Non-spherical microparticles from complex coacervation of rice or pea proteins and chia mucilage

Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 305; no. Pt 2; p. 141025
Main Authors Silva, L.A., Sato, A.C.K., Perrechil, F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2025.141025

Cover

Abstract Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %–84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %–40.1 %, and encapsulation efficiencies of 8.7 %–71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.
AbstractList Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %–84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %–40.1 %, and encapsulation efficiencies of 8.7 %–71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.
Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %–84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %–40.1 %, and encapsulation efficiencies of 8.7 %–71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.
Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %-84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %-40.1 %, and encapsulation efficiencies of 8.7 %-71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between oppositely charged biopolymers, such as proteins and polysaccharides. The present study evaluated the formation of non-spherical microparticles through the interactions of rice protein (RP) or pea protein (PP) with chia mucilage (CM) to encapsulate hydrophobic compounds. Gum Arabic (GA) and type B gelatin (GE) were used as model materials. Optimal ratio and pH values for the mixtures were determined through macroscopic, turbidity and zeta potential analyses. The microparticles containing gum Arabic were smaller and more spherical, with mean diameters ranging from 22.03 to 35.20 μm, whereas those containing chia mucilage exhibited an irregular shape and diameters ranging from 33.49 to 53.10 μm. The yields (74.0 %-84.5 %) and encapsulation efficiency (around 99 %) for the microparticles containing chia mucilage were significantly higher than those of the formulations containing gum Arabic (yields of 18.4 %-40.1 %, and encapsulation efficiencies of 8.7 %-71.0 %). Based on the results, the most effective encapsulation system was identified PP:CM. All microparticles formed by chia mucilage and proteins have non-spherical characteristics and some roughness which can be interesting for applications in food or biological systems.
ArticleNumber 141025
Author Sato, A.C.K.
Silva, L.A.
Perrechil, F.
Author_xml – sequence: 1
  givenname: L.A.
  surname: Silva
  fullname: Silva, L.A.
  organization: Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
– sequence: 2
  givenname: A.C.K.
  surname: Sato
  fullname: Sato, A.C.K.
  organization: Department of Food Engineering, Faculty of Food Engineering, University of Campinas (UNICAMP). Campinas, SP, Brazil
– sequence: 3
  givenname: F.
  surname: Perrechil
  fullname: Perrechil, F.
  email: fabiana.perrechil@unifesp.br
  organization: Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39954889$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS3Uim4Lf6HykUsWT5xk7RuoooBUwaU9u5PxhHqVxMHOVvDvcbUt156eNPre0-i9c3Eyx5mFuAS1BQXdx_027PsQJ6Rtrep2Cw0UeSM2YHa2UkrpE7FR5VoZ0OpMnOe8L9euBfNWnGlr28YYuxH3P-Jc5eWBUyAc5RQoxQXTGmjkLIcUJ0lxWkb-UxSJ0yOuIc4yDrI4WMYkF0a5pLhymLPE2Ut6CCinA4URf_E7cTrgmPn9s16Iu-svt1ffqpufX79ffb6pSDdmrRpu6hqG3g9E1rTNAJYJCQbdEtvOI-AOdeNVN6iW-t40vu8Ugie0YMHoC_HhmFte-X3gvLopZOJxxJnjITtdl06gs2r3OgrdTre2NnVBL5_RQz-xd0sKE6a_7qXAAnRHoPSWc-LhPwLKPS3l9u5lKfe0lDsuVYyfjkYupTwGTi5T4JnYh8S0Oh_DaxH_AJS_oAg
Cites_doi 10.3390/ijms11124973
10.1016/j.foostr.2016.10.002
10.1016/j.focha.2022.100024
10.1007/s11483-012-9265-0
10.1016/j.jfoodeng.2020.110277
10.1016/j.carbpol.2014.03.056
10.1016/j.colsurfb.2021.111560
10.1016/j.ijbiomac.2016.05.058
10.5772/50561
10.1016/j.lwt.2021.112084
10.1016/j.foodres.2013.03.028
10.1016/j.carbpol.2015.09.035
10.1111/1750-3841.14605
10.1016/j.foodhyd.2019.06.009
10.1016/j.jenvman.2012.01.026
10.1007/s00217-014-2159-2
10.1016/j.tifs.2017.01.008
10.1016/j.foodchem.2011.07.114
10.1016/j.ifset.2021.102641
10.1016/j.indcrop.2012.06.035
10.1002/jsfa.9228
10.1021/jf902768v
10.1111/j.1541-4337.2010.00118.x
10.1021/jf802643n
10.1016/j.ijbiomac.2018.10.144
10.1016/j.carbpol.2013.02.053
10.1016/j.foodres.2023.113125
10.1016/j.foodhyd.2023.108817
10.1039/b718319d
10.1016/j.foodhyd.2022.107884
10.1016/j.colsurfa.2018.11.019
10.1016/j.cocis.2016.12.003
10.1016/j.foodchem.2018.05.036
10.1016/j.cocis.2010.05.007
10.1016/j.carbpol.2018.05.027
10.1016/j.cis.2011.01.007
10.1016/j.jfoodeng.2011.06.037
10.1016/j.foodchem.2019.125536
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2025.141025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 39954889
10_1016_j_ijbiomac_2025_141025
S0141813025015740
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAYXX
CITATION
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ACLOT
7S9
L.6
ID FETCH-LOGICAL-c348t-4e4221fbdfcc9854f19ecac1f35ce96da1a7a34d06f05cbb84db60a1dca919183
IEDL.DBID AIKHN
ISSN 0141-8130
1879-0003
IngestDate Fri Sep 05 17:24:29 EDT 2025
Sat Sep 27 23:23:14 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Sun Sep 21 06:03:53 EDT 2025
Sat Aug 09 17:31:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Coacervates
Oil microencapsulation
Chia seed (Salvia hispanica)
Zeta potential
Pea
Rice
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-4e4221fbdfcc9854f19ecac1f35ce96da1a7a34d06f05cbb84db60a1dca919183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39954889
PQID 3167359282
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3200316907
proquest_miscellaneous_3167359282
pubmed_primary_39954889
crossref_primary_10_1016_j_ijbiomac_2025_141025
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2025_141025
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zeeb, Stenger, Hinrichs, Weiss (bb0050) 2016; 10
Amagliani, O’Regan, Kelly, O’Mahony (bb0095) 2017; 64
Bligh, Dyer (bb0150) 1959; 37
Veis (bb0040) 2011; 167
Zhang, Wang, Qiao, Liu, Zhou, Li, Ai, Yang, Sui, Zhou (bb0065) 2021; 199
Gonçalves, Grosso, Rabelo, Hubinger, Prata (bb0015) 2018; 196
Ocak (bb0025) 2012; 100
Dickinson (bb0060) 2008; 4
Timilsena, Adhikari, Barrow, Adhikari (bb0135) 2016; 91
Jones, McClements (bb0045) 2010; 9
Crouzier, Boudou, Picart (bb0160) 2010; 15
Hernández-Nava, López-Malo, Palou, Ramírez-Corona, Jiménez-Munguía (bb0130) 2019; 84
Barac, Cabrilo, Pesic, Stanojevic, Zilic, Macej, Ristic (bb0100) 2010; 11
Klemmer, Waldner, Stone, Low, Nickerson (bb0170) 2012; 130
Fernandes, da Silva Cardoso, Egea, Quintal Martínez, Segura Campos, Otero (bb0085) 2023; 172
Lan, Ohm, Chen, Rao (bb0110) 2020; 307
Mota da Silva, Souza Almeida, Kawazoe Sato (bb0175) 2021; 292
Liu, Cao, Ghosh, Rousseau, Low, Nickerson (bb0185) 2010; 58
Liu, Low, Nickerson (bb0190) 2009; 57
Prata, Grosso (bb0180) 2015; 116
Stone, Teymurova, Dang, Abeysekara, Karalash, Nickerson (bb0145) 2014; 238
Warnakulasuriya, Nickerson (bb0090) 2018; 98
Comunian, Thomazini, Alves, de Matos Junior, de Carvalho Balieiro, Favaro-Trindade (bb0010) 2013; 52
Muñoz, Cobos, Diaz, Aguilera (bb0075) 2012; 108
da Silva (bb0200) 2019
Carpentier, Conforto, Chaigneau, Vendeville, Maugard (bb0115) 2021; 69
Mota da Silva, Souza Almeida, Kawazoe Sato (bb0195) 2021; 292
Warnakulasuriya, Pillai, Stone, Nickerson (bb0105) 2018; 264
Cochereau, Nicolai, Chassenieux, Silva (bb0005) 2019; 562
Ryu, Xiang, Hu, Rosenfeld, Qin, Zhou, McClements (bb0070) 2023; 142
.
Semenova (bb0055) 2017; 28
Silva, Sinnecker, Cavalari, Sato, Perrechil (bb0140) 2022; 1
Archut, Drusch, Kastner (bb0120) 2022; 133
Espinosa-Andrews, Enríquez-Ramírez, García-Márquez, Ramírez-Santiago, Lobato-Calleros, Vernon-Carter (bb0165) 2013; 95
A.K. Ghosh, P. Bandyopadhyay, Polysaccharide-protein interactions and their relevance in food colloids, in: D.N. Karunaratne (Ed.), The Complex World of Polysaccharides, IntechOpen, Rijeka, 2012: p. Ch. 14. doi
Nesterenko, Alric, Silvestre, Durrieu (bb0020) 2013; 42
Timilsena, Akanbi, Khalid, Adhikari, Barrow (bb0030) 2019; 121
Luo, Huang, Zhang, Wang, Yu, Liu, Li (bb0125) 2021; 150
Perrechil, Vilela, Guerreiro, Cunha (bb0205) 2012; 7
Timilsena, Adhikari, Kasapis, Adhikari (bb0080) 2016; 136
Rousi, Malhiac, Fatouros, Paraskevopoulou (bb0155) 2019; 96
Cochereau (10.1016/j.ijbiomac.2025.141025_bb0005) 2019; 562
Perrechil (10.1016/j.ijbiomac.2025.141025_bb0205) 2012; 7
Timilsena (10.1016/j.ijbiomac.2025.141025_bb0135) 2016; 91
Archut (10.1016/j.ijbiomac.2025.141025_bb0120) 2022; 133
Nesterenko (10.1016/j.ijbiomac.2025.141025_bb0020) 2013; 42
Zeeb (10.1016/j.ijbiomac.2025.141025_bb0050) 2016; 10
Hernández-Nava (10.1016/j.ijbiomac.2025.141025_bb0130) 2019; 84
Mota da Silva (10.1016/j.ijbiomac.2025.141025_bb0195) 2021; 292
10.1016/j.ijbiomac.2025.141025_bb0035
Timilsena (10.1016/j.ijbiomac.2025.141025_bb0080) 2016; 136
Warnakulasuriya (10.1016/j.ijbiomac.2025.141025_bb0090) 2018; 98
Gonçalves (10.1016/j.ijbiomac.2025.141025_bb0015) 2018; 196
Warnakulasuriya (10.1016/j.ijbiomac.2025.141025_bb0105) 2018; 264
Lan (10.1016/j.ijbiomac.2025.141025_bb0110) 2020; 307
Timilsena (10.1016/j.ijbiomac.2025.141025_bb0030) 2019; 121
Barac (10.1016/j.ijbiomac.2025.141025_bb0100) 2010; 11
Espinosa-Andrews (10.1016/j.ijbiomac.2025.141025_bb0165) 2013; 95
Mota da Silva (10.1016/j.ijbiomac.2025.141025_bb0175) 2021; 292
Jones (10.1016/j.ijbiomac.2025.141025_bb0045) 2010; 9
Ryu (10.1016/j.ijbiomac.2025.141025_bb0070) 2023; 142
Semenova (10.1016/j.ijbiomac.2025.141025_bb0055) 2017; 28
Zhang (10.1016/j.ijbiomac.2025.141025_bb0065) 2021; 199
Silva (10.1016/j.ijbiomac.2025.141025_bb0140) 2022; 1
da Silva (10.1016/j.ijbiomac.2025.141025_bb0200) 2019
Ocak (10.1016/j.ijbiomac.2025.141025_bb0025) 2012; 100
Rousi (10.1016/j.ijbiomac.2025.141025_bb0155) 2019; 96
Fernandes (10.1016/j.ijbiomac.2025.141025_bb0085) 2023; 172
Liu (10.1016/j.ijbiomac.2025.141025_bb0185) 2010; 58
Veis (10.1016/j.ijbiomac.2025.141025_bb0040) 2011; 167
Prata (10.1016/j.ijbiomac.2025.141025_bb0180) 2015; 116
Dickinson (10.1016/j.ijbiomac.2025.141025_bb0060) 2008; 4
Liu (10.1016/j.ijbiomac.2025.141025_bb0190) 2009; 57
Carpentier (10.1016/j.ijbiomac.2025.141025_bb0115) 2021; 69
Muñoz (10.1016/j.ijbiomac.2025.141025_bb0075) 2012; 108
Comunian (10.1016/j.ijbiomac.2025.141025_bb0010) 2013; 52
Klemmer (10.1016/j.ijbiomac.2025.141025_bb0170) 2012; 130
Stone (10.1016/j.ijbiomac.2025.141025_bb0145) 2014; 238
Amagliani (10.1016/j.ijbiomac.2025.141025_bb0095) 2017; 64
Crouzier (10.1016/j.ijbiomac.2025.141025_bb0160) 2010; 15
Luo (10.1016/j.ijbiomac.2025.141025_bb0125) 2021; 150
Bligh (10.1016/j.ijbiomac.2025.141025_bb0150) 1959; 37
References_xml – volume: 238
  start-page: 773
  year: 2014
  end-page: 780
  ident: bb0145
  article-title: Formation and functional attributes of electrostatic complexes involving napin protein isolate and anionic polysaccharides
  publication-title: Eur. Food Res. Technol.
– volume: 292
  year: 2021
  ident: bb0195
  article-title: Functional characterization of commercial plant proteins and their application on stabilization of emulsions
  publication-title: J. Food Eng.
– volume: 264
  start-page: 180
  year: 2018
  end-page: 188
  ident: bb0105
  article-title: Effect of the degree of esterification and blockiness on the complex coacervation of pea protein isolate and commercial pectic polysaccharides
  publication-title: Food Chem.
– volume: 1
  year: 2022
  ident: bb0140
  article-title: Extraction of chia seed mucilage: effect of ultrasound application
  publication-title: Food Chemistry Advances
– volume: 42
  start-page: 469
  year: 2013
  end-page: 479
  ident: bb0020
  article-title: Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness
  publication-title: Ind. Crop. Prod.
– volume: 37
  year: 1959
  ident: bb0150
  article-title: Canadian journal of biochemistry and physiology
  publication-title: Can. J. Biochem. Physiol.
– volume: 4
  start-page: 932
  year: 2008
  end-page: 942
  ident: bb0060
  article-title: Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions
  publication-title: Soft Matter
– volume: 196
  start-page: 427
  year: 2018
  end-page: 432
  ident: bb0015
  article-title: Comparison of microparticles produced with combinations of gelatin, chitosan and gum Arabic
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 374
  year: 2010
  end-page: 397
  ident: bb0045
  article-title: Functional biopolymer particles: design, fabrication, and applications
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 142
  year: 2023
  ident: bb0070
  article-title: Assembly of plant-based meat analogs using soft matter physics: a coacervation-shearing-gelation approach
  publication-title: Food Hydrocoll.
– volume: 64
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0095
  article-title: The composition, extraction, functionality and applications of rice proteins: a review
  publication-title: Trends Food Sci. Technol.
– volume: 11
  start-page: 4973
  year: 2010
  end-page: 4990
  ident: bb0100
  article-title: Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes
  publication-title: Int. J. Mol. Sci.
– volume: 116
  start-page: 292
  year: 2015
  end-page: 299
  ident: bb0180
  article-title: Production of microparticles with gelatin and chitosan
  publication-title: Carbohydr. Polym.
– volume: 130
  start-page: 710
  year: 2012
  end-page: 715
  ident: bb0170
  article-title: Complex coacervation of pea protein isolate and alginate polysaccharides
  publication-title: Food Chem.
– volume: 136
  start-page: 128
  year: 2016
  end-page: 136
  ident: bb0080
  article-title: Molecular and functional characteristics of purified gum from Australian chia seeds
  publication-title: Carbohydr. Polym.
– volume: 98
  start-page: 5559
  year: 2018
  end-page: 5571
  ident: bb0090
  article-title: Review on plant protein–polysaccharide complex coacervation, and the functionality and applicability of formed complexes
  publication-title: J. Sci. Food Agric.
– volume: 172
  year: 2023
  ident: bb0085
  article-title: Chia mucilage carrier systems: a review of emulsion, encapsulation, and coating and film strategies
  publication-title: Food Res. Int.
– volume: 84
  start-page: 1281
  year: 2019
  end-page: 1287
  ident: bb0130
  article-title: Complex Coacervation between gelatin and chia mucilage as an alternative of encapsulating agents
  publication-title: J. Food Sci.
– year: 2019
  ident: bb0200
  article-title: Estudo das propriedades funcionais de proteínas comerciais de origem vegetal: caracterização, estabilização de emulsões e aplicação em complexos coacervados, University of Campinas (UNICAMP)
– volume: 108
  start-page: 216
  year: 2012
  end-page: 224
  ident: bb0075
  article-title: Chia seeds: microstructure, mucilage extraction and hydration
  publication-title: J. Food Eng.
– volume: 95
  start-page: 161
  year: 2013
  end-page: 166
  ident: bb0165
  article-title: Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes
  publication-title: Carbohydr. Polym.
– volume: 167
  start-page: 2
  year: 2011
  end-page: 11
  ident: bb0040
  article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation
  publication-title: Adv. Colloid Interface Sci.
– volume: 121
  start-page: 1276
  year: 2019
  end-page: 1286
  ident: bb0030
  article-title: Complex coacervation: principles, mechanisms and applications in microencapsulation
  publication-title: Int. J. Biol. Macromol.
– reference: A.K. Ghosh, P. Bandyopadhyay, Polysaccharide-protein interactions and their relevance in food colloids, in: D.N. Karunaratne (Ed.), The Complex World of Polysaccharides, IntechOpen, Rijeka, 2012: p. Ch. 14. doi:
– volume: 91
  start-page: 347
  year: 2016
  end-page: 357
  ident: bb0135
  article-title: Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates
  publication-title: Int. J. Biol. Macromol.
– volume: 307
  year: 2020
  ident: bb0110
  article-title: Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution
  publication-title: Food Chem.
– volume: 292
  year: 2021
  ident: bb0175
  article-title: Functional characterization of commercial plant proteins and their application on stabilization of emulsions
  publication-title: J. Food Eng.
– volume: 69
  year: 2021
  ident: bb0115
  article-title: Complex coacervation of pea protein isolate and tragacanth gum: comparative study with commercial polysaccharides
  publication-title: Innovative Food Sci. Emerg. Technol.
– volume: 15
  start-page: 417
  year: 2010
  end-page: 426
  ident: bb0160
  article-title: Polysaccharide-based polyelectrolyte multilayers
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 52
  start-page: 373
  year: 2013
  end-page: 379
  ident: bb0010
  article-title: Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release
  publication-title: Food Res. Int.
– volume: 58
  start-page: 552
  year: 2010
  end-page: 556
  ident: bb0185
  article-title: Intermolecular interactions during complex Coacervation of pea protein isolate and gum Arabic
  publication-title: J. Agric. Food Chem.
– volume: 10
  start-page: 10
  year: 2016
  end-page: 20
  ident: bb0050
  article-title: Formation of concentrated particles composed of oppositely charged biopolymers for food applications – impact of processing conditions
  publication-title: Food Structure
– reference: .
– volume: 133
  year: 2022
  ident: bb0120
  article-title: Complex coacervation of pea protein and pectin: effect of degree and pattern of free carboxyl groups on biopolymer interaction
  publication-title: Food Hydrocoll.
– volume: 96
  start-page: 577
  year: 2019
  end-page: 588
  ident: bb0155
  article-title: Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization
  publication-title: Food Hydrocoll.
– volume: 562
  start-page: 213
  year: 2019
  end-page: 219
  ident: bb0005
  article-title: Mechanism of the spontaneous formation of plant protein microcapsules in aqueous solution
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 28
  start-page: 15
  year: 2017
  end-page: 21
  ident: bb0055
  article-title: Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 7
  start-page: 264
  year: 2012
  end-page: 275
  ident: bb0205
  article-title: Development of Na-CN—κ-carrageenan microbeads for the encapsulation of lipophilic compounds
  publication-title: Food Biophys.
– volume: 100
  start-page: 22
  year: 2012
  end-page: 28
  ident: bb0025
  article-title: Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil
  publication-title: J. Environ. Manage.
– volume: 150
  year: 2021
  ident: bb0125
  article-title: Complex coacervation behavior and the mechanism between rice glutelin and gum arabic at pH 3.0 studied by turbidity, light scattering, fluorescence spectra and molecular docking
  publication-title: LWT
– volume: 199
  year: 2021
  ident: bb0065
  article-title: Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery
  publication-title: Colloids Surf. B Biointerfaces
– volume: 57
  start-page: 1521
  year: 2009
  end-page: 1526
  ident: bb0190
  article-title: Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate−gum Arabic complexes
  publication-title: J. Agric. Food Chem.
– volume: 11
  start-page: 4973
  year: 2010
  ident: 10.1016/j.ijbiomac.2025.141025_bb0100
  article-title: Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11124973
– volume: 10
  start-page: 10
  year: 2016
  ident: 10.1016/j.ijbiomac.2025.141025_bb0050
  article-title: Formation of concentrated particles composed of oppositely charged biopolymers for food applications – impact of processing conditions
  publication-title: Food Structure
  doi: 10.1016/j.foostr.2016.10.002
– volume: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.141025_bb0140
  article-title: Extraction of chia seed mucilage: effect of ultrasound application
  publication-title: Food Chemistry Advances
  doi: 10.1016/j.focha.2022.100024
– volume: 7
  start-page: 264
  year: 2012
  ident: 10.1016/j.ijbiomac.2025.141025_bb0205
  article-title: Development of Na-CN—κ-carrageenan microbeads for the encapsulation of lipophilic compounds
  publication-title: Food Biophys.
  doi: 10.1007/s11483-012-9265-0
– volume: 292
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.141025_bb0195
  article-title: Functional characterization of commercial plant proteins and their application on stabilization of emulsions
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110277
– volume: 116
  start-page: 292
  year: 2015
  ident: 10.1016/j.ijbiomac.2025.141025_bb0180
  article-title: Production of microparticles with gelatin and chitosan
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.03.056
– volume: 199
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.141025_bb0065
  article-title: Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2021.111560
– volume: 91
  start-page: 347
  year: 2016
  ident: 10.1016/j.ijbiomac.2025.141025_bb0135
  article-title: Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.05.058
– ident: 10.1016/j.ijbiomac.2025.141025_bb0035
  doi: 10.5772/50561
– volume: 150
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.141025_bb0125
  article-title: Complex coacervation behavior and the mechanism between rice glutelin and gum arabic at pH 3.0 studied by turbidity, light scattering, fluorescence spectra and molecular docking
  publication-title: LWT
  doi: 10.1016/j.lwt.2021.112084
– volume: 52
  start-page: 373
  year: 2013
  ident: 10.1016/j.ijbiomac.2025.141025_bb0010
  article-title: Microencapsulation of ascorbic acid by complex coacervation: protection and controlled release
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2013.03.028
– volume: 136
  start-page: 128
  year: 2016
  ident: 10.1016/j.ijbiomac.2025.141025_bb0080
  article-title: Molecular and functional characteristics of purified gum from Australian chia seeds
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.09.035
– volume: 84
  start-page: 1281
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.141025_bb0130
  article-title: Complex Coacervation between gelatin and chia mucilage as an alternative of encapsulating agents
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.14605
– volume: 96
  start-page: 577
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.141025_bb0155
  article-title: Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2019.06.009
– volume: 100
  start-page: 22
  year: 2012
  ident: 10.1016/j.ijbiomac.2025.141025_bb0025
  article-title: Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.01.026
– volume: 238
  start-page: 773
  year: 2014
  ident: 10.1016/j.ijbiomac.2025.141025_bb0145
  article-title: Formation and functional attributes of electrostatic complexes involving napin protein isolate and anionic polysaccharides
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-014-2159-2
– volume: 64
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijbiomac.2025.141025_bb0095
  article-title: The composition, extraction, functionality and applications of rice proteins: a review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2017.01.008
– volume: 130
  start-page: 710
  year: 2012
  ident: 10.1016/j.ijbiomac.2025.141025_bb0170
  article-title: Complex coacervation of pea protein isolate and alginate polysaccharides
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2011.07.114
– year: 2019
  ident: 10.1016/j.ijbiomac.2025.141025_bb0200
– volume: 69
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.141025_bb0115
  article-title: Complex coacervation of pea protein isolate and tragacanth gum: comparative study with commercial polysaccharides
  publication-title: Innovative Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2021.102641
– volume: 42
  start-page: 469
  year: 2013
  ident: 10.1016/j.ijbiomac.2025.141025_bb0020
  article-title: Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2012.06.035
– volume: 98
  start-page: 5559
  year: 2018
  ident: 10.1016/j.ijbiomac.2025.141025_bb0090
  article-title: Review on plant protein–polysaccharide complex coacervation, and the functionality and applicability of formed complexes
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9228
– volume: 58
  start-page: 552
  year: 2010
  ident: 10.1016/j.ijbiomac.2025.141025_bb0185
  article-title: Intermolecular interactions during complex Coacervation of pea protein isolate and gum Arabic
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf902768v
– volume: 9
  start-page: 374
  year: 2010
  ident: 10.1016/j.ijbiomac.2025.141025_bb0045
  article-title: Functional biopolymer particles: design, fabrication, and applications
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/j.1541-4337.2010.00118.x
– volume: 57
  start-page: 1521
  year: 2009
  ident: 10.1016/j.ijbiomac.2025.141025_bb0190
  article-title: Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate−gum Arabic complexes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf802643n
– volume: 121
  start-page: 1276
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.141025_bb0030
  article-title: Complex coacervation: principles, mechanisms and applications in microencapsulation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.10.144
– volume: 95
  start-page: 161
  year: 2013
  ident: 10.1016/j.ijbiomac.2025.141025_bb0165
  article-title: Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.02.053
– volume: 37
  year: 1959
  ident: 10.1016/j.ijbiomac.2025.141025_bb0150
  article-title: Canadian journal of biochemistry and physiology
  publication-title: Can. J. Biochem. Physiol.
– volume: 172
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.141025_bb0085
  article-title: Chia mucilage carrier systems: a review of emulsion, encapsulation, and coating and film strategies
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2023.113125
– volume: 142
  year: 2023
  ident: 10.1016/j.ijbiomac.2025.141025_bb0070
  article-title: Assembly of plant-based meat analogs using soft matter physics: a coacervation-shearing-gelation approach
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2023.108817
– volume: 4
  start-page: 932
  year: 2008
  ident: 10.1016/j.ijbiomac.2025.141025_bb0060
  article-title: Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions
  publication-title: Soft Matter
  doi: 10.1039/b718319d
– volume: 133
  year: 2022
  ident: 10.1016/j.ijbiomac.2025.141025_bb0120
  article-title: Complex coacervation of pea protein and pectin: effect of degree and pattern of free carboxyl groups on biopolymer interaction
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2022.107884
– volume: 562
  start-page: 213
  year: 2019
  ident: 10.1016/j.ijbiomac.2025.141025_bb0005
  article-title: Mechanism of the spontaneous formation of plant protein microcapsules in aqueous solution
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.11.019
– volume: 28
  start-page: 15
  year: 2017
  ident: 10.1016/j.ijbiomac.2025.141025_bb0055
  article-title: Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2016.12.003
– volume: 264
  start-page: 180
  year: 2018
  ident: 10.1016/j.ijbiomac.2025.141025_bb0105
  article-title: Effect of the degree of esterification and blockiness on the complex coacervation of pea protein isolate and commercial pectic polysaccharides
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.05.036
– volume: 15
  start-page: 417
  year: 2010
  ident: 10.1016/j.ijbiomac.2025.141025_bb0160
  article-title: Polysaccharide-based polyelectrolyte multilayers
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2010.05.007
– volume: 196
  start-page: 427
  year: 2018
  ident: 10.1016/j.ijbiomac.2025.141025_bb0015
  article-title: Comparison of microparticles produced with combinations of gelatin, chitosan and gum Arabic
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.05.027
– volume: 167
  start-page: 2
  year: 2011
  ident: 10.1016/j.ijbiomac.2025.141025_bb0040
  article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.01.007
– volume: 108
  start-page: 216
  year: 2012
  ident: 10.1016/j.ijbiomac.2025.141025_bb0075
  article-title: Chia seeds: microstructure, mucilage extraction and hydration
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2011.06.037
– volume: 292
  year: 2021
  ident: 10.1016/j.ijbiomac.2025.141025_bb0175
  article-title: Functional characterization of commercial plant proteins and their application on stabilization of emulsions
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110277
– volume: 307
  year: 2020
  ident: 10.1016/j.ijbiomac.2025.141025_bb0110
  article-title: Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.125536
SSID ssj0006518
Score 2.4420722
Snippet Complex coacervation is a microencapsulation technique recognized by its low cost, high efficiency, and reproducibility. It involves interactions between...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 141025
SubjectTerms biopolymers
Chia seed (Salvia hispanica)
Coacervates
gelatin
Gelatin - chemistry
gum arabic
Gum Arabic - chemistry
Hydrogen-Ion Concentration
Hydrophobic and Hydrophilic Interactions
hydrophobicity
microencapsulation
Microspheres
mucilages
Oil microencapsulation
Oryza - chemistry
Particle Size
Pea
pea protein
Pea Proteins - chemistry
peas
Pisum sativum - chemistry
Plant Mucilage - chemistry
Plant Proteins - chemistry
Rice
rice protein
roughness
Salvia - chemistry
Salvia hispanica
turbidity
Zeta potential
Title Non-spherical microparticles from complex coacervation of rice or pea proteins and chia mucilage
URI https://dx.doi.org/10.1016/j.ijbiomac.2025.141025
https://www.ncbi.nlm.nih.gov/pubmed/39954889
https://www.proquest.com/docview/3167359282
https://www.proquest.com/docview/3200316907
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH90yaG7jH21TbcFDXZ1YlmSbR1LaMk2ltMKvWmyPsChtUOTQE_726tnW6WDdT3sZGwkEL8n3of8-z0BfKmsC1myZaHIyYqEc1kkmlGfhOBUutJo4S0KnH-s8uUl_3Ylrg5gEbUwSKscfH_v0ztvPXyZD2jON3U9R1pSCE8MgzgVBQ91-zgL0b4cwfjs6_fl6sEh56I75sPxCU54JBRez-o16tw1djPMxAxZj3hr9t9j1FM5aBeLLl7DqyGJJGf9Ot_AgWvewuEi3t32Dn6t2ibZYscAtAG5QdbdJnLgCEpKSMcld3fhqU08mCWtJ9hkiLS3ZOM06Zo41M2W6MYSJEWTm72pr4MLeg-XF-c_F8tkuEshMYyXu4Q7nmXUV9YbI0vBPZXOaEM9E8bJ3GqqC824TXOfClNVJbdVnmpqjZahpCvZEYyatnEnQArmQxlCq8rnkkue6lR6j213QmqiveMTmEf01KZvmaEil2ytIt4K8VY93hOQEWT1h_FV8OvPzv0craICyPi7Qzeu3W8VavyZCBsi-8cY5Obhn8JiAse9SR_WjKLf4N7k6X-s7gO8xLeeIfkRRrvbvfsUsphdNYUXs990OuzVexS58i8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6WzSG9lDyadtM8FMjVWXsl2dYxLA2b7OOUQG6qrAd4aewluwv5-dXYVmihSQ85GWwJhm_MPKRvZgAuC2N9lGyoT3JGWcSYyCJFExd555TbXCvuDBY4zxfp5IHdPfLHHoxDLQzSKjvb39r0xlp3b4YdmsNVWQ6RluTdE0UnnvCM-bx9h-FQ6z7sXN9OJ4tXg5zy5pgP10e44Y9C4eVVucQ6d4XdDEf8ClmPODX73z7qrRi08UU3e_C5CyLJdSvnPvRsdQC74zC77RB-LuoqWmPHANQBeULW3Spw4AiWlJCGS25f_FPpcDBLakewyRCpn8nKKtI0cSirNVGVIUiKJk9bXf7yJugLPNz8uB9Pom6WQqQpyzcRs2w0SlxhnNYi58wlwmqlE0e5tiI1KlGZoszEqYu5LoqcmSKNVWK0Ej6ly-kR9Ku6st-AZNT5NCQpCpcKJlisYuEctt3xoYlylg1gGNCTq7ZlhgxcsqUMeEvEW7Z4D0AEkOVfypferv9370XQivQg43WHqmy9XUus8adc-JzynTXIzcObwmwAX1uVvsqMRb_evInjD0h3DruT-_lMzm4X0-_wCb-0bMkT6G-et_bURzSb4qz7Y38Dyp70FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-spherical+microparticles+from+complex+coacervation+of+rice+or+pea+proteins+and+chia+mucilage&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Silva%2C+L.A.&rft.au=Sato%2C+A.C.K.&rft.au=Perrechil%2C+F.&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=0141-8130&rft.volume=305&rft_id=info:doi/10.1016%2Fj.ijbiomac.2025.141025&rft.externalDocID=S0141813025015740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon