Global comparison of diverse scaling factors and regression models for downscaling Landsat-8 thermal data
•A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Land...
Saved in:
| Published in | ISPRS journal of photogrammetry and remote sensing Vol. 169; pp. 44 - 56 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-2716 1872-8235 |
| DOI | 10.1016/j.isprsjprs.2020.08.018 |
Cover
| Abstract | •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Landsat-8 LST.
Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications. |
|---|---|
| AbstractList | •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression model.•The RF-based algorithms have the highest accuracy for downscaling LST.•A novel globally applicable algorithm is proposed for downscaling Landsat-8 LST.
Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications. Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high spatial resolution LSTs based on Landsat-8 LST. However, the optimal choice of scaling factors and regression models and their associated combinations over various land surfaces, especially from a global perspective, remain unclear and even controversial. To cope with this issue, we compare 35 SDLST algorithms derived from a combination of seven scaling factors and five frequently used regression models over 32 geographical regions worldwide. The seven scaling factors, at varying degrees, make use of the LST-related information embedded within the visible and near-infrared and short-wave infrared bands of Landsat-8 data. The five regression models involved are multiple linear regression, partial least squares regression, artificial neural networks, support vector regression, and random forest (RF). Our main findings are: (1) The performance of the scaling factors and regression models are highly dependent on each other. Nevertheless, for most scaling factors, especially for high-dimension scaling factors with numerous LST-related variables, the downscaling algorithms that use RF as the regression model achieve the highest accuracy. (2) RFT21, a newly proposed SDLST algorithm based on the comparison results and further optimization, has high global operability and sufficiently high accuracy. RFT21 requires only Landsat-8 data as the inputs, and achieves the highest accuracy in comparison with the thermal sharpening (TsHARP) and high-resolution urban thermal sharpener (HUTS) algorithms, with the mean root-mean-square error (RMSE) reduced by more than 15%. These findings will facilitate the generation of high spatial resolution LSTs worldwide and associated applications. |
| Author | Tamang, Sagar K. Liu, Zihan Li, Hua Dong, Pan Gao, Lun Zhan, Wenfeng Li, Jiufeng Lai, Jiameng Huang, Fan Zhao, Limin |
| Author_xml | – sequence: 1 givenname: Pan surname: Dong fullname: Dong, Pan email: dongpan0920@foxmail.com organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 2 givenname: Lun orcidid: 0000-0002-6382-7684 surname: Gao fullname: Gao, Lun email: gaoxx996@umn.edu organization: Saint Anthony Falls Laboratory, Department of Civil Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55414, USA – sequence: 3 givenname: Wenfeng orcidid: 0000-0001-7487-821X surname: Zhan fullname: Zhan, Wenfeng email: zhanwenfeng@nju.edu.cn organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 4 givenname: Zihan surname: Liu fullname: Liu, Zihan email: liuzihan_trs@foxmail.com organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 5 givenname: Jiufeng surname: Li fullname: Li, Jiufeng email: Jiufengli@smail.nju.edu.cn organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 6 givenname: Jiameng surname: Lai fullname: Lai, Jiameng email: NJULJM@126.com organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 7 givenname: Hua orcidid: 0000-0003-3834-2682 surname: Li fullname: Li, Hua email: lihua@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China – sequence: 8 givenname: Fan surname: Huang fullname: Huang, Fan email: nju_huangfan@163.com organization: Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China – sequence: 9 givenname: Sagar K. surname: Tamang fullname: Tamang, Sagar K. email: taman011@umn.edu organization: Saint Anthony Falls Laboratory, Department of Civil Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55414, USA – sequence: 10 givenname: Limin surname: Zhao fullname: Zhao, Limin email: zhaolm@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China |
| BookMark | eNqNkDFvFDEQRi2USFxCfkNc0uwytvd83oIiiiBBOokGastrjxOfdteHxwni3-PogIIGCmua9z7J74KdrXlFxq4F9AKEfnfoEx0LHdrrJUjowfQgzCu2EWYnOyPV9oxtYJRDJ3dCv2YXRAcAEFttNizdzXlyM_d5ObqSKK88Rx7SMxZCTt7NaX3g0fmaC3G3Bl7woSBRauSSA87EYy485O_rb3rfMHK1M7w-YlnaenDVvWHn0c2EV7_uJfv68cOX2_tu__nu0-3NvvNqMLXb6QFGjdMwOUSNSowDCCekF1EqpcCYMW4DKONikAMK4WNUkxfTMAJoo9Ule3vaPZb87Qmp2iWRx3l2K-YnsnI0Wm6FAtXQ9yfUl0xUMFqfqqvta7W4NFsB9iWxPdg_ie1LYgvGtsTN3_3lH0taXPnxH-bNyWz98DlhseQTrh5DKuirDTn9c-Mnn2SgAA |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2023_10_011 crossref_primary_10_1016_j_catena_2021_105949 crossref_primary_10_1109_JSTARS_2021_3091125 crossref_primary_10_1016_j_uclim_2025_102345 crossref_primary_10_3390_rs16071158 crossref_primary_10_3390_urbansci9020028 crossref_primary_10_3390_rs16142542 crossref_primary_10_1016_j_jag_2022_102827 crossref_primary_10_1016_j_buildenv_2022_109105 crossref_primary_10_3390_rs17040694 crossref_primary_10_1016_j_rse_2021_112642 crossref_primary_10_1016_j_jhydrol_2023_130036 crossref_primary_10_1016_j_rsase_2025_101519 crossref_primary_10_1109_JSTARS_2022_3209012 crossref_primary_10_1016_j_isprsjprs_2023_12_011 crossref_primary_10_1029_2024EA003888 crossref_primary_10_1109_TGRS_2023_3315316 crossref_primary_10_1016_j_isprsjprs_2022_03_009 crossref_primary_10_1016_j_rse_2024_114141 crossref_primary_10_1109_TGRS_2024_3505933 crossref_primary_10_1109_JSTARS_2024_3447033 crossref_primary_10_1109_LGRS_2023_3293831 crossref_primary_10_1016_j_jag_2023_103408 crossref_primary_10_1080_01431161_2023_2238327 crossref_primary_10_3390_rs13071306 crossref_primary_10_1007_s13762_022_04510_3 crossref_primary_10_1016_j_xplc_2022_100344 crossref_primary_10_3390_f13122122 |
| Cites_doi | 10.1109/LGRS.2012.2227930 10.1117/1.JRS.10.025013 10.3390/rs11010048 10.3390/rs8120975 10.1016/j.rse.2019.01.020 10.1109/JSTARS.2018.2790002 10.3390/rs11192304 10.1109/LGRS.2013.2257668 10.1109/JSTARS.2019.2896923 10.3390/rs4103184 10.1016/j.rse.2015.11.005 10.1016/j.isprsjprs.2019.02.004 10.1016/j.rse.2012.12.014 10.1007/BF01589116 10.1080/01431161.2018.1489164 10.1007/s10712-008-9037-z 10.3390/rs9080789 10.1109/JSTARS.2016.2514367 10.3390/rs6109829 10.1038/s41598-018-27905-0 10.1109/TGRS.2016.2608987 10.1016/j.rse.2011.03.008 10.1080/17538947.2013.783131 10.1016/j.isprsjprs.2009.03.007 10.1016/j.rse.2019.02.015 10.1016/j.isprsjprs.2014.08.009 10.3390/rs4113287 10.1109/LGRS.2016.2630798 10.3390/rs9010023 10.1109/LGRS.2011.2174453 10.1016/j.rse.2017.12.003 10.1023/A:1008168910634 10.1371/journal.pone.0117755 10.1016/j.rse.2014.02.003 10.1016/j.rse.2006.10.006 10.1109/TGRS.2016.2585198 10.3390/rs11111319 10.1109/ACCESS.2019.2896241 10.1016/j.rse.2019.02.006 10.1016/j.isprsjprs.2014.07.003 10.1109/JSTARS.2019.2919936 10.3390/rs11060634 10.3390/rs10091382 10.1080/17538947.2019.1593527 10.1016/j.heliyon.2019.e01923 10.1109/JSTARS.2019.2955551 10.1080/01431161.2019.1677969 10.1109/TGRS.2013.2294031 10.1127/0941-2948/2006/0130 10.1080/01431161.2012.748992 10.1021/ci025626i 10.1016/j.rse.2011.05.027 10.1016/j.rse.2014.09.013 10.1080/01431161.2014.903442 10.1109/TGRS.2010.2060342 10.1016/j.asoc.2004.12.005 10.1016/S0022-1694(98)00253-4 10.1016/j.isprsjprs.2017.03.014 10.3390/rs11101251 10.1029/2019JG005227 10.3390/rs10040633 10.1023/A:1010933404324 10.3390/rs10010105 10.3390/rs10020249 10.3390/rs8040274 10.1080/014311698214848 10.1080/01431161.2013.825384 10.1016/j.infrared.2017.11.027 10.1080/01431161.2019.1697009 10.1002/2016JD024891 10.1109/TGRS.2011.2169802 10.3390/rs9121243 10.1029/2007GL032195 10.1016/j.rse.2016.10.049 10.1007/s41324-019-00299-5 10.1016/0893-6080(92)90012-8 10.1016/S0034-4257(03)00036-1 10.1080/01431161.2019.1579386 10.1007/978-981-13-3501-3_16 10.1109/LGRS.2015.2414897 10.1080/01431161.2016.1145363 10.1016/j.rse.2012.12.008 10.1016/0034-4257(96)00039-9 10.1080/01431161.2015.1041175 10.3390/s17040744 10.1016/j.cageo.2019.01.004 10.1016/S0034-4257(03)00079-8 10.1023/B:STCO.0000035301.49549.88 10.1016/j.rse.2016.03.006 10.1016/j.isprsjprs.2020.01.014 10.1109/TGRS.2019.2895351 10.1016/j.rse.2016.06.019 |
| ContentType | Journal Article |
| Copyright | 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| Copyright_xml | – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.isprsjprs.2020.08.018 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1872-8235 |
| EndPage | 56 |
| ExternalDocumentID | 10_1016_j_isprsjprs_2020_08_018 S092427162030232X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c348t-764096eb4baee6e319401a12c1f23330889f5d038afd24e11cff3bc1b49006863 |
| IEDL.DBID | .~1 |
| ISSN | 0924-2716 |
| IngestDate | Thu Oct 02 04:14:25 EDT 2025 Thu Apr 24 22:49:57 EDT 2025 Thu Oct 16 04:27:47 EDT 2025 Sun Apr 21 12:55:45 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Landsat-8 Thermal remote sensing Land surface temperature Downscaling Spatial resolution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-764096eb4baee6e319401a12c1f23330889f5d038afd24e11cff3bc1b49006863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6382-7684 0000-0003-3834-2682 0000-0001-7487-821X |
| PQID | 2986251303 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2986251303 crossref_citationtrail_10_1016_j_isprsjprs_2020_08_018 crossref_primary_10_1016_j_isprsjprs_2020_08_018 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_08_018 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Choe, Yom (b0080) 2019; 28 Zhang, Zhan, Chen, Li, Yu (b0480) 2018; 88 Weng (b0375) 2009; 64 Hawkins, Basak, Mills (b0160) 2003; 43 Wang, Chow, Wang (b0370) 2020; 41 Weng, Fu (b0385) 2014; 97 Chen, Zhan, Quan, Zhou, Zhu, Sun (b0070) 2014; 52 Kolios, Georgoulas, Stylios (b0205) 2013; 34 Zhan, Chen, Zhou, Wang, Liu, Voogt, Zhu, Quan, Li (b0465) 2013; 131 Dominguez, Kleissl, Luvall, Rickman (b0090) 2011; 115 Wu, Shen, Zhang, Göttsche (b0405) 2015; 156 Gan, Kang, Yang, Bu, Feng, Gao (b0125) 2019; 223 Yang, Cao, Pan, Li, Zhu (b0435) 2017; 9 Zawadzka, Corstanje, Harris, Truckell (b0455) 2020; 13 Cracknell (b0085) 1998; 19 Li, Ni, Li, Duan, Wu (b0230) 2019; 12 Yang, Zhan, Lv, Liu (b0430) 2019; 12 Voogt, Oke (b0360) 2003; 86 Quattrochi, Luvall (b0325) 1999; 14 Qi, Hu, Zhang, Guo (b0315) 2016; 10 Amazirh, Merlin, Er-Raki (b0025) 2019; 150 Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu (b0145) 2013; 34 Gao, Kustas, Anderson (b0130) 2012; 4 Liu, Su, Li, Chen, Zhang, Wang, Yang, Liang, Yang (b0250) 2018; 11 Breiman (b0060) 2001; 45 Pereira, Melfi, Montes, Lucas (b0310) 2018; 10 Quan, Zhan, Ma, Du, Guo, Qin (b0320) 2018; 206 Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0235) 2013; 131 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b0300) 2011; 12 Essa, Verbeiren, van der Kwast, Van de Voorde, Batelaan (b0105) 2012; 19 Jeganathan, Hamm, Mukherjee, Atkinson, Raju, Dadhwal (b0185) 2011; 13 Jiang, Fu, Weng (b0190) 2015; 12 Yang, Li, Pan, Zhang, Cao (b0440) 2017; 17 Zhan, Chen, Zhou, Li, Liu (b0460) 2010; 49 Kalma, McVicar, McCabe (b0195) 2008; 29 Agam, Kustas, Anderson, Li, Neale (b0005) 2007; 107 Olivera-Guerra, Mattar, Merlin, Durán-Alarcón, Santamaría-Artigas, Fuster (b0290) 2017; 128 Li, Du, Liu, Xu, Cao, Jiang, Wang (b0225) 2014; 18 Valor, Caselles (b0355) 1996; 57 Huang, Wang, Song, Fu, Wong (b0170) 2013; 10 Yu, Guo, Wu (b0445) 2014; 6 Zhou, Liu, Li, Zhan, Xu, Xu (b0490) 2016; 8 Agam, Kustas, Anderson, Li, Colaizzi (b0010) 2008; 35 Lillo-Saavedra, Garcia-Pedrero, Merino, Gonzalo-Martin (b0240) 2018; 10 Liu, Nocedal (b0245) 1989; 45 Maeda (b0270) 2014; 35 Nguyen, Abbass, McKay (b0285) 2005; 6 Hutengs, Vohland (b0180) 2016; 178 Peng, Li, Luo, Li (b0305) 2019; 57 Zhang, X.Y., Zhao, H., Yang, J.J., 2019. Spatial downscaling of land surface temperature in combination with TVDI and elevation. Int. J. Remote Sens. 40 (5-6), 1875-1886. Smola, Scholkopf (b0350) 2004; 14 Liu, Wang, Li, Li, Zhang, Zhai (b0260) 2020; 41 Bonafoni (b0050) 2016; 9 Zhan, Huang, Quan, Zhu, Gao, Zhou, Ju (b0470) 2016; 121 Huryna, Cohen, Karnieli, Panov, Kustas, Agam (b0175) 2019; 11 Bisquert, Sánchez, López-Urrea, Caselles (b0045) 2016; 187 Sismanidis, Keramitsoglou, Bechtel, Kiranoudis (b0340) 2017; 9 Xia, Chen, Zhao, Chen (b0415) 2018; 10 Pan, Zhu, Yang, Cao, Zhang, Shan (b0295) 2018; 8 Wu, Li (b0390) 2019; 7 Alexander (b0020) 2020 Wu, Zhong, Tian, Yang, Wu (b0395) 2019; 12 Ghosh, Joshi (b0140) 2014; 96 Granero-Belinchon, Michel, Lagouarde, Sobrino, Briottet (b0155) 2019; 11 Luo, R., Zhou, J., Yang, J.J., Ai, L.J., Feng, Y.L., 2019. Downscaling of Tiangong-2 land surface temperature. In: Proceedings of the Tiangong-2 Remote Sensing Application Conference, vol. 541. Springer, pp. 170-179. Keramitsoglou, Kiranoudis, Weng (b0200) 2013; 10 Duan, Li (b0095) 2016; 54 Xia, Chen, Li, Quan (b0420) 2019; 224 Wu, Shen, Ai, Liu (b0400) 2013; 6 Gao, Zhan, Huang, Quan, Lu, Wang, Ju, Zhou (b0135) 2016; 55 Xia, Chen, Quan, Li (b0425) 2019; 11 Bonafoni, Tosi (b0055) 2016; 14 Agathangelidis, Cartalis (b0015) 2019; 40 Bastiaanssen, Menenti, Feddes, Holtslag (b0035) 1998; 212 Essa, Verbeiren, Van der Kwast, Batelaan (b0110) 2017; 9 Bartkowiak, Castelli, Notarnicola (b0030) 2019; 11 Kurkova (b0215) 1992; 5 Ebrahimy, Azadbakht (b0100) 2019; 124 Bechtel, Zakšek, Hoshyaripour (b0040) 2012; 4 Sismanidis, P., Keramitsoglou, I., Hulley, G.C., Kiranoudis, C.T., 2019. Enhancing the spatial resolution of diurnal LST from geostationary satellites. AGU Fall Meeting, 2019, GC44C-02. Chen, Yamaguchi, Chen, Shi (b0065) 2011; 9 Wang, Schmitz, Lu, Karssenberg (b0365) 2020; 161 Kottek, Grieser, Beck, Rudolf, Rubel (b0210) 2006; 15 Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen (b0410) 2019; 225 Shen, Huang, Zhang, Wu, Zeng (b0330) 2016; 172 Weng, Fu, Gao (b0380) 2014; 145 Zhou, Xiao, Bonafoni, Berger, Deilami, Zhou, Frolking, Yao, Qiao, Sobrino (b0485) 2019; 11 Liu, Wang, Li, Wu (b0255) 2019; 124 Kustas, Norman, Anderson, French (b0220) 2003; 85 Cho, Kim, Kim (b0075) 2018; 10 Eswar, Sekhar, Bhattacharya (b0115) 2016; 37 Merlin, Jacob, Wigneron, Walker, Chehbouni (b0275) 2011; 50 Govil, Guha, Dey, Gill (b0150) 2019; 5 Zakšek, Oštir (b0450) 2012; 117 Mukherjee, Joshi, Garg (b0280) 2015; 36 Hazaymeh, Hassan (b0165) 2015; 10 Sismanidis, Keramitsoglou, Kiranoudis, Bechtel (b0335) 2016; 8 Fu, Weng (b0120) 2016; 184 Zhan (10.1016/j.isprsjprs.2020.08.018_b0470) 2016; 121 Smola (10.1016/j.isprsjprs.2020.08.018_b0350) 2004; 14 Cracknell (10.1016/j.isprsjprs.2020.08.018_b0085) 1998; 19 Nguyen (10.1016/j.isprsjprs.2020.08.018_b0285) 2005; 6 Choe (10.1016/j.isprsjprs.2020.08.018_b0080) 2019; 28 Xia (10.1016/j.isprsjprs.2020.08.018_b0415) 2018; 10 Dominguez (10.1016/j.isprsjprs.2020.08.018_b0090) 2011; 115 Li (10.1016/j.isprsjprs.2020.08.018_b0230) 2019; 12 Peng (10.1016/j.isprsjprs.2020.08.018_b0305) 2019; 57 Essa (10.1016/j.isprsjprs.2020.08.018_b0105) 2012; 19 Pan (10.1016/j.isprsjprs.2020.08.018_b0295) 2018; 8 Hazaymeh (10.1016/j.isprsjprs.2020.08.018_b0165) 2015; 10 Xia (10.1016/j.isprsjprs.2020.08.018_b0425) 2019; 11 Jiang (10.1016/j.isprsjprs.2020.08.018_b0190) 2015; 12 Kalma (10.1016/j.isprsjprs.2020.08.018_b0195) 2008; 29 Zakšek (10.1016/j.isprsjprs.2020.08.018_b0450) 2012; 117 Amazirh (10.1016/j.isprsjprs.2020.08.018_b0025) 2019; 150 Fu (10.1016/j.isprsjprs.2020.08.018_b0120) 2016; 184 Zhan (10.1016/j.isprsjprs.2020.08.018_b0465) 2013; 131 Quattrochi (10.1016/j.isprsjprs.2020.08.018_b0325) 1999; 14 Sismanidis (10.1016/j.isprsjprs.2020.08.018_b0340) 2017; 9 Weng (10.1016/j.isprsjprs.2020.08.018_b0375) 2009; 64 Agathangelidis (10.1016/j.isprsjprs.2020.08.018_b0015) 2019; 40 Kolios (10.1016/j.isprsjprs.2020.08.018_b0205) 2013; 34 Essa (10.1016/j.isprsjprs.2020.08.018_b0110) 2017; 9 Zawadzka (10.1016/j.isprsjprs.2020.08.018_b0455) 2020; 13 Alexander (10.1016/j.isprsjprs.2020.08.018_b0020) 2020 Wu (10.1016/j.isprsjprs.2020.08.018_b0390) 2019; 7 Maeda (10.1016/j.isprsjprs.2020.08.018_b0270) 2014; 35 Huang (10.1016/j.isprsjprs.2020.08.018_b0170) 2013; 10 Zhou (10.1016/j.isprsjprs.2020.08.018_b0485) 2019; 11 Xia (10.1016/j.isprsjprs.2020.08.018_b0420) 2019; 224 Wulder (10.1016/j.isprsjprs.2020.08.018_b0410) 2019; 225 10.1016/j.isprsjprs.2020.08.018_b0265 Gong (10.1016/j.isprsjprs.2020.08.018_b0145) 2013; 34 Wu (10.1016/j.isprsjprs.2020.08.018_b0405) 2015; 156 Yang (10.1016/j.isprsjprs.2020.08.018_b0435) 2017; 9 Duan (10.1016/j.isprsjprs.2020.08.018_b0095) 2016; 54 Pereira (10.1016/j.isprsjprs.2020.08.018_b0310) 2018; 10 Jeganathan (10.1016/j.isprsjprs.2020.08.018_b0185) 2011; 13 Yang (10.1016/j.isprsjprs.2020.08.018_b0440) 2017; 17 Sismanidis (10.1016/j.isprsjprs.2020.08.018_b0335) 2016; 8 Kurkova (10.1016/j.isprsjprs.2020.08.018_b0215) 1992; 5 Yang (10.1016/j.isprsjprs.2020.08.018_b0430) 2019; 12 Gao (10.1016/j.isprsjprs.2020.08.018_b0130) 2012; 4 Qi (10.1016/j.isprsjprs.2020.08.018_b0315) 2016; 10 Mukherjee (10.1016/j.isprsjprs.2020.08.018_b0280) 2015; 36 Weng (10.1016/j.isprsjprs.2020.08.018_b0385) 2014; 97 Yu (10.1016/j.isprsjprs.2020.08.018_b0445) 2014; 6 Wu (10.1016/j.isprsjprs.2020.08.018_b0400) 2013; 6 Zhou (10.1016/j.isprsjprs.2020.08.018_b0490) 2016; 8 Kottek (10.1016/j.isprsjprs.2020.08.018_b0210) 2006; 15 Agam (10.1016/j.isprsjprs.2020.08.018_b0005) 2007; 107 Chen (10.1016/j.isprsjprs.2020.08.018_b0070) 2014; 52 Kustas (10.1016/j.isprsjprs.2020.08.018_b0220) 2003; 85 Zhang (10.1016/j.isprsjprs.2020.08.018_b0480) 2018; 88 Weng (10.1016/j.isprsjprs.2020.08.018_b0380) 2014; 145 Li (10.1016/j.isprsjprs.2020.08.018_b0235) 2013; 131 Bonafoni (10.1016/j.isprsjprs.2020.08.018_b0050) 2016; 9 Ghosh (10.1016/j.isprsjprs.2020.08.018_b0140) 2014; 96 Bonafoni (10.1016/j.isprsjprs.2020.08.018_b0055) 2016; 14 Liu (10.1016/j.isprsjprs.2020.08.018_b0255) 2019; 124 Ebrahimy (10.1016/j.isprsjprs.2020.08.018_b0100) 2019; 124 Breiman (10.1016/j.isprsjprs.2020.08.018_b0060) 2001; 45 Olivera-Guerra (10.1016/j.isprsjprs.2020.08.018_b0290) 2017; 128 Liu (10.1016/j.isprsjprs.2020.08.018_b0245) 1989; 45 Agam (10.1016/j.isprsjprs.2020.08.018_b0010) 2008; 35 Quan (10.1016/j.isprsjprs.2020.08.018_b0320) 2018; 206 Liu (10.1016/j.isprsjprs.2020.08.018_b0250) 2018; 11 10.1016/j.isprsjprs.2020.08.018_b0475 Merlin (10.1016/j.isprsjprs.2020.08.018_b0275) 2011; 50 Bechtel (10.1016/j.isprsjprs.2020.08.018_b0040) 2012; 4 Zhan (10.1016/j.isprsjprs.2020.08.018_b0460) 2010; 49 Gao (10.1016/j.isprsjprs.2020.08.018_b0135) 2016; 55 Valor (10.1016/j.isprsjprs.2020.08.018_b0355) 1996; 57 Li (10.1016/j.isprsjprs.2020.08.018_b0225) 2014; 18 Eswar (10.1016/j.isprsjprs.2020.08.018_b0115) 2016; 37 Voogt (10.1016/j.isprsjprs.2020.08.018_b0360) 2003; 86 Hutengs (10.1016/j.isprsjprs.2020.08.018_b0180) 2016; 178 Cho (10.1016/j.isprsjprs.2020.08.018_b0075) 2018; 10 Govil (10.1016/j.isprsjprs.2020.08.018_b0150) 2019; 5 Shen (10.1016/j.isprsjprs.2020.08.018_b0330) 2016; 172 Wang (10.1016/j.isprsjprs.2020.08.018_b0370) 2020; 41 10.1016/j.isprsjprs.2020.08.018_b0345 Granero-Belinchon (10.1016/j.isprsjprs.2020.08.018_b0155) 2019; 11 Liu (10.1016/j.isprsjprs.2020.08.018_b0260) 2020; 41 Bisquert (10.1016/j.isprsjprs.2020.08.018_b0045) 2016; 187 Keramitsoglou (10.1016/j.isprsjprs.2020.08.018_b0200) 2013; 10 Gan (10.1016/j.isprsjprs.2020.08.018_b0125) 2019; 223 Wang (10.1016/j.isprsjprs.2020.08.018_b0365) 2020; 161 Pedregosa (10.1016/j.isprsjprs.2020.08.018_b0300) 2011; 12 Huryna (10.1016/j.isprsjprs.2020.08.018_b0175) 2019; 11 Chen (10.1016/j.isprsjprs.2020.08.018_b0065) 2011; 9 Bastiaanssen (10.1016/j.isprsjprs.2020.08.018_b0035) 1998; 212 Wu (10.1016/j.isprsjprs.2020.08.018_b0395) 2019; 12 Lillo-Saavedra (10.1016/j.isprsjprs.2020.08.018_b0240) 2018; 10 Hawkins (10.1016/j.isprsjprs.2020.08.018_b0160) 2003; 43 Bartkowiak (10.1016/j.isprsjprs.2020.08.018_b0030) 2019; 11 |
| References_xml | – volume: 86 start-page: 370 year: 2003 end-page: 384 ident: b0360 article-title: Thermal remote sensing of urban climates publication-title: Remote Sens. Environ. – volume: 57 start-page: 5012 year: 2019 end-page: 5027 ident: b0305 article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 124 start-page: 93 year: 2019 end-page: 102 ident: b0100 article-title: Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels publication-title: Comput. Geosci. – volume: 10 start-page: 1253 year: 2013 end-page: 1257 ident: b0200 article-title: Downscaling geostationary land surface temperature imagery for urban analysis publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 744 year: 2017 ident: b0440 article-title: Downscaling land surface temperature in complex regions by using multiple scale factors with adaptive thresholds publication-title: Sensors – volume: 41 start-page: 2986 year: 2020 end-page: 3009 ident: b0370 article-title: A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat publication-title: Int. J. Remote Sens. – volume: 11 start-page: 48 year: 2019 ident: b0485 article-title: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives publication-title: Remote Sens. – reference: Luo, R., Zhou, J., Yang, J.J., Ai, L.J., Feng, Y.L., 2019. Downscaling of Tiangong-2 land surface temperature. In: Proceedings of the Tiangong-2 Remote Sensing Application Conference, vol. 541. Springer, pp. 170-179. – volume: 88 start-page: 206 year: 2018 end-page: 211 ident: b0480 article-title: The impact of thermal image spatial enhancement on the estimation of the urban green cooling effect publication-title: Infrared Phys. Technol. – volume: 34 start-page: 2607 year: 2013 end-page: 2654 ident: b0145 article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. – volume: 6 start-page: 9829 year: 2014 end-page: 9852 ident: b0445 article-title: Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method publication-title: Remote Sens. – volume: 5 year: 2019 ident: b0150 article-title: Seasonal evaluation of downscaled land surface temperature: A case study in a humid tropical city publication-title: Heliyon – volume: 13 start-page: 178 year: 2011 end-page: 191 ident: b0185 article-title: Evaluating a thermal image sharpening model over a mixed agricultural landscape in India publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 28 start-page: 377 year: 2019 end-page: 382 ident: b0080 article-title: Improving accuracy of land surface temperature prediction model based on deep-learning publication-title: Spat. Inf. Res. – volume: 19 start-page: 163 year: 2012 end-page: 172 ident: b0105 article-title: Evaluation of the DisTrad thermal sharpening methodology for urban areas publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Sismanidis, P., Keramitsoglou, I., Hulley, G.C., Kiranoudis, C.T., 2019. Enhancing the spatial resolution of diurnal LST from geostationary satellites. AGU Fall Meeting, 2019, GC44C-02. – volume: 6 start-page: 113 year: 2013 end-page: 133 ident: b0400 article-title: Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion publication-title: Int. J. Digit. Earth – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b0245 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – volume: 10 start-page: 1011 year: 2013 end-page: 1015 ident: b0170 article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 1382 year: 2018 ident: b0415 article-title: “Regression-then-fusion” or “fusion-then-regression”? A theoretical analysis for generating high spatiotemporal resolution land surface temperatures publication-title: Remote Sens. – volume: 12 start-page: 1605 year: 2015 end-page: 1609 ident: b0190 article-title: Downscaling GOES land surface temperature for assessing heat wave health risks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 start-page: 21904 year: 2019 end-page: 21916 ident: b0390 article-title: Downscaling land surface temperatures using a random forest regression model with multitype predictor variables publication-title: IEEE Access – volume: 212 start-page: 198 year: 1998 end-page: 212 ident: b0035 article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1 publication-title: Formulation. J. Hydrol. – volume: 11 start-page: 2304 year: 2019 ident: b0175 article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery publication-title: Remote Sens. – volume: 10 start-page: 249 year: 2018 ident: b0240 article-title: Ts2urf: A new method for sharpening thermal infrared satellite imagery publication-title: Remote Sens. – volume: 9 start-page: 23 year: 2017 ident: b0340 article-title: Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels publication-title: Remote Sens. – volume: 12 start-page: 2299 year: 2019 end-page: 2307 ident: b0230 article-title: Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 34 start-page: 7706 year: 2013 end-page: 7722 ident: b0205 article-title: Achieving downscaling of Meteosat thermal infrared imagery using artificial neural networks publication-title: Int. J. Remote Sens. – start-page: 86 year: 2020 ident: b0020 article-title: Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST) – volume: 49 start-page: 773 year: 2010 end-page: 789 ident: b0460 article-title: Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 year: 2015 ident: b0165 article-title: Fusion of MODIS and Landsat-8 surface temperature images: A new approach publication-title: PLoS One. – volume: 97 start-page: 78 year: 2014 end-page: 88 ident: b0385 article-title: Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 8 start-page: 274 year: 2016 ident: b0335 article-title: Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data publication-title: Remote Sens. – volume: 54 start-page: 6458 year: 2016 end-page: 6469 ident: b0095 article-title: Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 year: 2016 ident: b0315 article-title: Sharpening method of satellite thermal image based on the geographical statistical model publication-title: J. Appl. Remote Sens. – volume: 9 start-page: 2019 year: 2016 end-page: 2027 ident: b0050 article-title: Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: b0410 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0300 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 975 year: 2016 ident: b0490 article-title: Quantification of the scale effect in downscaling remotely sensed land surface temperature publication-title: Remote Sens. – volume: 9 start-page: 1243 year: 2017 ident: b0110 article-title: Improved DisTrad for downscaling thermal MODIS imagery over urban areas publication-title: Remote Sens. – volume: 128 start-page: 170 year: 2017 end-page: 181 ident: b0290 article-title: An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 161 start-page: 76 year: 2020 end-page: 89 ident: b0365 article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 96 start-page: 76 year: 2014 end-page: 93 ident: b0140 article-title: Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 43 start-page: 579 year: 2003 end-page: 586 ident: b0160 article-title: Assessing model fit by cross-validation publication-title: J. Chem. Inf. Comput. Sci. – volume: 156 start-page: 169 year: 2015 end-page: 181 ident: b0405 article-title: Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature publication-title: Remote Sens. Environ. – volume: 11 start-page: 1251 year: 2019 ident: b0155 article-title: Multi-resolution study of thermal unmixing techniques over Madrid urban area: Case study of TRISHNA mission publication-title: Remote Sens. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0350 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 11 start-page: 634 year: 2019 ident: b0425 article-title: Object-based window strategy in thermal sharpening publication-title: Remote Sens. – volume: 4 start-page: 3184 year: 2012 end-page: 3200 ident: b0040 article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg publication-title: Germany. Remote Sens. – volume: 14 start-page: 107 year: 2016 end-page: 111 ident: b0055 article-title: Downscaling of land surface temperature using airborne high-resolution data: A case study on Aprilia publication-title: Italy. IEEE Geosci. Remote Sens. Lett. – volume: 131 start-page: 119 year: 2013 end-page: 139 ident: b0465 article-title: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats publication-title: Remote Sens. Environ. – volume: 12 start-page: 2897 year: 2019 end-page: 2911 ident: b0395 article-title: Downscaling of urban land surface temperature based on multi-factor geographically weighted regression publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 184 start-page: 175 year: 2016 end-page: 187 ident: b0120 article-title: Consistent land surface temperature data generation from irregularly spaced Landsat imagery publication-title: Remote Sens. Environ. – volume: 6 start-page: 100 year: 2005 end-page: 107 ident: b0285 article-title: Stopping criteria for ensemble of evolutionary artificial neural networks publication-title: Appl. Soft. Comput. – volume: 36 start-page: 2503 year: 2015 end-page: 2523 ident: b0280 article-title: Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India publication-title: Int. J. Remote Sens. – reference: Zhang, X.Y., Zhao, H., Yang, J.J., 2019. Spatial downscaling of land surface temperature in combination with TVDI and elevation. Int. J. Remote Sens. 40 (5-6), 1875-1886. – volume: 57 start-page: 167 year: 1996 end-page: 184 ident: b0355 article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas publication-title: Remote Sens. Environ. – volume: 29 start-page: 421 year: 2008 end-page: 469 ident: b0195 article-title: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. – volume: 172 start-page: 109 year: 2016 end-page: 125 ident: b0330 article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China publication-title: Remote Sens. Environ. – volume: 52 start-page: 5952 year: 2014 end-page: 5965 ident: b0070 article-title: Disaggregation of remotely sensed land surface temperature: A generalized paradigm publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 64 start-page: 335 year: 2009 end-page: 344 ident: b0375 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 11 start-page: 1319 year: 2019 ident: b0030 article-title: Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas publication-title: Remote Sens. – volume: 41 start-page: 1907 year: 2020 end-page: 1926 ident: b0260 article-title: The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region publication-title: Int. J. Remote Sens. – volume: 178 start-page: 127 year: 2016 end-page: 141 ident: b0180 article-title: Downscaling land surface temperatures at regional scales with random forest regression publication-title: Remote Sens. Environ. – volume: 14 start-page: 577 year: 1999 end-page: 598 ident: b0325 article-title: Thermal infrared remote sensing for analysis of landscape ecological processes: Methods and applications publication-title: Landsc. Ecol. – volume: 145 start-page: 55 year: 2014 end-page: 67 ident: b0380 article-title: Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data publication-title: Remote Sens. Environ. – volume: 9 start-page: 789 year: 2017 ident: b0435 article-title: Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression publication-title: Remote Sens. – volume: 85 start-page: 429 year: 2003 end-page: 440 ident: b0220 article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship publication-title: Remote Sens. Environ. – volume: 4 start-page: 3287 year: 2012 end-page: 3319 ident: b0130 article-title: A data mining approach for sharpening thermal satellite imagery over land publication-title: Remote Sens. – volume: 223 start-page: 243 year: 2019 end-page: 256 ident: b0125 article-title: An optimized two source energy balance model based on complementary concept and canopy conductance publication-title: Remote Sens. Environ. – volume: 10 start-page: 633 year: 2018 ident: b0310 article-title: Downscaling of ASTER thermal images based on geographically weighted regression kriging publication-title: Remote Sens. – volume: 15 start-page: 259 year: 2006 end-page: 263 ident: b0210 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. – volume: 13 start-page: 899 year: 2020 end-page: 914 ident: b0455 article-title: Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data publication-title: Int. J. Digit. Earth – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0060 article-title: Random forests publication-title: Mach. Learn. – volume: 35 start-page: 3094 year: 2014 end-page: 3108 ident: b0270 article-title: Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information publication-title: Int. J. Remote Sens. – volume: 37 start-page: 1035 year: 2016 end-page: 1054 ident: b0115 article-title: Disaggregation of LST over India: Comparative analysis of different vegetation indices publication-title: Int. J. Remote Sens. – volume: 5 start-page: 501 year: 1992 end-page: 506 ident: b0215 article-title: Kolmogorov's theorem and multilayer neural networks publication-title: Neural Netw. – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: b0295 article-title: Applicability of downscaling land surface temperature by using normalized difference sand index publication-title: Sci. Rep. – volume: 11 start-page: 808 year: 2018 end-page: 820 ident: b0250 article-title: A thermal disaggregation model based on trapezoid interpolation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 12 start-page: 5213 year: 2019 end-page: 5222 ident: b0430 article-title: Downscaling land surface temperature using multiscale geographically weighted regression over heterogeneous landscapes in Wuhan, China publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 150 start-page: 11 year: 2019 end-page: 26 ident: b0025 article-title: Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data publication-title: ISPRS-J. Photogramm. Remote Sens. – volume: 40 start-page: 5261 year: 2019 end-page: 5286 ident: b0015 article-title: Improving the disaggregation of MODIS land surface temperatures in an urban environment: A statistical downscaling approach using high-resolution emissivity publication-title: Int. J. Remote Sens. – volume: 50 start-page: 1864 year: 2011 end-page: 1880 ident: b0275 article-title: Multidimensional disaggregation of land surface temperature using high-resolution red, near-infrared, shortwave-infrared, and microwave-L bands publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 206 start-page: 403 year: 2018 end-page: 423 ident: b0320 article-title: An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes publication-title: Remote Sens. Environ. – volume: 19 start-page: 2025 year: 1998 end-page: 2047 ident: b0085 article-title: Synergy in remote sensing-what's in a pixel? publication-title: Int. J. Remote Sens. – volume: 10 start-page: 105 year: 2018 ident: b0075 article-title: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of a wildfire publication-title: Remote Sens. – volume: 224 start-page: 259 year: 2019 end-page: 274 ident: b0420 article-title: Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures publication-title: Remote Sens. Environ. – volume: 117 start-page: 114 year: 2012 end-page: 124 ident: b0450 article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis publication-title: Remote Sens. Environ. – volume: 55 start-page: 477 year: 2016 end-page: 490 ident: b0135 article-title: Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 124 start-page: 3232 year: 2019 end-page: 3251 ident: b0255 article-title: Spatially disaggregating satellite land surface temperature with a nonlinear model across agricultural areas publication-title: J. Geophys. Res.-Biogeosci. – volume: 131 start-page: 14 year: 2013 end-page: 37 ident: b0235 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. – volume: 18 start-page: 133 year: 2014 end-page: 143 ident: b0225 article-title: Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect publication-title: J. Remote Sens – volume: 115 start-page: 1772 year: 2011 end-page: 1780 ident: b0090 article-title: High-resolution urban thermal sharpener (HUTS) publication-title: Remote Sens. Environ. – volume: 9 start-page: 549 year: 2011 end-page: 553 ident: b0065 article-title: Scale effect of vegetation-index-based spatial sharpening for thermal imagery: A simulation study by ASTER data publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 121 start-page: 10538 year: 2016 end-page: 10554 ident: b0470 article-title: Disaggregation of remotely sensed land surface temperature: A new dynamic methodology publication-title: J. Geophys. Res.-Atmos. – volume: 35 year: 2008 ident: b0010 article-title: Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions publication-title: Geophys. Res. Lett. – volume: 187 start-page: 423 year: 2016 end-page: 433 ident: b0045 article-title: Estimating high resolution evapotranspiration from disaggregated thermal images publication-title: Remote Sens. Environ. – volume: 107 start-page: 545 year: 2007 end-page: 558 ident: b0005 article-title: A vegetation index based technique for spatial sharpening of thermal imagery publication-title: Remote Sens. Environ. – volume: 10 start-page: 1011 issue: 5 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0170 article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2227930 – volume: 10 issue: 2 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0315 article-title: Sharpening method of satellite thermal image based on the geographical statistical model publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.10.025013 – volume: 11 start-page: 48 issue: 1 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0485 article-title: Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives publication-title: Remote Sens. doi: 10.3390/rs11010048 – volume: 8 start-page: 975 issue: 12 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0490 article-title: Quantification of the scale effect in downscaling remotely sensed land surface temperature publication-title: Remote Sens. doi: 10.3390/rs8120975 – volume: 223 start-page: 243 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0125 article-title: An optimized two source energy balance model based on complementary concept and canopy conductance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.020 – volume: 11 start-page: 808 issue: 3 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0250 article-title: A thermal disaggregation model based on trapezoid interpolation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2790002 – volume: 11 start-page: 2304 issue: 19 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0175 article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery publication-title: Remote Sens. doi: 10.3390/rs11192304 – volume: 10 start-page: 1253 issue: 5 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0200 article-title: Downscaling geostationary land surface temperature imagery for urban analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2257668 – volume: 12 start-page: 2299 issue: 7 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0230 article-title: Evaluation of machine learning algorithms in spatial downscaling of MODIS land surface temperature publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2896923 – volume: 4 start-page: 3184 issue: 10 year: 2012 ident: 10.1016/j.isprsjprs.2020.08.018_b0040 article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg publication-title: Germany. Remote Sens. doi: 10.3390/rs4103184 – volume: 172 start-page: 109 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0330 article-title: Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.005 – volume: 150 start-page: 11 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0025 article-title: Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.004 – volume: 131 start-page: 119 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0465 article-title: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.014 – volume: 45 start-page: 503 issue: 1–3 year: 1989 ident: 10.1016/j.isprsjprs.2020.08.018_b0245 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – ident: 10.1016/j.isprsjprs.2020.08.018_b0475 doi: 10.1080/01431161.2018.1489164 – volume: 29 start-page: 421 issue: 4–5 year: 2008 ident: 10.1016/j.isprsjprs.2020.08.018_b0195 article-title: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. doi: 10.1007/s10712-008-9037-z – volume: 9 start-page: 789 issue: 8 year: 2017 ident: 10.1016/j.isprsjprs.2020.08.018_b0435 article-title: Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression publication-title: Remote Sens. doi: 10.3390/rs9080789 – volume: 9 start-page: 2019 issue: 5 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0050 article-title: Downscaling of Landsat and MODIS land surface temperature over the heterogeneous urban area of Milan publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2514367 – volume: 6 start-page: 9829 issue: 10 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0445 article-title: Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method publication-title: Remote Sens. doi: 10.3390/rs6109829 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0295 article-title: Applicability of downscaling land surface temperature by using normalized difference sand index publication-title: Sci. Rep. doi: 10.1038/s41598-018-27905-0 – volume: 55 start-page: 477 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0135 article-title: Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2608987 – volume: 115 start-page: 1772 issue: 7 year: 2011 ident: 10.1016/j.isprsjprs.2020.08.018_b0090 article-title: High-resolution urban thermal sharpener (HUTS) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.008 – volume: 6 start-page: 113 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0400 article-title: Land-surface temperature retrieval at high spatial and temporal resolutions based on multi-sensor fusion publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2013.783131 – volume: 64 start-page: 335 issue: 4 year: 2009 ident: 10.1016/j.isprsjprs.2020.08.018_b0375 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.03.007 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0410 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 97 start-page: 78 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0385 article-title: Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.009 – volume: 4 start-page: 3287 issue: 11 year: 2012 ident: 10.1016/j.isprsjprs.2020.08.018_b0130 article-title: A data mining approach for sharpening thermal satellite imagery over land publication-title: Remote Sens. doi: 10.3390/rs4113287 – volume: 14 start-page: 107 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0055 article-title: Downscaling of land surface temperature using airborne high-resolution data: A case study on Aprilia publication-title: Italy. IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2630798 – volume: 18 start-page: 133 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0225 article-title: Land surface temperature retrieval from Tiangong-1 data and its applications in urban heat island effect publication-title: J. Remote Sens – volume: 9 start-page: 23 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2020.08.018_b0340 article-title: Improving the downscaling of diurnal land surface temperatures using the annual cycle parameters as disaggregation kernels publication-title: Remote Sens. doi: 10.3390/rs9010023 – volume: 9 start-page: 549 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2020.08.018_b0065 article-title: Scale effect of vegetation-index-based spatial sharpening for thermal imagery: A simulation study by ASTER data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2174453 – volume: 206 start-page: 403 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0320 article-title: An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.003 – volume: 14 start-page: 577 issue: 6 year: 1999 ident: 10.1016/j.isprsjprs.2020.08.018_b0325 article-title: Thermal infrared remote sensing for analysis of landscape ecological processes: Methods and applications publication-title: Landsc. Ecol. doi: 10.1023/A:1008168910634 – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.isprsjprs.2020.08.018_b0165 article-title: Fusion of MODIS and Landsat-8 surface temperature images: A new approach publication-title: PLoS One. doi: 10.1371/journal.pone.0117755 – volume: 145 start-page: 55 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0380 article-title: Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.003 – volume: 107 start-page: 545 issue: 4 year: 2007 ident: 10.1016/j.isprsjprs.2020.08.018_b0005 article-title: A vegetation index based technique for spatial sharpening of thermal imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.10.006 – volume: 54 start-page: 6458 issue: 11 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0095 article-title: Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2585198 – volume: 11 start-page: 1319 issue: 11 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0030 article-title: Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas publication-title: Remote Sens. doi: 10.3390/rs11111319 – volume: 7 start-page: 21904 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0390 article-title: Downscaling land surface temperatures using a random forest regression model with multitype predictor variables publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896241 – volume: 224 start-page: 259 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0420 article-title: Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.006 – volume: 96 start-page: 76 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0140 article-title: Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.07.003 – volume: 12 start-page: 2897 issue: 8 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0395 article-title: Downscaling of urban land surface temperature based on multi-factor geographically weighted regression publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2919936 – volume: 11 start-page: 634 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0425 article-title: Object-based window strategy in thermal sharpening publication-title: Remote Sens. doi: 10.3390/rs11060634 – volume: 10 start-page: 1382 issue: 9 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0415 article-title: “Regression-then-fusion” or “fusion-then-regression”? A theoretical analysis for generating high spatiotemporal resolution land surface temperatures publication-title: Remote Sens. doi: 10.3390/rs10091382 – volume: 13 start-page: 899 issue: 8 year: 2020 ident: 10.1016/j.isprsjprs.2020.08.018_b0455 article-title: Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2019.1593527 – volume: 5 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0150 article-title: Seasonal evaluation of downscaled land surface temperature: A case study in a humid tropical city publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01923 – volume: 12 start-page: 5213 issue: 12 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0430 article-title: Downscaling land surface temperature using multiscale geographically weighted regression over heterogeneous landscapes in Wuhan, China publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2955551 – volume: 41 start-page: 1907 issue: 5 year: 2020 ident: 10.1016/j.isprsjprs.2020.08.018_b0260 article-title: The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1677969 – volume: 52 start-page: 5952 issue: 9 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0070 article-title: Disaggregation of remotely sensed land surface temperature: A generalized paradigm publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2294031 – volume: 15 start-page: 259 issue: 3 year: 2006 ident: 10.1016/j.isprsjprs.2020.08.018_b0210 article-title: World map of the Köppen-Geiger climate classification updated publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2006/0130 – volume: 34 start-page: 2607 issue: 7 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0145 article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.748992 – volume: 43 start-page: 579 issue: 2 year: 2003 ident: 10.1016/j.isprsjprs.2020.08.018_b0160 article-title: Assessing model fit by cross-validation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci025626i – volume: 117 start-page: 114 year: 2012 ident: 10.1016/j.isprsjprs.2020.08.018_b0450 article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.027 – volume: 156 start-page: 169 year: 2015 ident: 10.1016/j.isprsjprs.2020.08.018_b0405 article-title: Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.013 – volume: 35 start-page: 3094 issue: 9 year: 2014 ident: 10.1016/j.isprsjprs.2020.08.018_b0270 article-title: Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.903442 – volume: 49 start-page: 773 issue: 2 year: 2010 ident: 10.1016/j.isprsjprs.2020.08.018_b0460 article-title: Sharpening thermal imageries: A generalized theoretical framework from an assimilation perspective publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2060342 – volume: 6 start-page: 100 issue: 1 year: 2005 ident: 10.1016/j.isprsjprs.2020.08.018_b0285 article-title: Stopping criteria for ensemble of evolutionary artificial neural networks publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2004.12.005 – volume: 212 start-page: 198 year: 1998 ident: 10.1016/j.isprsjprs.2020.08.018_b0035 article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1 publication-title: Formulation. J. Hydrol. doi: 10.1016/S0022-1694(98)00253-4 – volume: 128 start-page: 170 year: 2017 ident: 10.1016/j.isprsjprs.2020.08.018_b0290 article-title: An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.014 – volume: 11 start-page: 1251 issue: 10 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0155 article-title: Multi-resolution study of thermal unmixing techniques over Madrid urban area: Case study of TRISHNA mission publication-title: Remote Sens. doi: 10.3390/rs11101251 – volume: 124 start-page: 3232 issue: 11 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0255 article-title: Spatially disaggregating satellite land surface temperature with a nonlinear model across agricultural areas publication-title: J. Geophys. Res.-Biogeosci. doi: 10.1029/2019JG005227 – volume: 10 start-page: 633 issue: 4 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0310 article-title: Downscaling of ASTER thermal images based on geographically weighted regression kriging publication-title: Remote Sens. doi: 10.3390/rs10040633 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.isprsjprs.2020.08.018_b0060 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 10 start-page: 105 issue: 1 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0075 article-title: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of a wildfire publication-title: Remote Sens. doi: 10.3390/rs10010105 – volume: 10 start-page: 249 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0240 article-title: Ts2urf: A new method for sharpening thermal infrared satellite imagery publication-title: Remote Sens. doi: 10.3390/rs10020249 – volume: 8 start-page: 274 issue: 4 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0335 article-title: Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data publication-title: Remote Sens. doi: 10.3390/rs8040274 – volume: 19 start-page: 2025 issue: 11 year: 1998 ident: 10.1016/j.isprsjprs.2020.08.018_b0085 article-title: Synergy in remote sensing-what's in a pixel? publication-title: Int. J. Remote Sens. doi: 10.1080/014311698214848 – volume: 34 start-page: 7706 issue: 21 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0205 article-title: Achieving downscaling of Meteosat thermal infrared imagery using artificial neural networks publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.825384 – volume: 88 start-page: 206 year: 2018 ident: 10.1016/j.isprsjprs.2020.08.018_b0480 article-title: The impact of thermal image spatial enhancement on the estimation of the urban green cooling effect publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.11.027 – volume: 41 start-page: 2986 issue: 8 year: 2020 ident: 10.1016/j.isprsjprs.2020.08.018_b0370 article-title: A global regression method for thermal sharpening of urban land surface temperatures from MODIS and Landsat publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1697009 – volume: 121 start-page: 10538 issue: 18 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0470 article-title: Disaggregation of remotely sensed land surface temperature: A new dynamic methodology publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD024891 – volume: 50 start-page: 1864 issue: 5 year: 2011 ident: 10.1016/j.isprsjprs.2020.08.018_b0275 article-title: Multidimensional disaggregation of land surface temperature using high-resolution red, near-infrared, shortwave-infrared, and microwave-L bands publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2169802 – volume: 9 start-page: 1243 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2020.08.018_b0110 article-title: Improved DisTrad for downscaling thermal MODIS imagery over urban areas publication-title: Remote Sens. doi: 10.3390/rs9121243 – start-page: 86 year: 2020 ident: 10.1016/j.isprsjprs.2020.08.018_b0020 – volume: 13 start-page: 178 issue: 2 year: 2011 ident: 10.1016/j.isprsjprs.2020.08.018_b0185 article-title: Evaluating a thermal image sharpening model over a mixed agricultural landscape in India publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 issue: 2 year: 2008 ident: 10.1016/j.isprsjprs.2020.08.018_b0010 article-title: Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL032195 – volume: 19 start-page: 163 year: 2012 ident: 10.1016/j.isprsjprs.2020.08.018_b0105 article-title: Evaluation of the DisTrad thermal sharpening methodology for urban areas publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 187 start-page: 423 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0045 article-title: Estimating high resolution evapotranspiration from disaggregated thermal images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.049 – volume: 28 start-page: 377 issue: 3 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0080 article-title: Improving accuracy of land surface temperature prediction model based on deep-learning publication-title: Spat. Inf. Res. doi: 10.1007/s41324-019-00299-5 – volume: 5 start-page: 501 issue: 3 year: 1992 ident: 10.1016/j.isprsjprs.2020.08.018_b0215 article-title: Kolmogorov's theorem and multilayer neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(92)90012-8 – volume: 85 start-page: 429 issue: 4 year: 2003 ident: 10.1016/j.isprsjprs.2020.08.018_b0220 article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00036-1 – volume: 40 start-page: 5261 issue: 13 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0015 article-title: Improving the disaggregation of MODIS land surface temperatures in an urban environment: A statistical downscaling approach using high-resolution emissivity publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1579386 – ident: 10.1016/j.isprsjprs.2020.08.018_b0265 doi: 10.1007/978-981-13-3501-3_16 – volume: 12 start-page: 1605 issue: 8 year: 2015 ident: 10.1016/j.isprsjprs.2020.08.018_b0190 article-title: Downscaling GOES land surface temperature for assessing heat wave health risks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2414897 – volume: 37 start-page: 1035 issue: 5 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0115 article-title: Disaggregation of LST over India: Comparative analysis of different vegetation indices publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1145363 – volume: 131 start-page: 14 year: 2013 ident: 10.1016/j.isprsjprs.2020.08.018_b0235 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 10.1016/j.isprsjprs.2020.08.018_b0300 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 57 start-page: 167 issue: 3 year: 1996 ident: 10.1016/j.isprsjprs.2020.08.018_b0355 article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(96)00039-9 – volume: 36 start-page: 2503 issue: 10 year: 2015 ident: 10.1016/j.isprsjprs.2020.08.018_b0280 article-title: Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1041175 – volume: 17 start-page: 744 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2020.08.018_b0440 article-title: Downscaling land surface temperature in complex regions by using multiple scale factors with adaptive thresholds publication-title: Sensors doi: 10.3390/s17040744 – volume: 124 start-page: 93 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0100 article-title: Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.01.004 – volume: 86 start-page: 370 issue: 3 year: 2003 ident: 10.1016/j.isprsjprs.2020.08.018_b0360 article-title: Thermal remote sensing of urban climates publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00079-8 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.isprsjprs.2020.08.018_b0350 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 178 start-page: 127 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0180 article-title: Downscaling land surface temperatures at regional scales with random forest regression publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.006 – volume: 161 start-page: 76 year: 2020 ident: 10.1016/j.isprsjprs.2020.08.018_b0365 article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis publication-title: ISPRS-J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.014 – ident: 10.1016/j.isprsjprs.2020.08.018_b0345 – volume: 57 start-page: 5012 year: 2019 ident: 10.1016/j.isprsjprs.2020.08.018_b0305 article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2895351 – volume: 184 start-page: 175 year: 2016 ident: 10.1016/j.isprsjprs.2020.08.018_b0120 article-title: Consistent land surface temperature data generation from irregularly spaced Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.06.019 |
| SSID | ssj0001568 |
| Score | 2.4615726 |
| Snippet | •A total of 35 SDLST algorithms were compared in 32 diverse areas worldwide.•The performance of the scaling factors varies with the employed regression... Statistical downscaling of land surface temperature (SDLST) algorithms with diverse scaling factors and regression models have been used to produce high... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 44 |
| SubjectTerms | algorithms Downscaling Land surface temperature Landsat Landsat-8 photogrammetry Spatial resolution surface temperature Thermal remote sensing |
| Title | Global comparison of diverse scaling factors and regression models for downscaling Landsat-8 thermal data |
| URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.08.018 https://www.proquest.com/docview/2986251303 |
| Volume | 169 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN409aAejFaN9dGsiVcs-4Cit6axqY_0ok16Iwvsao3SptCDF3-7M7BUa0x68MABMgNkZ5mdYb-Zj5ALxSFd01o4ihmkMHOlE4DXc5IAy64jGQhToHyH_mAk78beuEZ6VS0Mwiqt7y99euGt7ZW2Hc32bDJpP7qQOnBsgOQi8Q0fYwW77CCLweXnN8yDleVwKOyg9ArGa5LN5tkrHJAocrfo5YnsH3-vUL98dbEA9XfJjo0cabd8uT1S02mDbP_oJ9ggm5bS_OVjn0zKbv40XhIN0qmhSQHD0DQD04AKtXQ7VKUJnevnEhSb0oIfJ6MQ0NIEfz9b6QesC1a5E1AMG9_h7ggwPSCj_s1Tb-BYXgUnFjLInY4PSZ2vIxkprX0NHyEkWYrxmBkuhEDgk_ESVwTKJFxqxmJjRBSzCEyJFSXikNTTaaqPCOVRol0dSE8lsRS-URBwGtxJZa7pcKmaxK_GMoxt03HkvngLK3TZa7g0QohGCJEVkwVN4i4VZ2XfjfUq15WxwpUpFMLqsF75vDJvCB8Y7pqoVE8XIHQFSZ-HS_3xfx5wQrbwrCxjPCX1fL7QZxDP5FGrmLAtstG9vR8MvwDRvPfP |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGIAB8RRvjMQaGj-SBjaEQAUKCyB1s5zEhlaQVm0ZWPjt3CVOeQiJgSFLcpdEPud8F393H8ChEZiuWSsDwx1RmIUqSNDrBXlCZdepSqQrUb63cetBXXWizhSc1bUwBKv0vr_y6aW39mcafjQbg263cRdi6iCoAVJIxDeiMw2zKhJNysCO3j9xHryqhyPpgMS_gby6o8Fw1MMDM0URls08if7j9yXqh7MuV6CLJVj0oSM7rd5uGaZssQILXxoKrsCc5zR_eluFbtXOn2UTpkHWdywvcRiWjdA2qMI83w4zRc6G9rFCxRasJMgZMYxoWU7_n710mwqDzThIGMWNL3h3QpiuwcPF-f1ZK_DECkEmVTIOmjFmdbFNVWqsjS1-hZhlGS4y7oSUkpBPLspDmRiXC2U5z5yTacZTtCWVlMh1mCn6hd0AJtLchjZRkckzJWNnMOJ0tJXKQ9cUymxCXI-lznzXcSK_eNY1vKynJ0bQZARNtJg82YRwojioGm_8rXJSG0t_m0Mal4e_lQ9q82r8wmjbxBS2_4pCx5j1RbTWb_3nAfsw17q_aev25e31NszTlaqmcQdmxsNXu4vBzTjdKyfvB4hy-WQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+comparison+of+diverse+scaling+factors+and+regression+models+for+downscaling+Landsat-8+thermal+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Dong%2C+Pan&rft.au=Gao%2C+Lun&rft.au=Zhan%2C+Wenfeng&rft.au=Liu%2C+Zihan&rft.date=2020-11-01&rft.issn=0924-2716&rft.volume=169+p.44-56&rft.spage=44&rft.epage=56&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.08.018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |