Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast-cancer diagnosis
There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical...
Saved in:
| Published in | Procedia computer science Vol. 127; pp. 293 - 299 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-0509 1877-0509 |
| DOI | 10.1016/j.procs.2018.01.125 |
Cover
| Abstract | There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical problems, they can help to diagnose a disease, to detect its causes, to predict the outcome of a treatment, etc. K-Nearest Neighbors algorithm (KNN) is one of the simplest algorithms; it is widely used in predictive analysis. To optimize its performance and to accelerate its process, this paper proposes a new solution to speed up KNN algorithm based on clustering and attributes filtering. It also includes another improvement based on reliability coefficients which insures a more accurate classification. Thus, the contributions of this paper are three-fold: (i) the clustering of class instances, (ii) the selection of most significant attributes, and (iii) the ponderation of similarities by reliability coefficients. Results of the proposed approach exceeded most known classification techniques with an average f-measure exceeding 94% on the considered breast-cancer Dataset. |
|---|---|
| AbstractList | There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist their work; the diagnosis of breast cancer is one of those applications. Machine learning algorithms are of vital importance to many medical problems, they can help to diagnose a disease, to detect its causes, to predict the outcome of a treatment, etc. K-Nearest Neighbors algorithm (KNN) is one of the simplest algorithms; it is widely used in predictive analysis. To optimize its performance and to accelerate its process, this paper proposes a new solution to speed up KNN algorithm based on clustering and attributes filtering. It also includes another improvement based on reliability coefficients which insures a more accurate classification. Thus, the contributions of this paper are three-fold: (i) the clustering of class instances, (ii) the selection of most significant attributes, and (iii) the ponderation of similarities by reliability coefficients. Results of the proposed approach exceeded most known classification techniques with an average f-measure exceeding 94% on the considered breast-cancer Dataset. |
| Author | Cherif, Walid |
| Author_xml | – sequence: 1 givenname: Walid surname: Cherif fullname: Cherif, Walid email: w.cherif@insea.ac.ma organization: Laboratory SI2M, Department of Computer Science, National Institute of Statistics and Applied Economics, B.P. 6217, Rabat, Morocco |
| BookMark | eNqNkE1LAzEQhoMoWGt_gZf8gV2T7HY_BA9S_MKiFz2HbD7qlDRZk6jUX--29SAe1LnMwPC8wzxHaN95pxE6oSSnhFany7wPXsacEdrkhOaUTffQiDZ1nZEpafe_zYdoEuOSDFU0TUvrEXp56BOs4EMk8A57g--y-3ss7MIHSM8r3K2xtK8x6QBugYVTOGgLogMLaVh5bQxI0C7FMyz63oLcJSWPu6BFTJkUTuqAFYiF8xHiMTowwkY9-epj9HR1-Ti7yeYP17ezi3kmi7JJGauobtW0EV1dsrIlyijDaqYbbVRJasnKjnVSdo0hBak6U7ekqI1UTFVVQVRbjFG5y311vVi_C2t5H2AlwppTwjfm-JJvzfGNOU4oH8wNWLvDZPAxBm24hLT9KQUB9g-2-MH-7-L5jtKDjTfQgceNUakVBC0TVx5-5T8BpxahQw |
| CitedBy_id | crossref_primary_10_1007_s13748_019_00178_y crossref_primary_10_3390_app122312307 crossref_primary_10_1007_s13278_020_00635_w crossref_primary_10_1016_S2589_7500_19_30226_2 crossref_primary_10_3233_JIFS_223265 crossref_primary_10_1007_s11356_023_25596_3 crossref_primary_10_1016_j_eswa_2020_113981 crossref_primary_10_1016_j_bspc_2023_104853 crossref_primary_10_1016_j_imu_2020_100408 crossref_primary_10_1007_s10994_023_06467_x crossref_primary_10_1021_acssensors_0c01424 crossref_primary_10_1007_s42835_023_01747_x crossref_primary_10_1109_ACCESS_2020_2985717 crossref_primary_10_3390_jrfm15060269 crossref_primary_10_3390_inventions7020042 crossref_primary_10_1016_j_jksuci_2021_08_007 crossref_primary_10_1134_S1054661819030118 crossref_primary_10_1007_s00216_023_04740_5 crossref_primary_10_24289_ijsser_1260482 crossref_primary_10_1007_s00357_024_09471_5 crossref_primary_10_1155_2022_3373553 crossref_primary_10_33851_JMIS_2019_6_2_75 crossref_primary_10_1016_j_health_2023_100150 crossref_primary_10_1088_1742_6596_1874_1_012032 crossref_primary_10_1186_s12859_021_04261_x crossref_primary_10_3390_info12020057 crossref_primary_10_1080_0952813X_2021_1960629 crossref_primary_10_1186_s12859_021_04220_6 crossref_primary_10_3390_s22010203 crossref_primary_10_1016_j_matpr_2020_11_360 crossref_primary_10_1038_s41598_024_54120_x crossref_primary_10_1038_s41598_022_10358_x crossref_primary_10_1016_j_asej_2022_101944 crossref_primary_10_1016_j_compbiomed_2022_106443 crossref_primary_10_13005_bpj_2339 crossref_primary_10_1016_j_cej_2020_126230 crossref_primary_10_1038_s41598_022_26958_6 crossref_primary_10_22430_22565337_1408 |
| Cites_doi | 10.1007/s11548-010-0510-z 10.1007/s10916-016-0561-y 10.1023/A:1010676701382 10.1109/ICNN.1997.611703 10.1109/CCBD.2016.032 10.1016/S0933-3657(99)00019-6 10.1016/j.jnca.2010.10.009 10.1049/el:19981427 10.1016/S0933-3657(02)00028-3 10.5120/2237-2860 10.1016/0933-3657(95)00019-4 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.procs.2018.01.125 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 299 |
| ExternalDocumentID | 10.1016/j.procs.2018.01.125 10_1016_j_procs_2018_01_125 S1877050918301376 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c348t-261e9d58ab742490dfdf272e8efd407c24b2bccb8f0306bf79037fcd2d6630d93 |
| IEDL.DBID | IXB |
| ISSN | 1877-0509 |
| IngestDate | Tue Aug 19 21:48:15 EDT 2025 Wed Oct 01 03:32:10 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Tue May 16 23:59:31 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | supervised classification similarity measurement data mining k-means cancer diagnosis unsupervised classification k-nearest neighbors |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-261e9d58ab742490dfdf272e8efd407c24b2bccb8f0306bf79037fcd2d6630d93 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050918301376 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2018_01_125 crossref_citationtrail_10_1016_j_procs_2018_01_125 crossref_primary_10_1016_j_procs_2018_01_125 elsevier_sciencedirect_doi_10_1016_j_procs_2018_01_125 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pena-Reyes, Sipper (bib00014) 1999; 17 Oskouei, Kor, Maleki (bib0002) 2017; 7 Patil, Sherekar (bib00030) 2013; 6 Diz, Marreiros, Freitas (bib00019) 2016; 40 Wasserman (bib00029) 1993 Su (bib00025) 2011; 34 Bueno, Vállez, Déniz, Esteve, Rienda, Arias, Pastor (bib00018) 2011; 6 Goldberger, J., Hinton, G. E., Roweis, S. T., & Salakhutdinov, R. R. (2005). Neighbourhood components analysis. In Advances in neural information processing systems (pp. 513-520). Bailey, Jain (bib00023) 1978; 4 Soni, Ansari, Sharma, Soni (bib0006) 2011; 17 Sawarkar, S. D., Ghatol, A. A., & Pande, A. P. (2006, June). Neural network aided breast cancer detection and diagnosis using support vector machine. In Proceedings of the 7th WSEAS International Conference on Neural Networks (pp. 158-163). Abbass (bib0003) 2002; 25 Setiono (bib00012) 1996; 8 Mueller, M. L. (2012). Data Mining Methods for Medical Diagnosis. Technical University of Munich. Mathieu-Dupas, E. (2010). weighted KNN Algorithm and application in diagnosis Algorithme des k plus proches voisins pondérés et application en diagnostic. In 42nd Days of Statistics.. Fix, Hodges (bib00017) 1989; 57 Mirošević (bib0009) 2017; 20 Lad, Mehta (bib00010) 2017 Vapnik (bib00028) 1995 Taha, I., & Ghosh, J. (1997, June). Evaluation and ordering of rules extracted from feedforward networks. In Neural Networks, 1997., International Conference on (Vol. 1, pp. 408-413). IEEE. Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085. Yong, Youwen, Shixiong (bib00024) 2009; 4 Powers (bib00027) 2011; 2 Sarkar, M., & Leong, T. Y. (2000). Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. In Proceedings of the AMIA Symposium (p. 759). American Medical Informatics Association. Kuo, Chang, Chen, Lee (bib00015) 2001; 66 Tung, H. H., Cheng, C. C., Chen, Y. Y., Chen, Y. F., Huang, S. H., & Chen, A. P. (2016, November). Binary Classification and Data Analysis for Modeling Calendar Anomalies in Financial Markets. In Cloud Computing and Big Data (CCBD), 2016 7th International Conference on (pp. 116-121). IEEE. Hwang, Wen (bib00031) 1998; 34 Bennett, K. P. (1992). Decision tree construction via linear programming (pp. 97-101). Center for Parallel Optimization, Computer Sciences Department, University of Wisconsin. Chaurasia, V., & Pal, S. (2017). Performance Analysis of Data Mining Algorithms for Diagnosis and Prediction of Heart and Breast Cancer Disease. Hwang, Wen (bib0008) 1998; 34 Diz, Marreiros, Freitas (bib0004) 2016; 40 Lad (10.1016/j.procs.2018.01.125_bib00010) 2017 10.1016/j.procs.2018.01.125_bib0007 Hwang (10.1016/j.procs.2018.01.125_bib0008) 1998; 34 10.1016/j.procs.2018.01.125_bib0005 Diz (10.1016/j.procs.2018.01.125_bib0004) 2016; 40 Pena-Reyes (10.1016/j.procs.2018.01.125_bib00014) 1999; 17 10.1016/j.procs.2018.01.125_bib00013 10.1016/j.procs.2018.01.125_bib00011 Bueno (10.1016/j.procs.2018.01.125_bib00018) 2011; 6 Diz (10.1016/j.procs.2018.01.125_bib00019) 2016; 40 10.1016/j.procs.2018.01.125_bib00016 Mirošević (10.1016/j.procs.2018.01.125_bib0009) 2017; 20 Yong (10.1016/j.procs.2018.01.125_bib00024) 2009; 4 Wasserman (10.1016/j.procs.2018.01.125_bib00029) 1993 Abbass (10.1016/j.procs.2018.01.125_bib0003) 2002; 25 Soni (10.1016/j.procs.2018.01.125_bib0006) 2011; 17 Kuo (10.1016/j.procs.2018.01.125_bib00015) 2001; 66 Powers (10.1016/j.procs.2018.01.125_bib00027) 2011; 2 Hwang (10.1016/j.procs.2018.01.125_bib00031) 1998; 34 Setiono (10.1016/j.procs.2018.01.125_bib00012) 1996; 8 Fix (10.1016/j.procs.2018.01.125_bib00017) 1989; 57 10.1016/j.procs.2018.01.125_bib00021 10.1016/j.procs.2018.01.125_bib00022 Vapnik (10.1016/j.procs.2018.01.125_bib00028) 1995 10.1016/j.procs.2018.01.125_bib00020 Patil (10.1016/j.procs.2018.01.125_bib00030) 2013; 6 10.1016/j.procs.2018.01.125_bib0001 Bailey (10.1016/j.procs.2018.01.125_bib00023) 1978; 4 Su (10.1016/j.procs.2018.01.125_bib00025) 2011; 34 Oskouei (10.1016/j.procs.2018.01.125_bib0002) 2017; 7 10.1016/j.procs.2018.01.125_bib00026 |
| References_xml | – volume: 6 start-page: 309 year: 2011 end-page: 318 ident: bib00018 article-title: Automatic breast parenchymal density classification integrated into a CADe system publication-title: International journal of computer assisted radiology and surgery – year: 1995 ident: bib00028 publication-title: The nature of statistical learning theory – start-page: 345 year: 2017 end-page: 352 ident: bib00010 publication-title: Feature Based Object Mining and Tagging Algorithm for Digital Images. In Proceedings of International Conference on Communication and Networks – volume: 4 start-page: 311 year: 1978 end-page: 313 ident: bib00023 article-title: A note on distance-weighted $ k $-nearest neighbor rules. IEEE Transactions on Systems publication-title: Man, and Cybernetics – volume: 17 start-page: 43 year: 2011 end-page: 48 ident: bib0006 article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction publication-title: International Journal of Computer Applications – reference: Sarkar, M., & Leong, T. Y. (2000). Application of K-nearest neighbors algorithm on breast cancer diagnosis problem. In Proceedings of the AMIA Symposium (p. 759). American Medical Informatics Association. – reference: Mathieu-Dupas, E. (2010). weighted KNN Algorithm and application in diagnosis Algorithme des k plus proches voisins pondérés et application en diagnostic. In 42nd Days of Statistics.. – volume: 34 start-page: 722 year: 2011 end-page: 730 ident: bib00025 article-title: Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification publication-title: Journal of Network and Computer Applications – reference: Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085. – volume: 40 start-page: 203 year: 2016 ident: bib00019 article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis publication-title: Journal of medical systems – reference: Mueller, M. L. (2012). Data Mining Methods for Medical Diagnosis. Technical University of Munich. – volume: 25 start-page: 265 year: 2002 end-page: 281 ident: bib0003 article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis publication-title: Artificial intelligence in Medicine – volume: 4 start-page: 230 year: 2009 end-page: 237 ident: bib00024 article-title: An improved KNN text classification algorithm based on clustering publication-title: Journal of computers – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: bib00017 article-title: Discriminatory analysis publication-title: Nonparametric discrimination: consistency properties. International Statistical Review/Revue Internationale de Statistique – volume: 34 start-page: 2062 year: 1998 end-page: 2063 ident: bib00031 article-title: Fast KNN classification algorithm based on partial distance search publication-title: Electronics letters – volume: 8 start-page: 37 year: 1996 end-page: 51 ident: bib00012 article-title: Extracting rules from pruned neural networks for breast cancer diagnosis publication-title: Artificial Intelligence in Medicine – volume: 6 start-page: 256 year: 2013 end-page: 261 ident: bib00030 article-title: Performance analysis of Naive Bayes and J48 classification algorithm for data classification publication-title: International Journal of Computer Science and Applications – volume: 20 start-page: 91 year: 2017 end-page: 98 ident: bib0009 article-title: K-means Algorithm publication-title: KoG – reference: Goldberger, J., Hinton, G. E., Roweis, S. T., & Salakhutdinov, R. R. (2005). Neighbourhood components analysis. In Advances in neural information processing systems (pp. 513-520). – reference: Chaurasia, V., & Pal, S. (2017). Performance Analysis of Data Mining Algorithms for Diagnosis and Prediction of Heart and Breast Cancer Disease. – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: bib00027 article-title: Evaluation: from Precision Recall and F-measure to ROC publication-title: Informedness, Markedness and Correlation. Journal of Machine Learning Technologies – volume: 17 start-page: 131 year: 1999 end-page: 155 ident: bib00014 article-title: A fuzzy-genetic approach to breast cancer diagnosis publication-title: Artificial intelligence in medicine – reference: Bennett, K. P. (1992). Decision tree construction via linear programming (pp. 97-101). Center for Parallel Optimization, Computer Sciences Department, University of Wisconsin. – year: 1993 ident: bib00029 publication-title: Advanced methods in neural computing – volume: 7 start-page: 610 year: 2017 ident: bib0002 article-title: Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges publication-title: American journal of cancer research – reference: Taha, I., & Ghosh, J. (1997, June). Evaluation and ordering of rules extracted from feedforward networks. In Neural Networks, 1997., International Conference on (Vol. 1, pp. 408-413). IEEE. – volume: 40 start-page: 203 year: 2016 ident: bib0004 article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis publication-title: Journal of medical systems – reference: Sawarkar, S. D., Ghatol, A. A., & Pande, A. P. (2006, June). Neural network aided breast cancer detection and diagnosis using support vector machine. In Proceedings of the 7th WSEAS International Conference on Neural Networks (pp. 158-163). – reference: Tung, H. H., Cheng, C. C., Chen, Y. Y., Chen, Y. F., Huang, S. H., & Chen, A. P. (2016, November). Binary Classification and Data Analysis for Modeling Calendar Anomalies in Financial Markets. In Cloud Computing and Big Data (CCBD), 2016 7th International Conference on (pp. 116-121). IEEE. – volume: 34 start-page: 2062 year: 1998 end-page: 2063 ident: bib0008 article-title: Fast KNN classification algorithm based on partial distance search publication-title: Electronics letters – volume: 66 start-page: 51 year: 2001 end-page: 57 ident: bib00015 article-title: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images publication-title: Breast cancer research and treatment – ident: 10.1016/j.procs.2018.01.125_bib0005 – volume: 6 start-page: 309 issue: 3 year: 2011 ident: 10.1016/j.procs.2018.01.125_bib00018 article-title: Automatic breast parenchymal density classification integrated into a CADe system publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-010-0510-z – volume: 7 start-page: 610 issue: 3 year: 2017 ident: 10.1016/j.procs.2018.01.125_bib0002 article-title: Data mining and medical world: breast cancers’ diagnosis, treatment, prognosis and challenges publication-title: American journal of cancer research – ident: 10.1016/j.procs.2018.01.125_bib0001 – volume: 40 start-page: 203 issue: 9 year: 2016 ident: 10.1016/j.procs.2018.01.125_bib00019 article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis publication-title: Journal of medical systems doi: 10.1007/s10916-016-0561-y – ident: 10.1016/j.procs.2018.01.125_bib00021 – volume: 20 start-page: 91 issue: 20 year: 2017 ident: 10.1016/j.procs.2018.01.125_bib0009 article-title: K-means Algorithm publication-title: KoG – volume: 66 start-page: 51 issue: 1 year: 2001 ident: 10.1016/j.procs.2018.01.125_bib00015 article-title: Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images publication-title: Breast cancer research and treatment doi: 10.1023/A:1010676701382 – year: 1993 ident: 10.1016/j.procs.2018.01.125_bib00029 – volume: 4 start-page: 230 issue: 3 year: 2009 ident: 10.1016/j.procs.2018.01.125_bib00024 article-title: An improved KNN text classification algorithm based on clustering publication-title: Journal of computers – volume: 40 start-page: 203 issue: 9 year: 2016 ident: 10.1016/j.procs.2018.01.125_bib0004 article-title: Applying Data Mining Techniques to Improve Breast Cancer Diagnosis publication-title: Journal of medical systems doi: 10.1007/s10916-016-0561-y – ident: 10.1016/j.procs.2018.01.125_bib00013 doi: 10.1109/ICNN.1997.611703 – ident: 10.1016/j.procs.2018.01.125_bib0007 doi: 10.1109/CCBD.2016.032 – volume: 17 start-page: 131 issue: 2 year: 1999 ident: 10.1016/j.procs.2018.01.125_bib00014 article-title: A fuzzy-genetic approach to breast cancer diagnosis publication-title: Artificial intelligence in medicine doi: 10.1016/S0933-3657(99)00019-6 – ident: 10.1016/j.procs.2018.01.125_bib00011 – start-page: 345 year: 2017 ident: 10.1016/j.procs.2018.01.125_bib00010 – volume: 2 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.procs.2018.01.125_bib00027 article-title: Evaluation: from Precision Recall and F-measure to ROC publication-title: Informedness, Markedness and Correlation. Journal of Machine Learning Technologies – volume: 34 start-page: 722 issue: 2 year: 2011 ident: 10.1016/j.procs.2018.01.125_bib00025 article-title: Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2010.10.009 – ident: 10.1016/j.procs.2018.01.125_bib00020 – volume: 34 start-page: 2062 issue: 21 year: 1998 ident: 10.1016/j.procs.2018.01.125_bib0008 article-title: Fast KNN classification algorithm based on partial distance search publication-title: Electronics letters doi: 10.1049/el:19981427 – ident: 10.1016/j.procs.2018.01.125_bib00016 – year: 1995 ident: 10.1016/j.procs.2018.01.125_bib00028 – ident: 10.1016/j.procs.2018.01.125_bib00022 – volume: 25 start-page: 265 issue: 3 year: 2002 ident: 10.1016/j.procs.2018.01.125_bib0003 article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis publication-title: Artificial intelligence in Medicine doi: 10.1016/S0933-3657(02)00028-3 – volume: 17 start-page: 43 issue: 8 year: 2011 ident: 10.1016/j.procs.2018.01.125_bib0006 article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction publication-title: International Journal of Computer Applications doi: 10.5120/2237-2860 – volume: 6 start-page: 256 issue: 2 year: 2013 ident: 10.1016/j.procs.2018.01.125_bib00030 article-title: Performance analysis of Naive Bayes and J48 classification algorithm for data classification publication-title: International Journal of Computer Science and Applications – volume: 8 start-page: 37 issue: 1 year: 1996 ident: 10.1016/j.procs.2018.01.125_bib00012 article-title: Extracting rules from pruned neural networks for breast cancer diagnosis publication-title: Artificial Intelligence in Medicine doi: 10.1016/0933-3657(95)00019-4 – ident: 10.1016/j.procs.2018.01.125_bib00026 – volume: 4 start-page: 311 year: 1978 ident: 10.1016/j.procs.2018.01.125_bib00023 article-title: A note on distance-weighted $ k $-nearest neighbor rules. IEEE Transactions on Systems publication-title: Man, and Cybernetics – volume: 34 start-page: 2062 issue: 21 year: 1998 ident: 10.1016/j.procs.2018.01.125_bib00031 article-title: Fast KNN classification algorithm based on partial distance search publication-title: Electronics letters doi: 10.1049/el:19981427 – volume: 57 start-page: 238 issue: 3 year: 1989 ident: 10.1016/j.procs.2018.01.125_bib00017 article-title: Discriminatory analysis publication-title: Nonparametric discrimination: consistency properties. International Statistical Review/Revue Internationale de Statistique |
| SSID | ssj0000388917 |
| Score | 2.3084536 |
| Snippet | There is a growing trend towards data mining applications in medicine. Different algorithms have been explored by medical practitioners in an attempt to assist... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 293 |
| SubjectTerms | cancer diagnosis data mining k-means k-nearest neighbors similarity measurement supervised classification unsupervised classification |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcm3ggQIA-MuEpiJ07YKkSFQBQGKpUp8itQCAm0qVD59PjyqAABgtm2Evkuvv_F558ROnRZ4hujGKFKRoTxAJC3wiGKulpQn9pG-DVw2Q_OBux86A9rzjachfm0f1_WYcFCDlxtNwS-po3Hi6gd-FZ4t1B70L_u3kJKFXJOgGTScIW-H_lT7FmaZs9i9irS9ENs6a1Uh7YnJZIQSkoeO9NCdtTbF2DjH197FS3XGhN3K6dYQwsmW0crzf0NuP6cN9DLlV0vnuqDmDhP8AXp97FI7_LxqLh_wnKGVToFkoKNb1hkGo9NOqrA3rYpNyV-AioxjvGHjXBc5FhCrXtBFPjUGOuqnm802USD3unNyRmpr2CwxmJhQWx-ZSLth0LaFJpFjk504nHPhCbRNhVUHpOeVEqGCeQeMuGRQ3mitKetknF0RLdQK8szs42w8hkVoeLUKjRmBHADOQ-sfhM0UoHn7CCvMU6saj45XJORxk0h2kNcTmoMkxo7bmwndQcdzQc9V3iO37sHjdXjWmFUyiG2Bvx9IJn7yF8etPvP_nuoVYynZt8KnEIe1I79Dp1o-qw priority: 102 providerName: Unpaywall |
| Title | Optimization of K-NN algorithm by clustering and reliability coefficients: application to breast-cancer diagnosis |
| URI | https://dx.doi.org/10.1016/j.procs.2018.01.125 https://doi.org/10.1016/j.procs.2018.01.125 |
| UnpaywallVersion | publishedVersion |
| Volume | 127 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHODC8hQsD_nAEatJ7MQJt1JRARUFARXlFPmV3axC0i2pEP8eTx4VSAghjo49cuSZzCvjbxA6clniG6MYoUpGhPEAIG-FQxR1taA-tZOQGrgaBucjdjn2xwuo196FgbLKRvfXOr3S1s2TTnOanUmadu7ckHNAL7FCCbh5ALtNWQjtGy7Gp_M8C6CdRFXjXVhPgKAFH6rKvMBOAGy3GwJ8pwstsz83UMuzfCJeX0SWvTNA_TW02niOuFu_3DpaMPkG-tV2ZcDNR7qJ_l9bLfDUXK_ERYIHZDjEIvtTTNPy7xOWr1hlM8BHsFYLi1zjqcnSGq7bThWmApWA-ooT_O73Ni4LLKGCvSQKJGWKdV2llz5voVH_7L53TprGCpYFLCyJjZpMpP1QSBsYs8jRiU487pnQJNoGeMpj0pNKyTCBiEImPHIoT5T2tPVPHB3RbbSYF7nZQVj5jIpQcWr9LmYEoAFyHlivTNBIBZ6zi7z2NGPVoI5D84ssbsvL_sUVC2JgQey4sWXBLjqeE01q0I2vlwctm-IPshNbs_A1IZkz9Tsb_f7pRntoBUZ16mYfLZbTmTmwzkwpD9FSd3D7MDispNaORsOb7uMb2pD2wg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FeggXoC2IR2n30GNXsb1rr80NoqK0QDiQSLmt9mXqytghOEL8e3b8iKhURYirx6O1dsbz2J35BqHvPktDazUjVKuEMB4B5K30iKa-kTSkjghHA9fjaDRlv2fhrIeGXS8MlFW2tr-x6bW1bp8M2t0czLNscOvHnAN6iVNKwM2LNtAHFrroBLr4ZuergxaAO0nqybvAQICjQx-q67zAUQButx8DfqcPM7P_76H6y2Iun59knr_yQBe7aLsNHfFZ83UfUc8Wn9BON5YBt3_pZ_Rw48zAfdtficsUX5LxGMv8rlxk1Z97rJ6xzpcAkODcFpaFwQubZw1etyOVtkaVgAKLU_zqfhtXJVZQwl4RDaqywKYp08se99D04udkOCLtZAUnAxZXxKVNNjFhLJXLjFnimdSkAQ9sbFPjMjwdMBUorVWcQkqhUp54lKfaBMYFKJ5J6D7aLMrCHiCsQ0ZlrDl1gRezEuAAOY9cWCZpoqPAO0RBt5tCt7DjMP0iF1192V9Ri0CACITnCyeCQ_RjxTRvUDfWvx51YhL_KI9wfmE9I1kJ9S0LHb13oW-oP5pcX4mrX-PLY7QFlOYc5wvarBZLe-Iim0p9rTX3Bdyb9pU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctaAcm3ggQIA-MuEpiJ07YKkSFQBQGKpUp8itQCAm0qVD59PjyqAABgtm2Evkuvv_F558ROnRZ4hujGKFKRoTxAJC3wiGKulpQn9pG-DVw2Q_OBux86A9rzjachfm0f1_WYcFCDlxtNwS-po3Hi6gd-FZ4t1B70L_u3kJKFXJOgGTScIW-H_lT7FmaZs9i9irS9ENs6a1Uh7YnJZIQSkoeO9NCdtTbF2DjH197FS3XGhN3K6dYQwsmW0crzf0NuP6cN9DLlV0vnuqDmDhP8AXp97FI7_LxqLh_wnKGVToFkoKNb1hkGo9NOqrA3rYpNyV-AioxjvGHjXBc5FhCrXtBFPjUGOuqnm802USD3unNyRmpr2CwxmJhQWx-ZSLth0LaFJpFjk504nHPhCbRNhVUHpOeVEqGCeQeMuGRQ3mitKetknF0RLdQK8szs42w8hkVoeLUKjRmBHADOQ-sfhM0UoHn7CCvMU6saj45XJORxk0h2kNcTmoMkxo7bmwndQcdzQc9V3iO37sHjdXjWmFUyiG2Bvx9IJn7yF8etPvP_nuoVYynZt8KnEIe1I79Dp1o-qw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+K-NN+algorithm+by+clustering+and+reliability+coefficients%3A+application+to+breast-cancer+diagnosis&rft.jtitle=Procedia+computer+science&rft.au=Cherif%2C+Walid&rft.date=2018&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=127&rft.spage=293&rft.epage=299&rft_id=info:doi/10.1016%2Fj.procs.2018.01.125&rft.externalDocID=S1877050918301376 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |