Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network

Abstract Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA–disease a...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 1
Main Authors Lu, Chengqian, Zhang, Lishen, Zeng, Min, Lan, Wei, Duan, Guihua, Wang, Jianxin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac549

Cover

Abstract Abstract Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA–disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA–disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA–disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
AbstractList Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA-disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA-disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA-disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA-disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA-disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA-disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA-disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA-disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA-disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
Abstract Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due to covalently closed loop structures. As opposed to traditional experiments, computational approaches can identify circRNA–disease associations at a lower cost. Aggregating multi-source pathogenesis data helps to alleviate data sparsity and infer potential associations at the system level. The majority of computational approaches construct a homologous network using multi-source data, but they lose the heterogeneity of the data. Effective methods that use the features of multi-source data are considered as a matter of urgency. In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and heterogeneous graph neural networks for potential circRNA–disease association prediction. The circRNA network, micro RNA network, disease network and heterogeneous network are constructed based on multi-source data. To reflect association probabilities between nodes, an edge-weighted graph attention network model is designed for node features. To assign attention weights to different types of edges and learn contextual meta-path, CDHGNN infers potential circRNA–disease association based on heterogeneous neural networks. CDHGNN outperforms state-of-the-art algorithms in terms of accuracy. Edge-weighted graph attention networks and heterogeneous graph networks have both improved performance significantly. Furthermore, case studies suggest that CDHGNN is capable of identifying specific molecular associations and investigating biomolecular regulatory relationships in pathogenesis. The code of CDHGNN is freely available at https://github.com/BioinformaticsCSU/CDHGNN.
Author Lu, Chengqian
Zhang, Lishen
Zeng, Min
Lan, Wei
Duan, Guihua
Wang, Jianxin
Author_xml – sequence: 1
  givenname: Chengqian
  surname: Lu
  fullname: Lu, Chengqian
– sequence: 2
  givenname: Lishen
  surname: Zhang
  fullname: Zhang, Lishen
– sequence: 3
  givenname: Min
  surname: Zeng
  fullname: Zeng, Min
– sequence: 4
  givenname: Wei
  surname: Lan
  fullname: Lan, Wei
– sequence: 5
  givenname: Guihua
  surname: Duan
  fullname: Duan, Guihua
  email: duangh@csu.edu.cn
– sequence: 6
  givenname: Jianxin
  surname: Wang
  fullname: Wang, Jianxin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36572658$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1L5TAUxYM4-DWu3EtAEEE6Jk2a5C1F_AKZAXHWIUlva7RtnkmK-N8bfc-NDLO6Z_E7l3vP2UWbU5gAoQNKflGyYGfW2zNrjWv4YgPtUC5lxUnDNz-0kFXDBdtGuyk9EVITqegW2maikbVo1A4ab6cOYvRTj1ufwCSoTErBeZOhxc5Hd__7PGH7hsd5yL5KYY4OsOn7CL3JPkzYFlOLi3iEDDH0MEGYE-6jWT7iCeZohjLya4jPP9GPzgwJ9tdzD_29uny4uKnu_lzfXpzfVY5xlSvOjeLUyRY6o1oqWm65aDuiFqyzbgHG1JTzunPlZyYodUJC7WSjipSdZGwPnaz2LmN4mSFlPfrkYBjM5226LmwjFWeqoEff0Kfy4lSu04xSxgWVlBTqcE3NdoRWL6MfTXzTX0EWgK4AF0NKETrtfP7MJ0fjB02J_ihLl7L0uqziOf3m-Vr7b_p4RYd5-V_wHU2lpOg
CitedBy_id crossref_primary_10_1109_JBHI_2023_3260863
crossref_primary_10_1016_j_eswa_2024_126257
crossref_primary_10_1093_bib_bbad292
crossref_primary_10_1109_JBHI_2024_3491732
crossref_primary_10_1016_j_ymeth_2024_07_007
Cites_doi 10.1186/s12859-018-2522-6
10.1261/rna.043687.113
10.1111/febs.15373
10.7150/thno.42174
10.1016/j.canlet.2019.11.038
10.3389/fgene.2020.00485
10.1109/JBHI.2020.2999638
10.1186/s12943-020-01286-3
10.1016/j.ymeth.2021.10.008
10.1093/bib/bbac083
10.1109/JBHI.2019.2891779
10.1038/nbt.2890
10.1016/j.knosys.2020.106694
10.2147/OTT.S250495
10.3389/fgene.2020.00357
10.1186/s13046-019-1487-2
10.7150/ijbs.28260
10.1093/database/baz003
10.1093/nar/gkaa707
10.1093/bioinformatics/bty327
10.1093/nar/gky1032
10.1093/bioinformatics/btaa1077
10.1093/bioinformatics/btz825
10.1093/bib/bbab028
10.1016/j.jbi.2020.103624
10.1093/bioinformatics/btac079
10.1038/s41598-020-74452-8
10.1111/jphp.13188
10.1093/bib/bbz057
10.1109/TNB.2019.2922214
10.1186/s12935-020-01642-9
10.12659/MSM.922253
10.1186/s12943-020-01246-x
10.1093/bib/bbab494
10.1093/nar/gky1010
10.1111/jcmm.15741
10.1186/s12943-020-01268-5
10.1093/bioinformatics/btab334
10.1093/bib/bbab177
10.1111/jcmm.16072
10.1109/TCYB.2020.3022852
10.1371/journal.pcbi.1007568
10.1038/s41598-020-59040-0
10.1093/nar/gkt1248
10.1093/nar/gkz328
10.1038/s41588-018-0207-8
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac549
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36572658
10_1093_bib_bbac549
10.1093/bib/bbac549
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-44a841c7defa8d16d4b46df0893fbc9eaa21442fcc543611c67e2c75811c7f733
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Wed Oct 01 14:20:08 EDT 2025
Fri Oct 03 05:51:26 EDT 2025
Wed Feb 19 02:25:39 EST 2025
Wed Oct 01 04:16:09 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Wed Apr 02 06:58:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CircRNA–disease association
Disease
CircRNA
Graph attention network
Heterogeneous graph neural network
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-44a841c7defa8d16d4b46df0893fbc9eaa21442fcc543611c67e2c75811c7f733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36572658
PQID 3113461710
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2758578438
proquest_journals_3113461710
pubmed_primary_36572658
crossref_citationtrail_10_1093_bib_bbac549
crossref_primary_10_1093_bib_bbac549
oup_primary_10_1093_bib_bbac549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wang (2023011917132849300_ref38) 2021; PP
Lu (2023011917132849300_ref16) 2020; 36
Wei (2023011917132849300_ref9) 2020; 21
Liu (2023011917132849300_ref45) 2020; 11
Zhang (2023011917132849300_ref23) 2020; 11
Deng (2023011917132849300_ref46) 2020; 11
Kirk (2023011917132849300_ref35) 2018; 50
Zhang (2023011917132849300_ref13) 2021; 214
Mudiyanselage (2023011917132849300_ref19) 2021; 198
Wang (2023011917132849300_ref18) 2021; 22
Meng (2023011917132849300_ref32) 2019; 2019
Wei (2023011917132849300_ref11) 2021; 37
Schriml (2023011917132849300_ref27) 2019; 47
Glazar (2023011917132849300_ref25) 2014; 20
Li (2023011917132849300_ref29) 2014; 42
Huang (2023011917132849300_ref2) 2020; 10
He (2023011917132849300_ref42) 2020; 16
Jeck (2023011917132849300_ref1) 2014; 32
Lu (2023011917132849300_ref33) 2018; 34
Yan (2023011917132849300_ref8) 2018; 19
Hu (2023011917132849300_ref44) 2020; 26
Huang (2023011917132849300_ref30) 2019; 47
Tong (2023011917132849300_ref52) 2020; 72
Xu (2023011917132849300_ref53) 2020; 20
Ma (2023011917132849300_ref49) 2020; 19
Xiao (2023011917132849300_ref10) 2019; 23
Lan (2023011917132849300_ref20) 2022; 23
Deng (2023011917132849300_ref50) 2020; 39
Xiao (2023011917132849300_ref12) 2021; 22
Shi (2023011917132849300_ref40) 2020; 24
Niu (2023011917132849300_ref22) 2022; 38
Zhang (2023011917132849300_ref21) 2022; 23
Piñero (2023011917132849300_ref28) 2020; 48
2023011917132849300_ref37
Zhao (2023011917132849300_ref7) 2019; 18
Ning (2023011917132849300_ref31) 2021; 49
Xu (2023011917132849300_ref41) 2020; 26
Wang (2023011917132849300_ref47) 2020; Volume 13
Lei (2023011917132849300_ref4) 2020; 10
Li (2023011917132849300_ref26) 2019; 47
Lu (2023011917132849300_ref14) 2020; 25
Peng (2023011917132849300_ref51) 2020; 10
Xu (2023011917132849300_ref3) 2020; 19
Fan (2023011917132849300_ref6) 2018; 14
Zhou (2023011917132849300_ref24) 2020; 19
Wang (2023011917132849300_ref39) 2020; 16
Cai (2023011917132849300_ref43) 2021; 288
Wang (2023011917132849300_ref15) 2020; 36
Wang (2023011917132849300_ref17) 2020; 51
2023011917132849300_ref34
Li (2023011917132849300_ref5) 2020; 112
2023011917132849300_ref36
Lu (2023011917132849300_ref48) 2020; 471
References_xml – volume: 19
  start-page: 73
  issue: S19
  year: 2018
  ident: 2023011917132849300_ref8
  article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2522-6
– volume: 20
  start-page: 1666
  issue: 11
  year: 2014
  ident: 2023011917132849300_ref25
  article-title: CircBase: a database for circular RNAs
  publication-title: RNA
  doi: 10.1261/rna.043687.113
– volume: 288
  start-page: 861
  issue: 3
  year: 2021
  ident: 2023011917132849300_ref43
  article-title: Hsa_circ_0000515 is a novel circular RNA implicated in the development of breast cancer through its regulation of the microRNA-296-5p/CXCL10 axis
  publication-title: FEBS J
  doi: 10.1111/febs.15373
– volume: 10
  start-page: 3503
  issue: 8
  year: 2020
  ident: 2023011917132849300_ref2
  article-title: Circular RNA-protein interactions: functions, mechanisms, and identification
  publication-title: Theranostics
  doi: 10.7150/thno.42174
– volume: 471
  start-page: 38
  year: 2020
  ident: 2023011917132849300_ref48
  article-title: Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.11.038
– volume: 11
  start-page: 485
  year: 2020
  ident: 2023011917132849300_ref45
  article-title: circRNA_103809 suppresses the proliferation and metastasis of breast cancer cells by sponging microRNA-532-3p (miR-532-3p)
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00485
– volume: 25
  start-page: 891
  issue: 3
  year: 2020
  ident: 2023011917132849300_ref14
  article-title: Deep matrix factorization improves prediction of human circRNA-disease associations
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2999638
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref24
  article-title: Circular RNA: metabolism, functions and interactions with proteins
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01286-3
– volume: 198
  start-page: 32
  year: 2021
  ident: 2023011917132849300_ref19
  article-title: Predicting CircRNA disease associations using novel node classification and link prediction models on graph convolutional networks
  publication-title: Methods
  doi: 10.1016/j.ymeth.2021.10.008
– volume: 23
  start-page: bbac083
  issue: 3
  year: 2022
  ident: 2023011917132849300_ref21
  article-title: iGRLCDA: identifying circRNA-disease association based on graph representation learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac083
– volume: 23
  start-page: 2661
  issue: 6
  year: 2019
  ident: 2023011917132849300_ref10
  article-title: Computational prediction of human disease-associated circRNAs based on manifold regularization learning framework
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2891779
– volume: 32
  start-page: 453
  issue: 5
  year: 2014
  ident: 2023011917132849300_ref1
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2890
– volume: 214
  start-page: 106694
  year: 2021
  ident: 2023011917132849300_ref13
  article-title: Prediction of disease-associated circRNAs via circRNA-disease pair graph and weighted nuclear norm minimization
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106694
– volume: Volume 13
  start-page: 7357
  year: 2020
  ident: 2023011917132849300_ref47
  article-title: Knockdown of circ_0000512 inhibits cell proliferation and promotes apoptosis in colorectal cancer by regulating miR-296-5p/RUNX1 axis
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S250495
– volume: 11
  start-page: 357
  year: 2020
  ident: 2023011917132849300_ref46
  article-title: Dysregulation of CircRNA_0001946 contributes to the proliferation and metastasis of colorectal cancer cells by targeting MicroRNA-135a-5p
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00357
– volume: 39
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref50
  article-title: Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-019-1487-2
– volume: 14
  start-page: 1950
  issue: 14
  year: 2018
  ident: 2023011917132849300_ref6
  article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks
  publication-title: Int J Biol
  doi: 10.7150/ijbs.28260
– volume: 2019
  start-page: baz003
  year: 2019
  ident: 2023011917132849300_ref32
  article-title: CircFunBase: a database for functional circular RNAs
  publication-title: Database
  doi: 10.1093/database/baz003
– volume: 49
  start-page: D160
  issue: D1
  year: 2021
  ident: 2023011917132849300_ref31
  article-title: MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa707
– volume: 34
  start-page: 3357
  issue: 19
  year: 2018
  ident: 2023011917132849300_ref33
  article-title: Prediction of lncRNA-disease associations based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty327
– volume-title: Proceedings of the 33rd Advances in Neural Information Processing Systems (Neurips 2019)
  ident: 2023011917132849300_ref37
– volume: PP
  start-page: 1
  year: 2021
  ident: 2023011917132849300_ref38
  article-title: MGRCDA: Metagraph recommendation method for predicting CircRNA-disease association
  publication-title: IEEE Trans Cybern
– volume: 47
  start-page: D955
  issue: D1
  year: 2019
  ident: 2023011917132849300_ref27
  article-title: Human disease ontology 2018 update: classification, content and workflow expansion
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1032
– volume: 36
  start-page: 5656
  issue: 24
  year: 2020
  ident: 2023011917132849300_ref16
  article-title: Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa1077
– volume: 36
  start-page: 4038
  issue: 13
  year: 2020
  ident: 2023011917132849300_ref15
  article-title: An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz825
– volume: 22
  start-page: 1
  issue: 5
  year: 2021
  ident: 2023011917132849300_ref18
  article-title: SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab028
– volume-title: 6th International Conference on Learning Representations
  ident: 2023011917132849300_ref34
  article-title: Graph attention networks
– volume: 112
  start-page: 103624
  year: 2020
  ident: 2023011917132849300_ref5
  article-title: Potential circRNA-disease association prediction using DeepWalk and network consistency projection
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103624
– volume: 38
  start-page: 2246
  issue: 8
  year: 2022
  ident: 2023011917132849300_ref22
  article-title: GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac079
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref51
  article-title: Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/$\beta$-catenin pathway
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74452-8
– volume: 72
  start-page: 68
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref52
  article-title: CircZNF609/miR-134-5p/BTG-2 axis regulates proliferation and migration of glioma cell
  publication-title: J Pharm Pharmacol
  doi: 10.1111/jphp.13188
– volume: 21
  start-page: 1356
  issue: 4
  year: 2020
  ident: 2023011917132849300_ref9
  article-title: iCircDA-MF: identification of circRNA-disease associations based on matrix factorization
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz057
– volume: 18
  start-page: 578
  issue: 4
  year: 2019
  ident: 2023011917132849300_ref7
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2019.2922214
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref53
  article-title: Exosome-transferred hsa_circ_0014235 promotes DDP chemoresistance and deteriorates the development of non-small cell lung cancer by mediating the miR-520a-5p/CDK4 pathway
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-01642-9
– volume: 26
  start-page: e922253
  year: 2020
  ident: 2023011917132849300_ref44
  article-title: Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.922253
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref3
  article-title: CircRNA inhibits DNA damage repair by interacting with host gene
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01246-x
– volume-title: Proceedings of the 31st International Conference on Machine Learning (ICML 2014)
  ident: 2023011917132849300_ref36
– volume: 23
  start-page: bbab494
  issue: 1
  year: 2022
  ident: 2023011917132849300_ref20
  article-title: KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab494
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref23
  article-title: Accurate quantification of circular RNAs identifies extensive circular isoform switching events
  publication-title: Nat Commun
– volume: 47
  start-page: D1013
  issue: D1
  year: 2019
  ident: 2023011917132849300_ref30
  article-title: HMDD v3. 0: a database for experimentally supported human microRNA-disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1010
– volume: 24
  start-page: 11397
  issue: 19
  year: 2020
  ident: 2023011917132849300_ref40
  article-title: Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15741
– volume: 16
  start-page: 172
  year: 2020
  ident: 2023011917132849300_ref42
  article-title: circRNA circFUT8 upregulates krüpple-like factor 10 to inhibit the metastasis of bladder cancer via sponging miR-570-3p
  publication-title: Mol Ther
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref49
  article-title: Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ ADAR1 successive regulatory circuit
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01268-5
– volume: 37
  start-page: 3302
  issue: 19
  year: 2021
  ident: 2023011917132849300_ref11
  article-title: iCircDA-LTR: identification of circRNA-disease associations based on learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab334
– volume: 22
  start-page: 1
  issue: 6
  year: 2021
  ident: 2023011917132849300_ref12
  article-title: NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab177
– volume: 26
  start-page: 1766
  issue: 6
  year: 2020
  ident: 2023011917132849300_ref41
  article-title: Circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/$\beta$-catenin pathway and oxidative stress
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16072
– volume: 48
  start-page: D845
  issue: D1
  year: 2020
  ident: 2023011917132849300_ref28
  article-title: The DisGeNET knowledge platform for disease genomics: 2019 update
  publication-title: Nucleic Acids Res
– volume: 51
  start-page: 5522
  issue: 11
  year: 2020
  ident: 2023011917132849300_ref17
  article-title: IMS-CDA: prediction of CircRNA-disease associations from the integration of multisource similarity information with deep stacked autoencoder model
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3022852
– volume: 16
  start-page: e1007568
  issue: 5
  year: 2020
  ident: 2023011917132849300_ref39
  article-title: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007568
– volume: 10
  start-page: 1943
  issue: 1
  year: 2020
  ident: 2023011917132849300_ref4
  article-title: Integrating random walk with restart and k-nearest neighbor to identify novel circRNA-disease association
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59040-0
– volume: 42
  start-page: D92
  issue: D1
  year: 2014
  ident: 2023011917132849300_ref29
  article-title: starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1248
– volume: 47
  start-page: W536
  issue: W1
  year: 2019
  ident: 2023011917132849300_ref26
  article-title: MISIM v2. 0: a web server for inferring microRNA functional similarity based on microRNA-disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz328
– volume: 50
  start-page: 1474
  issue: 10
  year: 2018
  ident: 2023011917132849300_ref35
  article-title: Functional classification of long non-coding RNAs by k-mer content
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0207-8
SSID ssj0020781
Score 2.3771431
Snippet Abstract Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for...
Emerging evidence has proved that circular RNAs (circRNAs) are implicated in pathogenic processes. They are regarded as promising biomarkers for diagnosis due...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Associations
Biomarkers
Circular RNA
Closed loops
Computational Biology - methods
Computer applications
Graph neural networks
Graph theory
Heterogeneity
MicroRNAs - genetics
Neural networks
Neural Networks, Computer
Pathogenesis
RNA, Circular - genetics
Title Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/36572658
https://www.proquest.com/docview/3113461710
https://www.proquest.com/docview/2758578438
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-4054
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: ABDBF
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: OVEED
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford University Press Open Access
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5SELyIb6tVI_QkhO5usq9jEUurWEFa6G3Jsxa0lbYe-u-dbNKFatFbYLPMMpPszJfJfINQk-dc2gQUyQFQE6YzRTgDzAPBhAgoM4aVvQGf-0l3yB5H8chfkF1sSeHntCUmoiUEl4Bk4FcL7tc2Khi8jCpcZflqXBFRSiy7uy_D-_HuhuPZKGb7FVOWvqVzgPZ9UIjbzoqHaEdPj9CuaxO5OkYfPVuVZw_gsM-nEO61qhWWk7l87bcXWKxweT2QuAN5zMeApcel5rF1VgrD4M1ef5nBqtEA-XFJV40tpyWIn7ob4Sdo2HkY3HeJb5NAJGXZkjDGMxbKVGnDMxUmigmWKBNAJGKEzDXnlhYtMhK0QJMwlEmqIwk4AYapSSk9RbXpbKrPETYZyzR4-CA2gvFY5ZY5IEllopQKQEwd3a11WEjPIW5bWbwXLpdNC1B44RVeR81q8qejztg-7QaM8feMxtpQhd9hi4KGIWUQfoVBHd1Wj2Fv2IQHL5VYRBYMpRmj8OFnzsCVHJrEaQTh18W_4i_Rnu0xb89dwryBasv5l76CSGQpriEG7z1dl6vxG2h13aQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+disease-associated+circRNAs+by+multi-source+aggregation+based+on+heterogeneous+graph+neural+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Lu%2C+Chengqian&rft.au=Zhang%2C+Lishen&rft.au=Zeng%2C+Min&rft.au=Lan%2C+Wei&rft.date=2023-01-19&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac549&rft_id=info%3Apmid%2F36572658&rft.externalDocID=36572658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon