Utilizing machine learning for detecting flowering in mid-range digital repeat photography
The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology,...
Saved in:
Published in | Ecological modelling Vol. 440; p. 109419 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3800 |
DOI | 10.1016/j.ecolmodel.2020.109419 |
Cover
Abstract | The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology.
[Display omitted] |
---|---|
AbstractList | The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology.
[Display omitted] The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology. |
ArticleNumber | 109419 |
Author | Won, Myoungsoo Jang, Keunchang Lee, Kye-Han Park, Yeong Dae Kim, Sukyung Yoon, Sukhee Lim, Jong-Hwan Kim, Hyun Seok Kim, Tae Kyung |
Author_xml | – sequence: 1 givenname: Tae Kyung surname: Kim fullname: Kim, Tae Kyung organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea – sequence: 2 givenname: Sukyung surname: Kim fullname: Kim, Sukyung organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea – sequence: 3 givenname: Myoungsoo surname: Won fullname: Won, Myoungsoo organization: Forest Restoration and Resource Management Division, National Institute of Forest Science, Seoul 02455, Republic of Korea – sequence: 4 givenname: Jong-Hwan surname: Lim fullname: Lim, Jong-Hwan organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea – sequence: 5 givenname: Sukhee surname: Yoon fullname: Yoon, Sukhee organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea – sequence: 6 givenname: Keunchang surname: Jang fullname: Jang, Keunchang organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea – sequence: 7 givenname: Kye-Han surname: Lee fullname: Lee, Kye-Han organization: Department of Forest Resources, Chonnam National University, Gwangju 61186, Republic of Korea – sequence: 8 givenname: Yeong Dae surname: Park fullname: Park, Yeong Dae organization: Department of Forest Resources, Daegu University, Gyeongsan 38453, Republic of Korea – sequence: 9 givenname: Hyun Seok surname: Kim fullname: Kim, Hyun Seok email: cameroncrazies@snu.ac.kr organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea |
BookMark | eNqNkD9PIzEQxV2ABAE-A1vSbBj_SbJbXBEhOJCQaKChsSb2JHHktfdswwk-PbsEXUFzVDPz9N7T6DdhByEGYuycw5QDn1_upmSi76IlPxUgRrVVvD1gxyBB1bIBOGKTnHcAwEUjjtnzU3HevbuwqTo0Wxeo8oQpjMI6pspSIVM-Lx__Uho3F6rO2Tph2FBl3cYV9FWinrBU_TaWuEnYb99O2eEafaazr3nCnm6uH69u6_uH33dXy_vaSNWUWlqUKGbNnEApo5qVRTtruZxDI8Vq1gLCQgqOaCws1NwYbloxExLEGlfNCuQJu9j39in-eaFcdOeyIe8xUHzJejAroQY-crD-2ltNijknWmszPF9cDCWh85qDHjnqnf7HUY8c9Z7jkF98y_fJdZjefpBc7pM0kHh1lHQ2joIh69IAWNvo_tvxAfXNl3U |
CitedBy_id | crossref_primary_10_1016_j_agrformet_2022_108900 crossref_primary_10_3390_f14051050 crossref_primary_10_3390_insects16030278 crossref_primary_10_1111_geb_13612 crossref_primary_10_1038_s41598_022_08571_9 crossref_primary_10_3390_inventions6020042 crossref_primary_10_3389_fpls_2022_805738 crossref_primary_10_3390_rs14020286 crossref_primary_10_3390_rs16030541 |
Cites_doi | 10.1016/j.rse.2018.06.028 10.1111/2041-210X.13099 10.1890/06-2128.1 10.1016/j.ecoinf.2019.01.012 10.1111/j.1365-2486.2006.01193.x 10.1890/13-0652.1 10.1016/S0034-4257(02)00135-9 10.5194/bg-12-5995-2015 10.1109/Agro-Geoinformatics.2017.8046996 10.1145/3065386 10.1126/science.1071617 10.1016/j.gecco.2018.e00461 10.3390/rs10040649 10.1371/journal.pone.0057373 10.1007/s00267-008-9086-6 10.1109/ACCESS.2020.2965462 10.1016/j.jmva.2019.104536 10.1146/annurev.ecolsys.37.091305.110100 10.1113/jphysiol.1968.sp008455 10.1016/j.agrformet.2012.09.012 10.1111/2041-210X.13132 10.1007/s004840000054 10.1098/rstb.2012.0489 10.1007/s00442-006-0657-z 10.1016/j.agrformet.2017.10.015 10.5194/bg-13-5085-2016 10.1002/ecs2.1436 10.1890/08-2022.1 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ecolmodel.2020.109419 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
ExternalDocumentID | 10_1016_j_ecolmodel_2020_109419 S0304380020304774 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G AALCJ AAQXK AATTM AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEN SEW SSH VH1 WUQ ZY4 7S9 ACLOT EFKBS EFLBG L.6 ~HD |
ID | FETCH-LOGICAL-c348t-3da3a2586e044c48bdad591360832b590a07321aacd0746cc1c9252302fab8b03 |
IEDL.DBID | .~1 |
ISSN | 0304-3800 |
IngestDate | Sun Sep 28 03:13:29 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 03:09:12 EDT 2025 Tue Dec 03 03:44:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-3da3a2586e044c48bdad591360832b590a07321aacd0746cc1c9252302fab8b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2524241013 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524241013 crossref_citationtrail_10_1016_j_ecolmodel_2020_109419 crossref_primary_10_1016_j_ecolmodel_2020_109419 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2020_109419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ecological modelling |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Inouye (bib0018) 2008; 89 Abramovich, Pensky (bib0001) 2019; 174 IPCC. 2007. Impacts, adaptation and vulnerability. Summary for policymakers. Working Group II contribution to the intergovernmental panel on climate change fourth assessment report, Brussels, April 2007. Krizhevsky, Sutskever, Hinton (bib0026) 2017; 60 Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics. pp. 1-5. doi Crimmins, Crimmins (bib0008) 2008; 41 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bib0049) 2003; 84 Meier (bib0033) 1997 Richardson, Braswell, Hollinger, Jenkins, Ollinger (bib0042) 2009; 19 Katarki, Ranmale, Bidari, Chickerur (bib0020) 2019 Mao, Shen, Yang (bib0031) 2016 Nijhawan, Sharma, Sahni, Batra (bib0038) 2017 Fitter, Fitter (bib0010) 2002; 296 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Adam (bib0015) 2017 Gray, Fleishman, Klein, McKown, Bézy, Lohmann, Johnston (bib0012) 2019; 10 Zoph, Vasudevan, Shlens, Le (bib0050) 2018 Liu, Tang, Zhou, Meng, Dong (bib0028) 2016 Lori, Derek, Nancy, John, Judy, Jeanne (bib0029) 2018; 16 Moore, Brown, Keenan, Duursma, Van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, Van Gorsel, Liddell (bib0037) 2016; 13 Hubel, Wiesel (bib0016) 1968; 195 . Carpentier, Giguère, Gaudreault (bib0006) 2018 Gogul, Kumar (bib0011) 2017 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0043) 2017 Bayr, Puschmann (bib0005) 2019; 50 Richardson, Jenkins, Braswell, Hollinger, Ollinger, Smith (bib0040) 2007; 152 Ayrey, Hayes (bib0004) 2018; 10 Hedjazi, Kourbane, Genc (bib0014) 2017 Alberton, Torres, Cancian, Borges, Almeida, Mariano, Morellato (bib0002) 2017; 15 Iler, Høye, Inouye, Schmidt (bib0017) 2013; 368 Keenan, Darby, Felts, Sonnentag, Friedl, Hufkens, Richardson (bib0021) 2014; 24 Kellenberger, Marcos, Tuia (bib0022) 2018; 216 Klosterman, Melaas, Wang, Martinez, Frederick, O’Keefe, Friedl (bib0025) 2018; 248 Correia, Bouachir, Gervais, Pureswaran, Kneeshaw, De Grandpré (bib0007) 2020; 8 Mizoguchi, Ishii, Nakamura, Inoue, Takamatsu (bib0036) 2017; 10332 Parmesan (bib0039) 2006; 37 He, Zhang, Ren, Sun (bib0013) 2016 Masters, D., & Luschi, C. 2018. Revisiting small batch training for deep neural networks. arXiv preprint Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J., & Yang, X. 2016. SPECIAL FEATURE : INTERNATIONAL LTER Emerging opportunities and challenges in phenology : a review, 7(August), 1–17. Archetti, Richardson, O’Keefe, Delpierre (bib0003) 2013; 8 Wingate, Ogée, Cremonese, Filippa, Mizunuma, Migliavacca, Moisy, Wilkinson, Moureaux, Wohlfahrt, Hammerle, Hörtnagl, Gimeno, Porcar-Castell, Galvagno, Nakaji, Morison, Kolle, Knohl, Kutsch, Kolari, Nikinmaa, Ibrom, Gielen, Eugster, Balzarolo, Papale, Klumpp, Köstner, Grünwald, Joffre, Ourcival, Hellstrom, Lindroth, George, Longdoz, Genty, Levula, Heinesch, Sprintsin, Yakir, Manise, Guyon, Ahrends, Plaza-Aguilar, Guan, Grace (bib0047) 2015; 12 Richardson, Keenan, Migliavacca, Ryu, Sonnentag, Toomey (bib0041) 2013; 169 Maire, Alvarez, Hodgson (bib0030) 2015 Simonyan, K., & Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint Menzel, Sparks, Estella, Koch, Aasa, Ahas, Alm-Kübler, Bissolli, Braslavská, Briede, Chmielewski, Crepinsek, Curnel, Dahl, Defila, Donnelly, Filella, Jatczak, Måge, Mestre, Nordli, Peñuelas, Pirinen, Remišová, Scheifinger, Striz, Susnik, Van Vliet, Wielgolaski, Zach, Zust (bib0035) 2006; 12 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0009) 2009 Willi, Pitman, Cardoso, Locke, Swanson, Boyer, Fortson (bib0046) 2019; 10 Lee, Chan, Wilkin, Remagnino (bib0027) 2015 Khan, Sohail, Zahoora, Qureshi (bib0023) 2019 Kingma, D.P., & Ba, J. 2014. Adam: a method for stochastic optimization. arXiv preprint Menzel (bib0034) 2000; 44 Crimmins (10.1016/j.ecolmodel.2020.109419_bib0008) 2008; 41 10.1016/j.ecolmodel.2020.109419_bib0024 Maire (10.1016/j.ecolmodel.2020.109419_bib0030) 2015 Richardson (10.1016/j.ecolmodel.2020.109419_bib0042) 2009; 19 Gray (10.1016/j.ecolmodel.2020.109419_bib0012) 2019; 10 Nijhawan (10.1016/j.ecolmodel.2020.109419_bib0038) 2017 Klosterman (10.1016/j.ecolmodel.2020.109419_bib0025) 2018; 248 Keenan (10.1016/j.ecolmodel.2020.109419_bib0021) 2014; 24 Menzel (10.1016/j.ecolmodel.2020.109419_bib0035) 2006; 12 Hedjazi (10.1016/j.ecolmodel.2020.109419_bib0014) 2017 Lori (10.1016/j.ecolmodel.2020.109419_bib0029) 2018; 16 Moore (10.1016/j.ecolmodel.2020.109419_bib0037) 2016; 13 Krizhevsky (10.1016/j.ecolmodel.2020.109419_bib0026) 2017; 60 Hubel (10.1016/j.ecolmodel.2020.109419_bib0016) 1968; 195 Carpentier (10.1016/j.ecolmodel.2020.109419_bib0006) 2018 Liu (10.1016/j.ecolmodel.2020.109419_bib0028) 2016 Alberton (10.1016/j.ecolmodel.2020.109419_bib0002) 2017; 15 Khan (10.1016/j.ecolmodel.2020.109419_bib0023) 2019 Parmesan (10.1016/j.ecolmodel.2020.109419_bib0039) 2006; 37 10.1016/j.ecolmodel.2020.109419_bib0032 Iler (10.1016/j.ecolmodel.2020.109419_bib0017) 2013; 368 He (10.1016/j.ecolmodel.2020.109419_bib0013) 2016 Katarki (10.1016/j.ecolmodel.2020.109419_bib0020) 2019 Menzel (10.1016/j.ecolmodel.2020.109419_bib0034) 2000; 44 Zhang (10.1016/j.ecolmodel.2020.109419_bib0049) 2003; 84 Richardson (10.1016/j.ecolmodel.2020.109419_bib0041) 2013; 169 Kellenberger (10.1016/j.ecolmodel.2020.109419_bib0022) 2018; 216 Willi (10.1016/j.ecolmodel.2020.109419_bib0046) 2019; 10 Gogul (10.1016/j.ecolmodel.2020.109419_bib0011) 2017 Richardson (10.1016/j.ecolmodel.2020.109419_bib0040) 2007; 152 10.1016/j.ecolmodel.2020.109419_bib0045 10.1016/j.ecolmodel.2020.109419_bib0044 Zoph (10.1016/j.ecolmodel.2020.109419_bib0050) 2018 Wingate (10.1016/j.ecolmodel.2020.109419_bib0047) 2015; 12 Inouye (10.1016/j.ecolmodel.2020.109419_bib0018) 2008; 89 Correia (10.1016/j.ecolmodel.2020.109419_bib0007) 2020; 8 Lee (10.1016/j.ecolmodel.2020.109419_bib0027) 2015 Fitter (10.1016/j.ecolmodel.2020.109419_bib0010) 2002; 296 Howard (10.1016/j.ecolmodel.2020.109419_bib0015) 2017 10.1016/j.ecolmodel.2020.109419_bib0019 Archetti (10.1016/j.ecolmodel.2020.109419_bib0003) 2013; 8 Mao (10.1016/j.ecolmodel.2020.109419_bib0031) 2016 Deng (10.1016/j.ecolmodel.2020.109419_bib0009) 2009 10.1016/j.ecolmodel.2020.109419_bib51 Abramovich (10.1016/j.ecolmodel.2020.109419_bib0001) 2019; 174 Meier (10.1016/j.ecolmodel.2020.109419_bib0033) 1997 Ayrey (10.1016/j.ecolmodel.2020.109419_bib0004) 2018; 10 Bayr (10.1016/j.ecolmodel.2020.109419_bib0005) 2019; 50 Selvaraju (10.1016/j.ecolmodel.2020.109419_bib0043) 2017 Mizoguchi (10.1016/j.ecolmodel.2020.109419_bib0036) 2017; 10332 |
References_xml | – volume: 296 start-page: 1689 year: 2002 end-page: 1691 ident: bib0010 article-title: Rapid changes in flowering time in British plants publication-title: Science – reference: Masters, D., & Luschi, C. 2018. Revisiting small batch training for deep neural networks. arXiv preprint – start-page: 8697 year: 2018 end-page: 8710 ident: bib0050 article-title: Learning transferable architectures for scalable image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 152 start-page: 323 year: 2007 end-page: 334 ident: bib0040 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia – volume: 12 start-page: 5995 year: 2015 end-page: 6015 ident: bib0047 article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites publication-title: Biogeosciences – volume: 195 start-page: 215 year: 1968 end-page: 243 ident: bib0016 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. (Lond.) – start-page: 1 year: 2017 end-page: 6 ident: bib0011 article-title: Flower species recognition system using convolution neural networks and transfer learning publication-title: 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN) – start-page: 618 year: 2017 end-page: 626 ident: bib0043 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics. pp. 1-5. doi: – volume: 216 start-page: 139 year: 2018 end-page: 153 ident: bib0022 article-title: Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote Sens. Environ. – reference: Kingma, D.P., & Ba, J. 2014. Adam: a method for stochastic optimization. arXiv preprint – volume: 15 start-page: 82 year: 2017 end-page: 90 ident: bib0002 article-title: Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation publication-title: Perspect. Ecol. Conservat. – volume: 19 start-page: 1417 year: 2009 end-page: 1428 ident: bib0042 article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology publication-title: Ecol. Appl. – volume: 41 start-page: 949 year: 2008 end-page: 958 ident: bib0008 article-title: Monitoring plant phenology using digital repeat photography publication-title: Environ. Manage. – volume: 16 start-page: e00461 year: 2018 ident: bib0029 article-title: Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles publication-title: Global Ecol. Conservat. – start-page: 379 year: 2015 end-page: 385 ident: bib0030 article-title: Automating marine mammal detection in aerial images captured during wildlife surveys: a deep learning approach publication-title: Australasian Joint Conference on Artificial Intelligence – volume: 8 start-page: e57373 year: 2013 ident: bib0003 article-title: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest publication-title: PLoS ONE – start-page: 248 year: 2009 end-page: 255 ident: bib0009 article-title: Imagenet: a large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 13 start-page: 5085 year: 2016 end-page: 5102 ident: bib0037 article-title: Reviews and syntheses: australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography publication-title: Biogeosciences – volume: 10 start-page: 80 year: 2019 end-page: 91 ident: bib0046 article-title: Identifying animal species in camera trap images using deep learning and citizen science publication-title: Method. Ecol. Evolut. – volume: 248 start-page: 397 year: 2018 end-page: 407 ident: bib0025 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. – year: 2019 ident: bib0023 article-title: A Survey of the Recent Architectures of Deep Convolutional Neural Networks – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib0026 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 44 start-page: 76 year: 2000 end-page: 81 ident: bib0034 article-title: Trends in phenological phases in Europe between 1951 and 1996 publication-title: Int. J. Biometeorol. – volume: 10332 year: 2017 ident: bib0036 article-title: Lidar-based individual tree species classification using convolutional neural network publication-title: Videometrics, Range Imaging, and Applications XIV – volume: 24 start-page: 1478 year: 2014 end-page: 1489 ident: bib0021 article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment publication-title: Ecol. Appl. – start-page: 452 year: 2015 end-page: 456 ident: bib0027 article-title: Deep-plant: plant identification with convolutional neural networks publication-title: 2015 IEEE International Conference on Image Processing (ICIP) – start-page: 1 year: 2017 end-page: 4 ident: bib0014 article-title: On identifying leaves: a comparison of CNN with classical ML methods publication-title: 2017 25th Signal Processing and Communications Applications Conference (SIU) – volume: 368 year: 2013 ident: bib0017 article-title: Nonlinear flowering responses to climate: are species approaching their limits of phenological change? publication-title: Philos. Trans. R. Soc. B – reference: Simonyan, K., & Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint – volume: 10 start-page: 649 year: 2018 ident: bib0004 article-title: The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory publication-title: Remote Sens. (Basel) – volume: 8 start-page: 13151 year: 2020 end-page: 13160 ident: bib0007 article-title: Leveraging artificial intelligence for large-scale plant phenology studies from noisy time-lapse images publication-title: IEEE Access – start-page: 110 year: 2016 end-page: 116 ident: bib0028 article-title: Flower classification via convolutional neural network publication-title: 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA) – volume: 174 year: 2019 ident: bib0001 article-title: Classification with many classes: challenges and pluses publication-title: J. Multivar. Anal. – start-page: 1075 year: 2018 end-page: 1081 ident: bib0006 article-title: Tree species identification from bark images using convolutional neural networks publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 50 start-page: 220 year: 2019 end-page: 233 ident: bib0005 article-title: Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network publication-title: Ecol. Inform. – start-page: 1 year: 2019 end-page: 8 ident: bib0020 article-title: Estimating change detection of forest area using satellite imagery publication-title: 2019 International Conference on Data Science and Communication (IconDSC) – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bib0049 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – year: 2017 ident: bib0015 article-title: arXiv preprint – volume: 37 start-page: 637 year: 2006 end-page: 669 ident: bib0039 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annu. Rev. Ecol. Evol. Syst. – reference: . – reference: Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J., & Yang, X. 2016. SPECIAL FEATURE : INTERNATIONAL LTER Emerging opportunities and challenges in phenology : a review, 7(August), 1–17. – volume: 10 start-page: 345 year: 2019 end-page: 355 ident: bib0012 article-title: A convolutional neural network for detecting sea turtles in drone imagery publication-title: Method. Ecol. Evolut. – start-page: 770 year: 2016 end-page: 778 ident: bib0013 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 89 start-page: 353 year: 2008 end-page: 362 ident: bib0018 article-title: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers publication-title: Ecology – start-page: 2802 year: 2016 end-page: 2810 ident: bib0031 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Adv. Neural Inf. Process Syst. – year: 1997 ident: bib0033 article-title: Growth Stages of Mono-and Dicotyledonous Plants – volume: 12 start-page: 1969 year: 2006 end-page: 1976 ident: bib0035 article-title: European phenological response to climate change matches the warming pattern publication-title: Glob Chang Biol. – volume: 169 start-page: 156 year: 2013 end-page: 173 ident: bib0041 article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system publication-title: Agric. Forest Meteorol. – reference: IPCC. 2007. Impacts, adaptation and vulnerability. Summary for policymakers. Working Group II contribution to the intergovernmental panel on climate change fourth assessment report, Brussels, April 2007. – start-page: 192 year: 2017 end-page: 196 ident: bib0038 article-title: A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features publication-title: 2017 13th International Conference On Signal-Image Technology & Internet-Based Systems (SITIS) – start-page: 110 year: 2016 ident: 10.1016/j.ecolmodel.2020.109419_bib0028 article-title: Flower classification via convolutional neural network – volume: 216 start-page: 139 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0022 article-title: Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.028 – start-page: 452 year: 2015 ident: 10.1016/j.ecolmodel.2020.109419_bib0027 article-title: Deep-plant: plant identification with convolutional neural networks – volume: 10 start-page: 80 issue: 1 year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0046 article-title: Identifying animal species in camera trap images using deep learning and citizen science publication-title: Method. Ecol. Evolut. doi: 10.1111/2041-210X.13099 – start-page: 2802 year: 2016 ident: 10.1016/j.ecolmodel.2020.109419_bib0031 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Adv. Neural Inf. Process Syst. – year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0015 – volume: 89 start-page: 353 issue: 2 year: 2008 ident: 10.1016/j.ecolmodel.2020.109419_bib0018 article-title: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers publication-title: Ecology doi: 10.1890/06-2128.1 – volume: 50 start-page: 220 year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0005 article-title: Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2019.01.012 – start-page: 1 year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0020 article-title: Estimating change detection of forest area using satellite imagery – volume: 12 start-page: 1969 year: 2006 ident: 10.1016/j.ecolmodel.2020.109419_bib0035 article-title: European phenological response to climate change matches the warming pattern publication-title: Glob Chang Biol. doi: 10.1111/j.1365-2486.2006.01193.x – start-page: 1075 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0006 article-title: Tree species identification from bark images using convolutional neural networks – volume: 24 start-page: 1478 issue: 6 year: 2014 ident: 10.1016/j.ecolmodel.2020.109419_bib0021 article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment publication-title: Ecol. Appl. doi: 10.1890/13-0652.1 – start-page: 1 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0011 article-title: Flower species recognition system using convolution neural networks and transfer learning – ident: 10.1016/j.ecolmodel.2020.109419_bib0044 – start-page: 770 year: 2016 ident: 10.1016/j.ecolmodel.2020.109419_bib0013 article-title: Deep residual learning for image recognition – volume: 84 start-page: 471 issue: 3 year: 2003 ident: 10.1016/j.ecolmodel.2020.109419_bib0049 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – start-page: 1 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0014 article-title: On identifying leaves: a comparison of CNN with classical ML methods – volume: 12 start-page: 5995 year: 2015 ident: 10.1016/j.ecolmodel.2020.109419_bib0047 article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites publication-title: Biogeosciences doi: 10.5194/bg-12-5995-2015 – year: 1997 ident: 10.1016/j.ecolmodel.2020.109419_bib0033 – ident: 10.1016/j.ecolmodel.2020.109419_bib51 doi: 10.1109/Agro-Geoinformatics.2017.8046996 – start-page: 248 year: 2009 ident: 10.1016/j.ecolmodel.2020.109419_bib0009 article-title: Imagenet: a large-scale hierarchical image database – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0026 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 10.1016/j.ecolmodel.2020.109419_bib0024 – volume: 296 start-page: 1689 issue: 5573 year: 2002 ident: 10.1016/j.ecolmodel.2020.109419_bib0010 article-title: Rapid changes in flowering time in British plants publication-title: Science doi: 10.1126/science.1071617 – volume: 16 start-page: e00461 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0029 article-title: Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles publication-title: Global Ecol. Conservat. doi: 10.1016/j.gecco.2018.e00461 – volume: 10 start-page: 649 issue: 4 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0004 article-title: The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory publication-title: Remote Sens. (Basel) doi: 10.3390/rs10040649 – start-page: 192 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0038 article-title: A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features – year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0023 – volume: 10332 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0036 article-title: Lidar-based individual tree species classification using convolutional neural network – volume: 8 start-page: e57373 issue: 3 year: 2013 ident: 10.1016/j.ecolmodel.2020.109419_bib0003 article-title: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest publication-title: PLoS ONE doi: 10.1371/journal.pone.0057373 – ident: 10.1016/j.ecolmodel.2020.109419_bib0032 – start-page: 618 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0043 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization – start-page: 8697 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0050 article-title: Learning transferable architectures for scalable image recognition – volume: 41 start-page: 949 issue: 6 year: 2008 ident: 10.1016/j.ecolmodel.2020.109419_bib0008 article-title: Monitoring plant phenology using digital repeat photography publication-title: Environ. Manage. doi: 10.1007/s00267-008-9086-6 – volume: 8 start-page: 13151 year: 2020 ident: 10.1016/j.ecolmodel.2020.109419_bib0007 article-title: Leveraging artificial intelligence for large-scale plant phenology studies from noisy time-lapse images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965462 – volume: 174 year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0001 article-title: Classification with many classes: challenges and pluses publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2019.104536 – volume: 15 start-page: 82 issue: 2 year: 2017 ident: 10.1016/j.ecolmodel.2020.109419_bib0002 article-title: Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation publication-title: Perspect. Ecol. Conservat. – volume: 37 start-page: 637 year: 2006 ident: 10.1016/j.ecolmodel.2020.109419_bib0039 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.37.091305.110100 – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 10.1016/j.ecolmodel.2020.109419_bib0016 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.1968.sp008455 – volume: 169 start-page: 156 year: 2013 ident: 10.1016/j.ecolmodel.2020.109419_bib0041 article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system publication-title: Agric. Forest Meteorol. doi: 10.1016/j.agrformet.2012.09.012 – volume: 10 start-page: 345 issue: 3 year: 2019 ident: 10.1016/j.ecolmodel.2020.109419_bib0012 article-title: A convolutional neural network for detecting sea turtles in drone imagery publication-title: Method. Ecol. Evolut. doi: 10.1111/2041-210X.13132 – volume: 44 start-page: 76 issue: 2 year: 2000 ident: 10.1016/j.ecolmodel.2020.109419_bib0034 article-title: Trends in phenological phases in Europe between 1951 and 1996 publication-title: Int. J. Biometeorol. doi: 10.1007/s004840000054 – volume: 368 issue: 1624 year: 2013 ident: 10.1016/j.ecolmodel.2020.109419_bib0017 article-title: Nonlinear flowering responses to climate: are species approaching their limits of phenological change? publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2012.0489 – volume: 152 start-page: 323 issue: 2 year: 2007 ident: 10.1016/j.ecolmodel.2020.109419_bib0040 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia doi: 10.1007/s00442-006-0657-z – ident: 10.1016/j.ecolmodel.2020.109419_bib0019 – volume: 248 start-page: 397 year: 2018 ident: 10.1016/j.ecolmodel.2020.109419_bib0025 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.015 – volume: 13 start-page: 5085 year: 2016 ident: 10.1016/j.ecolmodel.2020.109419_bib0037 article-title: Reviews and syntheses: australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography publication-title: Biogeosciences doi: 10.5194/bg-13-5085-2016 – ident: 10.1016/j.ecolmodel.2020.109419_bib0045 doi: 10.1002/ecs2.1436 – volume: 19 start-page: 1417 issue: 6 year: 2009 ident: 10.1016/j.ecolmodel.2020.109419_bib0042 article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology publication-title: Ecol. Appl. doi: 10.1890/08-2022.1 – start-page: 379 year: 2015 ident: 10.1016/j.ecolmodel.2020.109419_bib0030 article-title: Automating marine mammal detection in aerial images captured during wildlife surveys: a deep learning approach |
SSID | ssj0001282 |
Score | 2.388935 |
Snippet | The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109419 |
SubjectTerms | climate change color data collection digital images leaves neural networks phenology photography time series analysis trees |
Title | Utilizing machine learning for detecting flowering in mid-range digital repeat photography |
URI | https://dx.doi.org/10.1016/j.ecolmodel.2020.109419 https://www.proquest.com/docview/2524241013 |
Volume | 440 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0304-3800 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001282 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0304-3800 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001282 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0304-3800 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001282 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0304-3800 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001282 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0304-3800 databaseCode: AKRWK dateStart: 19750501 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001282 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jIngRnYrzY0TwWtem6dZ6E5lMxV10MLyENE21snVjqwc9-Lf7XppuTAQP3tKS0Pbl5X30vfd7hJxrzSMFitDppuDp8NRjThSG4LhKYBDUV8zHQuGHQac_5HejYFQj11UtDKZVWtlfynQjre2dtqVme5Zl7UcM6vnG3sHQURcxQRH9C3j64muV5gHy10YSuIOz13K8wMMbm44z4CgyA63EEXLndw31Q1YbBXSzQ7at5UivypfbJTWdN8hmz6BOfzTIQW9VsgbT7Jld7JHnYZGNs09QUXRiMic1ta0iXihYrDTRGEcwV2NsmYajLKeTLHHmWHlAk-wFO4vQuZ6B4Kaz12lhca73yfCm93Tdd2xHBUf5PCwcP5G-ZEHY0S7niodxIpMg8vwOGGIsDiJXwolnnpQqwT4kSnkqYvjfmKUyDmPXPyD1fJrrQ0J9rgOtXJ16gYQhC6UOsUWuZjzQbiKbpFNRUSgLN45dL8aiyit7E0vyCyS_KMnfJO5y4axE3Ph7yWW1TWKNeQTohb8Xn1UbK-BoYbxE5nr6vhDw5RwMHDCSj_7zgGOyxTARxvUcLzgh9WL-rk_BkinilmHVFtm4ur3vD74BjfPzrg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfQiPvHtCl5Dk81um3gTqVSrvWhBvCybzVYjNS1tPOivdybdVBTBg7ckZEkyu_vNTObxAZxaK2KDitBrDdDTEYOAe3EUoeOqcYGQvuIhFQrf9pqdvrh-kA8LcFHVwlBapcP-GaaXaO2uNJw0G-Msa9xRUC8s7R0KHbXEItSFREyuQf38qtvpzQEZIdgFE4RHA76leaGTNyxJZ9BX5GV3JUFdd35XUj_gutRBl2uw6oxHdj57v3VYsPkGLLXLxtPvG7Dd_qpaw9vctp1uwmO_yIbZB2op9lomT1rm2CKeGBqtLLUUSijPhsSaRkdZzl6z1JtQ8QFLsyciF2ETO0bsZuPnUeFaXW9B_7J9f9HxHKmCZ0IRFV6Y6lBzGTWtL4QRUZLqVMZB2ERbjCcy9jVueh5obVKiIjEmMDGnX8d8oJMo8cNtqOWj3O4AC4WV1vh2EEiNhzzSNiKWXMuFtH6qd6FZSVEZ13GciC-Gqkote1Fz8SsSv5qJfxf8-cDxrOnG30POqmlS39aPQtXw9-CTamIV7i4Kmejcjt6mCr9coI2DdvLefx5wDMud-9sbdXPV6-7DCqe8GD_wAnkAtWLyZg_RsCmSI7dwPwHS7vZZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+machine+learning+for+detecting+flowering+in+mid-range+digital+repeat+photography&rft.jtitle=Ecological+modelling&rft.au=Kim%2C+Tae+Kyung&rft.au=Kim%2C+Sukyung&rft.au=Won%2C+Myoungsoo&rft.au=Lim%2C+Jong-Hwan&rft.date=2021-01-15&rft.issn=0304-3800&rft.volume=440&rft.spage=109419&rft_id=info:doi/10.1016%2Fj.ecolmodel.2020.109419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2020_109419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |