An optimized b ‐value sampling for the quantification of interstitial fluid using diffusion‐weighted MRI , a genetic algorithm approach

Multi-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffus...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 90; no. 1; pp. 194 - 201
Main Authors Drenthen, Gerhard S., Jansen, Jacobus F. A., van der Thiel, Merel M., Voorter, Paulien H. M., Backes, Walter H.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29612

Cover

Abstract Multi-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffusion components from multi-b-value data is difficult and has strong dependence on SNR and chosen b-values. As the number of acquired b-values is limited due to scanning time, it is important to know which b-values are most effective to be included. Therefore, this study evaluates an optimized b-value sampling for interstitial fluid estimation. The optimized b-value sampling scheme is determined using a genetic algorithm. Subsequently, the performance of this optimized sampling is assessed by comparing it with a linear, logarithmic, and previously proposed sampling scheme, in terms of the RMS error (RMSE) for the intermediate component estimation. The in vivo performance of the optimized sampling is assessed using 7T data with 101 equally spaced b-values ranging from 0 to 1000 s/mm . In this case, the RMSE was determined by comparing the fit that includes all b-values. The optimized b-value sampling for estimating the intermediate component was reported to be [0, 30, 90, 210, 280, 350, 580, 620, 660, 680, 720, 760, 980, 990, 1000] s/mm . For computer simulations, the optimized sampling had a lower RMSE, compared with the other samplings for varying levels of SNR. For the in vivo data, the voxel-wise RMSE of the optimized sampling was lower compared with other sampling schemes. The genetic algorithm-optimized b-value scheme improves the quantification of the diffusion component related to interstitial fluid in terms of a lower RMSE.
AbstractList Multi-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffusion components from multi-b-value data is difficult and has strong dependence on SNR and chosen b-values. As the number of acquired b-values is limited due to scanning time, it is important to know which b-values are most effective to be included. Therefore, this study evaluates an optimized b-value sampling for interstitial fluid estimation. The optimized b-value sampling scheme is determined using a genetic algorithm. Subsequently, the performance of this optimized sampling is assessed by comparing it with a linear, logarithmic, and previously proposed sampling scheme, in terms of the RMS error (RMSE) for the intermediate component estimation. The in vivo performance of the optimized sampling is assessed using 7T data with 101 equally spaced b-values ranging from 0 to 1000 s/mm . In this case, the RMSE was determined by comparing the fit that includes all b-values. The optimized b-value sampling for estimating the intermediate component was reported to be [0, 30, 90, 210, 280, 350, 580, 620, 660, 680, 720, 760, 980, 990, 1000] s/mm . For computer simulations, the optimized sampling had a lower RMSE, compared with the other samplings for varying levels of SNR. For the in vivo data, the voxel-wise RMSE of the optimized sampling was lower compared with other sampling schemes. The genetic algorithm-optimized b-value scheme improves the quantification of the diffusion component related to interstitial fluid in terms of a lower RMSE.
Multi-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffusion components from multi-b-value data is difficult and has strong dependence on SNR and chosen b-values. As the number of acquired b-values is limited due to scanning time, it is important to know which b-values are most effective to be included. Therefore, this study evaluates an optimized b-value sampling for interstitial fluid estimation.PURPOSEMulti-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffusion components from multi-b-value data is difficult and has strong dependence on SNR and chosen b-values. As the number of acquired b-values is limited due to scanning time, it is important to know which b-values are most effective to be included. Therefore, this study evaluates an optimized b-value sampling for interstitial fluid estimation.The optimized b-value sampling scheme is determined using a genetic algorithm. Subsequently, the performance of this optimized sampling is assessed by comparing it with a linear, logarithmic, and previously proposed sampling scheme, in terms of the RMS error (RMSE) for the intermediate component estimation. The in vivo performance of the optimized sampling is assessed using 7T data with 101 equally spaced b-values ranging from 0 to 1000 s/mm2 . In this case, the RMSE was determined by comparing the fit that includes all b-values.METHODThe optimized b-value sampling scheme is determined using a genetic algorithm. Subsequently, the performance of this optimized sampling is assessed by comparing it with a linear, logarithmic, and previously proposed sampling scheme, in terms of the RMS error (RMSE) for the intermediate component estimation. The in vivo performance of the optimized sampling is assessed using 7T data with 101 equally spaced b-values ranging from 0 to 1000 s/mm2 . In this case, the RMSE was determined by comparing the fit that includes all b-values.The optimized b-value sampling for estimating the intermediate component was reported to be [0, 30, 90, 210, 280, 350, 580, 620, 660, 680, 720, 760, 980, 990, 1000] s/mm2 . For computer simulations, the optimized sampling had a lower RMSE, compared with the other samplings for varying levels of SNR. For the in vivo data, the voxel-wise RMSE of the optimized sampling was lower compared with other sampling schemes.RESULTSThe optimized b-value sampling for estimating the intermediate component was reported to be [0, 30, 90, 210, 280, 350, 580, 620, 660, 680, 720, 760, 980, 990, 1000] s/mm2 . For computer simulations, the optimized sampling had a lower RMSE, compared with the other samplings for varying levels of SNR. For the in vivo data, the voxel-wise RMSE of the optimized sampling was lower compared with other sampling schemes.The genetic algorithm-optimized b-value scheme improves the quantification of the diffusion component related to interstitial fluid in terms of a lower RMSE.CONCLUSIONThe genetic algorithm-optimized b-value scheme improves the quantification of the diffusion component related to interstitial fluid in terms of a lower RMSE.
PurposeMulti‐b‐value diffusion‐weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate diffusion component. This component is related to the interstitial fluid in the brain parenchyma. However, simultaneously estimating three diffusion components from multi‐b‐value data is difficult and has strong dependence on SNR and chosen b‐values. As the number of acquired b‐values is limited due to scanning time, it is important to know which b‐values are most effective to be included. Therefore, this study evaluates an optimized b‐value sampling for interstitial fluid estimation.MethodThe optimized b‐value sampling scheme is determined using a genetic algorithm. Subsequently, the performance of this optimized sampling is assessed by comparing it with a linear, logarithmic, and previously proposed sampling scheme, in terms of the RMS error (RMSE) for the intermediate component estimation. The in vivo performance of the optimized sampling is assessed using 7T data with 101 equally spaced b‐values ranging from 0 to 1000 s/mm2. In this case, the RMSE was determined by comparing the fit that includes all b‐values.ResultsThe optimized b‐value sampling for estimating the intermediate component was reported to be [0, 30, 90, 210, 280, 350, 580, 620, 660, 680, 720, 760, 980, 990, 1000] s/mm2. For computer simulations, the optimized sampling had a lower RMSE, compared with the other samplings for varying levels of SNR. For the in vivo data, the voxel‐wise RMSE of the optimized sampling was lower compared with other sampling schemes.ConclusionThe genetic algorithm–optimized b‐value scheme improves the quantification of the diffusion component related to interstitial fluid in terms of a lower RMSE.
Click here for author‐reader discussions
Author Voorter, Paulien H. M.
Drenthen, Gerhard S.
Jansen, Jacobus F. A.
van der Thiel, Merel M.
Backes, Walter H.
Author_xml – sequence: 1
  givenname: Gerhard S.
  orcidid: 0000-0002-7708-8501
  surname: Drenthen
  fullname: Drenthen, Gerhard S.
  organization: Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands, School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands
– sequence: 2
  givenname: Jacobus F. A.
  orcidid: 0000-0002-5271-8060
  surname: Jansen
  fullname: Jansen, Jacobus F. A.
  organization: Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands, School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands, Department of Electrical Engineering Eindhoven University of Technology Eindhoven The Netherlands
– sequence: 3
  givenname: Merel M.
  surname: van der Thiel
  fullname: van der Thiel, Merel M.
  organization: Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands, School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands
– sequence: 4
  givenname: Paulien H. M.
  orcidid: 0000-0002-2724-4502
  surname: Voorter
  fullname: Voorter, Paulien H. M.
  organization: Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands, School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands
– sequence: 5
  givenname: Walter H.
  orcidid: 0000-0001-7905-0681
  surname: Backes
  fullname: Backes, Walter H.
  organization: Department of Radiology and Nuclear Medicine Maastricht University Medical Center Maastricht The Netherlands, School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36744716$$D View this record in MEDLINE/PubMed
BookMark eNp9kTFvFDEQhS0URC6Bgj-ALNEQxCVe27tel1EUIFIQEoJ6Necd3znyeje2lyhU9DT8Rn4JvlygiBCVXXzvzcx7B2QvjAEJeV6x44oxfjLE4ZjrpuKPyKKqOV_yWss9smBKsqWotNwnByldMca0VvIJ2ReNklJVzYL8OA10nLIb3Dfs6Yr--v7zK_gZaYJh8i6sqR0jzRuk1zOE7KwzkN1YRJa6kDGm7LIDT62fXU_ntJX0ztryG0Nxu0G33uTi_eHTBX1Dga4xYHaGgl-P0eXNQGGa4ghm85Q8tuATPrt_D8mXt-efz94vLz--uzg7vVwaIdu8VLWQkimLvVpJxsGiqHWte40NsxwaaFvdG1ODtaoHDSvZGIutQgRR2Z6JQ_J65zuHCW5vwPtuim6AeNtVrNsm2pVEu7tEC_xqB5cdr2dMuRtcMug9BBzn1HGlhOKsVaKgLx-gV-McQzml4-22i7oS2-kv7ql5NWD_d_SfTgpwtANMHFOKaP-73ckD1rh8V1CO4Pw_FL8Bj6qwZw
CitedBy_id crossref_primary_10_1016_j_mri_2023_10_003
crossref_primary_10_1016_j_compbiomed_2024_108508
crossref_primary_10_1002_nbm_5162
crossref_primary_10_1002_jmri_29377
crossref_primary_10_1016_j_nic_2024_11_001
Cites_doi 10.1002/mrm.25198
10.1148/radiology.168.2.3393671
10.1016/j.neuroimage.2004.07.051
10.1016/j.neurobiolaging.2021.06.017
10.1002/mrm.10433
10.1002/mrm.27600
10.1016/j.neuroimage.2021.118582
10.1016/j.mri.2011.03.004
10.1016/j.neuroimage.2019.04.011
10.1002/mrm.28852
10.1007/s11064‐015‐1581‐6
10.1186/s12880‐020‐0419‐0
10.1006/jmrb.1996.0151
10.1016/0022‐2364(89)90011‐5
10.3348/kjr.2019.0232
10.1016/j.heliyon.2021.e06072
10.1002/jmri.26920
10.2463/mrms.mp.2019‐0061
10.1002/mrm.27826
10.1016/j.mri.2014.07.013
10.1002/mrm.21122
10.1007/s10334‐019‐00764‐0
10.1016/j.neuroimage.2009.05.051
ContentType Journal Article
Copyright 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
DOI 10.1002/mrm.29612
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biochemistry Abstracts 1
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 201
ExternalDocumentID 10.1002/mrm.29612
36744716
10_1002_mrm_29612
Genre Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
8FD
FR3
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-7534407fed7b402afe35959d9e60f2a6a889dcc5aff7da9ab46cfe87eea31fd03
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:42:10 EDT 2025
Fri Jul 11 10:45:24 EDT 2025
Tue Oct 07 06:40:40 EDT 2025
Wed Feb 19 02:24:59 EST 2025
Wed Oct 01 05:05:41 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords interstitial fluid
glymphatics
magnetic resonance imaging
IVIM
diffusion weighted imaging
cerebral clearance
Language English
License 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-7534407fed7b402afe35959d9e60f2a6a889dcc5aff7da9ab46cfe87eea31fd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7708-8501
0000-0002-5271-8060
0000-0002-2724-4502
0000-0001-7905-0681
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.29612
PMID 36744716
PQID 2807405130
PQPubID 1016391
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mrm_29612
proquest_miscellaneous_2773720873
proquest_journals_2807405130
pubmed_primary_36744716
crossref_primary_10_1002_mrm_29612
crossref_citationtrail_10_1002_mrm_29612
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Goldberg DE (e_1_2_7_13_1) 1989
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – ident: e_1_2_7_23_1
  doi: 10.1002/mrm.25198
– ident: e_1_2_7_2_1
  doi: 10.1148/radiology.168.2.3393671
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neurobiolaging.2021.06.017
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.10433
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.27600
– ident: e_1_2_7_25_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2021.118582
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mri.2011.03.004
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2019.04.011
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.28852
– ident: e_1_2_7_5_1
  doi: 10.1007/s11064‐015‐1581‐6
– ident: e_1_2_7_12_1
  doi: 10.1186/s12880‐020‐0419‐0
– ident: e_1_2_7_21_1
  doi: 10.1006/jmrb.1996.0151
– ident: e_1_2_7_20_1
  doi: 10.1016/0022‐2364(89)90011‐5
– ident: e_1_2_7_10_1
  doi: 10.3348/kjr.2019.0232
– ident: e_1_2_7_22_1
  doi: 10.1016/j.heliyon.2021.e06072
– ident: e_1_2_7_4_1
  doi: 10.1002/jmri.26920
– ident: e_1_2_7_11_1
  doi: 10.2463/mrms.mp.2019‐0061
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.27826
– ident: e_1_2_7_16_1
  doi: 10.1016/j.mri.2014.07.013
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.21122
– ident: e_1_2_7_7_1
  doi: 10.1007/s10334‐019‐00764‐0
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2009.05.051
– volume-title: Genetic Algorithms in Search, Optimization & Machine
  year: 1989
  ident: e_1_2_7_13_1
– ident: e_1_2_7_15_1
SSID ssj0009974
Score 2.4518104
Snippet Click here for author‐reader discussions
Multi-b-value diffusion-weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third, intermediate...
PurposeMulti‐b‐value diffusion‐weighted MRI techniques can simultaneously measure the parenchymal diffusivity, microvascular perfusion, and a third,...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 194
SubjectTerms Algorithms
Brain - diagnostic imaging
Computer Simulation
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Estimation
Extracellular Fluid - diagnostic imaging
Genetic algorithms
Magnetic resonance imaging
Mathematical models
Microvasculature
Parenchyma
Root-mean-square errors
Sampling
Title An optimized b ‐value sampling for the quantification of interstitial fluid using diffusion‐weighted MRI , a genetic algorithm approach
URI https://www.ncbi.nlm.nih.gov/pubmed/36744716
https://www.proquest.com/docview/2807405130
https://www.proquest.com/docview/2773720873
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.29612
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hrgBx4LG8gpaVeRw4kG7ruHFyrBCrBakrtKLScgp-loo0KW2iFXviyo3fyC9hHCfR8pKQOGfiOPY87ZlvAJ4ybk0SSRWi7VMhG2sbypGIwrGlXKUpl1S72uHZcXw0Z69PJ6dtn1NXC-PxIfoDNycZjb52Ar7W1uv59nafHqw2qyFNY9dleCeeoDM-gJ358ZvpOw--6TRM0woRjRQN0dFnHbbQxXd_tki_uZnX4GpdrMXnM5HnF0zP4Q14303aZ5x8HNaVHKrzX_Ac_-OvbsL11i0lU89Ht-CSKXbhyqy9eN-Fy02mqNrehq_TgpSoZ1bLc6OJ_P7lm8MLN2QrXG56sSDoBRP0KsmnWvhEpGbvSWmJg6bYuNwE5Hli83qpiUu7XxDXpaV2x3Y42llzVotDz05ePSeCIIO7Oksi8kW5WVYfVqSDQb8D88OXb18chW0_h1BFLKlCjIwYxo_WaC4xbBXWuKrgVKcmHlkqYpEkqVZqIqzlWqRCslghJ3FjRDS2ehTdhUFRFuY-EDSuSgvO4kRRpriUgsmxTRO0PFQzKgN41u1pplqwc9dzI888TDPNcJGzZpEDeNyTrj3Cx5-I9jrGyFoh32YNkBAqtWgUwKP-MYqnu3MRhSlrpOFNH6CERwHc8wzVfyWKOUPfIA7gSc9hf5_Cg3-i2oNBtanNQ_SUKrmPMcIJ3W9l4gfp2BuN
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH5CHQGaA8uwTNCAzHLgQDqt48bJsUKMBqSOEKLScApeS0WalDbRiDlx5cZv5JfwHCfRsElInOM4jv2Wz_Z73wN4wrg1SSRViL5PhWysbShHIgrHlnKVplxS7XKHZyfx8Zy9Op2ctnVOXS6M54foD9ycZjT22in4Wltv59vbfXq42qyGNI1dleGdeIJgfAA785PX03eefNNZmKYUIjopGiLQZx230MV3f_ZIv8HMXbhaF2vx-Uzk-QXXc3Qd3neD9hEnH4d1JYfq_Bc-x__4qxtwrYWlZOrl6CZcMsUeXJm1F-97cLmJFFXbW_B1WpAS7cxqeW40kd-_fHN84YZshYtNLxYEUTBBVEk-1cIHIjVrT0pLHDXFxsUmoMwTm9dLTVzY_YK4Ki21O7bD3s6as1rsevbm5TMiCAq4y7MkIl-Um2X1YUU6GvTbMD968fb5cdjWcwhVxJIqxJ0Rw_2jNZpL3LYKa1xWcKpTE48sFbFIklQrNRHWci1SIVmsUJK4MSIaWz2K7sCgKAuzDwSdq9KCszhRlCkupWBybNMEPQ_VjMoAnnZrmqmW7NzV3MgzT9NMM5zkrJnkAB71Tdee4eNPjQ46wchaJd9mDZEQGrVoFMDD_jGqp7tzEYUpa2zDmzpACY8CuOsFqv9KFHOG2CAO4HEvYX8fwr1_anUAg2pTm_uIlCr5oNWGH0p2GqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+b-value+sampling+for+the+quantification+of+interstitial+fluid+using+diffusion-weighted+MRI%2C+a+genetic+algorithm+approach&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Drenthen%2C+Gerhard+S&rft.au=Jansen%2C+Jacobus+F+A&rft.au=van+der%2C+Merel+M&rft.au=Voorter%2C+Paulien+H+M&rft.date=2023-07-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=90&rft.issue=1&rft.spage=194&rft_id=info:doi/10.1002%2Fmrm.29612&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon