Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast-cancer diagnosis

There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 127; pp. 293 - 299
Main Author Cherif, Walid
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2018
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2018.01.125

Cover

Abstract There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical problems, they can help to diagnose a disease, to detect its causes, to predict the outcome of a treatment, etc. K-Nearest Neighbors algorithm (KNN) is one of the simplest algorithms; it is widely used in predictive analysis. To optimize its performance and to accelerate its process, this paper proposes a new solution to speed up KNN algorithm based on clustering and attributes filtering. It also includes another improvement based on reliability coefficients which insures a more accurate classification. Thus, the contributions of this paper are three-fold: (i) the clustering of class instances, (ii) the selection of most significant attributes, and (iii) the ponderation of similarities by reliability coefficients. Results of the proposed approach exceeded most known classification techniques with an average f-measure exceeding 94% on the considered breast-cancer Dataset.
AbstractList There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical problems, they can help to diagnose a disease, to detect its causes, to predict the outcome of a treatment, etc. K-Nearest Neighbors algorithm (KNN) is one of the simplest algorithms; it is widely used in predictive analysis. To optimize its performance and to accelerate its process, this paper proposes a new solution to speed up KNN algorithm based on clustering and attributes filtering. It also includes another improvement based on reliability coefficients which insures a more accurate classification. Thus, the contributions of this paper are three-fold: (i) the clustering of class instances, (ii) the selection of most significant attributes, and (iii) the ponderation of similarities by reliability coefficients. Results of the proposed approach exceeded most known classification techniques with an average f-measure exceeding 94% on the considered breast-cancer Dataset.
Author Cherif, Walid
Author_xml – sequence: 1
  givenname: Walid
  surname: Cherif
  fullname: Cherif, Walid
  email: w.cherif@insea.ac.ma
  organization: Laboratory SI2M, Department of Computer Science, National Institute of Statistics and Applied Economics, B.P. 6217, Rabat, Morocco
BookMark eNqNkE1LAzEQhoMoWGt_gZf8gV2T7HY_BA9S_MKiFz2HbD7qlDRZk6jUX--29SAe1LnMwPC8wzxHaN95pxE6oSSnhFany7wPXsacEdrkhOaUTffQiDZ1nZEpafe_zYdoEuOSDFU0TUvrEXp56BOs4EMk8A57g--y-3ss7MIHSM8r3K2xtK8x6QBugYVTOGgLogMLaVh5bQxI0C7FMyz63oLcJSWPu6BFTJkUTuqAFYiF8xHiMTowwkY9-epj9HR1-Ti7yeYP17ezi3kmi7JJGauobtW0EV1dsrIlyijDaqYbbVRJasnKjnVSdo0hBak6U7ekqI1UTFVVQVRbjFG5y311vVi_C2t5H2AlwppTwjfm-JJvzfGNOU4oH8wNWLvDZPAxBm24hLT9KQUB9g-2-MH-7-L5jtKDjTfQgceNUakVBC0TVx5-5T8BpxahQw
CitedBy_id crossref_primary_10_1007_s13748_019_00178_y
crossref_primary_10_3390_app122312307
crossref_primary_10_1007_s13278_020_00635_w
crossref_primary_10_1016_S2589_7500_19_30226_2
crossref_primary_10_3233_JIFS_223265
crossref_primary_10_1007_s11356_023_25596_3
crossref_primary_10_1016_j_eswa_2020_113981
crossref_primary_10_1016_j_bspc_2023_104853
crossref_primary_10_1016_j_imu_2020_100408
crossref_primary_10_1007_s10994_023_06467_x
crossref_primary_10_1021_acssensors_0c01424
crossref_primary_10_1007_s42835_023_01747_x
crossref_primary_10_1109_ACCESS_2020_2985717
crossref_primary_10_3390_jrfm15060269
crossref_primary_10_3390_inventions7020042
crossref_primary_10_1016_j_jksuci_2021_08_007
crossref_primary_10_1134_S1054661819030118
crossref_primary_10_1007_s00216_023_04740_5
crossref_primary_10_24289_ijsser_1260482
crossref_primary_10_1007_s00357_024_09471_5
crossref_primary_10_1155_2022_3373553
crossref_primary_10_33851_JMIS_2019_6_2_75
crossref_primary_10_1016_j_health_2023_100150
crossref_primary_10_1088_1742_6596_1874_1_012032
crossref_primary_10_1186_s12859_021_04261_x
crossref_primary_10_3390_info12020057
crossref_primary_10_1080_0952813X_2021_1960629
crossref_primary_10_1186_s12859_021_04220_6
crossref_primary_10_3390_s22010203
crossref_primary_10_1016_j_matpr_2020_11_360
crossref_primary_10_1038_s41598_024_54120_x
crossref_primary_10_1038_s41598_022_10358_x
crossref_primary_10_1016_j_asej_2022_101944
crossref_primary_10_1016_j_compbiomed_2022_106443
crossref_primary_10_13005_bpj_2339
crossref_primary_10_1016_j_cej_2020_126230
crossref_primary_10_1038_s41598_022_26958_6
crossref_primary_10_22430_22565337_1408
Cites_doi 10.1007/s11548-010-0510-z
10.1007/s10916-016-0561-y
10.1023/A:1010676701382
10.1109/ICNN.1997.611703
10.1109/CCBD.2016.032
10.1016/S0933-3657(99)00019-6
10.1016/j.jnca.2010.10.009
10.1049/el:19981427
10.1016/S0933-3657(02)00028-3
10.5120/2237-2860
10.1016/0933-3657(95)00019-4
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2018.01.125
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 299
ExternalDocumentID 10.1016/j.procs.2018.01.125
10_1016_j_procs_2018_01_125
S1877050918301376
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-261e9d58ab742490dfdf272e8efd407c24b2bccb8f0306bf79037fcd2d6630d93
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Aug 19 21:48:15 EDT 2025
Wed Oct 01 03:32:10 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Tue May 16 23:59:31 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords supervised classification
similarity measurement
data mining
k-means
cancer diagnosis
unsupervised classification
k-nearest neighbors
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-261e9d58ab742490dfdf272e8efd407c24b2bccb8f0306bf79037fcd2d6630d93
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050918301376
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_procs_2018_01_125
crossref_citationtrail_10_1016_j_procs_2018_01_125
crossref_primary_10_1016_j_procs_2018_01_125
elsevier_sciencedirect_doi_10_1016_j_procs_2018_01_125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pena-Reyes, Sipper (bib00014) 1999; 17
Oskouei, Kor, Maleki (bib0002) 2017; 7
Patil, Sherekar (bib00030) 2013; 6
Diz, Marreiros, Freitas (bib00019) 2016; 40
Wasserman (bib00029) 1993
Su (bib00025) 2011; 34
Bueno, Vállez, Déniz, Esteve, Rienda, Arias, Pastor (bib00018) 2011; 6
Goldberger, J., Hinton, G. E., Roweis, S. T., & Salakhutdinov, R. R. (2005). Neighbourhood components analysis. In Advances in neural information processing systems (pp. 513-520).
Bailey, Jain (bib00023) 1978; 4
Soni, Ansari, Sharma, Soni (bib0006) 2011; 17
Sawarkar, S. D., Ghatol, A. A., & Pande, A. P. (2006, June). Neural network aided breast cancer detection and diagnosis using support vector machine. In Proceedings of the 7th WSEAS International Conference on Neural Networks (pp. 158-163).
Abbass (bib0003) 2002; 25
Setiono (bib00012) 1996; 8
Mueller, M. L. (2012). Data Mining Methods for Medical Diagnosis. Technical University of Munich.
Mathieu-Dupas, E. (2010). weighted KNN Algorithm and application in diagnosis Algorithme des k plus proches voisins pondérés et application en diagnostic. In 42nd Days of Statistics..
Fix, Hodges (bib00017) 1989; 57
Mirošević (bib0009) 2017; 20
Lad, Mehta (bib00010) 2017
Vapnik (bib00028) 1995
Taha, I., & Ghosh, J. (1997, June). Evaluation and ordering of rules extracted from feedforward networks. In Neural Networks, 1997., International Conference on (Vol. 1, pp. 408-413). IEEE.
Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
Yong, Youwen, Shixiong (bib00024) 2009; 4
Powers (bib00027) 2011; 2
Sarkar, M., & Leong, T. Y. (2000). Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. In Proceedings of the AMIA Symposium (p. 759). American Medical Informatics Association.
Kuo, Chang, Chen, Lee (bib00015) 2001; 66
Tung, H. H., Cheng, C. C., Chen, Y. Y., Chen, Y. F., Huang, S. H., & Chen, A. P. (2016, November). Binary Classification and Data Analysis for Modeling Calendar Anomalies in Financial Markets. In Cloud Computing and Big Data (CCBD), 2016 7th International Conference on (pp. 116-121). IEEE.
Hwang, Wen (bib00031) 1998; 34
Bennett, K. P. (1992). Decision tree construction via linear programming (pp. 97-101). Center for Parallel Optimization, Computer Sciences Department, University of Wisconsin.
Chaurasia, V., & Pal, S. (2017). Performance Analysis of Data Mining Algorithms for Diagnosis and Prediction of Heart and Breast Cancer Disease.
Hwang, Wen (bib0008) 1998; 34
Diz, Marreiros, Freitas (bib0004) 2016; 40
Lad (10.1016/j.procs.2018.01.125_bib00010) 2017
10.1016/j.procs.2018.01.125_bib0007
Hwang (10.1016/j.procs.2018.01.125_bib0008) 1998; 34
10.1016/j.procs.2018.01.125_bib0005
Diz (10.1016/j.procs.2018.01.125_bib0004) 2016; 40
Pena-Reyes (10.1016/j.procs.2018.01.125_bib00014) 1999; 17
10.1016/j.procs.2018.01.125_bib00013
10.1016/j.procs.2018.01.125_bib00011
Bueno (10.1016/j.procs.2018.01.125_bib00018) 2011; 6
Diz (10.1016/j.procs.2018.01.125_bib00019) 2016; 40
10.1016/j.procs.2018.01.125_bib00016
Mirošević (10.1016/j.procs.2018.01.125_bib0009) 2017; 20
Yong (10.1016/j.procs.2018.01.125_bib00024) 2009; 4
Wasserman (10.1016/j.procs.2018.01.125_bib00029) 1993
Abbass (10.1016/j.procs.2018.01.125_bib0003) 2002; 25
Soni (10.1016/j.procs.2018.01.125_bib0006) 2011; 17
Kuo (10.1016/j.procs.2018.01.125_bib00015) 2001; 66
Powers (10.1016/j.procs.2018.01.125_bib00027) 2011; 2
Hwang (10.1016/j.procs.2018.01.125_bib00031) 1998; 34
Setiono (10.1016/j.procs.2018.01.125_bib00012) 1996; 8
Fix (10.1016/j.procs.2018.01.125_bib00017) 1989; 57
10.1016/j.procs.2018.01.125_bib00021
10.1016/j.procs.2018.01.125_bib00022
Vapnik (10.1016/j.procs.2018.01.125_bib00028) 1995
10.1016/j.procs.2018.01.125_bib00020
Patil (10.1016/j.procs.2018.01.125_bib00030) 2013; 6
10.1016/j.procs.2018.01.125_bib0001
Bailey (10.1016/j.procs.2018.01.125_bib00023) 1978; 4
Su (10.1016/j.procs.2018.01.125_bib00025) 2011; 34
Oskouei (10.1016/j.procs.2018.01.125_bib0002) 2017; 7
10.1016/j.procs.2018.01.125_bib00026
References_xml – volume: 6
  start-page: 309
  year: 2011
  end-page: 318
  ident: bib00018
  article-title: Automatic breast parenchymal density classification integrated into a CADe system
  publication-title: International journal of computer assisted radiology and surgery
– year: 1995
  ident: bib00028
  publication-title: The nature of statistical learning theory
– start-page: 345
  year: 2017
  end-page: 352
  ident: bib00010
  publication-title: Feature Based Object Mining and Tagging Algorithm for Digital Images. In Proceedings of International Conference on Communication and Networks
– volume: 4
  start-page: 311
  year: 1978
  end-page: 313
  ident: bib00023
  article-title: A note on distance-weighted $ k $-nearest neighbor rules. IEEE Transactions on Systems
  publication-title: Man, and Cybernetics
– volume: 17
  start-page: 43
  year: 2011
  end-page: 48
  ident: bib0006
  article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction
  publication-title: International Journal of Computer Applications
– reference: Sarkar, M., & Leong, T. Y. (2000). Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. In Proceedings of the AMIA Symposium (p. 759). American Medical Informatics Association.
– reference: Mathieu-Dupas, E. (2010). weighted KNN Algorithm and application in diagnosis Algorithme des k plus proches voisins pondérés et application en diagnostic. In 42nd Days of Statistics..
– volume: 34
  start-page: 722
  year: 2011
  end-page: 730
  ident: bib00025
  article-title: Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification
  publication-title: Journal of Network and Computer Applications
– reference: Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
– volume: 40
  start-page: 203
  year: 2016
  ident: bib00019
  article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis
  publication-title: Journal of medical systems
– reference: Mueller, M. L. (2012). Data Mining Methods for Medical Diagnosis. Technical University of Munich.
– volume: 25
  start-page: 265
  year: 2002
  end-page: 281
  ident: bib0003
  article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis
  publication-title: Artificial intelligence in Medicine
– volume: 4
  start-page: 230
  year: 2009
  end-page: 237
  ident: bib00024
  article-title: An improved KNN text classification algorithm based on clustering
  publication-title: Journal of computers
– volume: 57
  start-page: 238
  year: 1989
  end-page: 247
  ident: bib00017
  article-title: Discriminatory analysis
  publication-title: Nonparametric discrimination: consistency properties. International Statistical Review/Revue Internationale de Statistique
– volume: 34
  start-page: 2062
  year: 1998
  end-page: 2063
  ident: bib00031
  article-title: Fast KNN classification algorithm based on partial distance search
  publication-title: Electronics letters
– volume: 8
  start-page: 37
  year: 1996
  end-page: 51
  ident: bib00012
  article-title: Extracting rules from pruned neural networks for breast cancer diagnosis
  publication-title: Artificial Intelligence in Medicine
– volume: 6
  start-page: 256
  year: 2013
  end-page: 261
  ident: bib00030
  article-title: Performance analysis of Naive Bayes and J48 classification algorithm for data classification
  publication-title: International Journal of Computer Science and Applications
– volume: 20
  start-page: 91
  year: 2017
  end-page: 98
  ident: bib0009
  article-title: K-means Algorithm
  publication-title: KoG
– reference: Goldberger, J., Hinton, G. E., Roweis, S. T., & Salakhutdinov, R. R. (2005). Neighbourhood components analysis. In Advances in neural information processing systems (pp. 513-520).
– reference: Chaurasia, V., & Pal, S. (2017). Performance Analysis of Data Mining Algorithms for Diagnosis and Prediction of Heart and Breast Cancer Disease.
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: bib00027
  article-title: Evaluation: from Precision Recall and F-measure to ROC
  publication-title: Informedness, Markedness and Correlation. Journal of Machine Learning Technologies
– volume: 17
  start-page: 131
  year: 1999
  end-page: 155
  ident: bib00014
  article-title: A fuzzy-genetic approach to breast cancer diagnosis
  publication-title: Artificial intelligence in medicine
– reference: Bennett, K. P. (1992). Decision tree construction via linear programming (pp. 97-101). Center for Parallel Optimization, Computer Sciences Department, University of Wisconsin.
– year: 1993
  ident: bib00029
  publication-title: Advanced methods in neural computing
– volume: 7
  start-page: 610
  year: 2017
  ident: bib0002
  article-title: Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges
  publication-title: American journal of cancer research
– reference: Taha, I., & Ghosh, J. (1997, June). Evaluation and ordering of rules extracted from feedforward networks. In Neural Networks, 1997., International Conference on (Vol. 1, pp. 408-413). IEEE.
– volume: 40
  start-page: 203
  year: 2016
  ident: bib0004
  article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis
  publication-title: Journal of medical systems
– reference: Sawarkar, S. D., Ghatol, A. A., & Pande, A. P. (2006, June). Neural network aided breast cancer detection and diagnosis using support vector machine. In Proceedings of the 7th WSEAS International Conference on Neural Networks (pp. 158-163).
– reference: Tung, H. H., Cheng, C. C., Chen, Y. Y., Chen, Y. F., Huang, S. H., & Chen, A. P. (2016, November). Binary Classification and Data Analysis for Modeling Calendar Anomalies in Financial Markets. In Cloud Computing and Big Data (CCBD), 2016 7th International Conference on (pp. 116-121). IEEE.
– volume: 34
  start-page: 2062
  year: 1998
  end-page: 2063
  ident: bib0008
  article-title: Fast KNN classification algorithm based on partial distance search
  publication-title: Electronics letters
– volume: 66
  start-page: 51
  year: 2001
  end-page: 57
  ident: bib00015
  article-title: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images
  publication-title: Breast cancer research and treatment
– ident: 10.1016/j.procs.2018.01.125_bib0005
– volume: 6
  start-page: 309
  issue: 3
  year: 2011
  ident: 10.1016/j.procs.2018.01.125_bib00018
  article-title: Automatic breast parenchymal density classification integrated into a CADe system
  publication-title: International journal of computer assisted radiology and surgery
  doi: 10.1007/s11548-010-0510-z
– volume: 7
  start-page: 610
  issue: 3
  year: 2017
  ident: 10.1016/j.procs.2018.01.125_bib0002
  article-title: Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges
  publication-title: American journal of cancer research
– ident: 10.1016/j.procs.2018.01.125_bib0001
– volume: 40
  start-page: 203
  issue: 9
  year: 2016
  ident: 10.1016/j.procs.2018.01.125_bib00019
  article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis
  publication-title: Journal of medical systems
  doi: 10.1007/s10916-016-0561-y
– ident: 10.1016/j.procs.2018.01.125_bib00021
– volume: 20
  start-page: 91
  issue: 20
  year: 2017
  ident: 10.1016/j.procs.2018.01.125_bib0009
  article-title: K-means Algorithm
  publication-title: KoG
– volume: 66
  start-page: 51
  issue: 1
  year: 2001
  ident: 10.1016/j.procs.2018.01.125_bib00015
  article-title: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images
  publication-title: Breast cancer research and treatment
  doi: 10.1023/A:1010676701382
– year: 1993
  ident: 10.1016/j.procs.2018.01.125_bib00029
– volume: 4
  start-page: 230
  issue: 3
  year: 2009
  ident: 10.1016/j.procs.2018.01.125_bib00024
  article-title: An improved KNN text classification algorithm based on clustering
  publication-title: Journal of computers
– volume: 40
  start-page: 203
  issue: 9
  year: 2016
  ident: 10.1016/j.procs.2018.01.125_bib0004
  article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis
  publication-title: Journal of medical systems
  doi: 10.1007/s10916-016-0561-y
– ident: 10.1016/j.procs.2018.01.125_bib00013
  doi: 10.1109/ICNN.1997.611703
– ident: 10.1016/j.procs.2018.01.125_bib0007
  doi: 10.1109/CCBD.2016.032
– volume: 17
  start-page: 131
  issue: 2
  year: 1999
  ident: 10.1016/j.procs.2018.01.125_bib00014
  article-title: A fuzzy-genetic approach to breast cancer diagnosis
  publication-title: Artificial intelligence in medicine
  doi: 10.1016/S0933-3657(99)00019-6
– ident: 10.1016/j.procs.2018.01.125_bib00011
– start-page: 345
  year: 2017
  ident: 10.1016/j.procs.2018.01.125_bib00010
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.procs.2018.01.125_bib00027
  article-title: Evaluation: from Precision Recall and F-measure to ROC
  publication-title: Informedness, Markedness and Correlation. Journal of Machine Learning Technologies
– volume: 34
  start-page: 722
  issue: 2
  year: 2011
  ident: 10.1016/j.procs.2018.01.125_bib00025
  article-title: Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2010.10.009
– ident: 10.1016/j.procs.2018.01.125_bib00020
– volume: 34
  start-page: 2062
  issue: 21
  year: 1998
  ident: 10.1016/j.procs.2018.01.125_bib0008
  article-title: Fast KNN classification algorithm based on partial distance search
  publication-title: Electronics letters
  doi: 10.1049/el:19981427
– ident: 10.1016/j.procs.2018.01.125_bib00016
– year: 1995
  ident: 10.1016/j.procs.2018.01.125_bib00028
– ident: 10.1016/j.procs.2018.01.125_bib00022
– volume: 25
  start-page: 265
  issue: 3
  year: 2002
  ident: 10.1016/j.procs.2018.01.125_bib0003
  article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis
  publication-title: Artificial intelligence in Medicine
  doi: 10.1016/S0933-3657(02)00028-3
– volume: 17
  start-page: 43
  issue: 8
  year: 2011
  ident: 10.1016/j.procs.2018.01.125_bib0006
  article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction
  publication-title: International Journal of Computer Applications
  doi: 10.5120/2237-2860
– volume: 6
  start-page: 256
  issue: 2
  year: 2013
  ident: 10.1016/j.procs.2018.01.125_bib00030
  article-title: Performance analysis of Naive Bayes and J48 classification algorithm for data classification
  publication-title: International Journal of Computer Science and Applications
– volume: 8
  start-page: 37
  issue: 1
  year: 1996
  ident: 10.1016/j.procs.2018.01.125_bib00012
  article-title: Extracting rules from pruned neural networks for breast cancer diagnosis
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/0933-3657(95)00019-4
– ident: 10.1016/j.procs.2018.01.125_bib00026
– volume: 4
  start-page: 311
  year: 1978
  ident: 10.1016/j.procs.2018.01.125_bib00023
  article-title: A note on distance-weighted $ k $-nearest neighbor rules. IEEE Transactions on Systems
  publication-title: Man, and Cybernetics
– volume: 34
  start-page: 2062
  issue: 21
  year: 1998
  ident: 10.1016/j.procs.2018.01.125_bib00031
  article-title: Fast KNN classification algorithm based on partial distance search
  publication-title: Electronics letters
  doi: 10.1049/el:19981427
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  ident: 10.1016/j.procs.2018.01.125_bib00017
  article-title: Discriminatory analysis
  publication-title: Nonparametric discrimination: consistency properties. International Statistical Review/Revue Internationale de Statistique
SSID ssj0000388917
Score 2.3084536
Snippet There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms cancer diagnosis
data mining
k-means
k-nearest neighbors
similarity measurement
supervised classification
unsupervised classification
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcm3ggQIA-MuEpiJ07YKkSFQBQGKpUp8itQCAm0qVD59PjyqAABgtm2Evkuvv_F558ROnRZ4hujGKFKRoTxAJC3wiGKulpQn9pG-DVw2Q_OBux86A9rzjachfm0f1_WYcFCDlxtNwS-po3Hi6gd-FZ4t1B70L_u3kJKFXJOgGTScIW-H_lT7FmaZs9i9irS9ENs6a1Uh7YnJZIQSkoeO9NCdtTbF2DjH197FS3XGhN3K6dYQwsmW0crzf0NuP6cN9DLlV0vnuqDmDhP8AXp97FI7_LxqLh_wnKGVToFkoKNb1hkGo9NOqrA3rYpNyV-AioxjvGHjXBc5FhCrXtBFPjUGOuqnm802USD3unNyRmpr2CwxmJhQWx-ZSLth0LaFJpFjk504nHPhCbRNhVUHpOeVEqGCeQeMuGRQ3mitKetknF0RLdQK8szs42w8hkVoeLUKjRmBHADOQ-sfhM0UoHn7CCvMU6saj45XJORxk0h2kNcTmoMkxo7bmwndQcdzQc9V3iO37sHjdXjWmFUyiG2Bvx9IJn7yF8etPvP_nuoVYynZt8KnEIe1I79Dp1o-qw
  priority: 102
  providerName: Unpaywall
Title Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast-cancer diagnosis
URI https://dx.doi.org/10.1016/j.procs.2018.01.125
https://doi.org/10.1016/j.procs.2018.01.125
UnpaywallVersion publishedVersion
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHODC8hQsD_nAEatJ7MQJt1JRARUFARXlFPmV3axC0i2pEP8eTx4VSAghjo49cuSZzCvjbxA6clniG6MYoUpGhPEAIG-FQxR1taA-tZOQGrgaBucjdjn2xwuo196FgbLKRvfXOr3S1s2TTnOanUmadu7ckHNAL7FCCbh5ALtNWQjtGy7Gp_M8C6CdRFXjXVhPgKAFH6rKvMBOAGy3GwJ8pwstsz83UMuzfCJeX0SWvTNA_TW02niOuFu_3DpaMPkG-tV2ZcDNR7qJ_l9bLfDUXK_ERYIHZDjEIvtTTNPy7xOWr1hlM8BHsFYLi1zjqcnSGq7bThWmApWA-ooT_O73Ni4LLKGCvSQKJGWKdV2llz5voVH_7L53TprGCpYFLCyJjZpMpP1QSBsYs8jRiU487pnQJNoGeMpj0pNKyTCBiEImPHIoT5T2tPVPHB3RbbSYF7nZQVj5jIpQcWr9LmYEoAFyHlivTNBIBZ6zi7z2NGPVoI5D84ssbsvL_sUVC2JgQey4sWXBLjqeE01q0I2vlwctm-IPshNbs_A1IZkz9Tsb_f7pRntoBUZ16mYfLZbTmTmwzkwpD9FSd3D7MDispNaORsOb7uMb2pD2wg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FeggXoC2IR2n30GNXsb1rr80NoqK0QDiQSLmt9mXqytghOEL8e3b8iKhURYirx6O1dsbz2J35BqHvPktDazUjVKuEMB4B5K30iKa-kTSkjghHA9fjaDRlv2fhrIeGXS8MlFW2tr-x6bW1bp8M2t0czLNscOvHnAN6iVNKwM2LNtAHFrroBLr4ZuergxaAO0nqybvAQICjQx-q67zAUQButx8DfqcPM7P_76H6y2Iun59knr_yQBe7aLsNHfFZ83UfUc8Wn9BON5YBt3_pZ_Rw48zAfdtficsUX5LxGMv8rlxk1Z97rJ6xzpcAkODcFpaFwQubZw1etyOVtkaVgAKLU_zqfhtXJVZQwl4RDaqywKYp08se99D04udkOCLtZAUnAxZXxKVNNjFhLJXLjFnimdSkAQ9sbFPjMjwdMBUorVWcQkqhUp54lKfaBMYFKJ5J6D7aLMrCHiCsQ0ZlrDl1gRezEuAAOY9cWCZpoqPAO0RBt5tCt7DjMP0iF1192V9Ri0CACITnCyeCQ_RjxTRvUDfWvx51YhL_KI9wfmE9I1kJ9S0LHb13oW-oP5pcX4mrX-PLY7QFlOYc5wvarBZLe-Iim0p9rTX3Bdyb9pU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcm3ggQIA-MuEpiJ07YKkSFQBQGKpUp8itQCAm0qVD59PjyqAABgtm2Evkuvv_F558ROnRZ4hujGKFKRoTxAJC3wiGKulpQn9pG-DVw2Q_OBux86A9rzjachfm0f1_WYcFCDlxtNwS-po3Hi6gd-FZ4t1B70L_u3kJKFXJOgGTScIW-H_lT7FmaZs9i9irS9ENs6a1Uh7YnJZIQSkoeO9NCdtTbF2DjH197FS3XGhN3K6dYQwsmW0crzf0NuP6cN9DLlV0vnuqDmDhP8AXp97FI7_LxqLh_wnKGVToFkoKNb1hkGo9NOqrA3rYpNyV-AioxjvGHjXBc5FhCrXtBFPjUGOuqnm802USD3unNyRmpr2CwxmJhQWx-ZSLth0LaFJpFjk504nHPhCbRNhVUHpOeVEqGCeQeMuGRQ3mitKetknF0RLdQK8szs42w8hkVoeLUKjRmBHADOQ-sfhM0UoHn7CCvMU6saj45XJORxk0h2kNcTmoMkxo7bmwndQcdzQc9V3iO37sHjdXjWmFUyiG2Bvx9IJn7yF8etPvP_nuoVYynZt8KnEIe1I79Dp1o-qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+K-NN+algorithm+by+clustering+and+reliability+coefficients%3A+application+to+breast-cancer+diagnosis&rft.jtitle=Procedia+computer+science&rft.au=Cherif%2C+Walid&rft.date=2018&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=127&rft.spage=293&rft.epage=299&rft_id=info:doi/10.1016%2Fj.procs.2018.01.125&rft.externalDocID=S1877050918301376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon