Free-energy analysis of physisorption on solid-liquid interface with the solution theory in the energy representation
Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computa...
Saved in:
Published in | The Journal of chemical physics Vol. 149; no. 1; pp. 014504 - 14513 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
07.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.5027861 |
Cover
Abstract | Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computation of the free energy in an inhomogeneous environment with solid-liquid interface. The preference of adsorption was then compared between the (001) and (110) faces, and it was found that the physisorption is more favorable on (001) than on (110) in correspondence to the hydrogen bonding between the adsorbed urea and the crystal urea. Among the terrace configurations of adsorption, the attractive interaction governs the preferable site with a minor role of the repulsive interaction. The effect of an edge was also treated by examining the terrace and step and was shown to be strongly operative on the (110) face when the CO group of the adsorbed urea points toward the edge. The present work demonstrates that the solution theory can be a framework for analyzing the energetics of physisorption and addressing the roles of the crystal and liquid at the interface through the systematic decomposition of free energy. |
---|---|
AbstractList | Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computation of the free energy in an inhomogeneous environment with solid-liquid interface. The preference of adsorption was then compared between the (001) and (110) faces, and it was found that the physisorption is more favorable on (001) than on (110) in correspondence to the hydrogen bonding between the adsorbed urea and the crystal urea. Among the terrace configurations of adsorption, the attractive interaction governs the preferable site with a minor role of the repulsive interaction. The effect of an edge was also treated by examining the terrace and step and was shown to be strongly operative on the (110) face when the CO group of the adsorbed urea points toward the edge. The present work demonstrates that the solution theory can be a framework for analyzing the energetics of physisorption and addressing the roles of the crystal and liquid at the interface through the systematic decomposition of free energy. Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computation of the free energy in an inhomogeneous environment with solid-liquid interface. The preference of adsorption was then compared between the (001) and (110) faces, and it was found that the physisorption is more favorable on (001) than on (110) in correspondence to the hydrogen bonding between the adsorbed urea and the crystal urea. Among the terrace configurations of adsorption, the attractive interaction governs the preferable site with a minor role of the repulsive interaction. The effect of an edge was also treated by examining the terrace and step and was shown to be strongly operative on the (110) face when the CO group of the adsorbed urea points toward the edge. The present work demonstrates that the solution theory can be a framework for analyzing the energetics of physisorption and addressing the roles of the crystal and liquid at the interface through the systematic decomposition of free energy.Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free energy of urea to an adsorption site was treated in the framework of the energy-representation theory of solutions, which allows a fast computation of the free energy in an inhomogeneous environment with solid-liquid interface. The preference of adsorption was then compared between the (001) and (110) faces, and it was found that the physisorption is more favorable on (001) than on (110) in correspondence to the hydrogen bonding between the adsorbed urea and the crystal urea. Among the terrace configurations of adsorption, the attractive interaction governs the preferable site with a minor role of the repulsive interaction. The effect of an edge was also treated by examining the terrace and step and was shown to be strongly operative on the (110) face when the CO group of the adsorbed urea points toward the edge. The present work demonstrates that the solution theory can be a framework for analyzing the energetics of physisorption and addressing the roles of the crystal and liquid at the interface through the systematic decomposition of free energy. |
Author | Yamamoto, Naoki Matubayasi, Nobuyuki Nakakuki, Ippei |
Author_xml | – sequence: 1 givenname: Naoki surname: Yamamoto fullname: Yamamoto, Naoki organization: Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University – sequence: 2 givenname: Ippei surname: Nakakuki fullname: Nakakuki, Ippei organization: Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University – sequence: 3 givenname: Nobuyuki surname: Matubayasi fullname: Matubayasi, Nobuyuki organization: 2Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29981552$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtrGzEQAGARXBI77aF_oCz0khY20WP12GMwdVIw9NKehSTP1grr1UbaJfjfR-vHxZSCYPT4ZkAzCzTrQgcIfSb4nmDBHsg9x1QqQa7QnGBVl1LUeIbmGFNS1gKLG7RI6QVjTCStrtENrWtFOKdzNK4iQAkdxL_7wnSm3SefitAU_XbahdgPPnRFXim0flO2_nX0m8J3A8TGOCje_LAthi1M7-PB5kOI-0wO16fSEfoICbrBTOYj-tCYNsGnU7xFf1Y_fi-fy_Wvp5_Lx3XpWKWGknJwnAlZOUuFMbbaCM4FJ1zaxlrlmAFGhZDMSSWrhmDGDbeSMJWDtTW7RXfHun0MryOkQe98ctC2poMwJk2xyJrmZmT69YK-hDHmhkxKScEoUSyrLyc12h1sdB_9zsS9Pjc0g4cjcDGkFKHRzh__PETjW02wnkamiT6NLGd8u8g4F_2X_X606Vz1P_gdPpmjeg |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_2c01297 crossref_primary_10_1246_bcsj_20190246 crossref_primary_10_1039_D1CC03395F crossref_primary_10_1021_acs_jpcb_2c01764 |
Cites_doi | 10.1021/ja1078128 10.1063/1.1760741 10.1039/b106075a 10.1021/acs.jpcb.7b07096 10.1063/1.460813 10.1002/jcc.23651 10.1093/bioinformatics/btt055 10.1063/1.1613938 10.1063/1.4941945 10.1021/acs.cgd.6b00721 10.1002/jcc.20035 10.1063/1.1525798 10.1002/anie.201304562 10.1021/j100026a034 10.1063/1.2186324 10.1007/s00894-010-0650-7 10.1063/1.3041381 10.1063/1.1309013 10.1021/jp512358s 10.1021/jp021396z 10.1063/1.3254517 10.1021/acs.jctc.5b00172 10.1021/acs.jpcb.7b08241 10.1107/s0021889809016690 10.1063/1.1495850 10.1063/1.2715941 10.1021/jp111271c 10.1021/mp4000212 10.1063/1.1533752 10.1021/jp2015676 10.1063/1.4873166 10.1093/nar/gkr900 10.1016/j.jcrysgro.2014.07.046 10.1016/j.cplett.2007.10.003 10.1002/jcc.540130212 10.1021/acs.cgd.5b00346 10.1016/0021-9991(76)90078-4 10.1016/0022-0248(95)00128-x 10.1016/j.cplett.2010.07.054 10.1039/c6cp01834c 10.1021/ct300505b 10.1021/ct3000876 10.1107/s0021889808012016 10.1021/ja043395l 10.1039/c3cp43346c 10.1107/s002188980600731x 10.1016/j.softx.2015.06.001 10.1063/1.448118 10.1016/0009-2614(94)00397-1 10.1038/nature04173 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l 10.1080/08927028808080941 10.1063/1.4770334 10.1021/ct0502256 10.1021/ja307408x 10.1063/1.470117 10.1063/1.445869 10.1063/1.1877132 10.1093/protein/7.3.385 10.1016/j.sbi.2016.10.005 10.1063/1.2919117 10.1002/jcc.540130805 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/1.5027861 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 29981552 10_1063_1_5027861 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: Elements Strategy Initiative for Catalysts and Batteries; Post-K Supercomputing Project funderid: http://dx.doi.org/10.13039/501100001700 – fundername: Japan Society for the Promotion of Science grantid: JP15K13550; JP26240045 funderid: http://dx.doi.org/10.13039/501100001691 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c348t-25ec53674cb26aab4d65565157bfbb8c3ae326673c7874f1035a5b7138a5bbb93 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 22:27:03 EDT 2025 Mon Jun 30 11:57:45 EDT 2025 Tue Aug 05 11:35:08 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Tue Jul 01 00:27:18 EDT 2025 Fri Jun 21 00:14:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Published by AIP Publishing. 0021-9606/2018/149(1)/014504/10/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-25ec53674cb26aab4d65565157bfbb8c3ae326673c7874f1035a5b7138a5bbb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7176-441X 000000017176441X |
PMID | 29981552 |
PQID | 2087632183 |
PQPubID | 2050685 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2067132981 crossref_citationtrail_10_1063_1_5027861 proquest_journals_2087632183 pubmed_primary_29981552 crossref_primary_10_1063_1_5027861 scitation_primary_10_1063_1_5027861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180707 2018-07-07 2018-Jul-07 |
PublicationDateYYYYMMDD | 2018-07-07 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180707 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Gao, Olsen (c9) 2013; 10 Matubayasi, Nakahara (c17) 2002; 117 Sakuraba, Matubayasi (c20) 2014; 35 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (c60) 1995; 103 Matubayasi, Nakahara (c16) 2000; 113 Salvalaglio, Vetter, Mazzotti, Parrinello (c4) 2013; 52 van der Spoel, van Maaren (c61) 2006; 2 Vener, Leontyev, Dyakov, Basilevsky, Newton (c26) 2002; 106 Higashi, Hayashi, Kato (c30) 2007; 126 Matubayasi, Liang, Nakahara (c36) 2006; 124 van Gunsteren, Berendsen (c55) 1988; 1 Greiner, Elts, Schneider, Reuter, Briesen (c10) 2014; 405 Lanaro, Patey (c11) 2015; 119 Singh, Tiwari (c12) 2015; 15 Kawakami, Shigemoto, Matubayasi (c41) 2014; 140 Yamamori, Ishizuka, Karino, Sakuraba, Matubayasi (c44) 2016; 144 Piana, Reyhani, Gale (c6) 2005; 438 Frolov, Ratkova, Palmer, Fedorov (c34) 2011; 115 Gražulis, Chateigner, Downs, Yokochi, Quirós, Lutterotti, Manakova, Butkus, Moeck, Le Bail (c63) 2009; 42 Matubayasi, Nakahara (c18) 2003; 118 Hess, Bekker, Berendsen, Fraaije (c59) 1997; 18 Kubota, Mullin (c3) 1995; 152 Takahashi, Maruyama, Karino, Morita, Nakano, Jungwirth, Matubayasi (c39) 2011; 115 Momma, Izumi (c65) 2008; 4 Luzhkov, Warshel (c22) 1992; 13 Weber, Asthagiri (c35) 2012; 8 Mizuguchi, Matubayasi (c47) 2018; 122 Wang, Wolf, Caldwell, Kollman, Case (c51) 2004; 25 Salvalaglio, Vetter, Giberti, Mazzotti, Parrinello (c8) 2012; 134 Date, Ishizuka, Matubayasi (c45) 2016; 18 Pronk, Páll, Schulz, Larsson, Bjelkmar, Apostolov, Shirts, Smith, Kasson, van der Spoel, Hess, Lindahl (c48) 2013; 29 Shirts, Pande (c67) 2005; 122 Karino, Matubayasi (c42) 2013; 15 Macrae, Edgington, McCabe, Pidcock, Shields, Taylor, Towler, Van De Streek (c62) 2006; 39 Berendsen, Postma, van Gunsteren, DiNola, Haak (c57) 1984; 81 Åqvist, Medina, Samuelsson (c23) 1994; 7 Matubayasi (c46) 2017; 43 Jorgensen, Chandrasekhar, Madura, Impey, Klein (c50) 1983; 79 ÖzpInar, Peukert, Clark (c52) 2010; 16 Kokubo, Hu, Pettitt (c33) 2011; 133 Bennett (c53) 1976; 22 Piana, Gale (c5) 2005; 127 Kitayama, Yamanaka, Kadota, Shimosaka, Shirakawa, Hidaka (c7) 2009; 131 Matubayasi, Nakahara (c19) 2003; 119 Matubayasi, Shinoda, Nakahara (c37) 2008; 128 Goga, Rzepiela, de Vries, Marrink, Berendsen (c56) 2012; 8 Anand, Patey (c14) 2018; 122 Carlson, Jorgensen (c24) 1995; 99 Miyamoto, Kollman (c58) 1992; 13 Beutler, Mark, van Schaik, Gerber, van Gunsteren (c66) 1994; 222 Kawakami, Shigemoto, Matubayasi (c40) 2012; 137 Levy, Belhadj, Kitchen (c21) 1991; 95 Karino, Fedorov, Matubayasi (c38) 2010; 496 Elts, Greiner, Briesen (c13) 2016; 16 Galván, Sanchez, Martin, Olivares del Valle, Aguilar (c28) 2003; 118 Gražulis, Daškevič, Merkys, Chateigner, Lutterotti, Quirós, Serebryanaya, Moeck, Downs, Le Bail (c64) 2012; 40 Freedman, Truong (c29) 2004; 121 Kast (c25) 2001; 3 Frolov (c43) 2015; 11 Yamamoto (c32) 2008; 129 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (c49) 2015; 1 Chuev, Fedorov, Crain (c31) 2007; 448 (2023062607251376900_c41) 2014; 140 (2023062607251376900_c30) 2007; 126 (2023062607251376900_c47) 2018; 122 (2023062607251376900_c33) 2011; 133 (2023062607251376900_c38) 2010; 496 (2023062607251376900_c49) 2015; 1 (2023062607251376900_c53) 1976; 22 (2023062607251376900_c8) 2012; 134 (2023062607251376900_c13) 2016; 16 (2023062607251376900_c43) 2015; 11 (2023062607251376900_c61) 2006; 2 (2023062607251376900_c16) 2000; 113 (2023062607251376900_c17) 2002; 117 (2023062607251376900_c3) 1995; 152 (2023062607251376900_c50) 1983; 79 (2023062607251376900_c46) 2017; 43 (2023062607251376900_c14) 2018; 122 (2023062607251376900_c25) 2001; 3 (2023062607251376900_c67) 2005; 122 (2023062607251376900_c44) 2016; 144 (2023062607251376900_c63) 2009; 42 (2023062607251376900_c11) 2015; 119 (2023062607251376900_c48) 2013; 29 (2023062607251376900_c4) 2013; 52 (2023062607251376900_c65) 2008; 4 (2023062607251376900_c57) 1984; 81 (2023062607251376900_c24) 1995; 99 (2023062607251376900_c59) 1997; 18 (2023062607251376900_c37) 2008; 128 (2023062607251376900_c6) 2005; 438 (2023062607251376900_c23) 1994; 7 (2023062607251376900_c34) 2011; 115 (2023062607251376900_c22) 1992; 13 (2023062607251376900_c26) 2002; 106 (2023062607251376900_c45) 2016; 18 (2023062607251376900_c35) 2012; 8 Hirata (2023062607251376900_c27) 2003 (2023062607251376900_c51) 2004; 25 (2023062607251376900_c64) 2012; 40 (2023062607251376900_c5) 2005; 127 (2023062607251376900_c60) 1995; 103 (2023062607251376900_c42) 2013; 15 (2023062607251376900_c9) 2013; 10 (2023062607251376900_c58) 1992; 13 (2023062607251376900_c56) 2012; 8 (2023062607251376900_c7) 2009; 131 (2023062607251376900_c32) 2008; 129 (2023062607251376900_c12) 2015; 15 (2023062607251376900_c36) 2006; 124 (2023062607251376900_c52) 2010; 16 (2023062607251376900_c15) 1996 (2023062607251376900_c1) 2013 (2023062607251376900_c19) 2003; 119 (2023062607251376900_c62) 2006; 39 (2023062607251376900_c39) 2011; 115 (2023062607251376900_c20) 2014; 35 (2023062607251376900_c10) 2014; 405 (2023062607251376900_c40) 2012; 137 (2023062607251376900_c55) 1988; 1 (2023062607251376900_c21) 1991; 95 (2023062607251376900_c28) 2003; 118 (2023062607251376900_c29) 2004; 121 (2023062607251376900_c2) 1998 (2023062607251376900_c18) 2003; 118 (2023062607251376900_c66) 1994; 222 (2023062607251376900_c31) 2007; 448 |
References_xml | – volume: 106 start-page: 13078 year: 2002 ident: c26 publication-title: J. Phys. Chem. B – volume: 124 start-page: 154908 year: 2006 ident: c36 publication-title: J. Chem. Phys. – volume: 40 start-page: 420 year: 2012 ident: c64 publication-title: Nucleic Acids Res. – volume: 39 start-page: 453 year: 2006 ident: c62 publication-title: J. Appl. Cryst. – volume: 140 start-page: 169903 year: 2014 ident: c41 publication-title: J. Chem. Phys. – volume: 22 start-page: 245 year: 1976 ident: c53 publication-title: J. Comput. Phys. – volume: 118 start-page: 2446 year: 2003 ident: c18 publication-title: J. Chem. Phys. – volume: 126 start-page: 144503 year: 2007 ident: c30 publication-title: J. Chem. Phys. – volume: 15 start-page: 4377 year: 2013 ident: c42 publication-title: Phys. Chem. Chem. Phys. – volume: 103 start-page: 8577 year: 1995 ident: c60 publication-title: J. Chem. Phys. – volume: 405 start-page: 122 year: 2014 ident: c10 publication-title: J. Cryst. Growth – volume: 10 start-page: 905 year: 2013 ident: c9 publication-title: Mol. Pharmaceutics – volume: 122 start-page: 3219 year: 2018 ident: c47 publication-title: J. Phys. Chem. B – volume: 7 start-page: 385 year: 1994 ident: c23 publication-title: Protein Eng., Des. Sel. – volume: 119 start-page: 4275 year: 2015 ident: c11 publication-title: J. Phys. Chem. B – volume: 3 start-page: 5087 year: 2001 ident: c25 publication-title: Phys. Chem. Chem. Phys. – volume: 122 start-page: 1213 year: 2018 ident: c14 publication-title: J. Phys. Chem. B – volume: 122 start-page: 134508 year: 2005 ident: c67 publication-title: J. Chem. Phys. – volume: 16 start-page: 4154 year: 2016 ident: c13 publication-title: Cryst. Growth Des. – volume: 1 start-page: 19 year: 2015 ident: c49 publication-title: SoftwareX – volume: 115 start-page: 6011 year: 2011 ident: c34 publication-title: J. Phys. Chem. B – volume: 448 start-page: 198 year: 2007 ident: c31 publication-title: Chem. Phys. Lett. – volume: 496 start-page: 351 year: 2010 ident: c38 publication-title: Chem. Phys. Lett. – volume: 137 start-page: 234903 year: 2012 ident: c40 publication-title: J. Chem. Phys. – volume: 18 start-page: 1463 year: 1997 ident: c59 publication-title: J. Comput. Chem. – volume: 29 start-page: 845 year: 2013 ident: c48 publication-title: Bioinformatics – volume: 95 start-page: 3627 year: 1991 ident: c21 publication-title: J. Chem. Phys. – volume: 129 start-page: 244104 year: 2008 ident: c32 publication-title: J. Chem. Phys. – volume: 121 start-page: 2187 year: 2004 ident: c29 publication-title: J. Chem. Phys. – volume: 1 start-page: 173 year: 1988 ident: c55 publication-title: Mol. Simul. – volume: 35 start-page: 1592 year: 2014 ident: c20 publication-title: J. Comput. Chem. – volume: 134 start-page: 17221 year: 2012 ident: c8 publication-title: J. Am. Chem. Soc. – volume: 222 start-page: 529 year: 1994 ident: c66 publication-title: Chem. Phys. Lett. – volume: 2 start-page: 1 year: 2006 ident: c61 publication-title: J. Chem. Theory Comput. – volume: 128 start-page: 195107 year: 2008 ident: c37 publication-title: J. Chem. Phys. – volume: 119 start-page: 9686 year: 2003 ident: c19 publication-title: J. Chem. Phys. – volume: 152 start-page: 203 year: 1995 ident: c3 publication-title: J. Cryst. Growth – volume: 13 start-page: 952 year: 1992 ident: c58 publication-title: J. Comput. Chem. – volume: 118 start-page: 255 year: 2003 ident: c28 publication-title: J. Chem. Phys. – volume: 8 start-page: 3409 year: 2012 ident: c35 publication-title: J. Chem. Theory Comput. – volume: 81 start-page: 3684 year: 1984 ident: c57 publication-title: J. Chem. Phys. – volume: 131 start-page: 174707 year: 2009 ident: c7 publication-title: J. Chem. Phys. – volume: 13 start-page: 199 year: 1992 ident: c22 publication-title: J. Comput. Chem. – volume: 115 start-page: 4745 year: 2011 ident: c39 publication-title: J. Phys. Chem. B – volume: 43 start-page: 45 year: 2017 ident: c46 publication-title: Curr. Opin. Struct. Biol. – volume: 144 start-page: 085102 year: 2016 ident: c44 publication-title: J. Chem. Phys. – volume: 438 start-page: 70 year: 2005 ident: c6 publication-title: Nature – volume: 4 start-page: 653 year: 2008 ident: c65 publication-title: J. Appl. Cryst. – volume: 113 start-page: 6070 year: 2000 ident: c16 publication-title: J. Chem. Phys. – volume: 42 start-page: 726 year: 2009 ident: c63 publication-title: J. Appl. Cryst. – volume: 79 start-page: 926 year: 1983 ident: c50 publication-title: J. Chem. Phys. – volume: 16 start-page: 1427 year: 2010 ident: c52 publication-title: J. Mol. Model. – volume: 8 start-page: 3637 year: 2012 ident: c56 publication-title: J. Chem. Theory Comput. – volume: 117 start-page: 3605 year: 2002 ident: c17 publication-title: J. Chem. Phys. – volume: 52 start-page: 13369 year: 2013 ident: c4 publication-title: Angew. Chem., Int. Ed. – volume: 127 start-page: 1975 year: 2005 ident: c5 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 1849 year: 2011 ident: c33 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 13223 year: 2016 ident: c45 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 2245 year: 2015 ident: c43 publication-title: J. Chem. Theory Comput. – volume: 15 start-page: 3220 year: 2015 ident: c12 publication-title: Cryst. Growth Des. – volume: 25 start-page: 1157 year: 2004 ident: c51 publication-title: J. Comput. Chem. – volume: 99 start-page: 10667 year: 1995 ident: c24 publication-title: J. Phys. Chem. – volume: 133 start-page: 1849 year: 2011 ident: 2023062607251376900_c33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1078128 – volume: 121 start-page: 2187 year: 2004 ident: 2023062607251376900_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.1760741 – volume: 3 start-page: 5087 year: 2001 ident: 2023062607251376900_c25 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b106075a – volume: 122 start-page: 1213 year: 2018 ident: 2023062607251376900_c14 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b07096 – volume: 95 start-page: 3627 year: 1991 ident: 2023062607251376900_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.460813 – volume: 35 start-page: 1592 year: 2014 ident: 2023062607251376900_c20 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23651 – volume: 29 start-page: 845 year: 2013 ident: 2023062607251376900_c48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt055 – volume: 119 start-page: 9686 year: 2003 ident: 2023062607251376900_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.1613938 – volume: 144 start-page: 085102 year: 2016 ident: 2023062607251376900_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.4941945 – volume: 16 start-page: 4154 year: 2016 ident: 2023062607251376900_c13 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00721 – volume: 25 start-page: 1157 year: 2004 ident: 2023062607251376900_c51 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 118 start-page: 255 year: 2003 ident: 2023062607251376900_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.1525798 – volume: 52 start-page: 13369 year: 2013 ident: 2023062607251376900_c4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201304562 – volume: 99 start-page: 10667 year: 1995 ident: 2023062607251376900_c24 publication-title: J. Phys. Chem. doi: 10.1021/j100026a034 – volume: 124 start-page: 154908 year: 2006 ident: 2023062607251376900_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.2186324 – volume: 16 start-page: 1427 year: 2010 ident: 2023062607251376900_c52 publication-title: J. Mol. Model. doi: 10.1007/s00894-010-0650-7 – volume: 129 start-page: 244104 year: 2008 ident: 2023062607251376900_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.3041381 – volume: 113 start-page: 6070 year: 2000 ident: 2023062607251376900_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.1309013 – volume-title: Understanding Molecular Simulation: From Algorithms to Applications year: 1996 ident: 2023062607251376900_c15 – volume: 119 start-page: 4275 year: 2015 ident: 2023062607251376900_c11 publication-title: J. Phys. Chem. B doi: 10.1021/jp512358s – volume: 106 start-page: 13078 year: 2002 ident: 2023062607251376900_c26 publication-title: J. Phys. Chem. B doi: 10.1021/jp021396z – volume: 131 start-page: 174707 year: 2009 ident: 2023062607251376900_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.3254517 – volume: 11 start-page: 2245 year: 2015 ident: 2023062607251376900_c43 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00172 – volume: 122 start-page: 3219 year: 2018 ident: 2023062607251376900_c47 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b08241 – volume: 42 start-page: 726 year: 2009 ident: 2023062607251376900_c63 publication-title: J. Appl. Cryst. doi: 10.1107/s0021889809016690 – volume: 117 start-page: 3605 year: 2002 ident: 2023062607251376900_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.1495850 – volume: 126 start-page: 144503 year: 2007 ident: 2023062607251376900_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.2715941 – volume: 115 start-page: 6011 year: 2011 ident: 2023062607251376900_c34 publication-title: J. Phys. Chem. B doi: 10.1021/jp111271c – volume: 10 start-page: 905 year: 2013 ident: 2023062607251376900_c9 publication-title: Mol. Pharmaceutics doi: 10.1021/mp4000212 – volume: 118 start-page: 2446 year: 2003 ident: 2023062607251376900_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.1533752 – volume: 115 start-page: 4745 year: 2011 ident: 2023062607251376900_c39 publication-title: J. Phys. Chem. B doi: 10.1021/jp2015676 – volume: 140 start-page: 169903 year: 2014 ident: 2023062607251376900_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.4873166 – volume: 40 start-page: 420 year: 2012 ident: 2023062607251376900_c64 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr900 – volume: 405 start-page: 122 year: 2014 ident: 2023062607251376900_c10 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.07.046 – volume-title: Physics and Chemistry of Interfaces year: 2013 ident: 2023062607251376900_c1 – volume: 448 start-page: 198 year: 2007 ident: 2023062607251376900_c31 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.10.003 – volume: 13 start-page: 199 year: 1992 ident: 2023062607251376900_c22 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130212 – volume: 15 start-page: 3220 year: 2015 ident: 2023062607251376900_c12 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b00346 – volume: 22 start-page: 245 year: 1976 ident: 2023062607251376900_c53 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90078-4 – volume: 152 start-page: 203 year: 1995 ident: 2023062607251376900_c3 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(95)00128-x – volume: 496 start-page: 351 year: 2010 ident: 2023062607251376900_c38 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.07.054 – volume: 18 start-page: 13223 year: 2016 ident: 2023062607251376900_c45 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c6cp01834c – volume: 8 start-page: 3409 year: 2012 ident: 2023062607251376900_c35 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300505b – volume: 8 start-page: 3637 year: 2012 ident: 2023062607251376900_c56 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3000876 – volume: 4 start-page: 653 year: 2008 ident: 2023062607251376900_c65 publication-title: J. Appl. Cryst. doi: 10.1107/s0021889808012016 – volume: 127 start-page: 1975 year: 2005 ident: 2023062607251376900_c5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043395l – volume: 15 start-page: 4377 year: 2013 ident: 2023062607251376900_c42 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp43346c – volume-title: Physics of Crystal Growth year: 1998 ident: 2023062607251376900_c2 – volume: 39 start-page: 453 year: 2006 ident: 2023062607251376900_c62 publication-title: J. Appl. Cryst. doi: 10.1107/s002188980600731x – volume: 1 start-page: 19 year: 2015 ident: 2023062607251376900_c49 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 81 start-page: 3684 year: 1984 ident: 2023062607251376900_c57 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 222 start-page: 529 year: 1994 ident: 2023062607251376900_c66 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00397-1 – volume: 438 start-page: 70 year: 2005 ident: 2023062607251376900_c6 publication-title: Nature doi: 10.1038/nature04173 – volume: 18 start-page: 1463 year: 1997 ident: 2023062607251376900_c59 publication-title: J. Comput. Chem. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l – volume: 1 start-page: 173 year: 1988 ident: 2023062607251376900_c55 publication-title: Mol. Simul. doi: 10.1080/08927028808080941 – volume: 137 start-page: 234903 year: 2012 ident: 2023062607251376900_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.4770334 – volume: 2 start-page: 1 year: 2006 ident: 2023062607251376900_c61 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct0502256 – volume: 134 start-page: 17221 year: 2012 ident: 2023062607251376900_c8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307408x – volume: 103 start-page: 8577 year: 1995 ident: 2023062607251376900_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume-title: Molecular Theory of Solvation year: 2003 ident: 2023062607251376900_c27 – volume: 79 start-page: 926 year: 1983 ident: 2023062607251376900_c50 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 122 start-page: 134508 year: 2005 ident: 2023062607251376900_c67 publication-title: J. Chem. Phys. doi: 10.1063/1.1877132 – volume: 7 start-page: 385 year: 1994 ident: 2023062607251376900_c23 publication-title: Protein Eng., Des. Sel. doi: 10.1093/protein/7.3.385 – volume: 43 start-page: 45 year: 2017 ident: 2023062607251376900_c46 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.10.005 – volume: 128 start-page: 195107 year: 2008 ident: 2023062607251376900_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.2919117 – volume: 13 start-page: 952 year: 1992 ident: 2023062607251376900_c58 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130805 |
SSID | ssj0001724 |
Score | 2.3040817 |
Snippet | Physisorption of urea on its crystal in contact with water was subject to energetics analysis with all-atom molecular dynamics simulation. The transfer free... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 014504 |
SubjectTerms | Adsorption Computer simulation Crystals Energy Free energy Hydrogen bonding Liquid-solid interfaces Molecular dynamics Representations Urea |
Title | Free-energy analysis of physisorption on solid-liquid interface with the solution theory in the energy representation |
URI | http://dx.doi.org/10.1063/1.5027861 https://www.ncbi.nlm.nih.gov/pubmed/29981552 https://www.proquest.com/docview/2087632183 https://www.proquest.com/docview/2067132981 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241002 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBiXFQYylwdesjUXO8njNJgGogiJTRpPke3YUuiWlDZ5KL-e4_jSlA1pIEVp5biu6_P59MuJz2eE3pKkJKEKRaCkIkGSMZhSqdJZICIpo1glYb82Z_qFnpwln87J-XpX1D67pOX74te1eSX_Y1UoA7vqLNl_sKxvFArgPdgXzmBhON_IxscLKQNpsvfYQF2kD1csm4VxB3BAN6oyuKh-dlXZK0QsFIMJbYKwABTXTZPXuHKLH23TvfClS1Kqh3R2nVjWU1rh1AdMvMTT9e_skgEkGuPOm1nlQ9Bsxmad2Tn743wu_YUpazvOVmxZmYdLvFt19mM2RBFm_XLWdOh29ToQOrGa18bTTrI8SKnZK9S7YiNfOsTcFRcPnEpHG_aJfmZqhNz_UMz-Iea30VaUUhqN0Nbh--nnb_7PGfiaFeY2PXJiUzQ-8E1uUpQr9x330DawEzPkAy5y-gDdtyOODw0iHqJbst5B20du774ddOerMcAj1A0wgh1GcKPwBkYwHEOMYI8RrDGCAQzYYQQbjECVvtg2vYmRx-js-MPp0Ulgt9oIRJxkbRARKUhM00TwiDLGk5ISoPohSbniPBMxk8DzaRoLcPCJCicxYYSnYZzBC-d5_ASN6qaWuwjDHTdTecpYmZFElpxTne-ck5xTRQSbjNE7N7qFG0a9HcpF0a-HoHERFtYQY_TaV50b8ZXrKu05ExV2bi6LqFda1PR_jF75y2AE_TiM1bLpdB0KPyDKM2jiqTGt_xYgaZkWJxyjN97Wf-_CsxvVeo7urifHHhq1i06-AEbb8pcWpb8B8kumpg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free-energy+analysis+of+physisorption+on+solid-liquid+interface+with+the+solution+theory+in+the+energy+representation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Yamamoto%2C+Naoki&rft.au=Nakakuki%2C+Ippei&rft.au=Matubayasi%2C+Nobuyuki&rft.date=2018-07-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=149&rft.issue=1&rft_id=info:doi/10.1063%2F1.5027861&rft.externalDocID=jcp |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |