Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method
Motivation Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesi...
Saved in:
| Published in | Bioinformatics (Oxford, England) Vol. 41; no. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
26.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4811 1367-4803 1367-4811 |
| DOI | 10.1093/bioinformatics/btae728 |
Cover
| Abstract | Motivation
Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately.
Results
To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.
Availability and implementation
The code is publicly available at https://github.com/dulei323/MSColoR. |
|---|---|
| AbstractList | Motivation
Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately.
Results
To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.
Availability and implementation
The code is publicly available at https://github.com/dulei323/MSColoR. Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately. To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies. The code is publicly available at https://github.com/dulei323/MSColoR. Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations are usually handled separately.MOTIVATIONAlzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations are usually handled separately.To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes, and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large GWAS to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.RESULTSTo address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes, and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large GWAS to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.The code is publicly available at https://github.com/dulei323/MSColoR.AVAILABILITYThe code is publicly available at https://github.com/dulei323/MSColoR.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. |
| Author | Shang, Muheng Du, Lei Xi, Duo Han, Junwei Zhang, Minjianan |
| Author_xml | – sequence: 1 givenname: Duo surname: Xi fullname: Xi, Duo – sequence: 2 givenname: Minjianan surname: Zhang fullname: Zhang, Minjianan – sequence: 3 givenname: Muheng surname: Shang fullname: Shang, Muheng – sequence: 4 givenname: Lei orcidid: 0000-0002-6698-9814 surname: Du fullname: Du, Lei email: dulei@nwpu.edu.cn – sequence: 5 givenname: Junwei orcidid: 0000-0001-5545-7217 surname: Han fullname: Han, Junwei email: jhan@nwpu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39657256$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkM1O3DAURi0EKn99BeRlNwE7jh3PEqGWVqJiA-voJr4e3Dr21HamzNvwLH0yQmdawY7VvYvv-Ls-x2Q_xICEnHF2ztlCXPQuumBjGqG4IV_0BbCt9R454kK1VaM533-1H5LjnH8wxiST6gM5FAsl21qqI_L4PRr0LizpOPniqlxgiX-ejMsIGekqxWXCnF0MFIKhzmAozm5egCUGnMtpcvkntTCUmDJdO6BAQ1yjp0P0HvqY5hPXSD1CCn-LsDxEc0oOLPiMH3fzhNx_-Xx39bW6ub3-dnV5Uw2i0aWqpe0H1TZaWC0RFxYN6zWHGrQUDbS2buTsA5kx3EDdIyqmDeNWgkLRW3FC2u27U1jB5jd4362SGyFtOs66F5fdW5fdzuVMftqSs4RfE-bSjS4POP8pYJxyJ3ijdKMWbT1Hz3bRqR_R_G_453kOqG1gSDHnhPb9R_AtGKfVe5lnNyywEg |
| Cites_doi | 10.1109/TNNLS.2016.2551724 10.1038/ng.2213 10.1038/s41572-021-00269-y 10.1038/s41582-024-00942-2 10.1002/sim.7300 10.1038/s41591-021-01309-6 10.1038/s41593-022-01042-4 10.1038/s41398-021-01602-5 10.1038/s41467-018-03621-1 10.1109/TNNLS.2020.2979532 10.1038/s41583-023-00779-6 10.1038/s41591-024-02931-w 10.1109/JPROC.2019.2947272 10.1177/0962280217737566 10.1093/bioinformatics/bts411 10.1016/j.neuroimage.2010.01.042 10.1109/TMI.2023.3325380 10.3233/JAD-130575 10.1038/s41588-019-0358-2 10.1038/nature15393 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
| CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btae728 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | 10.1093/bioinformatics/btae728 39657256 10_1093_bioinformatics_btae728 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61936007 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c348t-25fbc67483f85ee9fed0b81a2a8534a7f245093e0dd1da2bee608d01f5a6e3bf3 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Sun Oct 26 03:58:13 EDT 2025 Fri Jul 11 08:56:24 EDT 2025 Mon Jul 21 06:04:21 EDT 2025 Tue Jul 01 02:34:06 EDT 2025 Mon Jun 30 08:34:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-25fbc67483f85ee9fed0b81a2a8534a7f245093e0dd1da2bee608d01f5a6e3bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5545-7217 0000-0002-6698-9814 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae728/60972076/btae728.pdf |
| PMID | 39657256 |
| PQID | 3146846972 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btae728 proquest_miscellaneous_3146846972 pubmed_primary_39657256 crossref_primary_10_1093_bioinformatics_btae728 oup_primary_10_1093_bioinformatics_btae728 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec-26 |
| PublicationDateYYYYMMDD | 2024-12-26 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2024 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Auton (2025013116114965600_btae728-B1) 2015; 526 Ching (2025013116114965600_btae728-B6) 2023 Fortea (2025013116114965600_btae728-B8) 2024; 30 Du (2025013116114965600_btae728-B7) 2024; 43 Li (2025013116114965600_btae728-B13) 2019; 28 Yang (2025013116114965600_btae728-B21) 2012; 44 Uffelmann (2025013116114965600_btae728-B17) 2021; 1 Budgeon (2025013116114965600_btae728-B4) 2017; 36 Therriault (2025013116114965600_btae728-B16) 2024; 20 Knopman (2025013116114965600_btae728-B11) 2021; 7 Shen (2025013116114965600_btae728-B15) 2010; 53 Brouwer (2025013116114965600_btae728-B3) 2022; 25 Xi (2025013116114965600_btae728-B20) 2023 Chen (2025013116114965600_btae728-B5) 2021; 11 Kunkle (2025013116114965600_btae728-B12) 2019; 51 Ito (2025013116114965600_btae728-B10) 2013; 37 Wang (2025013116114965600_btae728-B19) 2012; 28 Barbeira (2025013116114965600_btae728-B2) 2018; 9 Shen (2025013116114965600_btae728-B14) 2020; 108 Vogel (2025013116114965600_btae728-B18) 2021; 27 Gui (2025013116114965600_btae728-B9) 2017; 28 Zhao (2025013116114965600_btae728-B23) 2021; 32 Young (2025013116114965600_btae728-B22) 2024; 25 |
| References_xml | – start-page: 230 year: 2023 ident: 2025013116114965600_btae728-B6 – volume: 28 start-page: 1490 year: 2017 ident: 2025013116114965600_btae728-B9 article-title: Feature selection based on structured sparsity: A comprehensive study publication-title: IEEE Trans Neural Netw Learning Syst doi: 10.1109/TNNLS.2016.2551724 – volume: 44 start-page: 369 year: 2012 ident: 2025013116114965600_btae728-B21 article-title: Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits publication-title: Nat Genet doi: 10.1038/ng.2213 – volume: 7 start-page: 33 year: 2021 ident: 2025013116114965600_btae728-B11 article-title: Alzheimer disease publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-021-00269-y – volume: 20 start-page: 232 year: 2024 ident: 2025013116114965600_btae728-B16 article-title: Biomarker-based staging of Alzheimer disease: rationale and clinical applications publication-title: Nat Rev Neurol doi: 10.1038/s41582-024-00942-2 – volume: 36 start-page: 2720 year: 2017 ident: 2025013116114965600_btae728-B4 article-title: Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer’s disease publication-title: Stat Med doi: 10.1002/sim.7300 – volume: 27 start-page: 871 year: 2021 ident: 2025013116114965600_btae728-B18 article-title: Four distinct trajectories of tau deposition identified in Alzheimer’s disease publication-title: Nat Med doi: 10.1038/s41591-021-01309-6 – volume: 25 start-page: 421 year: 2022 ident: 2025013116114965600_btae728-B3 article-title: Genetic variants associated with longitudinal changes in brain structure across the lifespan publication-title: Nat Neurosci doi: 10.1038/s41593-022-01042-4 – volume: 11 start-page: 483 year: 2021 ident: 2025013116114965600_btae728-B5 article-title: Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study publication-title: Transl Psych doi: 10.1038/s41398-021-01602-5 – volume: 9 start-page: 1825 year: 2018 ident: 2025013116114965600_btae728-B2 article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics publication-title: Nat Commun doi: 10.1038/s41467-018-03621-1 – volume: 32 start-page: 814 year: 2021 ident: 2025013116114965600_btae728-B23 article-title: Multiview concept learning via deep matrix factorization publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2979532 – volume: 25 start-page: 111 year: 2024 ident: 2025013116114965600_btae728-B22 article-title: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box publication-title: Nat Rev Neurosci doi: 10.1038/s41583-023-00779-6 – volume: 30 start-page: 1284 year: 2024 ident: 2025013116114965600_btae728-B8 article-title: APOE4 homozygozity represents a distinct genetic form of alzheimer’s disease publication-title: Nat Med doi: 10.1038/s41591-024-02931-w – volume: 108 start-page: 125 year: 2020 ident: 2025013116114965600_btae728-B14 article-title: Brain imaging genomics: Integrated analysis and machine learning publication-title: Proc IEEE Inst Electr Electron Eng doi: 10.1109/JPROC.2019.2947272 – volume: 28 start-page: 835 year: 2019 ident: 2025013116114965600_btae728-B13 article-title: Bayesian latent time joint mixed effect models for multicohort longitudinal data publication-title: Stat Meth Med Res doi: 10.1177/0962280217737566 – volume: 28 start-page: i619 year: 2012 ident: 2025013116114965600_btae728-B19 article-title: From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer’s disease relevant snps publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts411 – volume: 53 start-page: 1051 year: 2010 ident: 2025013116114965600_btae728-B15 article-title: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.042 – volume: 43 start-page: 928 year: 2024 ident: 2025013116114965600_btae728-B7 article-title: Identification of genetic risk factors based on disease progression derived from longitudinal brain imaging phenotypes publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2023.3325380 – volume: 37 start-page: 173 year: 2013 ident: 2025013116114965600_btae728-B10 article-title: Understanding placebo responses in Alzheimer’s disease clinical trials from the literature meta-data and camd database publication-title: J Alzheimers Dis doi: 10.3233/JAD-130575 – start-page: 622 year: 2023 ident: 2025013116114965600_btae728-B20 – volume: 51 start-page: 414 year: 2019 ident: 2025013116114965600_btae728-B12 article-title: Genetic meta-analysis of diagnosed alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing publication-title: Nat Genet doi: 10.1038/s41588-019-0358-2 – volume: 1 start-page: 59 year: 2021 ident: 2025013116114965600_btae728-B17 article-title: Genome-wide association studies publication-title: Nat Rev Meth – volume: 526 start-page: 68 year: 2015 ident: 2025013116114965600_btae728-B1 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 |
| SSID | ssj0005056 |
| Score | 2.4712038 |
| Snippet | Motivation
Alzheimer’s disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in... Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate... |
| SourceID | unpaywall proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - genetics Disease Progression Genetic Predisposition to Disease Genome-Wide Association Study Humans Neuroimaging Risk Factors |
| Title | Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39657256 https://www.proquest.com/docview/3146846972 https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae728/60972076/btae728.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3LbtQwFL0qUyHKgjdleFRGYoWUmcSvOMsKUVVIFBYdaVhFdnxdjRhlRjQzUL6DD-Bb-DLsxCkzlZDKhk0URYmj2L7yce495wC8crwqqApZf8VcwisfioUyLilSm1MpRM6qwB1-fyKPJ_zdVEx34LznwuhYFT7qKQ1mtogSokG2eBwz433ZWLK07o8IQcGu3m4ajTlVYxlUavyWvb8w8s_dgF0pPIAfwO7k5OPhp46hlSdctX7K8TzLel7xX1vfWtK2aHIbaPU23FrVS33xVc_nGyvY0V340X97V7jyebRqzKj6fkUW8j93zj24ExExOexauw87WD-Am51H5sVD-Bbc2gJnnrS1j4lHs2f462dMLJG2vqzTFiG6tmTWEo9b8hbxsREomiSUz5NoLETWM000qRdrnJONIFgjiQYa_kWtq_YjmBy9PX1znES7iKRiXDUJFc5UwTuFOSUQC4c2NSrTVHtIwnXuKPfoiGFqbWY1NYgyVTbNnNASmXHsMQzqRY1PgOhUG78vQ8kLFiT6C2mYVlailBytyIYw7ke8XHaqIGWXzWfldieXsU-H8NoP2rVvftnPn9JHe0jh6BoXq_OSBaYcl368hrDfTazLNlkhRe4R7BDSy5l2zRc-_fdHnsEe9fguVPZQ-RwGzZcVvvD4rDEH7X8Nfzz9MD2IsfUb3_hHNQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1daxQxFL3ULaI-1Pq9tkoEn4TZncnXZB5LaSmCxQcX6tOQTG5kcZld7Oxq_R3-AH-Lv8xkJtPuFgr1xbdhmCRMkktOuPecA_DW8aqgKmT9FXMJr3woFsq4pEhtTqUQOasCd_jDqTyZ8Pdn4mwLznsujI5V4aOe0mCm8yghGmSLxzEz3peNJQvrrkQICnb9c9NozKkay6BS46_s_YuRb3cHtqXwAH4A25PTjwefO4ZWnnDV-inH5yzrecU39r5xpG3Q5NbQ6gO4t6wX-uK7ns3WTrDjh_Cr__eucOXraNmYUfXzmizkf56cXdiJiJgcdL09gi2sH8PdziPz4gn8CG5tgTNP2trHxKPZL_jnd0wskba-rNMWIbq2ZNoSj1vyFvGxESiaJJTPk2gsRFZTTTSp5yuckbUgWCGJBhp-oNZV-ylMjo8-HZ4k0S4iqRhXTUKFM1XwTmFOCcTCoU2NyjTVHpJwnTvKPTpimFqbWU0NokyVTTMntERmHHsGg3pe4wsgOtXG38tQ8oIFif5CGqaVlSglRyuyIYz7FS8XnSpI2WXzWbk5yWWc0yG884t264_f9Pun9NEeUji6xvnyvGSBKcelX68hPO821mWfrJAi9wh2COnlTrvlgC__vcke3Kce34XKHir3YdB8W-Irj88a8zrG01-a-EUk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+multi-stage%C2%A0disease+progression+and+identifying+genetic+risk+factors+via+a+novel+collaborative+learning+method&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Xi%2C+Duo&rft.au=Zhang%2C+Minjianan&rft.au=Shang%2C+Muheng&rft.au=Du%2C+Lei&rft.date=2024-12-26&rft.pub=Oxford+University+Press&rft.eissn=1367-4811&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae728&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtae728 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |