Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method

Motivation Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesi...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 41; no. 1
Main Authors Xi, Duo, Zhang, Minjianan, Shang, Muheng, Du, Lei, Han, Junwei
Format Journal Article
LanguageEnglish
Published England Oxford University Press 26.12.2024
Subjects
Online AccessGet full text
ISSN1367-4811
1367-4803
1367-4811
DOI10.1093/bioinformatics/btae728

Cover

Abstract Motivation Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately. Results To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies. Availability and implementation The code is publicly available at https://github.com/dulei323/MSColoR.
AbstractList Motivation Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately. Results To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies. Availability and implementation The code is publicly available at https://github.com/dulei323/MSColoR.
Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately. To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies. The code is publicly available at https://github.com/dulei323/MSColoR.
Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations are usually handled separately.MOTIVATIONAlzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations are usually handled separately.To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes, and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large GWAS to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.RESULTSTo address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes, and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large GWAS to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.The code is publicly available at https://github.com/dulei323/MSColoR.AVAILABILITYThe code is publicly available at https://github.com/dulei323/MSColoR.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Shang, Muheng
Du, Lei
Xi, Duo
Han, Junwei
Zhang, Minjianan
Author_xml – sequence: 1
  givenname: Duo
  surname: Xi
  fullname: Xi, Duo
– sequence: 2
  givenname: Minjianan
  surname: Zhang
  fullname: Zhang, Minjianan
– sequence: 3
  givenname: Muheng
  surname: Shang
  fullname: Shang, Muheng
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-6698-9814
  surname: Du
  fullname: Du, Lei
  email: dulei@nwpu.edu.cn
– sequence: 5
  givenname: Junwei
  orcidid: 0000-0001-5545-7217
  surname: Han
  fullname: Han, Junwei
  email: jhan@nwpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39657256$$D View this record in MEDLINE/PubMed
BookMark eNqNkM1O3DAURi0EKn99BeRlNwE7jh3PEqGWVqJiA-voJr4e3Dr21HamzNvwLH0yQmdawY7VvYvv-Ls-x2Q_xICEnHF2ztlCXPQuumBjGqG4IV_0BbCt9R454kK1VaM533-1H5LjnH8wxiST6gM5FAsl21qqI_L4PRr0LizpOPniqlxgiX-ejMsIGekqxWXCnF0MFIKhzmAozm5egCUGnMtpcvkntTCUmDJdO6BAQ1yjp0P0HvqY5hPXSD1CCn-LsDxEc0oOLPiMH3fzhNx_-Xx39bW6ub3-dnV5Uw2i0aWqpe0H1TZaWC0RFxYN6zWHGrQUDbS2buTsA5kx3EDdIyqmDeNWgkLRW3FC2u27U1jB5jd4362SGyFtOs66F5fdW5fdzuVMftqSs4RfE-bSjS4POP8pYJxyJ3ijdKMWbT1Hz3bRqR_R_G_453kOqG1gSDHnhPb9R_AtGKfVe5lnNyywEg
Cites_doi 10.1109/TNNLS.2016.2551724
10.1038/ng.2213
10.1038/s41572-021-00269-y
10.1038/s41582-024-00942-2
10.1002/sim.7300
10.1038/s41591-021-01309-6
10.1038/s41593-022-01042-4
10.1038/s41398-021-01602-5
10.1038/s41467-018-03621-1
10.1109/TNNLS.2020.2979532
10.1038/s41583-023-00779-6
10.1038/s41591-024-02931-w
10.1109/JPROC.2019.2947272
10.1177/0962280217737566
10.1093/bioinformatics/bts411
10.1016/j.neuroimage.2010.01.042
10.1109/TMI.2023.3325380
10.3233/JAD-130575
10.1038/s41588-019-0358-2
10.1038/nature15393
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btae728
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID 10.1093/bioinformatics/btae728
39657256
10_1093_bioinformatics_btae728
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61936007
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-25fbc67483f85ee9fed0b81a2a8534a7f245093e0dd1da2bee608d01f5a6e3bf3
IEDL.DBID UNPAY
ISSN 1367-4811
1367-4803
IngestDate Sun Oct 26 03:58:13 EDT 2025
Fri Jul 11 08:56:24 EDT 2025
Mon Jul 21 06:04:21 EDT 2025
Tue Jul 01 02:34:06 EDT 2025
Mon Jun 30 08:34:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-25fbc67483f85ee9fed0b81a2a8534a7f245093e0dd1da2bee608d01f5a6e3bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5545-7217
0000-0002-6698-9814
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae728/60972076/btae728.pdf
PMID 39657256
PQID 3146846972
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btae728
proquest_miscellaneous_3146846972
pubmed_primary_39657256
crossref_primary_10_1093_bioinformatics_btae728
oup_primary_10_1093_bioinformatics_btae728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Dec-26
PublicationDateYYYYMMDD 2024-12-26
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Auton (2025013116114965600_btae728-B1) 2015; 526
Ching (2025013116114965600_btae728-B6) 2023
Fortea (2025013116114965600_btae728-B8) 2024; 30
Du (2025013116114965600_btae728-B7) 2024; 43
Li (2025013116114965600_btae728-B13) 2019; 28
Yang (2025013116114965600_btae728-B21) 2012; 44
Uffelmann (2025013116114965600_btae728-B17) 2021; 1
Budgeon (2025013116114965600_btae728-B4) 2017; 36
Therriault (2025013116114965600_btae728-B16) 2024; 20
Knopman (2025013116114965600_btae728-B11) 2021; 7
Shen (2025013116114965600_btae728-B15) 2010; 53
Brouwer (2025013116114965600_btae728-B3) 2022; 25
Xi (2025013116114965600_btae728-B20) 2023
Chen (2025013116114965600_btae728-B5) 2021; 11
Kunkle (2025013116114965600_btae728-B12) 2019; 51
Ito (2025013116114965600_btae728-B10) 2013; 37
Wang (2025013116114965600_btae728-B19) 2012; 28
Barbeira (2025013116114965600_btae728-B2) 2018; 9
Shen (2025013116114965600_btae728-B14) 2020; 108
Vogel (2025013116114965600_btae728-B18) 2021; 27
Gui (2025013116114965600_btae728-B9) 2017; 28
Zhao (2025013116114965600_btae728-B23) 2021; 32
Young (2025013116114965600_btae728-B22) 2024; 25
References_xml – start-page: 230
  year: 2023
  ident: 2025013116114965600_btae728-B6
– volume: 28
  start-page: 1490
  year: 2017
  ident: 2025013116114965600_btae728-B9
  article-title: Feature selection based on structured sparsity: A comprehensive study
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2016.2551724
– volume: 44
  start-page: 369
  year: 2012
  ident: 2025013116114965600_btae728-B21
  article-title: Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
  publication-title: Nat Genet
  doi: 10.1038/ng.2213
– volume: 7
  start-page: 33
  year: 2021
  ident: 2025013116114965600_btae728-B11
  article-title: Alzheimer disease
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-021-00269-y
– volume: 20
  start-page: 232
  year: 2024
  ident: 2025013116114965600_btae728-B16
  article-title: Biomarker-based staging of Alzheimer disease: rationale and clinical applications
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-024-00942-2
– volume: 36
  start-page: 2720
  year: 2017
  ident: 2025013116114965600_btae728-B4
  article-title: Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer’s disease
  publication-title: Stat Med
  doi: 10.1002/sim.7300
– volume: 27
  start-page: 871
  year: 2021
  ident: 2025013116114965600_btae728-B18
  article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01309-6
– volume: 25
  start-page: 421
  year: 2022
  ident: 2025013116114965600_btae728-B3
  article-title: Genetic variants associated with longitudinal changes in brain structure across the lifespan
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-022-01042-4
– volume: 11
  start-page: 483
  year: 2021
  ident: 2025013116114965600_btae728-B5
  article-title: Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study
  publication-title: Transl Psych
  doi: 10.1038/s41398-021-01602-5
– volume: 9
  start-page: 1825
  year: 2018
  ident: 2025013116114965600_btae728-B2
  article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03621-1
– volume: 32
  start-page: 814
  year: 2021
  ident: 2025013116114965600_btae728-B23
  article-title: Multiview concept learning via deep matrix factorization
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2979532
– volume: 25
  start-page: 111
  year: 2024
  ident: 2025013116114965600_btae728-B22
  article-title: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box
  publication-title: Nat Rev Neurosci
  doi: 10.1038/s41583-023-00779-6
– volume: 30
  start-page: 1284
  year: 2024
  ident: 2025013116114965600_btae728-B8
  article-title: APOE4 homozygozity represents a distinct genetic form of alzheimer’s disease
  publication-title: Nat Med
  doi: 10.1038/s41591-024-02931-w
– volume: 108
  start-page: 125
  year: 2020
  ident: 2025013116114965600_btae728-B14
  article-title: Brain imaging genomics: Integrated analysis and machine learning
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/JPROC.2019.2947272
– volume: 28
  start-page: 835
  year: 2019
  ident: 2025013116114965600_btae728-B13
  article-title: Bayesian latent time joint mixed effect models for multicohort longitudinal data
  publication-title: Stat Meth Med Res
  doi: 10.1177/0962280217737566
– volume: 28
  start-page: i619
  year: 2012
  ident: 2025013116114965600_btae728-B19
  article-title: From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer’s disease relevant snps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts411
– volume: 53
  start-page: 1051
  year: 2010
  ident: 2025013116114965600_btae728-B15
  article-title: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.042
– volume: 43
  start-page: 928
  year: 2024
  ident: 2025013116114965600_btae728-B7
  article-title: Identification of genetic risk factors based on disease progression derived from longitudinal brain imaging phenotypes
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2023.3325380
– volume: 37
  start-page: 173
  year: 2013
  ident: 2025013116114965600_btae728-B10
  article-title: Understanding placebo responses in Alzheimer’s disease clinical trials from the literature meta-data and camd database
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-130575
– start-page: 622
  year: 2023
  ident: 2025013116114965600_btae728-B20
– volume: 51
  start-page: 414
  year: 2019
  ident: 2025013116114965600_btae728-B12
  article-title: Genetic meta-analysis of diagnosed alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0358-2
– volume: 1
  start-page: 59
  year: 2021
  ident: 2025013116114965600_btae728-B17
  article-title: Genome-wide association studies
  publication-title: Nat Rev Meth
– volume: 526
  start-page: 68
  year: 2015
  ident: 2025013116114965600_btae728-B1
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
SSID ssj0005056
Score 2.4712038
Snippet Motivation Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in...
Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate...
SourceID unpaywall
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - genetics
Disease Progression
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Neuroimaging
Risk Factors
Title Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method
URI https://www.ncbi.nlm.nih.gov/pubmed/39657256
https://www.proquest.com/docview/3146846972
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae728/60972076/btae728.pdf
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3LbtQwFL0qUyHKgjdleFRGYoWUmcSvOMsKUVVIFBYdaVhFdnxdjRhlRjQzUL6DD-Bb-DLsxCkzlZDKhk0URYmj2L7yce495wC8crwqqApZf8VcwisfioUyLilSm1MpRM6qwB1-fyKPJ_zdVEx34LznwuhYFT7qKQ1mtogSokG2eBwz433ZWLK07o8IQcGu3m4ajTlVYxlUavyWvb8w8s_dgF0pPIAfwO7k5OPhp46hlSdctX7K8TzLel7xX1vfWtK2aHIbaPU23FrVS33xVc_nGyvY0V340X97V7jyebRqzKj6fkUW8j93zj24ExExOexauw87WD-Am51H5sVD-Bbc2gJnnrS1j4lHs2f462dMLJG2vqzTFiG6tmTWEo9b8hbxsREomiSUz5NoLETWM000qRdrnJONIFgjiQYa_kWtq_YjmBy9PX1znES7iKRiXDUJFc5UwTuFOSUQC4c2NSrTVHtIwnXuKPfoiGFqbWY1NYgyVTbNnNASmXHsMQzqRY1PgOhUG78vQ8kLFiT6C2mYVlailBytyIYw7ke8XHaqIGWXzWfldieXsU-H8NoP2rVvftnPn9JHe0jh6BoXq_OSBaYcl368hrDfTazLNlkhRe4R7BDSy5l2zRc-_fdHnsEe9fguVPZQ-RwGzZcVvvD4rDEH7X8Nfzz9MD2IsfUb3_hHNQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1daxQxFL3ULaI-1Pq9tkoEn4TZncnXZB5LaSmCxQcX6tOQTG5kcZld7Oxq_R3-AH-Lv8xkJtPuFgr1xbdhmCRMkktOuPecA_DW8aqgKmT9FXMJr3woFsq4pEhtTqUQOasCd_jDqTyZ8Pdn4mwLznsujI5V4aOe0mCm8yghGmSLxzEz3peNJQvrrkQICnb9c9NozKkay6BS46_s_YuRb3cHtqXwAH4A25PTjwefO4ZWnnDV-inH5yzrecU39r5xpG3Q5NbQ6gO4t6wX-uK7ns3WTrDjh_Cr__eucOXraNmYUfXzmizkf56cXdiJiJgcdL09gi2sH8PdziPz4gn8CG5tgTNP2trHxKPZL_jnd0wskba-rNMWIbq2ZNoSj1vyFvGxESiaJJTPk2gsRFZTTTSp5yuckbUgWCGJBhp-oNZV-ylMjo8-HZ4k0S4iqRhXTUKFM1XwTmFOCcTCoU2NyjTVHpJwnTvKPTpimFqbWU0NokyVTTMntERmHHsGg3pe4wsgOtXG38tQ8oIFif5CGqaVlSglRyuyIYz7FS8XnSpI2WXzWbk5yWWc0yG884t264_f9Pun9NEeUji6xvnyvGSBKcelX68hPO821mWfrJAi9wh2COnlTrvlgC__vcke3Kce34XKHir3YdB8W-Irj88a8zrG01-a-EUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+multi-stage%C2%A0disease+progression+and+identifying+genetic+risk+factors+via+a+novel+collaborative+learning+method&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Xi%2C+Duo&rft.au=Zhang%2C+Minjianan&rft.au=Shang%2C+Muheng&rft.au=Du%2C+Lei&rft.date=2024-12-26&rft.pub=Oxford+University+Press&rft.eissn=1367-4811&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae728&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtae728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon