A Bi-Directionally Fused Boundary Aware Network for Skin Lesion Segmentation

It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global informat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 33; pp. 6340 - 6353
Main Authors Yuan, Feiniu, Peng, Yuhuan, Huang, Qinghua, Li, Xuelong
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2024.3482864

Cover

Abstract It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones.
AbstractList It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones.It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones.
It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network (CNN) extracts more local features with abundant spatial information, while Transformer has the powerful ability to capture more global information but with insufficient spatial details. To overcome the difficulties in discriminating small or blurred skin lesions, we propose a Bi-directionally Fused Boundary Aware Network (BiFBA-Net). To utilize complementary features produced by CNNs and Transformers, we design a dual-encoding structure. Different from existing dual-encoders, our method designs a Bi-directional Attention Gate (Bi-AG) with two inputs and two outputs for crosswise feature fusion. Our Bi-AG accepts two kinds of features from CNN and Transformer encoders, and two attention gates are designed to generate two attention outputs that are sent back to the two encoders. Thus, we implement adequate exchanging of multi-scale information between CNN and Transformer encoders in a bi-directional and attention way. To perfectly restore feature maps, we propose a progressive decoding structure with boundary aware, containing three decoders with six supervised losses. The first decoder is a CNN network for producing more spatial details. The second one is a Partial Decoder (PD) for aggregating high-level features with more semantics. The last one is a Boundary Aware Decoder (BAD) proposed to progressively improve boundary accuracy. Our BAD uses residual structure and Reverse Attention (RA) at different scales to deeply mine structural and spatial details for refining lesion boundaries. Extensive experiments on public datasets show that our BiFBA-Net achieves higher segmentation accuracy, and has much better ability of boundary perceptions than compared methods. It also alleviates both over-segmentation of small lesions and under-segmentation of large ones.
Author Peng, Yuhuan
Li, Xuelong
Huang, Qinghua
Yuan, Feiniu
Author_xml – sequence: 1
  givenname: Feiniu
  orcidid: 0000-0003-3286-1481
  surname: Yuan
  fullname: Yuan, Feiniu
  email: yfn@ustc.edu
  organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University (SHNU), Shanghai, China
– sequence: 2
  givenname: Yuhuan
  orcidid: 0009-0001-0299-4630
  surname: Peng
  fullname: Peng, Yuhuan
  email: 1402196323@qq.com
  organization: College of Humanities, SHNU, Shanghai, China
– sequence: 3
  givenname: Qinghua
  orcidid: 0000-0003-1080-6940
  surname: Huang
  fullname: Huang, Qinghua
  email: qhhuang@nwpu.edu.cn
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@ieee.org
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39441680$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPwzAURi0EAlrYGRCyxMKS4mcSj-VRQKoAqWWOnOQGuU1jsBMh_j0uKQh1YLKHc6793W-AdhvbAEInlIwoJepy_vA8YoSJERcpS2Oxgw6pEjQiRLDdcCcyiRIq1AEaeL8ghApJ4310wJUQNE7JIZqO8ZWJboyDojW20XX9iSedhxJf2a4ptfvE4w_tAD9C-2HdElfW4dnSNHgKPgh4Bq8raFq9to_QXqVrD8ebc4heJrfz6_to-nT3cD2eRkX4ZxsJSZK0yOMEEimpFGVecSBKK820rlhBQbK8LHmuWVklcSqKvKKgVS5FxdIS-BBd9HPfnH3vwLfZyvgC6lo3YDufccpIiB6SB_R8C13YzoWc31RMUiUVDdTZhuryFZTZmzOrED372VMASA8UznrvoPpFKMnWVWShimxdRbapIijxllKYfk2t06b-TzztRQMAf95JOE85519KD5SQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1002_mp_17727
Cites_doi 10.3390/s21155172
10.3322/caac.21395
10.1109/ACCESS.2022.3148402
10.1109/TIP.2019.2946126
10.1109/EMBC.2013.6610779
10.1007/978-3-030-59719-1_36
10.1109/CVPR.2015.7298965
10.1109/TIP.2023.3287038
10.1109/TPAMI.2023.3243048
10.1109/WACV51458.2022.00181
10.1016/j.media.2021.102327
10.1109/CVPR.2016.90
10.1109/TIP.2023.3270104
10.1109/ISBI.2019.8759329
10.1109/ICPR48806.2021.9413346
10.1109/TIP.2019.2910667
10.1007/978-3-030-87193-2_20
10.1109/ICCV48922.2021.00986
10.1016/j.patcog.2022.109228
10.1016/j.compbiomed.2022.106462
10.1109/TIP.2022.3195321
10.1007/978-3-031-21014-3_39
10.1007/978-3-030-00889-5_1
10.1016/j.media.2020.101716
10.1007/978-3-030-01240-3_15
10.1007/978-3-030-00937-3_84
10.1109/CVPR.2018.00813
10.1007/978-3-030-87193-2_4
10.1109/CVPR.2018.00388
10.1007/978-3-030-87193-2_2
10.1109/CBMS49503.2020.00111
10.1109/ISBI.2018.8363707
10.1016/j.patcog.2021.108076
10.1007/978-3-319-24574-4_28
10.1109/TMI.2019.2903562
10.1016/j.cmpb.2019.07.005
10.1016/j.cmpb.2022.107076
10.1007/978-3-030-00934-2_3
10.1109/CVPR.2019.00403
10.1109/JBHI.2015.2390032
10.1109/JBHI.2018.2859898
10.1016/j.cmpb.2018.05.027
10.1109/TBME.2013.2283803
10.48550/arXiv.1605.01397
10.1109/TMI.2020.2983721
10.1109/WACV56688.2023.00614
10.1109/CVPR46437.2021.00681
10.1109/TMI.2020.3035253
10.1109/TNNLS.2022.3227717
10.1109/GTSD50082.2020.9303084
10.48550/ARXIV.1706.03762
10.1109/ACCESS.2019.2943628
10.1109/TBME.2007.910651
10.1016/j.compmedimag.2019.101658
10.1109/TIP.2021.3069318
10.1007/978-3-030-59719-1_20
10.1109/ISBI.2019.8759535
10.1109/TMI.2020.2972964
10.1007/978-3-030-58452-8_13
10.48550/arXiv.1802.00368
10.48550/arXiv.2102.04306
10.1109/LGRS.2018.2802944
10.1016/j.media.2019.01.012
10.1109/ISM46123.2019.00049
10.1016/j.media.2020.101874
10.1109/ISBI.2018.8363547
10.1016/j.asoc.2020.106881
10.1109/3DV.2016.79
10.1109/CVPR42600.2020.00487
10.1109/TIP.2022.3150295
10.1109/TMI.2020.3025308
10.1016/j.compbiomed.2023.106580
10.5555/3045118.3045167
10.1016/j.compmedimag.2008.11.002
10.1007/978-3-030-87193-2_11
10.1016/j.cogsys.2018.12.008
10.48550/arXiv.1902.03368
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2024.3482864
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 6353
ExternalDocumentID 39441680
10_1109_TIP_2024_3482864
10733833
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272308
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3305802
  funderid: 10.13039/501100012166
– fundername: Capacity Construction Project of Shanghai Local Colleges
  grantid: 23010504100
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-45078cb67e755154dbf3e09a9a2aaf2c1e52bdd3ba2df7684cbf1ea9b54f28de3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 20:27:18 EDT 2025
Mon Jun 30 12:59:32 EDT 2025
Mon Jul 21 06:05:53 EDT 2025
Wed Oct 01 02:58:55 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Aug 27 03:05:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-45078cb67e755154dbf3e09a9a2aaf2c1e52bdd3ba2df7684cbf1ea9b54f28de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2924-946X
0000-0003-3286-1481
0000-0003-1080-6940
0009-0001-0299-4630
PMID 39441680
PQID 3126089591
PQPubID 85429
PageCount 14
ParticipantIDs ieee_primary_10733833
crossref_primary_10_1109_TIP_2024_3482864
crossref_citationtrail_10_1109_TIP_2024_3482864
proquest_miscellaneous_3120057714
proquest_journals_3126089591
pubmed_primary_39441680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Touvron (ref55)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Dosovitskiy (ref14)
ref9
ref4
ref3
Cao (ref77) 2021
ref6
ref5
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref65
  doi: 10.3390/s21155172
– ident: ref1
  doi: 10.3322/caac.21395
– ident: ref64
  doi: 10.1109/ACCESS.2022.3148402
– ident: ref27
  doi: 10.1109/TIP.2019.2946126
– ident: ref72
  doi: 10.1109/EMBC.2013.6610779
– ident: ref63
  doi: 10.1007/978-3-030-59719-1_36
– ident: ref4
  doi: 10.1109/CVPR.2015.7298965
– ident: ref30
  doi: 10.1109/TIP.2023.3287038
– ident: ref36
  doi: 10.1109/TPAMI.2023.3243048
– ident: ref39
  doi: 10.1109/WACV51458.2022.00181
– ident: ref42
  doi: 10.1016/j.media.2021.102327
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– ident: ref43
  doi: 10.1109/TIP.2023.3270104
– ident: ref52
  doi: 10.1109/ISBI.2019.8759329
– ident: ref69
  doi: 10.1109/ICPR48806.2021.9413346
– ident: ref29
  doi: 10.1109/TIP.2019.2910667
– ident: ref70
  doi: 10.1007/978-3-030-87193-2_20
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref14
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref41
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref40
  doi: 10.1016/j.patcog.2022.109228
– ident: ref71
  doi: 10.1016/j.compbiomed.2022.106462
– ident: ref32
  doi: 10.1109/TIP.2022.3195321
– ident: ref78
  doi: 10.1007/978-3-031-21014-3_39
– ident: ref6
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref26
  doi: 10.1016/j.media.2020.101716
– ident: ref47
  doi: 10.1007/978-3-030-01240-3_15
– ident: ref60
  doi: 10.1007/978-3-030-00937-3_84
– ident: ref13
  doi: 10.1109/CVPR.2018.00813
– ident: ref37
  doi: 10.1007/978-3-030-87193-2_4
– ident: ref74
  doi: 10.1109/CVPR.2018.00388
– ident: ref51
  doi: 10.1007/978-3-030-87193-2_2
– ident: ref10
  doi: 10.1109/CBMS49503.2020.00111
– ident: ref61
  doi: 10.1109/ISBI.2018.8363707
– ident: ref33
  doi: 10.1016/j.patcog.2021.108076
– ident: ref5
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref73
  doi: 10.1109/TMI.2019.2903562
– ident: ref67
  doi: 10.1016/j.cmpb.2019.07.005
– start-page: 10347
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref55
  article-title: Training data-efficient image transformers & distillation through attention
– ident: ref59
  doi: 10.1016/j.cmpb.2022.107076
– ident: ref21
  doi: 10.1007/978-3-030-00934-2_3
– year: 2021
  ident: ref77
  article-title: Swin-Unet: Unet-like pure transformer for medical image segmentation
  publication-title: arXiv:2105.05537
– ident: ref44
  doi: 10.1109/CVPR.2019.00403
– ident: ref2
  doi: 10.1109/JBHI.2015.2390032
– ident: ref80
  doi: 10.1109/JBHI.2018.2859898
– ident: ref19
  doi: 10.1016/j.cmpb.2018.05.027
– ident: ref18
  doi: 10.1109/TBME.2013.2283803
– ident: ref48
  doi: 10.48550/arXiv.1605.01397
– ident: ref56
  doi: 10.1109/TMI.2020.2983721
– ident: ref79
  doi: 10.1109/WACV56688.2023.00614
– ident: ref45
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref16
  doi: 10.1109/TMI.2020.3035253
– ident: ref31
  doi: 10.1109/TNNLS.2022.3227717
– ident: ref53
  doi: 10.1109/GTSD50082.2020.9303084
– ident: ref12
  doi: 10.48550/ARXIV.1706.03762
– ident: ref22
  doi: 10.1109/ACCESS.2019.2943628
– ident: ref17
  doi: 10.1109/TBME.2007.910651
– ident: ref24
  doi: 10.1016/j.compmedimag.2019.101658
– ident: ref34
  doi: 10.1109/TIP.2021.3069318
– ident: ref8
  doi: 10.1007/978-3-030-59719-1_20
– ident: ref11
  doi: 10.1109/ISBI.2019.8759535
– ident: ref25
  doi: 10.1109/TMI.2020.2972964
– ident: ref35
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref58
  doi: 10.48550/arXiv.1802.00368
– ident: ref76
  doi: 10.48550/arXiv.2102.04306
– ident: ref9
  doi: 10.1109/LGRS.2018.2802944
– ident: ref23
  doi: 10.1016/j.media.2019.01.012
– ident: ref57
  doi: 10.1109/ISM46123.2019.00049
– ident: ref75
  doi: 10.1016/j.media.2020.101874
– ident: ref49
  doi: 10.1109/ISBI.2018.8363547
– ident: ref54
  doi: 10.1016/j.asoc.2020.106881
– ident: ref7
  doi: 10.1109/3DV.2016.79
– ident: ref68
  doi: 10.1109/CVPR42600.2020.00487
– ident: ref28
  doi: 10.1109/TIP.2022.3150295
– ident: ref62
  doi: 10.1109/TMI.2020.3025308
– ident: ref66
  doi: 10.1016/j.compbiomed.2023.106580
– ident: ref46
  doi: 10.5555/3045118.3045167
– ident: ref20
  doi: 10.1016/j.compmedimag.2008.11.002
– ident: ref38
  doi: 10.1007/978-3-030-87193-2_11
– ident: ref3
  doi: 10.1016/j.cogsys.2018.12.008
– ident: ref50
  doi: 10.48550/arXiv.1902.03368
SSID ssj0014516
Score 2.457393
Snippet It is quite challenging to visually identify skin lesions with irregular shapes, blurred boundaries and large scale variances. Convolutional Neural Network...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6340
SubjectTerms Accuracy
Artificial neural networks
Attention
Bidirectional control
Biomedical imaging
Boundaries
CNN
Coders
Convolutional neural networks
Decoders
Decoding
deep learning
Design
Feature extraction
Feature maps
Image segmentation
Lesions
Segmentation
Semantics
Skin
Skin lesion segmentation
Spatial data
transformer
Transformers
Title A Bi-Directionally Fused Boundary Aware Network for Skin Lesion Segmentation
URI https://ieeexplore.ieee.org/document/10733833
https://www.ncbi.nlm.nih.gov/pubmed/39441680
https://www.proquest.com/docview/3126089591
https://www.proquest.com/docview/3120057714
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6xPcEDgzEgMJCReOEhXRPHdvzYIaqBRoXEJu0tsp0zmhgpahuh8evxOU5VIQ3xFil24vju4u_z-e4A3loZYG9diLwuTCAogX_lplI8b7krZeDP3EgKcP68kGeX1acrcZWC1WMsDCLGw2c4ocvoy2-XrqetsmDhihgV34M9VcshWGvrMqCKs9G1KVSuAu4ffZJTfXLx8UtggmU1oUwutaRaPBQPWkhKBrmzHMX6KndDzbjkzA9gMQ52OGnyfdJv7MT9_iuP439_zSN4mMAnmw3a8hjuYXcIBwmIsmTm60N4sJOl8Amcz9jpdZ7-jQTcb27ZvF-HHqexJtPqls1-mRWyxXCknAUczKioFztH2otjX_HbjxTi1B3B5fzDxfuzPBVhyF2YrU1eBcBYOysVqgCuRNVaz3GqjTalMb50BYrSti23pmw9efWc9QUabUXly7pF_hT2u2WHz4E5XxFDmbZWy0p6rwV645QwHKVS2mdwMsqicSlDORXKuGkiU5nqJgiyIUE2SZAZvNv2-Dlk5_hH2yOSwU67YfozOB7l3ST7XTe8CDyv1kIXGbzZ3g6WR-4U0-Gyj20olDfoWgbPBj3ZPnxUrxd3vPQl3KexDXs5x7C_WfX4KqCbjX0dtfoPjojxbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BeAAeGIwxAgOMxAsP6Zr4R-LHblrVQVch0Ul7i2zHRtO2FLWN0Pjr8TlOVSEN8RYpduL47uLv8_nuAD5p4WFvmfG0zJQnKJ5_pYoVNK2pyYXnz1QJDHA-n4nJBftyyS9jsHqIhbHWhsNndoCXwZdfL0yLW2XewgtkVPQhPOKMMd6Fa22cBlhzNjg3eZEWHvn3XsmhPJqfffNcMGcDzOVSCqzGgxGhmcB0kFsLUqiwcj_YDIvOeBdm_XC7sybXg3atB-b3X5kc__t7nsOzCD_JqNOXF_DANnuwG6EoiYa-2oOnW3kKX8J0RI6v0vh3ROh-c0fG7cr3OA5VmZZ3ZPRLLS2ZdYfKiUfCBMt6kanF3Tjy3f64jUFOzT5cjE_nJ5M0lmFIjZ-tdco8ZCyNFoUtPLzirNaO2qFUUuVKudxklue6rqlWee3Qr2e0y6ySmjOXl7Wlr2CnWTT2NRDjGHKUYa2lYMI5ya1TpuCKWlEU0iVw1MuiMjFHOZbKuKkCVxnKyguyQkFWUZAJfN70-Nnl5_hH232UwVa7bvoTOOzlXUULXlU080yvlFxmCXzc3Pa2hw4V1dhFG9pgMK_XtQQOOj3ZPLxXrzf3vPQDPJ7Mz6fV9Gz29S08wXF2OzuHsLNetvadxzpr_T5o-B9ZavS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-Directionally+Fused+Boundary+Aware+Network+for+Skin+Lesion+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yuan%2C+Feiniu&rft.au=Peng%2C+Yuhuan&rft.au=Huang%2C+Qinghua&rft.au=Li%2C+Xuelong&rft.date=2024&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=33&rft.spage=6340&rft.epage=6353&rft_id=info:doi/10.1109%2FTIP.2024.3482864&rft_id=info%3Apmid%2F39441680&rft.externalDocID=10733833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon