Metaverse-based deep learning framework for coronary artery stenosis classification using Monte Carlo Dropout-based ResNet-152

Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 196; no. Pt A; p. 110720
Main Authors Sivaranjani, T, Sasikumar, B, Sugitha, G
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2025.110720

Cover

Abstract Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes. [Display omitted] •Metaverse-based framework for classifying coronary stenosis using ICA image analysis.•3D-visualize stenosis regions enable better clinical outcomes and patient interaction.•Monte Carlo dropout-based ResNet-152 classifier provides accurate and reliable result.
AbstractList Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes. [Display omitted] •Metaverse-based framework for classifying coronary stenosis using ICA image analysis.•3D-visualize stenosis regions enable better clinical outcomes and patient interaction.•Monte Carlo dropout-based ResNet-152 classifier provides accurate and reliable result.
AbstractMetaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes.
Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes.
Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes.Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical diagnostics. However, difficulties such as inadequate spatial resolution, uncertainty management, and ignoring virtual events for patients still exist. To solve these problems, this work introduces an extraordinary way of recognizing coronary artery stenosis and the metaverse to create interactive 3D models for patient-centric virtual events. The process begins with collecting data through Invasive Coronary Angiography (ICA). Then, preprocessing involves the Quantum-Adapted Diffusion (QAD) method to remove noise and a cross-correlation method for motion artifacts to get a clearer ICA image. After preprocessing, the accountable semantic segmentation technique was used to isolate coronary arteries from surrounding tissues, and features were extracted by the Gray Level Co-occurrence Matrix (GLCM). It takes textural and shape features to identify abnormalities. Then, the extracted features are selected using the Stochastic Gradient Descent (SGD) optimization algorithm with the Adam algorithm rates to improve the feature selection model. Finally, the selected features are classified with Monte Carlo Dropout-based ResNet-152 (MCD-ResNet-152) to determine the presence of stenosis. These results are discussed in the metaverse with the patient to deliver a VR examination. The proposed method achieves an accuracy level of 99.20 % in the diagnosis of stenosis highlighting its improvement in diagnostic precision over existing approaches, potentially leading to better patient outcomes.
ArticleNumber 110720
Author Sivaranjani, T
Sasikumar, B
Sugitha, G
Author_xml – sequence: 1
  givenname: T
  surname: Sivaranjani
  fullname: Sivaranjani, T
  email: sivajayakumar23@gmail.com
  organization: Department of Computer Science and Engineering, Bharath Niketan Engineering College, Aundipatty, Theni, Tamil Nadu, India
– sequence: 2
  givenname: B
  surname: Sasikumar
  fullname: Sasikumar, B
  email: thilsasi@yahoo.com
  organization: Department of Computer Science and Engineering, DR.V.R.K Women's College of Engineering and Technology, Aziznagar, Telangana, India
– sequence: 3
  givenname: G
  surname: Sugitha
  fullname: Sugitha, G
  email: sugitha.g.cse@mec.edu.in
  organization: Department of Computer Science and Engineering, Muthayammal Engineering College, Namakkal, Tamil Nadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40639014$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AvKRS7b-iPNxQcACBakFiY-z5UwmyNvEDrZT1Au_HUe7gISEVMnS-PDem5n35oycOO-QEMrZljNeXey34Ke5s37CfiuYUFvOWS3YA7LhTd0WTMnyhGwY46woG6FOyVmMe8ZYySR7RE5LVsmW8XJDfl5jMrcYIhadidjTHnGmI5rgrPtGh2Am_OHDDR18oOCDdybcURMS5hITOh9tpDCaGO1gwSTrHV3iyr32LiHdmTB6-jr42S_p2OMTxg-YCq7EY_JwMGPEJ8d6Tr6-ffNl9664-nj5fvfyqgBZNqmQefJWSKilaUBAy9oBWlXn1w0lNi1KVTVtDYoDrwyYiite9WCg7mXT1SDPybOD7hz89wVj0pONgONoHPolailEK7iSimXo0yN06bK9eg52yjvr355lQHMAQPAxBhz-QDjTazx6r__Go9d49CGeTH11oGLe9dZi0BEsOsDeBoSke2_vI_L8HxEYrcvejzd4h3Hvl-Cyl5rrKDTTn9crWI9AqPypeZUFXvxf4H4z_AJ7qcjH
Cites_doi 10.1109/ACCESS.2023.3292551
10.1109/ACCESS.2024.3366537
10.3390/jcm13133920
10.1016/j.aej.2023.01.029
10.3390/electronics13050866
10.1109/ACCESS.2024.3401465
10.1007/s11554-023-01411-7
10.3390/bioengineering10040455
10.3390/math11030682
10.1016/j.acra.2022.05.015
10.3390/diagnostics13132274
10.1016/j.procs.2023.10.534
10.1109/ACCESS.2022.3169893
10.3390/diagnostics13162667
10.3390/electronics12234835
10.1109/ACCESS.2022.3158752
10.3390/jcm13082253
10.1109/ACCESS.2023.3286696
10.1155/2023/6442756
10.3390/app14031238
10.1016/j.cmpb.2022.107015
10.3390/diagnostics13071312
10.3390/diagnostics13061081
10.1016/j.visinf.2022.03.002
10.3390/ijerph192013038
10.1186/s12911-024-02442-1
10.1016/j.procs.2023.01.061
10.3390/s23031193
10.3390/a17030119
10.3390/jcm11051331
10.1016/j.diii.2023.06.011
10.1016/j.ejrad.2021.109835
10.3390/bioengineering10020249
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compbiomed.2025.110720
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110720
ExternalDocumentID 40639014
10_1016_j_compbiomed_2025_110720
S0010482525010716
1_s2_0_S0010482525010716
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
PUEGO
AAYXX
CITATION
AFCTW
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c348t-3004923c73a8c2c909fc957957bf4e89e356897c51c16aca61516dcac7d38b7c3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 22:24:23 EDT 2025
Tue Jul 29 01:38:24 EDT 2025
Sat Oct 25 06:21:03 EDT 2025
Sat Oct 25 17:21:59 EDT 2025
Sat Sep 27 20:31:58 EDT 2025
Sat Oct 25 11:10:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Stochastic gradient descent optimization algorithm and virtual reality
Stenosis
Metaverse
Invasive coronary angiography
Monte Carlo dropout-based ResNet-152
Coronary artery
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-3004923c73a8c2c909fc957957bf4e89e356897c51c16aca61516dcac7d38b7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40639014
PQID 3229215350
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3229215350
pubmed_primary_40639014
crossref_primary_10_1016_j_compbiomed_2025_110720
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110720
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525010716
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110720
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Tang, Zhang, Chen, Xie, Zhang, Qiao, Zhou, Xu, Lu, Li (bib40) 2021; 142
Baz, Refi, Scheau, Savulescu-Fiedler, Baz, Niscoveanu (bib6) 2024; 13
Doolub, Mamalakis, Alabed, Van der Geest, Swift, Rodrigues, Garg, Joshi, Dastidar (bib11) 2023; 11
Garavand, Behmanesh, Aslani, Sadeghsalehi, Ghaderzadeh (bib14) 2023; 2023
Ullah, Manickam, Obaidat, Laghari, Uddin (bib3) 2023; 11
Kim, Roh, Kweon, Kwon, Chae, Park, Lee, Jeong, Kang, Lee, Ahn (bib22) 2024; 405
Trigka, Dritsas (bib26) 2023; 23
Tian, Zhang, Zhang (bib34) 2023; 11
Meng, Du, Zhao, Dong, Pienta, Tang, Zhou (bib39) 2023
Gohmann, Seitz, Pawelka, Majunke, Schug, Heiser, Renatus, Desch, Lauten, Holzhey, Noack (bib41) 2022; 11
Ringwald, Stiefelhagen (bib35) 2021
Zhao, Jiang, Chen, Liu, Yang, Xue, Chen (bib2) 2022; 6
Kumar Shrivastava, Sharma, Sharma, Kumar (bib38) 2023; 25
Ramesh, Lakshmanna (bib17) 2024; 12
Jung, Lee, Jun, Cho (bib31) 2024; 13
Gharleghi, Chen, Sowmya, Beier (bib12) 2022; 225
wang, Yu, Liu, Xu, Xie, Yang, Kuo, Wang, Gao, Huang, Chen, Chiang, Abu (bib36) 2022; 10
Ozbilgin, Kurnaz, Aydın (bib29) 2023; 13
Sapra, Sapra, Bhardwaj, Bharany, Saxena, Karim, Ghorashi, Mohamed (bib24) 2023; 68
Ali, Shuvo, Al-Manzo, Hasan, Hasan (bib10) 2023; 11
Makmur, Kwan, Rana, Kurniadi (bib33) 2023; 227
Moztarzadeh, Jamshidi, Sargolzaei, Jamshidi, Baghalipour, Malekzadeh Moghani, Hauer (bib4) 2023; 10
Kaba, Haci, Isin, Ilhan, Conkbayir (bib19) 2023; 13
Jimenez-Partinen, Thurnhofer-Hemsi, Palomo, Rodríguez-Capitán, Molina-Ramos (bib42) 2024
Rudnicka, Proniewska, Perkins, Pregowska (bib8) 2024; 13
Tang, He, Yang, Lu, Yu, Liu, Yan, Wang (bib32) 2024
Iqbal, Khalid, Ullah (bib18) 2024; 21
Wahab Sait, Dutta (bib15) 2023; 13
Li, Yoshimura, Horima, Sugimori (bib16) 2024; 17
Ihdayhid, Sehly, He, Joyner, Flack, Konstantopoulos, Newby, Williams, Ko, Chow, Dwivedi (bib20) 2024
Magboo, Magboo (bib27) 2023; 218
Zareiamand, Darroudi, Mohammadi, Moravvej, Danaei, Alizadehsani (bib5) 2023; 13
Lee (bib1) 2022; 19
Tatsugami, Nakaura, Yanagawa, Fujita, Kamagata, Ito, Kawamura, Fushimi, Ueda, Matsui, Yamada (bib23) 2023
Al Fahoum, Abu Al-Haija, Alshraideh (bib13) 2023; 10
Sait, Awad (bib21) 2024; 14
Girijakumari Sreekantan Nair, Chandrasekaran (bib7) 2024
Huang, Xiao, Wang, Li, Guo, Hu, Li, Wang (bib25) 2023; 30
Azdaki, Salmani, Kazemi, Partovi, Bizhaem, Moghadam, Moniri, Zarepur, Mohammadifard, Alikhasi, Nouri (bib28) 2024; 24
Suryani, Setyawan, Putra (bib30) 2022; 10
Sowmya, Jose (bib37) 2022; 24
Elvas, Águas, Ferreira, Oliveira, Dias, Rosário (bib9) 2023; 12
Trigka (10.1016/j.compbiomed.2025.110720_bib26) 2023; 23
Garavand (10.1016/j.compbiomed.2025.110720_bib14) 2023; 2023
Ihdayhid (10.1016/j.compbiomed.2025.110720_bib20) 2024
Ringwald (10.1016/j.compbiomed.2025.110720_bib35) 2021
Doolub (10.1016/j.compbiomed.2025.110720_bib11) 2023; 11
Kaba (10.1016/j.compbiomed.2025.110720_bib19) 2023; 13
wang (10.1016/j.compbiomed.2025.110720_bib36) 2022; 10
Rudnicka (10.1016/j.compbiomed.2025.110720_bib8) 2024; 13
Tang (10.1016/j.compbiomed.2025.110720_bib32) 2024
Wahab Sait (10.1016/j.compbiomed.2025.110720_bib15) 2023; 13
Liu (10.1016/j.compbiomed.2025.110720_bib40) 2021; 142
Baz (10.1016/j.compbiomed.2025.110720_bib6) 2024; 13
Huang (10.1016/j.compbiomed.2025.110720_bib25) 2023; 30
Gohmann (10.1016/j.compbiomed.2025.110720_bib41) 2022; 11
Sait (10.1016/j.compbiomed.2025.110720_bib21) 2024; 14
Tian (10.1016/j.compbiomed.2025.110720_bib34) 2023; 11
Moztarzadeh (10.1016/j.compbiomed.2025.110720_bib4) 2023; 10
Li (10.1016/j.compbiomed.2025.110720_bib16) 2024; 17
Azdaki (10.1016/j.compbiomed.2025.110720_bib28) 2024; 24
Ali (10.1016/j.compbiomed.2025.110720_bib10) 2023; 11
Tatsugami (10.1016/j.compbiomed.2025.110720_bib23) 2023
Meng (10.1016/j.compbiomed.2025.110720_bib39) 2023
Makmur (10.1016/j.compbiomed.2025.110720_bib33) 2023; 227
Kim (10.1016/j.compbiomed.2025.110720_bib22) 2024; 405
Gharleghi (10.1016/j.compbiomed.2025.110720_bib12) 2022; 225
Magboo (10.1016/j.compbiomed.2025.110720_bib27) 2023; 218
Al Fahoum (10.1016/j.compbiomed.2025.110720_bib13) 2023; 10
Kumar Shrivastava (10.1016/j.compbiomed.2025.110720_bib38) 2023; 25
Ramesh (10.1016/j.compbiomed.2025.110720_bib17) 2024; 12
Sowmya (10.1016/j.compbiomed.2025.110720_bib37) 2022; 24
Suryani (10.1016/j.compbiomed.2025.110720_bib30) 2022; 10
Elvas (10.1016/j.compbiomed.2025.110720_bib9) 2023; 12
Sapra (10.1016/j.compbiomed.2025.110720_bib24) 2023; 68
Zareiamand (10.1016/j.compbiomed.2025.110720_bib5) 2023; 13
Girijakumari Sreekantan Nair (10.1016/j.compbiomed.2025.110720_bib7) 2024
Ozbilgin (10.1016/j.compbiomed.2025.110720_bib29) 2023; 13
Ullah (10.1016/j.compbiomed.2025.110720_bib3) 2023; 11
Zhao (10.1016/j.compbiomed.2025.110720_bib2) 2022; 6
Jung (10.1016/j.compbiomed.2025.110720_bib31) 2024; 13
Iqbal (10.1016/j.compbiomed.2025.110720_bib18) 2024; 21
Lee (10.1016/j.compbiomed.2025.110720_bib1) 2022; 19
Jimenez-Partinen (10.1016/j.compbiomed.2025.110720_bib42) 2024
References_xml – volume: 23
  start-page: 1193
  year: 2023
  ident: bib26
  article-title: Long-term coronary artery disease risk prediction with machine learning models
  publication-title: Sensors
– volume: 405
  year: 2024
  ident: bib22
  article-title: Artificial intelligence-based quantitative coronary angiography of major vessels using deep-learning
  publication-title: Int. J. Cardiol.
– volume: 225
  year: 2022
  ident: bib12
  article-title: Towards automated coronary artery segmentation: a systematic review
  publication-title: Comput. Methods Progr. Biomed.
– volume: 10
  start-page: 44046
  year: 2022
  end-page: 44061
  ident: bib36
  article-title: Three-heartbeat multilead ECG recognition method for arrhythmia classification
  publication-title: IEEE Access
– start-page: 1
  year: 2024
  end-page: 13
  ident: bib7
  article-title: MetaHealth: unlocking metaverse technologies in digital healthcare
  publication-title: Expet Rev. Med. Dev.
– volume: 2023
  year: 2023
  ident: bib14
  article-title: Towards diagnostic aided systems in coronary artery disease detection: a comprehensive multiview survey of the state of the art
  publication-title: Int. J. Intell. Syst.
– volume: 6
  start-page: 56
  year: 2022
  end-page: 67
  ident: bib2
  article-title: Metaverse: perspectives from graphics, interactions, and visualization
  publication-title: Visual Informatics
– volume: 12
  start-page: 26683
  year: 2024
  end-page: 26695
  ident: bib17
  article-title: A novel early detection and prevention of coronary heart disease framework using hybrid deep learning model and neural fuzzy inference system
  publication-title: IEEE Access
– volume: 10
  start-page: 455
  year: 2023
  ident: bib4
  article-title: Metaverse and healthcare: machine learning-enabled digital twins of cancer
  publication-title: Bioengineering
– year: 2024
  ident: bib42
  article-title: Coronary artery disease classification with different lesion degree ranges based on deep learning
  publication-title: IEEE Access
– volume: 13
  start-page: 2274
  year: 2023
  ident: bib19
  article-title: The application of deep learning for the segmentation and classification of coronary arteries
  publication-title: Diagnostics
– volume: 68
  start-page: 709
  year: 2023
  end-page: 720
  ident: bib24
  article-title: Integrated approach using deep neural network and CBR for detecting severity of coronary artery disease
  publication-title: Alex. Eng. J.
– volume: 14
  start-page: 1238
  year: 2024
  ident: bib21
  article-title: Ensemble learning-based coronary artery disease detection using computer tomography images
  publication-title: Appl. Sci.
– volume: 13
  start-page: 866
  year: 2024
  ident: bib8
  article-title: Cardiac healthcare digital twins supported by artificial intelligence-based algorithms and extended reality—a systematic review
  publication-title: Electronics
– volume: 19
  year: 2022
  ident: bib1
  article-title: Application of metaverse service to healthcare industry: a strategic perspective
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 11
  start-page: 69686
  year: 2023
  end-page: 69707
  ident: bib3
  article-title: Exploring the potential of metaverse technology in healthcare: applications, challenges, and future directions
  publication-title: IEEE Access
– volume: 13
  start-page: 2253
  year: 2024
  ident: bib31
  article-title: Evaluation of motion artifact correction technique for cone-beam computed tomography image considering blood vessel geometry
  publication-title: J. Clin. Med.
– volume: 11
  start-page: 20
  year: 2023
  ident: bib11
  article-title: Artificial intelligence as a diagnostic tool in non-invasive imaging in the assessment of coronary artery disease
  publication-title: Med. Sci.
– volume: 142
  year: 2021
  ident: bib40
  article-title: Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: the effect of reader experience, calcification and image quality
  publication-title: Eur. J. Radiol.
– volume: 24
  year: 2022
  ident: bib37
  article-title: Contemplate on ECG signals and classification of arrhythmia signals using CNN-LSTM deep learning model
  publication-title: Measurement: Sensors
– start-page: 1
  year: 2023
  end-page: 15
  ident: bib39
  article-title: Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms
  publication-title: Technol. Health Care
– volume: 13
  start-page: 3920
  year: 2024
  ident: bib6
  article-title: Coronary artery anomalies: a computed tomography angiography pictorial review
  publication-title: J. Clin. Med.
– volume: 17
  start-page: 119
  year: 2024
  ident: bib16
  article-title: A preprocessing method for coronary artery stenosis detection based on deep learning
  publication-title: Algorithms
– volume: 11
  start-page: 1331
  year: 2022
  ident: bib41
  article-title: Combined coronary CT-angiography and TAVI planning: utility of CT-FFR in patients with morphologically ruled-out obstructive coronary artery disease
  publication-title: J. Clin. Med.
– volume: 30
  start-page: 698
  year: 2023
  end-page: 706
  ident: bib25
  article-title: Clinical evaluation of the automatic coronary artery disease reporting and data system (CAD-RADS) in coronary computed tomography angiography using convolutional neural networks
  publication-title: Acad. Radiol.
– year: 2024
  ident: bib20
  article-title: Coronary artery stenosis and high-risk plaque assessed with an unsupervised fully automated deep-learning technique
  publication-title: JACC (J. Am. Coll. Cardiol.): Advances
– volume: 11
  start-page: 682
  year: 2023
  ident: bib34
  article-title: Recent advances in stochastic gradient descent in deep learning
  publication-title: Mathematics
– volume: 21
  start-page: 31
  year: 2024
  ident: bib18
  article-title: Explaining decisions of a light-weight deep neural network for real-time coronary artery disease classification in magnetic resonance imaging
  publication-title: Journal of Real-Time Image Processing
– volume: 227
  start-page: 355
  year: 2023
  end-page: 363
  ident: bib33
  article-title: Comparing local binary pattern and gray level Co-occurrence matrix for feature extraction in diabetic retinopathy classification
  publication-title: Procedia Comput. Sci.
– volume: 25
  year: 2023
  ident: bib38
  article-title: HCBiLSTM: a hybrid model for predicting heart disease using CNN and BiLSTM algorithms
  publication-title: Measurement: Sensors
– volume: 13
  start-page: 1312
  year: 2023
  ident: bib15
  article-title: Developing a Deep-Learning-Based coronary artery disease detection technique using computer tomography images
  publication-title: Diagnostics
– year: 2021
  ident: bib35
  article-title: Ubr $^ 2$ S: uncertainty-based resampling and reweighting strategy for unsupervised domain adaptation
  publication-title: arXiv preprint arXiv:2110.11739
– volume: 10
  start-page: 249
  year: 2023
  ident: bib13
  article-title: Identification of coronary artery diseases using photoplethysmography signals and practical feature selection process
  publication-title: Bioengineering
– volume: 24
  start-page: 52
  year: 2024
  ident: bib28
  article-title: Which risk factor best predicts coronary artery disease using artificial neural network method?
  publication-title: BMC Med. Inf. Decis. Making
– volume: 13
  start-page: 2667
  year: 2023
  ident: bib5
  article-title: Cardiac magnetic resonance imaging (CMRI) applications in patients with chest pain in the emergency department: a narrative review
  publication-title: Diagnostics
– volume: 11
  start-page: 87887
  year: 2023
  end-page: 87901
  ident: bib10
  article-title: An end-to-end deep learning framework for real-time denoising of heart sounds for cardiac disease detection in unseen noise
  publication-title: IEEE Access
– volume: 13
  start-page: 1081
  year: 2023
  ident: bib29
  article-title: Prediction of coronary artery disease using machine learning techniques with iris analysis
  publication-title: Diagnostics
– volume: 12
  start-page: 4835
  year: 2023
  ident: bib9
  article-title: AI-based aortic stenosis classification in MRI scans
  publication-title: Electronics
– volume: 10
  start-page: 29687
  year: 2022
  end-page: 29697
  ident: bib30
  article-title: The cost-based feature selection model for coronary heart disease diagnosis system using deep neural network
  publication-title: IEEE Access
– year: 2023
  ident: bib23
  article-title: Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction
  publication-title: Diagnostic and interventional imaging
– volume: 218
  start-page: 810
  year: 2023
  end-page: 817
  ident: bib27
  article-title: Diagnosis of coronary artery disease from myocardial perfusion imaging using convolutional neural networks
  publication-title: Procedia Comput. Sci.
– year: 2024
  ident: bib32
  article-title: CSC-Unet: a novel convolutional sparse coding strategy based neural network for semantic segmentation
  publication-title: IEEE Access
– volume: 11
  start-page: 87887
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib10
  article-title: An end-to-end deep learning framework for real-time denoising of heart sounds for cardiac disease detection in unseen noise
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3292551
– volume: 12
  start-page: 26683
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib17
  article-title: A novel early detection and prevention of coronary heart disease framework using hybrid deep learning model and neural fuzzy inference system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3366537
– volume: 13
  start-page: 3920
  issue: 13
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib6
  article-title: Coronary artery anomalies: a computed tomography angiography pictorial review
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm13133920
– volume: 68
  start-page: 709
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib24
  article-title: Integrated approach using deep neural network and CBR for detecting severity of coronary artery disease
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.01.029
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib39
  article-title: Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms
  publication-title: Technol. Health Care
– volume: 25
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib38
  article-title: HCBiLSTM: a hybrid model for predicting heart disease using CNN and BiLSTM algorithms
  publication-title: Measurement: Sensors
– volume: 13
  start-page: 866
  issue: 5
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib8
  article-title: Cardiac healthcare digital twins supported by artificial intelligence-based algorithms and extended reality—a systematic review
  publication-title: Electronics
  doi: 10.3390/electronics13050866
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib42
  article-title: Coronary artery disease classification with different lesion degree ranges based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3401465
– volume: 21
  start-page: 31
  issue: 2
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib18
  article-title: Explaining decisions of a light-weight deep neural network for real-time coronary artery disease classification in magnetic resonance imaging
  publication-title: Journal of Real-Time Image Processing
  doi: 10.1007/s11554-023-01411-7
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib20
  article-title: Coronary artery stenosis and high-risk plaque assessed with an unsupervised fully automated deep-learning technique
  publication-title: JACC (J. Am. Coll. Cardiol.): Advances
– volume: 10
  start-page: 455
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib4
  article-title: Metaverse and healthcare: machine learning-enabled digital twins of cancer
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10040455
– volume: 11
  start-page: 682
  issue: 3
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib34
  article-title: Recent advances in stochastic gradient descent in deep learning
  publication-title: Mathematics
  doi: 10.3390/math11030682
– volume: 30
  start-page: 698
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib25
  article-title: Clinical evaluation of the automatic coronary artery disease reporting and data system (CAD-RADS) in coronary computed tomography angiography using convolutional neural networks
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2022.05.015
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib32
  article-title: CSC-Unet: a novel convolutional sparse coding strategy based neural network for semantic segmentation
  publication-title: IEEE Access
– volume: 13
  start-page: 2274
  issue: 13
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib19
  article-title: The application of deep learning for the segmentation and classification of coronary arteries
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13132274
– volume: 227
  start-page: 355
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib33
  article-title: Comparing local binary pattern and gray level Co-occurrence matrix for feature extraction in diabetic retinopathy classification
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.10.534
– volume: 10
  start-page: 44046
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib36
  article-title: Three-heartbeat multilead ECG recognition method for arrhythmia classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3169893
– volume: 13
  start-page: 2667
  issue: 16
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib5
  article-title: Cardiac magnetic resonance imaging (CMRI) applications in patients with chest pain in the emergency department: a narrative review
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13162667
– volume: 12
  start-page: 4835
  issue: 23
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib9
  article-title: AI-based aortic stenosis classification in MRI scans
  publication-title: Electronics
  doi: 10.3390/electronics12234835
– volume: 10
  start-page: 29687
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib30
  article-title: The cost-based feature selection model for coronary heart disease diagnosis system using deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3158752
– volume: 13
  start-page: 2253
  issue: 8
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib31
  article-title: Evaluation of motion artifact correction technique for cone-beam computed tomography image considering blood vessel geometry
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm13082253
– volume: 11
  start-page: 69686
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib3
  article-title: Exploring the potential of metaverse technology in healthcare: applications, challenges, and future directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3286696
– volume: 2023
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib14
  article-title: Towards diagnostic aided systems in coronary artery disease detection: a comprehensive multiview survey of the state of the art
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/6442756
– start-page: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib7
  article-title: MetaHealth: unlocking metaverse technologies in digital healthcare
  publication-title: Expet Rev. Med. Dev.
– volume: 14
  start-page: 1238
  issue: 3
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib21
  article-title: Ensemble learning-based coronary artery disease detection using computer tomography images
  publication-title: Appl. Sci.
  doi: 10.3390/app14031238
– volume: 225
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib12
  article-title: Towards automated coronary artery segmentation: a systematic review
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2022.107015
– volume: 11
  start-page: 20
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib11
  article-title: Artificial intelligence as a diagnostic tool in non-invasive imaging in the assessment of coronary artery disease
  publication-title: Med. Sci.
– volume: 13
  start-page: 1312
  issue: 7
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib15
  article-title: Developing a Deep-Learning-Based coronary artery disease detection technique using computer tomography images
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13071312
– year: 2021
  ident: 10.1016/j.compbiomed.2025.110720_bib35
  article-title: Ubr $^ 2$ S: uncertainty-based resampling and reweighting strategy for unsupervised domain adaptation
  publication-title: arXiv preprint arXiv:2110.11739
– volume: 13
  start-page: 1081
  issue: 6
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib29
  article-title: Prediction of coronary artery disease using machine learning techniques with iris analysis
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13061081
– volume: 6
  start-page: 56
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib2
  article-title: Metaverse: perspectives from graphics, interactions, and visualization
  publication-title: Visual Informatics
  doi: 10.1016/j.visinf.2022.03.002
– volume: 19
  issue: 20
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib1
  article-title: Application of metaverse service to healthcare industry: a strategic perspective
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph192013038
– volume: 405
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib22
  article-title: Artificial intelligence-based quantitative coronary angiography of major vessels using deep-learning
  publication-title: Int. J. Cardiol.
– volume: 24
  start-page: 52
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib28
  article-title: Which risk factor best predicts coronary artery disease using artificial neural network method?
  publication-title: BMC Med. Inf. Decis. Making
  doi: 10.1186/s12911-024-02442-1
– volume: 218
  start-page: 810
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib27
  article-title: Diagnosis of coronary artery disease from myocardial perfusion imaging using convolutional neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.061
– volume: 23
  start-page: 1193
  issue: 3
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib26
  article-title: Long-term coronary artery disease risk prediction with machine learning models
  publication-title: Sensors
  doi: 10.3390/s23031193
– volume: 17
  start-page: 119
  issue: 3
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110720_bib16
  article-title: A preprocessing method for coronary artery stenosis detection based on deep learning
  publication-title: Algorithms
  doi: 10.3390/a17030119
– volume: 11
  start-page: 1331
  issue: 5
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib41
  article-title: Combined coronary CT-angiography and TAVI planning: utility of CT-FFR in patients with morphologically ruled-out obstructive coronary artery disease
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11051331
– year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib23
  article-title: Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction
  publication-title: Diagnostic and interventional imaging
  doi: 10.1016/j.diii.2023.06.011
– volume: 142
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110720_bib40
  article-title: Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: the effect of reader experience, calcification and image quality
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109835
– volume: 24
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110720_bib37
  article-title: Contemplate on ECG signals and classification of arrhythmia signals using CNN-LSTM deep learning model
  publication-title: Measurement: Sensors
– volume: 10
  start-page: 249
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110720_bib13
  article-title: Identification of coronary artery diseases using photoplethysmography signals and practical feature selection process
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10020249
SSID ssj0004030
Score 2.421689
Snippet Metaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to medical...
AbstractMetaverse offers an immersive healthcare platform that combines virtual reality (VR) and artificial intelligence (AI), providing a new approach to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110720
SubjectTerms Algorithms
Coronary Angiography
Coronary artery
Coronary Stenosis - classification
Coronary Stenosis - diagnostic imaging
Deep Learning
Female
Humans
Image Processing, Computer-Assisted - methods
Internal Medicine
Invasive coronary angiography
Male
Metaverse
Monte Carlo dropout-based ResNet-152
Monte Carlo Method
Other
Stenosis
Stochastic gradient descent optimization algorithm and virtual reality
Title Metaverse-based deep learning framework for coronary artery stenosis classification using Monte Carlo Dropout-based ResNet-152
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525010716
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525010716
https://dx.doi.org/10.1016/j.compbiomed.2025.110720
https://www.ncbi.nlm.nih.gov/pubmed/40639014
https://www.proquest.com/docview/3229215350
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhhdJLafq5bRpU6NWNbcmWRE9h2822ZfdQGshNyPI4bCjeZe095JLf3hlLTihNIZCLwUZCRjOaeYPezDD2UZpaaiK1o_dRicQAI9G5KZOmFrkGYaoypeTkxbKcn8nv58X5HpuOuTBEq4y2P9j0wVrHL8dxN483qxXl-GIogQEOOnFcIqOy21Iq6mLw6fqW5iFTEdJQ0N7Q6MjmCRwvom2HNHeMFPOCOPGKOn_f7aL-B0EHVzR7xp5GDMlPwm8esD1on7PHi3hL_oJdL6B3RLeAhJxUzWuADY_9IS54M_KxOAJW7qmEgdte8YHcecVR6u26W3XcE64mItEgO04E-Qu-oGJWfOq2v9f8CzVY2PVxjZ_QLaFP0FG_ZGezr7-m8yT2WUi8kLpPqOgW4jyvhNM-9yY1jafbu0JVjQRtQBSlNsoXmc9K5x2BoLL2zqta6Ep58Yrtt-sW3jAOKWS6koWQtcFQiOK5ptFQQyOqJnPphGXj1tpNKKdhR57Zpb0VhyVx2CCOCTOjDOyYLooGzqLNv8dcdddc6OJJ7Wxmu9ym9h9tmrDPNzP_Ush7rvthVBaL55UuYVwL611n0YAahFmiwDGvgxbd7IQkvIgx69sHrf2OPaG3QIQ7ZPv9dgfvETn11dFwNPCpZ6dH7NHJtx_z5R-HLBk-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkYAL4s3yNBLX0CR2Yluc0EK1QLMH1Eq9WY4zqRah7GqTPfTS385M7LRCFKkS1yTWRJ7xzDfyNzOMvZemkZpI7Rh9VCIxwUh0bsqkbUSuQZi6TKk4uVqWixP57bQ43WPzqRaGaJXR9wefPnrr-OQg7ubBZrWiGl9MJTDBwSCOIrLyFrsti1xRBvbh4ornIVMR6lDQ4dDnkc4TSF7E2w517pgq5gWR4hWN_r4-Rv0Lg46x6PABux9BJP8U_vMh24PuEbtTxWvyx-yigsER3wISilINbwA2PA6IOOPtRMjiiFi5px4GbnvOR3bnOUe1d-t-1XNPwJqYRKPyODHkz3hF3az43G1_rflnmrCwG6KMH9AvYUgwUj9hJ4dfjueLJA5aSLyQekio6xYCPa-E0z73JjWtp-u7QtWtBG1AFKU2yheZz0rnHaGgsvHOq0boWnnxlO136w6eMw4pZLqWhZCNwVyIErq21dBAK-o2c-mMZdPW2k3op2EnotlPe6UOS-qwQR0zZiYd2KleFD2cRad_g7XqurXQx6Pa28z2uU3tX-Y0Yx8vV_5hkTeU-24yFosHlm5hXAfrXW_RgxrEWaLAb54FK7rcCUmAEZPWF_8l-y27uziujuzR1-X3l-wevQmsuFdsf9ju4DXCqKF-Mx6T30POGe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaverse-based+deep+learning+framework+for+coronary+artery+stenosis+classification+using+Monte+Carlo+Dropout-based+ResNet-152&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sivaranjani%2C+T&rft.au=Sasikumar%2C+B&rft.au=Sugitha%2C+G&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=196&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110720&rft.externalDocID=S0010482525010716
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00123%2Fcov150h.gif