, Liu, Xu, Cao, Jiang, Wang (b0225) 2014; 18
Valor, Caselles (b0355) 1996; 57
Huang, Wang, Song, Fu, Wong (b0170) 2013; 10
Yu, Guo, Wu (b0445) 2014; 6
Zhou, Liu, Li, Zhan, Xu, Xu (b0490) 2016; 8
Agam, Kustas, Anderson, Li, Colaizzi (b0010) 2008; 35
Lillo-Saavedra, Garcia-Pedrero, Merino, Gonzalo-Martin (b0240) 2018; 10
Liu, Nocedal (b0245) 1989; 45
Maeda (b0270) 2014; 35
Nguyen, Abbass, McKay (b0285) 2005; 6
Hutengs, Vohland (b0180) 2016; 178
Peng, Li, Luo, Li (b0305) 2019; 57
Zhang, X.Y., Zhao, H., Yang, J.J., 2019. Spatial downscaling of land surface temperature in combination with TVDI and elevation. Int. J. Remote Sens. 40 (5-6), 1875-1886.
Smola, Scholkopf (b0350) 2004; 14
Liu, Wang, Li, Li, Zhang, Zhai (b0260) 2020; 41
Bonafoni (b0050) 2016; 9
Zhan, Huang, Quan, Zhu, Gao, Zhou, Ju (b0470) 2016; 121
Huryna, Cohen, Karnieli, Panov, Kustas, Agam (b0175) 2019; 11
Bisquert, Sánchez, López-Urrea, Caselles (b0045) 2016; 187
Sismanidis, Keramitsoglou, Bechtel, Kiranoudis (b0340) 2017; 9
Xia, Chen, Zhao, Chen (b0415) 2018; 10
Pan, Zhu, Yang, Cao, Zhang, Shan (b0295) 2018; 8
Wu, Li (b0390) 2019; 7
Alexander (b0020) 2020
Wu, Zhong, Tian, Yang, Wu (b0395) 2019; 12
Ghosh, Joshi (b0140) 2014; 96
Granero-Belinchon, Michel, Lagouarde, Sobrino, Briottet (b0155) 2019; 11
Luo, R., Zhou, J., Yang, J.J., Ai, L.J., Feng, Y.L., 2019. Downscaling of Tiangong-2 land surface temperature. In: Proceedings of the Tiangong-2 Remote Sensing Application Conference, vol. 541. Springer, pp. 170-179.
Keramitsoglou, Kiranoudis, Weng (b0200) 2013; 10
Duan, Li (b0095) 2016; 54
Xia, Chen, Li, Quan (b0420) 2019; 224
Wu, Shen, Ai, Liu (b0400) 2013; 6
Gao, Zhan, Huang, Quan, Lu, Wang, Ju, Zhou (b0135) 2016; 55
Xia, Chen, Quan, Li (b0425) 2019; 11
Bonafoni, Tosi (b0055) 2016; 14
Agathangelidis, Cartalis (b0015) 2019; 40
Bastiaanssen, Menenti, Feddes, Holtslag (b0035) 1998; 212
Essa, Verbeiren, Van der Kwast, Batelaan (b0110) 2017; 9
Bartkowiak, Castelli, Notarnicola (b0030) 2019; 11
Kurkova (b0215) 1992; 5
Ebrahimy, Azadbakht (b0100) 2019; 124
Bechtel, Zakšek, Hoshyaripour (b0040) 2012; 4
Sismanidis, P., Keramitsoglou, I., Hulley, G.C., Kiranoudis, C.T., 2019. Enhancing the spatial resolution of diurnal LST from geostationary satellites. AGU Fall Meeting, 2019, GC44C-02.
Chen, Yamaguchi, Chen, Shi (b0065) 2011; 9
Wang, Schmitz, Lu, Karssenberg (b0365) 2020; 161
Kottek, Grieser, Beck, Rudolf, Rubel (b0210) 2006; 15
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen (b0410) 2019; 225
Shen, Huang, Zhang, Wu, Zeng (b0330) 2016; 172
Weng, Fu, Gao (b0380) 2014; 145
Zhou, Xiao, Bonafoni, Berger, Deilami, Zhou, Frolking, Yao, Qiao, Sobrino (b0485) 2019; 11
Liu, Wang, Li, Wu (b0255) 2019; 124
Kustas, Norman, Anderson, French (b0220) 2003; 85
Cho, Kim, Kim (b0075) 2018; 10
Eswar, Sekhar, Bhattacharya (b0115) 2016; 37
Merlin, Jacob, Wigneron, Walker, Chehbouni (b0275) 2011; 50
Govil, Guha, Dey, Gill (b0150) 2019; 5
Zakšek, Oštir (b0450) 2012; 117
Mukherjee, Joshi, Garg (b0280) 2015; 36
Hazaymeh, Hassan (b0165) 2015; 10
Sismanidis, Keramitsoglou, Kiranoudis, Bechtel (b0335) 2016; 8
Fu, Weng (b0120) 2016; 184
Zhan (10.1016/j.isprsjprs.2020.08.018_b0470) 2016; 121
Smola (10.1016/j.isprsjprs.2020.08.018_b0350) 2004; 14
Cracknell (10.1016/j.isprsjprs.2020.08.018_b0085) 1998; 19
Nguyen (10.1016/j.isprsjprs.2020.08.018_b0285) 2005; 6
Choe (10.1016/j.isprsjprs.2020.08.018_b0080) 2019; 28
Xia (10.1016/j.isprsjprs.2020.08.018_b0415) 2018; 10
Dominguez (10.1016/j.isprsjprs.2020.08.018_b0090) 2011; 115
Li (10.1016/j.isprsjprs.2020.08.018_b0230) 2019; 12
Peng (10.1016/j.isprsjprs.2020.08.018_b0305) 2019; 57
Essa (10.1016/j.isprsjprs.2020.08.018_b0105) 2012; 19
Pan (10.1016/j.isprsjprs.2020.08.018_b0295) 2018; 8
Hazaymeh (10.1016/j.isprsjprs.2020.08.018_b0165) 2015; 10
Xia (10.1016/j.isprsjprs.2020.08.018_b0425) 2019; 11
Jiang (10.1016/j.isprsjprs.2020.08.018_b0190) 2015; 12
Kalma (10.1016/j.isprsjprs.2020.08.018_b0195) 2008; 29
Zakšek (10.1016/j.isprsjprs.2020.08.018_b0450) 2012; 117
Amazirh (10.1016/j.isprsjprs.2020.08.018_b0025) 2019; 150
Fu (10.1016/j.isprsjprs.2020.08.018_b0120) 2016; 184
Zhan (10.1016/j.isprsjprs.2020.08.018_b0465) 2013; 131
Quattrochi (10.1016/j.isprsjprs.2020.08.018_b0325) 1999; 14
Sismanidis (10.1016/j.isprsjprs.2020.08.018_b0340) 2017; 9
Weng (10.1016/j.isprsjprs.2020.08.018_b0375) 2009; 64
Agathangelidis (10.1016/j.isprsjprs.2020.08.018_b0015) 2019; 40
Kolios (10.1016/j.isprsjprs.2020.08.018_b0205) 2013; 34
Essa (10.1016/j.isprsjprs.2020.08.018_b0110) 2017; 9
Zawadzka (10.1016/j.isprsjprs.2020.08.018_b0455) 2020; 13
Alexander (10.1016/j.isprsjprs.2020.08.018_b0020) 2020
Wu (10.1016/j.isprsjprs.2020.08.018_b0390) 2019; 7
Maeda (10.1016/j.isprsjprs.2020.08.018_b0270) 2014; 35
Huang (10.1016/j.isprsjprs.2020.08.018_b0170) 2013; 10
Zhou (10.1016/j.isprsjprs.2020.08.018_b0485) 2019; 11
Xia (10.1016/j.isprsjprs.2020.08.018_b0420) 2019; 224
Wulder (10.1016/j.isprsjprs.2020.08.018_b0410) 2019; 225
10.1016/j.isprsjprs.2020.08.018_b0265
Gong (10.1016/j.isprsjprs.2020.08.018_b0145) 2013; 34
Wu (10.1016/j.isprsjprs.2020.08.018_b0405) 2015; 156
Yang (10.1016/j.isprsjprs.2020.08.018_b0435) 2017; 9
Duan (10.1016/j.isprsjprs.2020.08.018_b0095) 2016; 54
Pereira (10.1016/j.isprsjprs.2020.08.018_b0310) 2018; 10
Jeganathan (10.1016/j.isprsjprs.2020.08.018_b0185) 2011; 13
Yang (10.1016/j.isprsjprs.2020.08.018_b0440) 2017; 17
Sismanidis (10.1016/j.isprsjprs.2020.08.018_b0335) 2016; 8
Kurkova (10.1016/j.isprsjprs.2020.08.018_b0215) 1992; 5
Yang (10.1016/j.isprsjprs.2020.08.018_b0430) 2019; 12
Gao (10.1016/j.isprsjprs.2020.08.018_b0130) 2012; 4
Qi (10.1016/j.isprsjprs.2020.08.018_b0315) 2016; 10
Mukherjee (10.1016/j.isprsjprs.2020.08.018_b0280) 2015; 36
Weng (10.1016/j.isprsjprs.2020.08.018_b0385) 2014; 97
Yu (10.1016/j.isprsjprs.2020.08.018_b0445) 2014; 6
Wu (10.1016/j.isprsjprs.2020.08.018_b0400) 2013; 6
Zhou (10.1016/j.isprsjprs.2020.08.018_b0490) 2016; 8
Kottek (10.1016/j.isprsjprs.2020.08.018_b0210) 2006; 15
Agam (10.1016/j.isprsjprs.2020.08.018_b0005) 2007; 107
Chen (10.1016/j.isprsjprs.2020.08.018_b0070) 2014; 52
Kustas (10.1016/j.isprsjprs.2020.08.018_b0220) 2003; 85
Zhang (10.1016/j.isprsjprs.2020.08.018_b0480) 2018; 88
Weng (10.1016/j.isprsjprs.2020.08.018_b0380) 2014; 145
Li (10.1016/j.isprsjprs.2020.08.018_b0235) 2013; 131
Bonafoni (10.1016/j.isprsjprs.2020.08.018_b0050) 2016; 9
Ghosh (10.1016/j.isprsjprs.2020.08.018_b0140) 2014; 96
Bonafoni (10.1016/j.isprsjprs.2020.08.018_b0055) 2016; 14
Liu (10.1016/j.isprsjprs.2020.08.018_b0255) 2019; 124
Ebrahimy (10.1016/j.isprsjprs.2020.08.018_b0100) 2019; 124
Breiman (10.1016/j.isprsjprs.2020.08.018_b0060) 2001; 45
Olivera-Guerra (10.1016/j.isprsjprs.2020.08.018_b0290) 2017; 128
Liu (10.1016/j.isprsjprs.2020.08.018_b0245) 1989; 45
Agam (10.1016/j.isprsjprs.2020.08.018_b0010) 2008; 35
Quan (10.1016/j.isprsjprs.2020.08.018_b0320) 2018; 206
Liu (10.1016/j.isprsjprs.2020.08.018_b0250) 2018; 11
10.1016/j.isprsjprs.2020.08.018_b0475
Merlin (10.1016/j.isprsjprs.2020.08.018_b0275) 2011; 50
Bechtel (10.1016/j.isprsjprs.2020.08.018_b0040) 2012; 4
Zhan (10.1016/j.isprsjprs.2020.08.018_b0460) 2010; 49
Gao (10.1016/j.isprsjprs.2020.08.018_b0135) 2016; 55
Valor (10.1016/j.isprsjprs.2020.08.018_b0355) 1996; 57
Li (10.1016/j.isprsjprs.2020.08.018_b0225) 2014; 18
Eswar (10.1016/j.isprsjprs.2020.08.018_b0115) 2016; 37
Voogt (10.1016/j.isprsjprs.2020.08.018_b0360) 2003; 86
Hutengs (10.1016/j.isprsjprs.2020.08.018_b0180) 2016; 178
Cho (10.1016/j.isprsjprs.2020.08.018_b0075) 2018; 10
Govil (10.1016/j.isprsjprs.2020.08.018_b0150) 2019; 5
Shen (10.1016/j.isprsjprs.2020.08.018_b0330) 2016; 172
Wang (10.1016/j.isprsjprs.2020.08.018_b0370) 2020; 41
10.1016/j.isprsjprs.2020.08.018_b0345
Granero-Belinchon (10.1016/j.isprsjprs.2020.08.018_b0155) 2019; 11
Liu (10.1016/j.isprsjprs.2020.08.018_b0260) 2020; 41
Bisquert (10.1016/j.isprsjprs.2020.08.018_b0045) 2016; 187
Keramitsoglou (10.1016/j.isprsjprs.2020.08.018_b0200) 2013; 10
Gan (10.1016/j.isprsjprs.2020.08.018_b0125) 2019; 223
Wang (10.1016/j.isprsjprs.2020.08.018_b0365) 2020; 161
Pedregosa (10.1016/j.isprsjprs.2020.08.018_b0300) 2011; 12
Huryna (10.1016/j.isprsjprs.2020.08.018_b0175) 2019; 11
Chen (10.1016/j.isprsjprs.2020.08.018_b0065) 2011; 9
Bastiaanssen (10.1016/j.isprsjprs.2020.08.018_b0035) 1998; 212
Wu (10.1016/j.isprsjprs.2020.08.018_b0395) 2019; 12
Lillo-Saavedra (10.1016/j.isprsjprs.2020.08.018_b0240) 2018; 10
Hawkins (10.1016/j.isprsjprs.2020.08.018_b0160) 2003; 43
Bartkowiak (10.1016/j.isprsjprs.2020.08.018_b0030) 2019; 11
References_xml – volume: 86
  start-page: 370
  year: 2003
  end-page: 384
  ident: b0360
  article-title: Thermal remote sensing of urban climates
  publication-title: Remote Sens. Environ.
– volume: 57
  start-page: 5012
  year: 2019
  end-page: 5027
  ident: b0305
  article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 124
  start-page: 93
  year: 2019
  end-page: 102
  ident: b0100
  article-title: Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels
  publication-title: Comput. Geosci.
– volume: 10
  start-page: 1253
  year: 2013
  end-page: 1257
  ident: b0200
  article-title: Downscaling geostationary land surface temperature imagery for urban analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 744
  year: 2017
  ident: b0440
  article-title: Downscaling land surface temperature in complex regions by using multiple scale factors with adaptive thresholds
  publication-title: Sensors
– volume: 41
  start-page: 2986
  year: 2020
  end-page: 3009
  ident: b0370
  article-title: A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 48
  year: 2019
  ident: b0485
  article-title: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives
  publication-title: Remote Sens.
– reference: Luo, R., Zhou, J., Yang, J.J., Ai, L.J., Feng, Y.L., 2019. Downscaling of Tiangong-2 land surface temperature. In: Proceedings of the Tiangong-2 Remote Sensing Application Conference, vol. 541. Springer, pp. 170-179.
– volume: 88
  start-page: 206
  year: 2018
  end-page: 211
  ident: b0480
  article-title: The impact of thermal image spatial enhancement on the estimation of the urban green cooling effect
  publication-title: Infrared Phys. Technol.
– volume: 34
  start-page: 2607
  year: 2013
  end-page: 2654
  ident: b0145
  article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 9829
  year: 2014
  end-page: 9852
  ident: b0445
  article-title: Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method
  publication-title: Remote Sens.
– volume: 5
  year: 2019
  ident: b0150
  article-title: Seasonal evaluation of downscaled land surface temperature: A case study in a humid tropical city
  publication-title: Heliyon
– volume: 13
  start-page: 178
  year: 2011
  end-page: 191
  ident: b0185
  article-title: Evaluating a thermal image sharpening model over a mixed agricultural landscape in India
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 28
  start-page: 377
  year: 2019
  end-page: 382
  ident: b0080
  article-title: Improving accuracy of land surface temperature prediction model based on deep-learning
  publication-title: Spat. Inf. Res.
– volume: 19
  start-page: 163
  year: 2012
  end-page: 172
  ident: b0105
  article-title: Evaluation of the DisTrad thermal sharpening methodology for urban areas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Sismanidis, P., Keramitsoglou, I., Hulley, G.C., Kiranoudis, C.T., 2019. Enhancing the spatial resolution of diurnal LST from geostationary satellites. AGU Fall Meeting, 2019, GC44C-02.
– volume: 6
  start-page: 113
  year: 2013
  end-page: 133
  ident: b0400
  article-title: Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion
  publication-title: Int. J. Digit. Earth
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b0245
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 10
  start-page: 1011
  year: 2013
  end-page: 1015
  ident: b0170
  article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 1382
  year: 2018
  ident: b0415
  article-title: “Regression-then-fusion” or “fusion-then-regression”? A theoretical analysis for generating high spatiotemporal resolution land surface temperatures
  publication-title: Remote Sens.
– volume: 12
  start-page: 1605
  year: 2015
  end-page: 1609
  ident: b0190
  article-title: Downscaling GOES land surface temperature for assessing heat wave health risks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  start-page: 21904
  year: 2019
  end-page: 21916
  ident: b0390
  article-title: Downscaling land surface temperatures using a random forest regression model with multitype predictor variables
  publication-title: IEEE Access
– volume: 212
  start-page: 198
  year: 1998
  end-page: 212
  ident: b0035
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1
  publication-title: Formulation. J. Hydrol.
– volume: 11
  start-page: 2304
  year: 2019
  ident: b0175
  article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery
  publication-title: Remote Sens.
– volume: 10
  start-page: 249
  year: 2018
  ident: b0240
  article-title: Ts2urf: A new method for sharpening thermal infrared satellite imagery
  publication-title: Remote Sens.
– volume: 9
  start-page: 23
  year: 2017
  ident: b0340
  article-title: Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels
  publication-title: Remote Sens.
– volume: 12
  start-page: 2299
  year: 2019
  end-page: 2307
  ident: b0230
  article-title: Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 34
  start-page: 7706
  year: 2013
  end-page: 7722
  ident: b0205
  article-title: Achieving downscaling of Meteosat thermal infrared imagery using artificial neural networks
  publication-title: Int. J. Remote Sens.
– start-page: 86
  year: 2020
  ident: b0020
  article-title: Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST)
– volume: 49
  start-page: 773
  year: 2010
  end-page: 789
  ident: b0460
  article-title: Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  year: 2015
  ident: b0165
  article-title: Fusion of MODIS and Landsat-8 surface temperature images: A new approach
  publication-title: PLoS One.
– volume: 97
  start-page: 78
  year: 2014
  end-page: 88
  ident: b0385
  article-title: Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 8
  start-page: 274
  year: 2016
  ident: b0335
  article-title: Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data
  publication-title: Remote Sens.
– volume: 54
  start-page: 6458
  year: 2016
  end-page: 6469
  ident: b0095
  article-title: Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  year: 2016
  ident: b0315
  article-title: Sharpening method of satellite thermal image based on the geographical statistical model
  publication-title: J. Appl. Remote Sens.
– volume: 9
  start-page: 2019
  year: 2016
  end-page: 2027
  ident: b0050
  article-title: Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: b0410
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0300
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 975
  year: 2016
  ident: b0490
  article-title: Quantification of the scale effect in downscaling remotely sensed land surface temperature
  publication-title: Remote Sens.
– volume: 9
  start-page: 1243
  year: 2017
  ident: b0110
  article-title: Improved DisTrad for downscaling thermal MODIS imagery over urban areas
  publication-title: Remote Sens.
– volume: 128
  start-page: 170
  year: 2017
  end-page: 181
  ident: b0290
  article-title: An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 161
  start-page: 76
  year: 2020
  end-page: 89
  ident: b0365
  article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 96
  start-page: 76
  year: 2014
  end-page: 93
  ident: b0140
  article-title: Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 43
  start-page: 579
  year: 2003
  end-page: 586
  ident: b0160
  article-title: Assessing model fit by cross-validation
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 156
  start-page: 169
  year: 2015
  end-page: 181
  ident: b0405
  article-title: Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 1251
  year: 2019
  ident: b0155
  article-title: Multi-resolution study of thermal unmixing techniques over Madrid urban area: Case study of TRISHNA mission
  publication-title: Remote Sens.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0350
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 11
  start-page: 634
  year: 2019
  ident: b0425
  article-title: Object-based window strategy in thermal sharpening
  publication-title: Remote Sens.
– volume: 4
  start-page: 3184
  year: 2012
  end-page: 3200
  ident: b0040
  article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg
  publication-title: Germany. Remote Sens.
– volume: 14
  start-page: 107
  year: 2016
  end-page: 111
  ident: b0055
  article-title: Downscaling of land surface temperature using airborne high-resolution data: A case study on Aprilia
  publication-title: Italy. IEEE Geosci. Remote Sens. Lett.
– volume: 131
  start-page: 119
  year: 2013
  end-page: 139
  ident: b0465
  article-title: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 2897
  year: 2019
  end-page: 2911
  ident: b0395
  article-title: Downscaling of urban land surface temperature based on multi-factor geographically weighted regression
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 184
  start-page: 175
  year: 2016
  end-page: 187
  ident: b0120
  article-title: Consistent land surface temperature data generation from irregularly spaced Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 100
  year: 2005
  end-page: 107
  ident: b0285
  article-title: Stopping criteria for ensemble of evolutionary artificial neural networks
  publication-title: Appl. Soft. Comput.
– volume: 36
  start-page: 2503
  year: 2015
  end-page: 2523
  ident: b0280
  article-title: Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India
  publication-title: Int. J. Remote Sens.
– reference: Zhang, X.Y., Zhao, H., Yang, J.J., 2019. Spatial downscaling of land surface temperature in combination with TVDI and elevation. Int. J. Remote Sens. 40 (5-6), 1875-1886.
– volume: 57
  start-page: 167
  year: 1996
  end-page: 184
  ident: b0355
  article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 421
  year: 2008
  end-page: 469
  ident: b0195
  article-title: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
– volume: 172
  start-page: 109
  year: 2016
  end-page: 125
  ident: b0330
  article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 5952
  year: 2014
  end-page: 5965
  ident: b0070
  article-title: Disaggregation of remotely sensed land surface temperature: A generalized paradigm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 64
  start-page: 335
  year: 2009
  end-page: 344
  ident: b0375
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 11
  start-page: 1319
  year: 2019
  ident: b0030
  article-title: Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas
  publication-title: Remote Sens.
– volume: 41
  start-page: 1907
  year: 2020
  end-page: 1926
  ident: b0260
  article-title: The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region
  publication-title: Int. J. Remote Sens.
– volume: 178
  start-page: 127
  year: 2016
  end-page: 141
  ident: b0180
  article-title: Downscaling land surface temperatures at regional scales with random forest regression
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 577
  year: 1999
  end-page: 598
  ident: b0325
  article-title: Thermal infrared remote sensing for analysis of landscape ecological processes: Methods and applications
  publication-title: Landsc. Ecol.
– volume: 145
  start-page: 55
  year: 2014
  end-page: 67
  ident: b0380
  article-title: Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 789
  year: 2017
  ident: b0435
  article-title: Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression
  publication-title: Remote Sens.
– volume: 85
  start-page: 429
  year: 2003
  end-page: 440
  ident: b0220
  article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 3287
  year: 2012
  end-page: 3319
  ident: b0130
  article-title: A data mining approach for sharpening thermal satellite imagery over land
  publication-title: Remote Sens.
– volume: 223
  start-page: 243
  year: 2019
  end-page: 256
  ident: b0125
  article-title: An optimized two source energy balance model based on complementary concept and canopy conductance
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 633
  year: 2018
  ident: b0310
  article-title: Downscaling of ASTER thermal images based on geographically weighted regression kriging
  publication-title: Remote Sens.
– volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  ident: b0210
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
– volume: 13
  start-page: 899
  year: 2020
  end-page: 914
  ident: b0455
  article-title: Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data
  publication-title: Int. J. Digit. Earth
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0060
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 35
  start-page: 3094
  year: 2014
  end-page: 3108
  ident: b0270
  article-title: Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information
  publication-title: Int. J. Remote Sens.
– volume: 37
  start-page: 1035
  year: 2016
  end-page: 1054
  ident: b0115
  article-title: Disaggregation of LST over India: Comparative analysis of different vegetation indices
  publication-title: Int. J. Remote Sens.
– volume: 5
  start-page: 501
  year: 1992
  end-page: 506
  ident: b0215
  article-title: Kolmogorov's theorem and multilayer neural networks
  publication-title: Neural Netw.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0295
  article-title: Applicability of downscaling land surface temperature by using normalized difference sand index
  publication-title: Sci. Rep.
– volume: 11
  start-page: 808
  year: 2018
  end-page: 820
  ident: b0250
  article-title: A thermal disaggregation model based on trapezoid interpolation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 12
  start-page: 5213
  year: 2019
  end-page: 5222
  ident: b0430
  article-title: Downscaling land surface temperature using multiscale geographically weighted regression over heterogeneous landscapes in Wuhan, China
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 150
  start-page: 11
  year: 2019
  end-page: 26
  ident: b0025
  article-title: Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data
  publication-title: ISPRS-J. Photogramm. Remote Sens.
– volume: 40
  start-page: 5261
  year: 2019
  end-page: 5286
  ident: b0015
  article-title: Improving the disaggregation of MODIS land surface temperatures in an urban environment: A statistical downscaling approach using high-resolution emissivity
  publication-title: Int. J. Remote Sens.
– volume: 50
  start-page: 1864
  year: 2011
  end-page: 1880
  ident: b0275
  article-title: Multidimensional disaggregation of land surface temperature using high-resolution red, near-infrared, shortwave-infrared, and microwave-L bands
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 206
  start-page: 403
  year: 2018
  end-page: 423
  ident: b0320
  article-title: An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 2025
  year: 1998
  end-page: 2047
  ident: b0085
  article-title: Synergy in remote sensing-what's in a pixel?
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 105
  year: 2018
  ident: b0075
  article-title: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of a wildfire
  publication-title: Remote Sens.
– volume: 224
  start-page: 259
  year: 2019
  end-page: 274
  ident: b0420
  article-title: Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 114
  year: 2012
  end-page: 124
  ident: b0450
  article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 477
  year: 2016
  end-page: 490
  ident: b0135
  article-title: Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 124
  start-page: 3232
  year: 2019
  end-page: 3251
  ident: b0255
  article-title: Spatially disaggregating satellite land surface temperature with a nonlinear model across agricultural areas
  publication-title: J. Geophys. Res.-Biogeosci.
– volume: 131
  start-page: 14
  year: 2013
  end-page: 37
  ident: b0235
  article-title: Satellite-derived land surface temperature: Current status and perspectives
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 133
  year: 2014
  end-page: 143
  ident: b0225
  article-title: Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect
  publication-title: J. Remote Sens
– volume: 115
  start-page: 1772
  year: 2011
  end-page: 1780
  ident: b0090
  article-title: High-resolution urban thermal sharpener (HUTS)
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 549
  year: 2011
  end-page: 553
  ident: b0065
  article-title: Scale effect of vegetation-index-based spatial sharpening for thermal imagery: A simulation study by ASTER data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 121
  start-page: 10538
  year: 2016
  end-page: 10554
  ident: b0470
  article-title: Disaggregation of remotely sensed land surface temperature: A new dynamic methodology
  publication-title: J. Geophys. Res.-Atmos.
– volume: 35
  year: 2008
  ident: b0010
  article-title: Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions
  publication-title: Geophys. Res. Lett.
– volume: 187
  start-page: 423
  year: 2016
  end-page: 433
  ident: b0045
  article-title: Estimating high resolution evapotranspiration from disaggregated thermal images
  publication-title: Remote Sens. Environ.
– volume: 107
  start-page: 545
  year: 2007
  end-page: 558
  ident: b0005
  article-title: A vegetation index based technique for spatial sharpening of thermal imagery
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1011
  issue: 5
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0170
  article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2227930
– volume: 10
  issue: 2
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0315
  article-title: Sharpening method of satellite thermal image based on the geographical statistical model
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.10.025013
– volume: 11
  start-page: 48
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0485
  article-title: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives
  publication-title: Remote Sens.
  doi: 10.3390/rs11010048
– volume: 8
  start-page: 975
  issue: 12
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0490
  article-title: Quantification of the scale effect in downscaling remotely sensed land surface temperature
  publication-title: Remote Sens.
  doi: 10.3390/rs8120975
– volume: 223
  start-page: 243
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0125
  article-title: An optimized two source energy balance model based on complementary concept and canopy conductance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.020
– volume: 11
  start-page: 808
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0250
  article-title: A thermal disaggregation model based on trapezoid interpolation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2790002
– volume: 11
  start-page: 2304
  issue: 19
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0175
  article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11192304
– volume: 10
  start-page: 1253
  issue: 5
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0200
  article-title: Downscaling geostationary land surface temperature imagery for urban analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2257668
– volume: 12
  start-page: 2299
  issue: 7
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0230
  article-title: Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2896923
– volume: 4
  start-page: 3184
  issue: 10
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.08.018_b0040
  article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg
  publication-title: Germany. Remote Sens.
  doi: 10.3390/rs4103184
– volume: 172
  start-page: 109
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0330
  article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.005
– volume: 150
  start-page: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0025
  article-title: Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.004
– volume: 131
  start-page: 119
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0465
  article-title: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.014
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.isprsjprs.2020.08.018_b0245
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– ident: 10.1016/j.isprsjprs.2020.08.018_b0475
  doi: 10.1080/01431161.2018.1489164
– volume: 29
  start-page: 421
  issue: 4–5
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.08.018_b0195
  article-title: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-008-9037-z
– volume: 9
  start-page: 789
  issue: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.08.018_b0435
  article-title: Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression
  publication-title: Remote Sens.
  doi: 10.3390/rs9080789
– volume: 9
  start-page: 2019
  issue: 5
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0050
  article-title: Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2514367
– volume: 6
  start-page: 9829
  issue: 10
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0445
  article-title: Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method
  publication-title: Remote Sens.
  doi: 10.3390/rs6109829
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0295
  article-title: Applicability of downscaling land surface temperature by using normalized difference sand index
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27905-0
– volume: 55
  start-page: 477
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0135
  article-title: Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2608987
– volume: 115
  start-page: 1772
  issue: 7
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.08.018_b0090
  article-title: High-resolution urban thermal sharpener (HUTS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.03.008
– volume: 6
  start-page: 113
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0400
  article-title: Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2013.783131
– volume: 64
  start-page: 335
  issue: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.08.018_b0375
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.03.007
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0410
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 97
  start-page: 78
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0385
  article-title: Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.009
– volume: 4
  start-page: 3287
  issue: 11
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.08.018_b0130
  article-title: A data mining approach for sharpening thermal satellite imagery over land
  publication-title: Remote Sens.
  doi: 10.3390/rs4113287
– volume: 14
  start-page: 107
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0055
  article-title: Downscaling of land surface temperature using airborne high-resolution data: A case study on Aprilia
  publication-title: Italy. IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2630798
– volume: 18
  start-page: 133
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0225
  article-title: Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect
  publication-title: J. Remote Sens
– volume: 9
  start-page: 23
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.08.018_b0340
  article-title: Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels
  publication-title: Remote Sens.
  doi: 10.3390/rs9010023
– volume: 9
  start-page: 549
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.08.018_b0065
  article-title: Scale effect of vegetation-index-based spatial sharpening for thermal imagery: A simulation study by ASTER data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2174453
– volume: 206
  start-page: 403
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0320
  article-title: An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.003
– volume: 14
  start-page: 577
  issue: 6
  year: 1999
  ident: 10.1016/j.isprsjprs.2020.08.018_b0325
  article-title: Thermal infrared remote sensing for analysis of landscape ecological processes: Methods and applications
  publication-title: Landsc. Ecol.
  doi: 10.1023/A:1008168910634
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.08.018_b0165
  article-title: Fusion of MODIS and Landsat-8 surface temperature images: A new approach
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0117755
– volume: 145
  start-page: 55
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0380
  article-title: Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.003
– volume: 107
  start-page: 545
  issue: 4
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.08.018_b0005
  article-title: A vegetation index based technique for spatial sharpening of thermal imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.10.006
– volume: 54
  start-page: 6458
  issue: 11
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0095
  article-title: Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2585198
– volume: 11
  start-page: 1319
  issue: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0030
  article-title: Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas
  publication-title: Remote Sens.
  doi: 10.3390/rs11111319
– volume: 7
  start-page: 21904
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0390
  article-title: Downscaling land surface temperatures using a random forest regression model with multitype predictor variables
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896241
– volume: 224
  start-page: 259
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0420
  article-title: Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.006
– volume: 96
  start-page: 76
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0140
  article-title: Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.07.003
– volume: 12
  start-page: 2897
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0395
  article-title: Downscaling of urban land surface temperature based on multi-factor geographically weighted regression
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2919936
– volume: 11
  start-page: 634
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0425
  article-title: Object-based window strategy in thermal sharpening
  publication-title: Remote Sens.
  doi: 10.3390/rs11060634
– volume: 10
  start-page: 1382
  issue: 9
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0415
  article-title: “Regression-then-fusion” or “fusion-then-regression”? A theoretical analysis for generating high spatiotemporal resolution land surface temperatures
  publication-title: Remote Sens.
  doi: 10.3390/rs10091382
– volume: 13
  start-page: 899
  issue: 8
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.08.018_b0455
  article-title: Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2019.1593527
– volume: 5
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0150
  article-title: Seasonal evaluation of downscaled land surface temperature: A case study in a humid tropical city
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01923
– volume: 12
  start-page: 5213
  issue: 12
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0430
  article-title: Downscaling land surface temperature using multiscale geographically weighted regression over heterogeneous landscapes in Wuhan, China
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2955551
– volume: 41
  start-page: 1907
  issue: 5
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.08.018_b0260
  article-title: The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1677969
– volume: 52
  start-page: 5952
  issue: 9
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0070
  article-title: Disaggregation of remotely sensed land surface temperature: A generalized paradigm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2294031
– volume: 15
  start-page: 259
  issue: 3
  year: 2006
  ident: 10.1016/j.isprsjprs.2020.08.018_b0210
  article-title: World map of the Köppen-Geiger climate classification updated
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2006/0130
– volume: 34
  start-page: 2607
  issue: 7
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0145
  article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748992
– volume: 43
  start-page: 579
  issue: 2
  year: 2003
  ident: 10.1016/j.isprsjprs.2020.08.018_b0160
  article-title: Assessing model fit by cross-validation
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci025626i
– volume: 117
  start-page: 114
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.08.018_b0450
  article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.027
– volume: 156
  start-page: 169
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.08.018_b0405
  article-title: Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.013
– volume: 35
  start-page: 3094
  issue: 9
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.08.018_b0270
  article-title: Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.903442
– volume: 49
  start-page: 773
  issue: 2
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.08.018_b0460
  article-title: Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2060342
– volume: 6
  start-page: 100
  issue: 1
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.08.018_b0285
  article-title: Stopping criteria for ensemble of evolutionary artificial neural networks
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2004.12.005
– volume: 212
  start-page: 198
  year: 1998
  ident: 10.1016/j.isprsjprs.2020.08.018_b0035
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1
  publication-title: Formulation. J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 128
  start-page: 170
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.08.018_b0290
  article-title: An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.014
– volume: 11
  start-page: 1251
  issue: 10
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0155
  article-title: Multi-resolution study of thermal unmixing techniques over Madrid urban area: Case study of TRISHNA mission
  publication-title: Remote Sens.
  doi: 10.3390/rs11101251
– volume: 124
  start-page: 3232
  issue: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0255
  article-title: Spatially disaggregating satellite land surface temperature with a nonlinear model across agricultural areas
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1029/2019JG005227
– volume: 10
  start-page: 633
  issue: 4
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0310
  article-title: Downscaling of ASTER thermal images based on geographically weighted regression kriging
  publication-title: Remote Sens.
  doi: 10.3390/rs10040633
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.08.018_b0060
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  start-page: 105
  issue: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0075
  article-title: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of a wildfire
  publication-title: Remote Sens.
  doi: 10.3390/rs10010105
– volume: 10
  start-page: 249
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0240
  article-title: Ts2urf: A new method for sharpening thermal infrared satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10020249
– volume: 8
  start-page: 274
  issue: 4
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0335
  article-title: Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data
  publication-title: Remote Sens.
  doi: 10.3390/rs8040274
– volume: 19
  start-page: 2025
  issue: 11
  year: 1998
  ident: 10.1016/j.isprsjprs.2020.08.018_b0085
  article-title: Synergy in remote sensing-what's in a pixel?
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698214848
– volume: 34
  start-page: 7706
  issue: 21
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0205
  article-title: Achieving downscaling of Meteosat thermal infrared imagery using artificial neural networks
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.825384
– volume: 88
  start-page: 206
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.08.018_b0480
  article-title: The impact of thermal image spatial enhancement on the estimation of the urban green cooling effect
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.11.027
– volume: 41
  start-page: 2986
  issue: 8
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.08.018_b0370
  article-title: A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1697009
– volume: 121
  start-page: 10538
  issue: 18
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0470
  article-title: Disaggregation of remotely sensed land surface temperature: A new dynamic methodology
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD024891
– volume: 50
  start-page: 1864
  issue: 5
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.08.018_b0275
  article-title: Multidimensional disaggregation of land surface temperature using high-resolution red, near-infrared, shortwave-infrared, and microwave-L bands
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2169802
– volume: 9
  start-page: 1243
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.08.018_b0110
  article-title: Improved DisTrad for downscaling thermal MODIS imagery over urban areas
  publication-title: Remote Sens.
  doi: 10.3390/rs9121243
– start-page: 86
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.08.018_b0020
– volume: 13
  start-page: 178
  issue: 2
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.08.018_b0185
  article-title: Evaluating a thermal image sharpening model over a mixed agricultural landscape in India
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  issue: 2
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.08.018_b0010
  article-title: Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL032195
– volume: 19
  start-page: 163
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.08.018_b0105
  article-title: Evaluation of the DisTrad thermal sharpening methodology for urban areas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 187
  start-page: 423
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0045
  article-title: Estimating high resolution evapotranspiration from disaggregated thermal images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.049
– volume: 28
  start-page: 377
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0080
  article-title: Improving accuracy of land surface temperature prediction model based on deep-learning
  publication-title: Spat. Inf. Res.
  doi: 10.1007/s41324-019-00299-5
– volume: 5
  start-page: 501
  issue: 3
  year: 1992
  ident: 10.1016/j.isprsjprs.2020.08.018_b0215
  article-title: Kolmogorov's theorem and multilayer neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(92)90012-8
– volume: 85
  start-page: 429
  issue: 4
  year: 2003
  ident: 10.1016/j.isprsjprs.2020.08.018_b0220
  article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00036-1
– volume: 40
  start-page: 5261
  issue: 13
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0015
  article-title: Improving the disaggregation of MODIS land surface temperatures in an urban environment: A statistical downscaling approach using high-resolution emissivity
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1579386
– ident: 10.1016/j.isprsjprs.2020.08.018_b0265
  doi: 10.1007/978-981-13-3501-3_16
– volume: 12
  start-page: 1605
  issue: 8
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.08.018_b0190
  article-title: Downscaling GOES land surface temperature for assessing heat wave health risks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2414897
– volume: 37
  start-page: 1035
  issue: 5
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0115
  article-title: Disaggregation of LST over India: Comparative analysis of different vegetation indices
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1145363
– volume: 131
  start-page: 14
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.08.018_b0235
  article-title: Satellite-derived land surface temperature: Current status and perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.08.018_b0300
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 57
  start-page: 167
  issue: 3
  year: 1996
  ident: 10.1016/j.isprsjprs.2020.08.018_b0355
  article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(96)00039-9
– volume: 36
  start-page: 2503
  issue: 10
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.08.018_b0280
  article-title: Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1041175
– volume: 17
  start-page: 744
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.08.018_b0440
  article-title: Downscaling land surface temperature in complex regions by using multiple scale factors with adaptive thresholds
  publication-title: Sensors
  doi: 10.3390/s17040744
– volume: 124
  start-page: 93
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0100
  article-title: Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.01.004
– volume: 86
  start-page: 370
  issue: 3
  year: 2003
  ident: 10.1016/j.isprsjprs.2020.08.018_b0360
  article-title: Thermal remote sensing of urban climates
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00079-8
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.isprsjprs.2020.08.018_b0350
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 178
  start-page: 127
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0180
  article-title: Downscaling land surface temperatures at regional scales with random forest regression
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.006
– volume: 161
  start-page: 76
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.08.018_b0365
  article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis
  publication-title: ISPRS-J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.014
– ident: 10.1016/j.isprsjprs.2020.08.018_b0345
– volume: 57
  start-page: 5012
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.08.018_b0305
  article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2895351
– volume: 184
  start-page: 175
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.08.018_b0120
  article-title: Consistent land surface temperature data generation from irregularly spaced Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.06.019
SSID ssj0001568
Score 2.4615726
Snippet •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression...
Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms algorithms
Downscaling
Land surface temperature
Landsat
Landsat-8
photogrammetry
Spatial resolution
surface temperature
Thermal remote sensing
Title Global comparison of diverse scaling factors and regression models for downscaling Landsat-8 thermal data
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.08.018
https://www.proquest.com/docview/2986251303
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN409aAejFaN9dGsiVcs-4Cit6axqY_0ok16Iwvsao3SptCDF3-7M7BUa0x68MABMgNkZ5mdYb-Zj5ALxSFd01o4ihmkMHOlE4DXc5IAy64jGQhToHyH_mAk78beuEZ6VS0Mwiqt7y99euGt7ZW2Hc32bDJpP7qQOnBsgOQi8Q0fYwW77CCLweXnN8yDleVwKOyg9ArGa5LN5tkrHJAocrfo5YnsH3-vUL98dbEA9XfJjo0cabd8uT1S02mDbP_oJ9ggm5bS_OVjn0zKbv40XhIN0qmhSQHD0DQD04AKtXQ7VKUJnevnEhSb0oIfJ6MQ0NIEfz9b6QesC1a5E1AMG9_h7ggwPSCj_s1Tb-BYXgUnFjLInY4PSZ2vIxkprX0NHyEkWYrxmBkuhEDgk_ESVwTKJFxqxmJjRBSzCEyJFSXikNTTaaqPCOVRol0dSE8lsRS-URBwGtxJZa7pcKmaxK_GMoxt03HkvngLK3TZa7g0QohGCJEVkwVN4i4VZ2XfjfUq15WxwpUpFMLqsF75vDJvCB8Y7pqoVE8XIHQFSZ-HS_3xfx5wQrbwrCxjPCX1fL7QZxDP5FGrmLAtstG9vR8MvwDRvPfP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGIAB8RRvjMQaGj-SBjaEQAUKCyB1s5zEhlaQVm0ZWPjt3CVOeQiJgSFLcpdEPud8F393H8ChEZiuWSsDwx1RmIUqSNDrBXlCZdepSqQrUb63cetBXXWizhSc1bUwBKv0vr_y6aW39mcafjQbg263cRdi6iCoAVJIxDeiMw2zKhJNysCO3j9xHryqhyPpgMS_gby6o8Fw1MMDM0URls08if7j9yXqh7MuV6CLJVj0oSM7rd5uGaZssQILXxoKrsCc5zR_eluFbtXOn2UTpkHWdywvcRiWjdA2qMI83w4zRc6G9rFCxRasJMgZMYxoWU7_n710mwqDzThIGMWNL3h3QpiuwcPF-f1ZK_DECkEmVTIOmjFmdbFNVWqsjS1-hZhlGS4y7oSUkpBPLspDmRiXC2U5z5yTacZTtCWVlMh1mCn6hd0AJtLchjZRkckzJWNnMOJ0tJXKQ9cUymxCXI-lznzXcSK_eNY1vKynJ0bQZARNtJg82YRwojioGm_8rXJSG0t_m0Mal4e_lQ9q82r8wmjbxBS2_4pCx5j1RbTWb_3nAfsw17q_aev25e31NszTlaqmcQdmxsNXu4vBzTjdKyfvB4hy-WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+comparison+of+diverse+scaling+factors+and+regression+models+for+downscaling+Landsat-8+thermal+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Dong%2C+Pan&rft.au=Gao%2C+Lun&rft.au=Zhan%2C+Wenfeng&rft.au=Liu%2C+Zihan&rft.date=2020-11-01&rft.issn=0924-2716&rft.volume=169+p.44-56&rft.spage=44&rft.epage=56&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.08.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon