Utilizing machine learning for detecting flowering in mid-range digital repeat photography

The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology,...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 440; p. 109419
Main Authors Kim, Tae Kyung, Kim, Sukyung, Won, Myoungsoo, Lim, Jong-Hwan, Yoon, Sukhee, Jang, Keunchang, Lee, Kye-Han, Park, Yeong Dae, Kim, Hyun Seok
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2021
Subjects
Online AccessGet full text
ISSN0304-3800
DOI10.1016/j.ecolmodel.2020.109419

Cover

Abstract The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology. [Display omitted]
AbstractList The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology. [Display omitted]
The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology.
ArticleNumber 109419
Author Won, Myoungsoo
Jang, Keunchang
Lee, Kye-Han
Park, Yeong Dae
Kim, Sukyung
Yoon, Sukhee
Lim, Jong-Hwan
Kim, Hyun Seok
Kim, Tae Kyung
Author_xml – sequence: 1
  givenname: Tae Kyung
  surname: Kim
  fullname: Kim, Tae Kyung
  organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 2
  givenname: Sukyung
  surname: Kim
  fullname: Kim, Sukyung
  organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 3
  givenname: Myoungsoo
  surname: Won
  fullname: Won, Myoungsoo
  organization: Forest Restoration and Resource Management Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
– sequence: 4
  givenname: Jong-Hwan
  surname: Lim
  fullname: Lim, Jong-Hwan
  organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
– sequence: 5
  givenname: Sukhee
  surname: Yoon
  fullname: Yoon, Sukhee
  organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
– sequence: 6
  givenname: Keunchang
  surname: Jang
  fullname: Jang, Keunchang
  organization: Forest Ecology and Climate Change Division, National Institute of Forest Science, Seoul 02455, Republic of Korea
– sequence: 7
  givenname: Kye-Han
  surname: Lee
  fullname: Lee, Kye-Han
  organization: Department of Forest Resources, Chonnam National University, Gwangju 61186, Republic of Korea
– sequence: 8
  givenname: Yeong Dae
  surname: Park
  fullname: Park, Yeong Dae
  organization: Department of Forest Resources, Daegu University, Gyeongsan 38453, Republic of Korea
– sequence: 9
  givenname: Hyun Seok
  surname: Kim
  fullname: Kim, Hyun Seok
  email: cameroncrazies@snu.ac.kr
  organization: Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
BookMark eNqNkD9PIzEQxV2ABAE-A1vSbBj_SbJbXBEhOJCQaKChsSb2JHHktfdswwk-PbsEXUFzVDPz9N7T6DdhByEGYuycw5QDn1_upmSi76IlPxUgRrVVvD1gxyBB1bIBOGKTnHcAwEUjjtnzU3HevbuwqTo0Wxeo8oQpjMI6pspSIVM-Lx__Uho3F6rO2Tph2FBl3cYV9FWinrBU_TaWuEnYb99O2eEafaazr3nCnm6uH69u6_uH33dXy_vaSNWUWlqUKGbNnEApo5qVRTtruZxDI8Vq1gLCQgqOaCws1NwYbloxExLEGlfNCuQJu9j39in-eaFcdOeyIe8xUHzJejAroQY-crD-2ltNijknWmszPF9cDCWh85qDHjnqnf7HUY8c9Z7jkF98y_fJdZjefpBc7pM0kHh1lHQ2joIh69IAWNvo_tvxAfXNl3U
CitedBy_id crossref_primary_10_1016_j_agrformet_2022_108900
crossref_primary_10_3390_f14051050
crossref_primary_10_3390_insects16030278
crossref_primary_10_1111_geb_13612
crossref_primary_10_1038_s41598_022_08571_9
crossref_primary_10_3390_inventions6020042
crossref_primary_10_3389_fpls_2022_805738
crossref_primary_10_3390_rs14020286
crossref_primary_10_3390_rs16030541
Cites_doi 10.1016/j.rse.2018.06.028
10.1111/2041-210X.13099
10.1890/06-2128.1
10.1016/j.ecoinf.2019.01.012
10.1111/j.1365-2486.2006.01193.x
10.1890/13-0652.1
10.1016/S0034-4257(02)00135-9
10.5194/bg-12-5995-2015
10.1109/Agro-Geoinformatics.2017.8046996
10.1145/3065386
10.1126/science.1071617
10.1016/j.gecco.2018.e00461
10.3390/rs10040649
10.1371/journal.pone.0057373
10.1007/s00267-008-9086-6
10.1109/ACCESS.2020.2965462
10.1016/j.jmva.2019.104536
10.1146/annurev.ecolsys.37.091305.110100
10.1113/jphysiol.1968.sp008455
10.1016/j.agrformet.2012.09.012
10.1111/2041-210X.13132
10.1007/s004840000054
10.1098/rstb.2012.0489
10.1007/s00442-006-0657-z
10.1016/j.agrformet.2017.10.015
10.5194/bg-13-5085-2016
10.1002/ecs2.1436
10.1890/08-2022.1
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2020.109419
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
ExternalDocumentID 10_1016_j_ecolmodel_2020_109419
S0304380020304774
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
AALCJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
ZY4
7S9
ACLOT
EFKBS
EFLBG
L.6
~HD
ID FETCH-LOGICAL-c348t-3da3a2586e044c48bdad591360832b590a07321aacd0746cc1c9252302fab8b03
IEDL.DBID .~1
ISSN 0304-3800
IngestDate Sun Sep 28 03:13:29 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Jul 01 03:09:12 EDT 2025
Tue Dec 03 03:44:58 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-3da3a2586e044c48bdad591360832b590a07321aacd0746cc1c9252302fab8b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524241013
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524241013
crossref_citationtrail_10_1016_j_ecolmodel_2020_109419
crossref_primary_10_1016_j_ecolmodel_2020_109419
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2020_109419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Ecological modelling
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Inouye (bib0018) 2008; 89
Abramovich, Pensky (bib0001) 2019; 174
IPCC. 2007. Impacts, adaptation and vulnerability. Summary for policymakers. Working Group II contribution to the intergovernmental panel on climate change fourth assessment report, Brussels, April 2007.
Krizhevsky, Sutskever, Hinton (bib0026) 2017; 60
Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics. pp. 1-5. doi
Crimmins, Crimmins (bib0008) 2008; 41
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bib0049) 2003; 84
Meier (bib0033) 1997
Richardson, Braswell, Hollinger, Jenkins, Ollinger (bib0042) 2009; 19
Katarki, Ranmale, Bidari, Chickerur (bib0020) 2019
Mao, Shen, Yang (bib0031) 2016
Nijhawan, Sharma, Sahni, Batra (bib0038) 2017
Fitter, Fitter (bib0010) 2002; 296
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Adam (bib0015) 2017
Gray, Fleishman, Klein, McKown, Bézy, Lohmann, Johnston (bib0012) 2019; 10
Zoph, Vasudevan, Shlens, Le (bib0050) 2018
Liu, Tang, Zhou, Meng, Dong (bib0028) 2016
Lori, Derek, Nancy, John, Judy, Jeanne (bib0029) 2018; 16
Moore, Brown, Keenan, Duursma, Van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, Van Gorsel, Liddell (bib0037) 2016; 13
Hubel, Wiesel (bib0016) 1968; 195
.
Carpentier, Giguère, Gaudreault (bib0006) 2018
Gogul, Kumar (bib0011) 2017
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0043) 2017
Bayr, Puschmann (bib0005) 2019; 50
Richardson, Jenkins, Braswell, Hollinger, Ollinger, Smith (bib0040) 2007; 152
Ayrey, Hayes (bib0004) 2018; 10
Hedjazi, Kourbane, Genc (bib0014) 2017
Alberton, Torres, Cancian, Borges, Almeida, Mariano, Morellato (bib0002) 2017; 15
Iler, Høye, Inouye, Schmidt (bib0017) 2013; 368
Keenan, Darby, Felts, Sonnentag, Friedl, Hufkens, Richardson (bib0021) 2014; 24
Kellenberger, Marcos, Tuia (bib0022) 2018; 216
Klosterman, Melaas, Wang, Martinez, Frederick, O’Keefe, Friedl (bib0025) 2018; 248
Correia, Bouachir, Gervais, Pureswaran, Kneeshaw, De Grandpré (bib0007) 2020; 8
Mizoguchi, Ishii, Nakamura, Inoue, Takamatsu (bib0036) 2017; 10332
Parmesan (bib0039) 2006; 37
He, Zhang, Ren, Sun (bib0013) 2016
Masters, D., & Luschi, C. 2018. Revisiting small batch training for deep neural networks. arXiv preprint
Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J., & Yang, X. 2016. SPECIAL FEATURE : INTERNATIONAL LTER Emerging opportunities and challenges in phenology : a review, 7(August), 1–17.
Archetti, Richardson, O’Keefe, Delpierre (bib0003) 2013; 8
Wingate, Ogée, Cremonese, Filippa, Mizunuma, Migliavacca, Moisy, Wilkinson, Moureaux, Wohlfahrt, Hammerle, Hörtnagl, Gimeno, Porcar-Castell, Galvagno, Nakaji, Morison, Kolle, Knohl, Kutsch, Kolari, Nikinmaa, Ibrom, Gielen, Eugster, Balzarolo, Papale, Klumpp, Köstner, Grünwald, Joffre, Ourcival, Hellstrom, Lindroth, George, Longdoz, Genty, Levula, Heinesch, Sprintsin, Yakir, Manise, Guyon, Ahrends, Plaza-Aguilar, Guan, Grace (bib0047) 2015; 12
Richardson, Keenan, Migliavacca, Ryu, Sonnentag, Toomey (bib0041) 2013; 169
Maire, Alvarez, Hodgson (bib0030) 2015
Simonyan, K., & Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
Menzel, Sparks, Estella, Koch, Aasa, Ahas, Alm-Kübler, Bissolli, Braslavská, Briede, Chmielewski, Crepinsek, Curnel, Dahl, Defila, Donnelly, Filella, Jatczak, Måge, Mestre, Nordli, Peñuelas, Pirinen, Remišová, Scheifinger, Striz, Susnik, Van Vliet, Wielgolaski, Zach, Zust (bib0035) 2006; 12
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0009) 2009
Willi, Pitman, Cardoso, Locke, Swanson, Boyer, Fortson (bib0046) 2019; 10
Lee, Chan, Wilkin, Remagnino (bib0027) 2015
Khan, Sohail, Zahoora, Qureshi (bib0023) 2019
Kingma, D.P., & Ba, J. 2014. Adam: a method for stochastic optimization. arXiv preprint
Menzel (bib0034) 2000; 44
Crimmins (10.1016/j.ecolmodel.2020.109419_bib0008) 2008; 41
10.1016/j.ecolmodel.2020.109419_bib0024
Maire (10.1016/j.ecolmodel.2020.109419_bib0030) 2015
Richardson (10.1016/j.ecolmodel.2020.109419_bib0042) 2009; 19
Gray (10.1016/j.ecolmodel.2020.109419_bib0012) 2019; 10
Nijhawan (10.1016/j.ecolmodel.2020.109419_bib0038) 2017
Klosterman (10.1016/j.ecolmodel.2020.109419_bib0025) 2018; 248
Keenan (10.1016/j.ecolmodel.2020.109419_bib0021) 2014; 24
Menzel (10.1016/j.ecolmodel.2020.109419_bib0035) 2006; 12
Hedjazi (10.1016/j.ecolmodel.2020.109419_bib0014) 2017
Lori (10.1016/j.ecolmodel.2020.109419_bib0029) 2018; 16
Moore (10.1016/j.ecolmodel.2020.109419_bib0037) 2016; 13
Krizhevsky (10.1016/j.ecolmodel.2020.109419_bib0026) 2017; 60
Hubel (10.1016/j.ecolmodel.2020.109419_bib0016) 1968; 195
Carpentier (10.1016/j.ecolmodel.2020.109419_bib0006) 2018
Liu (10.1016/j.ecolmodel.2020.109419_bib0028) 2016
Alberton (10.1016/j.ecolmodel.2020.109419_bib0002) 2017; 15
Khan (10.1016/j.ecolmodel.2020.109419_bib0023) 2019
Parmesan (10.1016/j.ecolmodel.2020.109419_bib0039) 2006; 37
10.1016/j.ecolmodel.2020.109419_bib0032
Iler (10.1016/j.ecolmodel.2020.109419_bib0017) 2013; 368
He (10.1016/j.ecolmodel.2020.109419_bib0013) 2016
Katarki (10.1016/j.ecolmodel.2020.109419_bib0020) 2019
Menzel (10.1016/j.ecolmodel.2020.109419_bib0034) 2000; 44
Zhang (10.1016/j.ecolmodel.2020.109419_bib0049) 2003; 84
Richardson (10.1016/j.ecolmodel.2020.109419_bib0041) 2013; 169
Kellenberger (10.1016/j.ecolmodel.2020.109419_bib0022) 2018; 216
Willi (10.1016/j.ecolmodel.2020.109419_bib0046) 2019; 10
Gogul (10.1016/j.ecolmodel.2020.109419_bib0011) 2017
Richardson (10.1016/j.ecolmodel.2020.109419_bib0040) 2007; 152
10.1016/j.ecolmodel.2020.109419_bib0045
10.1016/j.ecolmodel.2020.109419_bib0044
Zoph (10.1016/j.ecolmodel.2020.109419_bib0050) 2018
Wingate (10.1016/j.ecolmodel.2020.109419_bib0047) 2015; 12
Inouye (10.1016/j.ecolmodel.2020.109419_bib0018) 2008; 89
Correia (10.1016/j.ecolmodel.2020.109419_bib0007) 2020; 8
Lee (10.1016/j.ecolmodel.2020.109419_bib0027) 2015
Fitter (10.1016/j.ecolmodel.2020.109419_bib0010) 2002; 296
Howard (10.1016/j.ecolmodel.2020.109419_bib0015) 2017
10.1016/j.ecolmodel.2020.109419_bib0019
Archetti (10.1016/j.ecolmodel.2020.109419_bib0003) 2013; 8
Mao (10.1016/j.ecolmodel.2020.109419_bib0031) 2016
Deng (10.1016/j.ecolmodel.2020.109419_bib0009) 2009
10.1016/j.ecolmodel.2020.109419_bib51
Abramovich (10.1016/j.ecolmodel.2020.109419_bib0001) 2019; 174
Meier (10.1016/j.ecolmodel.2020.109419_bib0033) 1997
Ayrey (10.1016/j.ecolmodel.2020.109419_bib0004) 2018; 10
Bayr (10.1016/j.ecolmodel.2020.109419_bib0005) 2019; 50
Selvaraju (10.1016/j.ecolmodel.2020.109419_bib0043) 2017
Mizoguchi (10.1016/j.ecolmodel.2020.109419_bib0036) 2017; 10332
References_xml – volume: 296
  start-page: 1689
  year: 2002
  end-page: 1691
  ident: bib0010
  article-title: Rapid changes in flowering time in British plants
  publication-title: Science
– reference: Masters, D., & Luschi, C. 2018. Revisiting small batch training for deep neural networks. arXiv preprint
– start-page: 8697
  year: 2018
  end-page: 8710
  ident: bib0050
  article-title: Learning transferable architectures for scalable image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 152
  start-page: 323
  year: 2007
  end-page: 334
  ident: bib0040
  article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest
  publication-title: Oecologia
– volume: 12
  start-page: 5995
  year: 2015
  end-page: 6015
  ident: bib0047
  article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites
  publication-title: Biogeosciences
– volume: 195
  start-page: 215
  year: 1968
  end-page: 243
  ident: bib0016
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol. (Lond.)
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0011
  article-title: Flower species recognition system using convolution neural networks and transfer learning
  publication-title: 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0043
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics. pp. 1-5. doi:
– volume: 216
  start-page: 139
  year: 2018
  end-page: 153
  ident: bib0022
  article-title: Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote Sens. Environ.
– reference: Kingma, D.P., & Ba, J. 2014. Adam: a method for stochastic optimization. arXiv preprint
– volume: 15
  start-page: 82
  year: 2017
  end-page: 90
  ident: bib0002
  article-title: Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation
  publication-title: Perspect. Ecol. Conservat.
– volume: 19
  start-page: 1417
  year: 2009
  end-page: 1428
  ident: bib0042
  article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology
  publication-title: Ecol. Appl.
– volume: 41
  start-page: 949
  year: 2008
  end-page: 958
  ident: bib0008
  article-title: Monitoring plant phenology using digital repeat photography
  publication-title: Environ. Manage.
– volume: 16
  start-page: e00461
  year: 2018
  ident: bib0029
  article-title: Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles
  publication-title: Global Ecol. Conservat.
– start-page: 379
  year: 2015
  end-page: 385
  ident: bib0030
  article-title: Automating marine mammal detection in aerial images captured during wildlife surveys: a deep learning approach
  publication-title: Australasian Joint Conference on Artificial Intelligence
– volume: 8
  start-page: e57373
  year: 2013
  ident: bib0003
  article-title: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest
  publication-title: PLoS ONE
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0009
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 13
  start-page: 5085
  year: 2016
  end-page: 5102
  ident: bib0037
  article-title: Reviews and syntheses: australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography
  publication-title: Biogeosciences
– volume: 10
  start-page: 80
  year: 2019
  end-page: 91
  ident: bib0046
  article-title: Identifying animal species in camera trap images using deep learning and citizen science
  publication-title: Method. Ecol. Evolut.
– volume: 248
  start-page: 397
  year: 2018
  end-page: 407
  ident: bib0025
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
– year: 2019
  ident: bib0023
  article-title: A Survey of the Recent Architectures of Deep Convolutional Neural Networks
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0026
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 44
  start-page: 76
  year: 2000
  end-page: 81
  ident: bib0034
  article-title: Trends in phenological phases in Europe between 1951 and 1996
  publication-title: Int. J. Biometeorol.
– volume: 10332
  year: 2017
  ident: bib0036
  article-title: Lidar-based individual tree species classification using convolutional neural network
  publication-title: Videometrics, Range Imaging, and Applications XIV
– volume: 24
  start-page: 1478
  year: 2014
  end-page: 1489
  ident: bib0021
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment
  publication-title: Ecol. Appl.
– start-page: 452
  year: 2015
  end-page: 456
  ident: bib0027
  article-title: Deep-plant: plant identification with convolutional neural networks
  publication-title: 2015 IEEE International Conference on Image Processing (ICIP)
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib0014
  article-title: On identifying leaves: a comparison of CNN with classical ML methods
  publication-title: 2017 25th Signal Processing and Communications Applications Conference (SIU)
– volume: 368
  year: 2013
  ident: bib0017
  article-title: Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
  publication-title: Philos. Trans. R. Soc. B
– reference: Simonyan, K., & Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint
– volume: 10
  start-page: 649
  year: 2018
  ident: bib0004
  article-title: The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory
  publication-title: Remote Sens. (Basel)
– volume: 8
  start-page: 13151
  year: 2020
  end-page: 13160
  ident: bib0007
  article-title: Leveraging artificial intelligence for large-scale plant phenology studies from noisy time-lapse images
  publication-title: IEEE Access
– start-page: 110
  year: 2016
  end-page: 116
  ident: bib0028
  article-title: Flower classification via convolutional neural network
  publication-title: 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA)
– volume: 174
  year: 2019
  ident: bib0001
  article-title: Classification with many classes: challenges and pluses
  publication-title: J. Multivar. Anal.
– start-page: 1075
  year: 2018
  end-page: 1081
  ident: bib0006
  article-title: Tree species identification from bark images using convolutional neural networks
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 50
  start-page: 220
  year: 2019
  end-page: 233
  ident: bib0005
  article-title: Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network
  publication-title: Ecol. Inform.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0020
  article-title: Estimating change detection of forest area using satellite imagery
  publication-title: 2019 International Conference on Data Science and Communication (IconDSC)
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bib0049
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bib0015
  article-title: arXiv preprint
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  ident: bib0039
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– reference: .
– reference: Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S.J., & Yang, X. 2016. SPECIAL FEATURE : INTERNATIONAL LTER Emerging opportunities and challenges in phenology : a review, 7(August), 1–17.
– volume: 10
  start-page: 345
  year: 2019
  end-page: 355
  ident: bib0012
  article-title: A convolutional neural network for detecting sea turtles in drone imagery
  publication-title: Method. Ecol. Evolut.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0013
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 89
  start-page: 353
  year: 2008
  end-page: 362
  ident: bib0018
  article-title: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers
  publication-title: Ecology
– start-page: 2802
  year: 2016
  end-page: 2810
  ident: bib0031
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Adv. Neural Inf. Process Syst.
– year: 1997
  ident: bib0033
  article-title: Growth Stages of Mono-and Dicotyledonous Plants
– volume: 12
  start-page: 1969
  year: 2006
  end-page: 1976
  ident: bib0035
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Glob Chang Biol.
– volume: 169
  start-page: 156
  year: 2013
  end-page: 173
  ident: bib0041
  article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system
  publication-title: Agric. Forest Meteorol.
– reference: IPCC. 2007. Impacts, adaptation and vulnerability. Summary for policymakers. Working Group II contribution to the intergovernmental panel on climate change fourth assessment report, Brussels, April 2007.
– start-page: 192
  year: 2017
  end-page: 196
  ident: bib0038
  article-title: A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features
  publication-title: 2017 13th International Conference On Signal-Image Technology & Internet-Based Systems (SITIS)
– start-page: 110
  year: 2016
  ident: 10.1016/j.ecolmodel.2020.109419_bib0028
  article-title: Flower classification via convolutional neural network
– volume: 216
  start-page: 139
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0022
  article-title: Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.028
– start-page: 452
  year: 2015
  ident: 10.1016/j.ecolmodel.2020.109419_bib0027
  article-title: Deep-plant: plant identification with convolutional neural networks
– volume: 10
  start-page: 80
  issue: 1
  year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0046
  article-title: Identifying animal species in camera trap images using deep learning and citizen science
  publication-title: Method. Ecol. Evolut.
  doi: 10.1111/2041-210X.13099
– start-page: 2802
  year: 2016
  ident: 10.1016/j.ecolmodel.2020.109419_bib0031
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Adv. Neural Inf. Process Syst.
– year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0015
– volume: 89
  start-page: 353
  issue: 2
  year: 2008
  ident: 10.1016/j.ecolmodel.2020.109419_bib0018
  article-title: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers
  publication-title: Ecology
  doi: 10.1890/06-2128.1
– volume: 50
  start-page: 220
  year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0005
  article-title: Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.01.012
– start-page: 1
  year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0020
  article-title: Estimating change detection of forest area using satellite imagery
– volume: 12
  start-page: 1969
  year: 2006
  ident: 10.1016/j.ecolmodel.2020.109419_bib0035
  article-title: European phenological response to climate change matches the warming pattern
  publication-title: Glob Chang Biol.
  doi: 10.1111/j.1365-2486.2006.01193.x
– start-page: 1075
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0006
  article-title: Tree species identification from bark images using convolutional neural networks
– volume: 24
  start-page: 1478
  issue: 6
  year: 2014
  ident: 10.1016/j.ecolmodel.2020.109419_bib0021
  article-title: Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment
  publication-title: Ecol. Appl.
  doi: 10.1890/13-0652.1
– start-page: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0011
  article-title: Flower species recognition system using convolution neural networks and transfer learning
– ident: 10.1016/j.ecolmodel.2020.109419_bib0044
– start-page: 770
  year: 2016
  ident: 10.1016/j.ecolmodel.2020.109419_bib0013
  article-title: Deep residual learning for image recognition
– volume: 84
  start-page: 471
  issue: 3
  year: 2003
  ident: 10.1016/j.ecolmodel.2020.109419_bib0049
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– start-page: 1
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0014
  article-title: On identifying leaves: a comparison of CNN with classical ML methods
– volume: 12
  start-page: 5995
  year: 2015
  ident: 10.1016/j.ecolmodel.2020.109419_bib0047
  article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-5995-2015
– year: 1997
  ident: 10.1016/j.ecolmodel.2020.109419_bib0033
– ident: 10.1016/j.ecolmodel.2020.109419_bib51
  doi: 10.1109/Agro-Geoinformatics.2017.8046996
– start-page: 248
  year: 2009
  ident: 10.1016/j.ecolmodel.2020.109419_bib0009
  article-title: Imagenet: a large-scale hierarchical image database
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0026
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.ecolmodel.2020.109419_bib0024
– volume: 296
  start-page: 1689
  issue: 5573
  year: 2002
  ident: 10.1016/j.ecolmodel.2020.109419_bib0010
  article-title: Rapid changes in flowering time in British plants
  publication-title: Science
  doi: 10.1126/science.1071617
– volume: 16
  start-page: e00461
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0029
  article-title: Using phenological monitoring in situ and historical records to determine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles
  publication-title: Global Ecol. Conservat.
  doi: 10.1016/j.gecco.2018.e00461
– volume: 10
  start-page: 649
  issue: 4
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0004
  article-title: The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10040649
– start-page: 192
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0038
  article-title: A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features
– year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0023
– volume: 10332
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0036
  article-title: Lidar-based individual tree species classification using convolutional neural network
– volume: 8
  start-page: e57373
  issue: 3
  year: 2013
  ident: 10.1016/j.ecolmodel.2020.109419_bib0003
  article-title: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057373
– ident: 10.1016/j.ecolmodel.2020.109419_bib0032
– start-page: 618
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0043
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– start-page: 8697
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0050
  article-title: Learning transferable architectures for scalable image recognition
– volume: 41
  start-page: 949
  issue: 6
  year: 2008
  ident: 10.1016/j.ecolmodel.2020.109419_bib0008
  article-title: Monitoring plant phenology using digital repeat photography
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-008-9086-6
– volume: 8
  start-page: 13151
  year: 2020
  ident: 10.1016/j.ecolmodel.2020.109419_bib0007
  article-title: Leveraging artificial intelligence for large-scale plant phenology studies from noisy time-lapse images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965462
– volume: 174
  year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0001
  article-title: Classification with many classes: challenges and pluses
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2019.104536
– volume: 15
  start-page: 82
  issue: 2
  year: 2017
  ident: 10.1016/j.ecolmodel.2020.109419_bib0002
  article-title: Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation
  publication-title: Perspect. Ecol. Conservat.
– volume: 37
  start-page: 637
  year: 2006
  ident: 10.1016/j.ecolmodel.2020.109419_bib0039
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 10.1016/j.ecolmodel.2020.109419_bib0016
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 169
  start-page: 156
  year: 2013
  ident: 10.1016/j.ecolmodel.2020.109419_bib0041
  article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.09.012
– volume: 10
  start-page: 345
  issue: 3
  year: 2019
  ident: 10.1016/j.ecolmodel.2020.109419_bib0012
  article-title: A convolutional neural network for detecting sea turtles in drone imagery
  publication-title: Method. Ecol. Evolut.
  doi: 10.1111/2041-210X.13132
– volume: 44
  start-page: 76
  issue: 2
  year: 2000
  ident: 10.1016/j.ecolmodel.2020.109419_bib0034
  article-title: Trends in phenological phases in Europe between 1951 and 1996
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840000054
– volume: 368
  issue: 1624
  year: 2013
  ident: 10.1016/j.ecolmodel.2020.109419_bib0017
  article-title: Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2012.0489
– volume: 152
  start-page: 323
  issue: 2
  year: 2007
  ident: 10.1016/j.ecolmodel.2020.109419_bib0040
  article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest
  publication-title: Oecologia
  doi: 10.1007/s00442-006-0657-z
– ident: 10.1016/j.ecolmodel.2020.109419_bib0019
– volume: 248
  start-page: 397
  year: 2018
  ident: 10.1016/j.ecolmodel.2020.109419_bib0025
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.015
– volume: 13
  start-page: 5085
  year: 2016
  ident: 10.1016/j.ecolmodel.2020.109419_bib0037
  article-title: Reviews and syntheses: australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-5085-2016
– ident: 10.1016/j.ecolmodel.2020.109419_bib0045
  doi: 10.1002/ecs2.1436
– volume: 19
  start-page: 1417
  issue: 6
  year: 2009
  ident: 10.1016/j.ecolmodel.2020.109419_bib0042
  article-title: Near-surface remote sensing of spatial and temporal variation in canopy phenology
  publication-title: Ecol. Appl.
  doi: 10.1890/08-2022.1
– start-page: 379
  year: 2015
  ident: 10.1016/j.ecolmodel.2020.109419_bib0030
  article-title: Automating marine mammal detection in aerial images captured during wildlife surveys: a deep learning approach
SSID ssj0001282
Score 2.388935
Snippet The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109419
SubjectTerms climate change
color
data collection
digital images
leaves
neural networks
phenology
photography
time series analysis
trees
Title Utilizing machine learning for detecting flowering in mid-range digital repeat photography
URI https://dx.doi.org/10.1016/j.ecolmodel.2020.109419
https://www.proquest.com/docview/2524241013
Volume 440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0304-3800
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001282
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0304-3800
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001282
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0304-3800
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001282
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0304-3800
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001282
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0304-3800
  databaseCode: AKRWK
  dateStart: 19750501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001282
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jIngRnYrzY0TwWtem6dZ6E5lMxV10MLyENE21snVjqwc9-Lf7XppuTAQP3tKS0Pbl5X30vfd7hJxrzSMFitDppuDp8NRjThSG4LhKYBDUV8zHQuGHQac_5HejYFQj11UtDKZVWtlfynQjre2dtqVme5Zl7UcM6vnG3sHQURcxQRH9C3j64muV5gHy10YSuIOz13K8wMMbm44z4CgyA63EEXLndw31Q1YbBXSzQ7at5UivypfbJTWdN8hmz6BOfzTIQW9VsgbT7Jld7JHnYZGNs09QUXRiMic1ta0iXihYrDTRGEcwV2NsmYajLKeTLHHmWHlAk-wFO4vQuZ6B4Kaz12lhca73yfCm93Tdd2xHBUf5PCwcP5G-ZEHY0S7niodxIpMg8vwOGGIsDiJXwolnnpQqwT4kSnkqYvjfmKUyDmPXPyD1fJrrQ0J9rgOtXJ16gYQhC6UOsUWuZjzQbiKbpFNRUSgLN45dL8aiyit7E0vyCyS_KMnfJO5y4axE3Ph7yWW1TWKNeQTohb8Xn1UbK-BoYbxE5nr6vhDw5RwMHDCSj_7zgGOyxTARxvUcLzgh9WL-rk_BkinilmHVFtm4ur3vD74BjfPzrg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfQiPvHtCl5Dk81um3gTqVSrvWhBvCybzVYjNS1tPOivdybdVBTBg7ckZEkyu_vNTObxAZxaK2KDitBrDdDTEYOAe3EUoeOqcYGQvuIhFQrf9pqdvrh-kA8LcFHVwlBapcP-GaaXaO2uNJw0G-Msa9xRUC8s7R0KHbXEItSFREyuQf38qtvpzQEZIdgFE4RHA76leaGTNyxJZ9BX5GV3JUFdd35XUj_gutRBl2uw6oxHdj57v3VYsPkGLLXLxtPvG7Dd_qpaw9vctp1uwmO_yIbZB2op9lomT1rm2CKeGBqtLLUUSijPhsSaRkdZzl6z1JtQ8QFLsyciF2ETO0bsZuPnUeFaXW9B_7J9f9HxHKmCZ0IRFV6Y6lBzGTWtL4QRUZLqVMZB2ERbjCcy9jVueh5obVKiIjEmMDGnX8d8oJMo8cNtqOWj3O4AC4WV1vh2EEiNhzzSNiKWXMuFtH6qd6FZSVEZ13GciC-Gqkote1Fz8SsSv5qJfxf8-cDxrOnG30POqmlS39aPQtXw9-CTamIV7i4Kmejcjt6mCr9coI2DdvLefx5wDMud-9sbdXPV6-7DCqe8GD_wAnkAtWLyZg_RsCmSI7dwPwHS7vZZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+machine+learning+for+detecting+flowering+in+mid-range+digital+repeat+photography&rft.jtitle=Ecological+modelling&rft.au=Kim%2C+Tae+Kyung&rft.au=Kim%2C+Sukyung&rft.au=Won%2C+Myoungsoo&rft.au=Lim%2C+Jong-Hwan&rft.date=2021-01-15&rft.issn=0304-3800&rft.volume=440&rft.spage=109419&rft_id=info:doi/10.1016%2Fj.ecolmodel.2020.109419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2020_109419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon