DKEMA: GPU-based and dynamic key-dependent efficient message authentication algorithm
Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message...
Saved in:
| Published in | The Journal of supercomputing Vol. 78; no. 12; pp. 14034 - 14071 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2022
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 1573-0484 |
| DOI | 10.1007/s11227-022-04433-3 |
Cover
| Abstract | Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub:
https://github.com/rcouturier/GPU-DKEMA.git
. |
|---|---|
| AbstractList | Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub: https://github.com/rcouturier/GPU-DKEMA.git. Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is basedon the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that theproposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub: https://github.com/rcouturier/GPU-DKEMA.git . |
| Author | Noura, Hassan N. Salman, Ola Mazouzi, Kamel Couturier, Raphaël |
| Author_xml | – sequence: 1 givenname: Hassan N. surname: Noura fullname: Noura, Hassan N. organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute – sequence: 2 givenname: Raphaël orcidid: 0000-0003-1490-9592 surname: Couturier fullname: Couturier, Raphaël email: raphael.couturier@univ-fcomte.fr organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute – sequence: 3 givenname: Ola surname: Salman fullname: Salman, Ola organization: American University of Beirut, Electrical and Computer Engineering Department – sequence: 4 givenname: Kamel surname: Mazouzi fullname: Mazouzi, Kamel organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute |
| BackLink | https://hal.science/hal-04257375$$DView record in HAL |
| BookMark | eNqNkMFOGzEQhq0KpAbaF-hppZ44mI7H3tjbWwQUqqaih-ZsTbyzydLEG9Ybqrw9TheJG-rJ_q3vH42_M3ESu8hCfFJwqQDsl6QUopWAKMEYraV-JyaqtDpHZ07EBCoE6UqD78VZSg8AYLTVE7G4_nHzc_a1uP21kEtKXBcU66I-RNq2ofjDB1nzjmPNcSi4adrQHm9bTolWXNB-WOfcBhraLha0WXV9O6y3H8RpQ5vEH1_Oc7H4dvP76k7O72-_X83mMmjjBolgXYNkl2CDNaEGy8gElQ2GQ866WjqslgbYMagKa3JUTqelJnbYEOpzoce5-7ijw1_abPyub7fUH7wCfzTjRzM-m_H_zHidWxdja02vfEetv5vN_fENDGZ1tnxSmf08sru-e9xzGvxDt-9j_pTHaaVKmCK6TOFIhb5Lqefm_9Z4WT5lOK64fx39RusZ4j2Raw |
| Cites_doi | 10.1007/978-3-662-49301-4_8 10.1109/HPCC.2012.119 10.1007/s13389-017-0175-4 10.1007/s11071-015-1970-z 10.1109/MetroInd4.0IoT51437.2021.9488454 10.1007/s12652-021-02913-7 10.1007/s11042-018-5660-y 10.1016/j.chaos.2009.02.001 10.1007/s11042-018-6845-0 10.1007/s11042-017-5124-9 10.1007/s11227-015-1479-8 10.1007/s10586-016-0536-2 10.1007/11426639_2 10.1186/1687-6180-2013-126 10.1007/s11042-018-7000-7 10.1016/j.vehcom.2021.100416 10.1145/3485525 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION JQ2 1XC VOOES ADTOC UNPAY |
| DOI | 10.1007/s11227-022-04433-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 14071 |
| ExternalDocumentID | oai:HAL:hal-04257375v1 10_1007_s11227_022_04433_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 1XC ABJCF BGLVJ CCPQU K7- M7S PHGZM PHGZT PQGLB PTHSS VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c348t-2078f2a7b07c74cd07e2ea097c4ec4cd39b829b40e8e0192da8a56653ae82fa23 |
| IEDL.DBID | UNPAY |
| ISSN | 0920-8542 1573-0484 |
| IngestDate | Sun Oct 26 04:08:16 EDT 2025 Tue Oct 14 19:59:45 EDT 2025 Thu Sep 25 00:43:15 EDT 2025 Wed Oct 01 03:43:53 EDT 2025 Fri Feb 21 02:45:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Lightweight GPU message authentication algorithm Security and performance analysis Cryptanalysis Dynamic key dependent cryptographic primitives Parallel keyed hash function |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-2078f2a7b07c74cd07e2ea097c4ec4cd39b829b40e8e0192da8a56653ae82fa23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1490-9592 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04257375 |
| PQID | 2691506228 |
| PQPubID | 2043774 |
| PageCount | 38 |
| ParticipantIDs | unpaywall_primary_10_1007_s11227_022_04433_3 hal_primary_oai_HAL_hal_04257375v1 proquest_journals_2691506228 crossref_primary_10_1007_s11227_022_04433_3 springer_journals_10_1007_s11227_022_04433_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | FawazZNouraHMostefaouiAAn efficient and secure cipher scheme for images confidentiality preservationSignal Process: Image Commun20164290108 Guy L Steele J and Sebastiano V. Lxm: better splittable pseudorandom number generators (and almost as fast). Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–31, 2021 LeeW-KCheongH-SPhanRCGoiB-MFast implementation of block ciphers and PRNGs in maxwell GPU architectureCluster Comput201619133534710.1007/s10586-016-0536-2 AbdelrahmanAAFouadMMDahshanHAnalysis on the aes implementation with various granularities on different gpu architecturesAdv Electr Electron Eng2017153526535 Rone K , Linda Ruth P, Çetin Kaya K (2016). Bitsliced High-performance AES-ECB on GPUs. In The New Codebreakers, Springer, pp. 125–133 Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption Standard. Alpha Press, 2009 Noura H N (2012) Conception et simulation des générateurs, crypto-systèmes et fonctions de hachage basés chaos performants. PhD thesis, université de Nantes AminMFaragallahOSAbd El-LatifAAChaos-based hash function (cbhf) for cryptographic applicationsChaos, Solitons Fractals200942276777210.1016/j.chaos.2009.02.001 BeaulieuRShorsDSmithJTreatman-ClarkSWeeksBWingersLSimon and speck: block ciphers for the internet of thingsIACR Cryptol ePrint Archive201520155851382.94059 NouraHSleemLNouraMMansourMMChehabACouturierRA new efficient lightweight and secure image cipher schemeMultimed Tools Appl20187712154571548410.1007/s11042-017-5124-9 AkhavanASamsudinAAkhshaniAA novel parallel hash function based on 3d chaotic mapEURASIP J Adv Signal Process20132013111210.1186/1687-6180-2013-126 PeccerilloBBartoliniSKoçÇ KParallel Bitsliced AES through PHAST: a single-source high-performance library for multi-cores and GPUsJ Cryptograph Eng2017921597110.1007/s13389-017-0175-4 Noura H N, Salman O, Couturier R, and Chehab A (2021) Lorca: Lightweight round block and stream cipher algorithms for IoV systems. Vehicular Communications, pp. 100416 NouraHNChehabACouturierREfficient & secure cipher scheme with dynamic key-dependent mode of operationSignal Processing: Image Commun201978448464 Parisot A, Bento LM, Machado RC (2021) Testing and selecting lightweight pseudo-random number generators for iot devices. In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), IEEE, pp. 715–720 Ahmed A A, Mohamed MF, Hisham D, and Ahmed M M (2017) High performance cuda aes implementation: a quantitative performance analysis approach. In 2017 Computing Conference, IEEE, pp. 1077–1085 Nvidia, CUDA. A C Programming guide, version 9.0. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html Ahmed A A, Hisham D, and Gouda I S (2018)Enhancing the actual throughput of the aes algorithm on the pascal gpu architecture. In 2018 3rd International Conference on System Reliability and Safety (ICSRS), IEEE, pp. 97–103 Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu. (2012) Implementation and analysis of AES encryption on GPU. In High performance computing and communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), IEEE, pp. 843–848 NouraH NChehabANouraMCouturierRMansourMMLightweight, dynamic and efficient image encryption schemeMultimed Tools Appl20187812165271656110.1007/s11042-018-7000-7 MenezesAlfred JVanstoneScott AVan OorschotPaul CHandbook of applied cryptography19961Boca Raton, FL, USACRC Press Inc0868.94001 John Vi, Messier M and Pravir C. (2002) Cryptography for secure communications. O’Reilly Media Inc, Network security with openssl StallingsWilliamCryptography and network security: principles and practice2017NJPearson Upper Saddle River Andrew L and Summed-Area Variance Shadow Maps. Chapter 36. aes encryption and decryption on the gpu | nvidia developer. https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu, 2007 KansoAGheblehMA structure-based chaotic hashing schemeNonlinear Dyn2015811–22740335501110.1007/s11071-015-1970-z NouraHNNouraMChehabAMansourMMCouturierREfficient and secure cipher scheme for multimedia contentsMultimed Tools Appl20187811148376610.1007/s11042-018-6845-0 Joan D and Vincent R. The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media, 2013 Guang-liang G, Quan Q, Rui Z (2015) Different implementations of AES cryptographic algorithm. In High performance computing and communications (HPCC), IEEE 7th International Symposium on Cyberspace Safety and Security (CSS),IEEE, pp. 1848–1853 YangBLiZZhengSYangYHash function construction based on coupled map lattice for communication securityIn Global Mobile Congress2009200917 Raphaël C (2013) Designing scientific applications on GPUs. Numerical Analysis Scientific Computating. Chapman & Hall/CR BahiJCouturierRGuyeuxCHéamP-CEfficient and cryptographically secure generation of chaotic pseudorandom numbers on GPUJ Supercomput201571103877390310.1007/s11227-015-1479-8 Runtong Z , Like C (2008) A block cipher using key-dependent S-box and P-boxes. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on, IEEE, pp. 1463–1468 NouraHNSalmanOCouturierRChehabANovel one round message authentication scheme for constrained iot devicesJ Ambient Intell Humanized Comput20211314839910.1007/s12652-021-02913-7 NouraHChehabASleemLNouraMCouturierRMansourMMOne round cipher algorithm for multimedia IoT devicesMultimed Tools Appl201877141838341310.1007/s11042-018-5660-y Pseudo-random numbers/splitmix64 - rosetta code. https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64 Ivan D (1990) A design principle for hash functions. In Proceedings of the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, Springer-Verlag, London, UK, UK, pp. 416–427 WangXHongboYHow to break md5 and other hash functions2005In In EUROCRYPTSpringer-Verlag10.1007/11426639_2 Like C , Runtong Z (2008) A Key-dependent Cipher DSDP. In Electronic Commerce and Security, 2008 International Symposium on, IEEE, pp. 310–313 4433_CR1 M Amin (4433_CR36) 2009; 42 A Akhavan (4433_CR32) 2013; 2013 4433_CR5 4433_CR4 HN Noura (4433_CR15) 2018; 78 4433_CR3 4433_CR7 4433_CR6 4433_CR23 4433_CR22 4433_CR20 HN Noura (4433_CR26) 2019; 78 4433_CR27 X Wang (4433_CR29) 2005 4433_CR24 Alfred J Menezes (4433_CR34) 1996 A Kanso (4433_CR37) 2015; 81 4433_CR28 R Beaulieu (4433_CR14) 2015; 2015 W-K Lee (4433_CR9) 2016; 19 H Noura (4433_CR13) 2018; 77 J Bahi (4433_CR8) 2015; 71 B Yang (4433_CR33) 2009; 2009 AA Abdelrahman (4433_CR21) 2017; 15 4433_CR30 H N Noura (4433_CR16) 2018; 78 B Peccerillo (4433_CR10) 2017; 9 4433_CR12 William Stallings (4433_CR2) 2017 4433_CR11 4433_CR31 4433_CR38 HN Noura (4433_CR25) 2021; 13 H Noura (4433_CR17) 2018; 77 4433_CR35 4433_CR19 Z Fawaz (4433_CR18) 2016; 42 |
| References_xml | – reference: Noura H N (2012) Conception et simulation des générateurs, crypto-systèmes et fonctions de hachage basés chaos performants. PhD thesis, université de Nantes – reference: StallingsWilliamCryptography and network security: principles and practice2017NJPearson Upper Saddle River – reference: Parisot A, Bento LM, Machado RC (2021) Testing and selecting lightweight pseudo-random number generators for iot devices. In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), IEEE, pp. 715–720 – reference: Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu. (2012) Implementation and analysis of AES encryption on GPU. In High performance computing and communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), IEEE, pp. 843–848 – reference: Ahmed A A, Hisham D, and Gouda I S (2018)Enhancing the actual throughput of the aes algorithm on the pascal gpu architecture. In 2018 3rd International Conference on System Reliability and Safety (ICSRS), IEEE, pp. 97–103 – reference: Rone K , Linda Ruth P, Çetin Kaya K (2016). Bitsliced High-performance AES-ECB on GPUs. In The New Codebreakers, Springer, pp. 125–133 – reference: LeeW-KCheongH-SPhanRCGoiB-MFast implementation of block ciphers and PRNGs in maxwell GPU architectureCluster Comput201619133534710.1007/s10586-016-0536-2 – reference: Andrew L and Summed-Area Variance Shadow Maps. Chapter 36. aes encryption and decryption on the gpu | nvidia developer. https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu, 2007 – reference: Runtong Z , Like C (2008) A block cipher using key-dependent S-box and P-boxes. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on, IEEE, pp. 1463–1468 – reference: NouraHNChehabACouturierREfficient & secure cipher scheme with dynamic key-dependent mode of operationSignal Processing: Image Commun201978448464 – reference: Like C , Runtong Z (2008) A Key-dependent Cipher DSDP. In Electronic Commerce and Security, 2008 International Symposium on, IEEE, pp. 310–313 – reference: Guang-liang G, Quan Q, Rui Z (2015) Different implementations of AES cryptographic algorithm. In High performance computing and communications (HPCC), IEEE 7th International Symposium on Cyberspace Safety and Security (CSS),IEEE, pp. 1848–1853 – reference: Ahmed A A, Mohamed MF, Hisham D, and Ahmed M M (2017) High performance cuda aes implementation: a quantitative performance analysis approach. In 2017 Computing Conference, IEEE, pp. 1077–1085 – reference: Guy L Steele J and Sebastiano V. Lxm: better splittable pseudorandom number generators (and almost as fast). Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–31, 2021 – reference: NouraH NChehabANouraMCouturierRMansourMMLightweight, dynamic and efficient image encryption schemeMultimed Tools Appl20187812165271656110.1007/s11042-018-7000-7 – reference: PeccerilloBBartoliniSKoçÇ KParallel Bitsliced AES through PHAST: a single-source high-performance library for multi-cores and GPUsJ Cryptograph Eng2017921597110.1007/s13389-017-0175-4 – reference: WangXHongboYHow to break md5 and other hash functions2005In In EUROCRYPTSpringer-Verlag10.1007/11426639_2 – reference: AminMFaragallahOSAbd El-LatifAAChaos-based hash function (cbhf) for cryptographic applicationsChaos, Solitons Fractals200942276777210.1016/j.chaos.2009.02.001 – reference: Ivan D (1990) A design principle for hash functions. In Proceedings of the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, Springer-Verlag, London, UK, UK, pp. 416–427 – reference: MenezesAlfred JVanstoneScott AVan OorschotPaul CHandbook of applied cryptography19961Boca Raton, FL, USACRC Press Inc0868.94001 – reference: Raphaël C (2013) Designing scientific applications on GPUs. Numerical Analysis Scientific Computating. Chapman & Hall/CR – reference: NouraHSleemLNouraMMansourMMChehabACouturierRA new efficient lightweight and secure image cipher schemeMultimed Tools Appl20187712154571548410.1007/s11042-017-5124-9 – reference: Nvidia, CUDA. A C Programming guide, version 9.0. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html – reference: KansoAGheblehMA structure-based chaotic hashing schemeNonlinear Dyn2015811–22740335501110.1007/s11071-015-1970-z – reference: AkhavanASamsudinAAkhshaniAA novel parallel hash function based on 3d chaotic mapEURASIP J Adv Signal Process20132013111210.1186/1687-6180-2013-126 – reference: YangBLiZZhengSYangYHash function construction based on coupled map lattice for communication securityIn Global Mobile Congress2009200917 – reference: NouraHNNouraMChehabAMansourMMCouturierREfficient and secure cipher scheme for multimedia contentsMultimed Tools Appl20187811148376610.1007/s11042-018-6845-0 – reference: BahiJCouturierRGuyeuxCHéamP-CEfficient and cryptographically secure generation of chaotic pseudorandom numbers on GPUJ Supercomput201571103877390310.1007/s11227-015-1479-8 – reference: NouraHNSalmanOCouturierRChehabANovel one round message authentication scheme for constrained iot devicesJ Ambient Intell Humanized Comput20211314839910.1007/s12652-021-02913-7 – reference: John Vi, Messier M and Pravir C. (2002) Cryptography for secure communications. O’Reilly Media Inc, Network security with openssl – reference: Joan D and Vincent R. The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media, 2013 – reference: BeaulieuRShorsDSmithJTreatman-ClarkSWeeksBWingersLSimon and speck: block ciphers for the internet of thingsIACR Cryptol ePrint Archive201520155851382.94059 – reference: NouraHChehabASleemLNouraMCouturierRMansourMMOne round cipher algorithm for multimedia IoT devicesMultimed Tools Appl201877141838341310.1007/s11042-018-5660-y – reference: AbdelrahmanAAFouadMMDahshanHAnalysis on the aes implementation with various granularities on different gpu architecturesAdv Electr Electron Eng2017153526535 – reference: Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption Standard. Alpha Press, 2009 – reference: Noura H N, Salman O, Couturier R, and Chehab A (2021) Lorca: Lightweight round block and stream cipher algorithms for IoV systems. Vehicular Communications, pp. 100416 – reference: FawazZNouraHMostefaouiAAn efficient and secure cipher scheme for images confidentiality preservationSignal Process: Image Commun20164290108 – reference: Pseudo-random numbers/splitmix64 - rosetta code. https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64 – ident: 4433_CR19 – ident: 4433_CR5 doi: 10.1007/978-3-662-49301-4_8 – ident: 4433_CR3 doi: 10.1109/HPCC.2012.119 – volume: 2009 start-page: 1 year: 2009 ident: 4433_CR33 publication-title: In Global Mobile Congress – volume: 9 start-page: 159 issue: 2 year: 2017 ident: 4433_CR10 publication-title: J Cryptograph Eng doi: 10.1007/s13389-017-0175-4 – ident: 4433_CR27 – ident: 4433_CR1 – ident: 4433_CR7 – volume-title: Handbook of applied cryptography year: 1996 ident: 4433_CR34 – ident: 4433_CR23 – volume: 81 start-page: 27 issue: 1–2 year: 2015 ident: 4433_CR37 publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-1970-z – ident: 4433_CR31 doi: 10.1109/MetroInd4.0IoT51437.2021.9488454 – volume: 13 start-page: 483 issue: 1 year: 2021 ident: 4433_CR25 publication-title: J Ambient Intell Humanized Comput doi: 10.1007/s12652-021-02913-7 – volume: 77 start-page: 18383 issue: 14 year: 2018 ident: 4433_CR13 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5660-y – volume: 42 start-page: 767 issue: 2 year: 2009 ident: 4433_CR36 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2009.02.001 – ident: 4433_CR12 – volume: 78 start-page: 14837 issue: 11 year: 2018 ident: 4433_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6845-0 – volume: 15 start-page: 526 issue: 3 year: 2017 ident: 4433_CR21 publication-title: Adv Electr Electron Eng – ident: 4433_CR35 – volume: 77 start-page: 15457 issue: 12 year: 2018 ident: 4433_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5124-9 – ident: 4433_CR20 – volume: 78 start-page: 448 year: 2019 ident: 4433_CR26 publication-title: Signal Processing: Image Commun – volume: 71 start-page: 3877 issue: 10 year: 2015 ident: 4433_CR8 publication-title: J Supercomput doi: 10.1007/s11227-015-1479-8 – volume: 42 start-page: 90 year: 2016 ident: 4433_CR18 publication-title: Signal Process: Image Commun – volume: 19 start-page: 335 issue: 1 year: 2016 ident: 4433_CR9 publication-title: Cluster Comput doi: 10.1007/s10586-016-0536-2 – ident: 4433_CR28 – volume-title: How to break md5 and other hash functions year: 2005 ident: 4433_CR29 doi: 10.1007/11426639_2 – ident: 4433_CR6 – volume: 2015 start-page: 585 year: 2015 ident: 4433_CR14 publication-title: IACR Cryptol ePrint Archive – volume: 2013 start-page: 1 issue: 1 year: 2013 ident: 4433_CR32 publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2013-126 – ident: 4433_CR22 – ident: 4433_CR4 – volume: 78 start-page: 16527 issue: 12 year: 2018 ident: 4433_CR16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7000-7 – volume-title: Cryptography and network security: principles and practice year: 2017 ident: 4433_CR2 – ident: 4433_CR24 doi: 10.1016/j.vehcom.2021.100416 – ident: 4433_CR38 – ident: 4433_CR11 – ident: 4433_CR30 doi: 10.1145/3485525 |
| SSID | ssj0004373 |
| Score | 2.2899985 |
| Snippet | Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new... |
| SourceID | unpaywall hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 14034 |
| SubjectTerms | Algorithms Compilers Computer Science Cryptography Cryptography and Security Distributed, Parallel, and Cluster Computing Emerging Technologies Encryption Graphics processing units Interpreters Modeling and Simulation Multiagent Systems Performance degradation Processor Architectures Programming Languages Software Engineering Ubiquitous Computing |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSDb3F9EcSbG-jm0aTeFnVdfOHBwt5K2iSrsFbZrYr_3qTb7iqI6K1pS1rmkZlkZr4BONJCOrYyijUnAjMbhVg6q4JtJJUbUKtDX-B8cxt2Y3bZ472qKGxUZ7vXIclypZ4Wu7WIm85nnweMUYrpLMxzD-flpDgm7Wk1JB3HlSO3MZKckapU5uc5vpmj2QefDPnF05wER5dg4TV_UR_vajD4Yn86q7BcOY6oPeb0GsyYfB1W6qYMqNLRDYjPrs5v2ifo4i7G3kRppHKN9LjxPHIqi-u-twUyJX6Ev3rynVD6Bimf8J4X1UEeUoP-8_CxeHjahLhzfn_axVXvBJxRJgsn_EJaokQaiEywTAfCEKOCSGTMZG5Mo9TxJGWBkcZ7eVpJ5Tw7TpWRxCpCt2Auf87NNiAi3YbbGOsImDErQ2VTyi2XYWg5N5o14LgmYfIyhshIpmDInuCJI3hSEjyhDTh0VJ686NGtu-3rxN8r1w8q-FurAXs1E5JKp0YJCSMPh0iIbECzZsz08W-fbE6Y94c_3Pnf7LuwSEqB8kmBezBXDF_NvnNUivSglMtPH07bMA priority: 102 providerName: Springer Nature |
| Title | DKEMA: GPU-based and dynamic key-dependent efficient message authentication algorithm |
| URI | https://link.springer.com/article/10.1007/s11227-022-04433-3 https://www.proquest.com/docview/2691506228 https://hal.science/hal-04257375 |
| UnpaywallVersion | submittedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51dw_AgfIUS9uVhbhRV1k_EodbCrtdUbrqgUjtKXJiu4vYplWbBcGv7ziPbcuhglPsZCQn_mbicTLzDcB7EymEVXBqJIuocHFIFa4q1MVKY4c7E_oE56N5OEvFlxN5sgGky4VZoMfZvvt9m9Y6xSPZg0Eo0dvuwyCdHyenNYUe7nyUrOvjjFEIZZVo82Ka7Lgxw_F9uHogBOeU31t7egsf-XjHrVz_CX0Cj1blpf79Sy-Xdxab6WYT9HhdcxT6GJMfe6sq3yv-_MXg-NBzPIOnradJkkY1nsOGLV_AZlfFgbRG_RLSz4eTo-QjOThOqV_TDNGlIaapVE_QxmlXKLcitiac8K1zXzrlzBLtI-TLqv3yR_Ty7OLqe7U4fwXpdPLt04y2xRZowYWq0Foi5ZiO8iAqIlGYILLM6iCOCmEL7PM4RxBzEVhlvVtotNLoCkqurWJOM_4a-uVFad8AYQp36NY6BKEQToXa5Vw6qcLQSWmNGMKHDobssuHUyG7Zkz1oGYKW1aBlfAjvcALXgp4Oe5Z8zfy5blJ_joew3QGZtUZ4nbEw9vyJjKkh7Hbg3l5-aMjdtQL8wx2-_T_xLXjMaqX0UYTb0K-uVnYHPZsqH8Egme7vz_3x4PRwMoJeypJRq_I3KPLx5w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N7gH2AONLK2PDQnsDS6k_YmdvFR_roEV7IBJvlhPbLVIJqE1B--9np0kLEprgLU4iJ7qf7Tv77n4H8MMI6WFlFBtOBGYuibH0WgW7RGrfoM7EIcF5cBX3UnZxw2_qpLBpE-3euCSrlXqZ7NYhvrsQfR4xRimmK_AxEFgFxvyUdJfZkHTuV078xkhyRupUmdf7eKGOVkYhGPKZpblwjn6C1VnxoP8-6fH4mf45_wzrteGIunOkN-GDLbZgoynKgOo5ug3p6eXZoPsT_fqT4qCiDNKFQWZeeB75KYuburclshV_RLi6C5VQhhbpEPBelPVBHtLj4f3kthzd7UB6fnZ90sN17QScUyZLP_iFdESLLBK5YLmJhCVWR4nImc19myaZxyRjkZU2WHlGS-0tO061lcRpQnehVdwX9gsgIv2G21rnBZgzJ2PtMsodl3HsOLeGteGoEaF6mFNkqCUZchC48gJXlcAVbcOhl_LixcBu3ev2VbhXrR9U8MdOG_YbEFQ9p6aKxEmgQ_SIt-G4AWb5-H-fPF6A94Y_3Htf7wew2rse9FX_99XlV1gj1eAKAYL70ConM_vNGy1l9r0ao_8AjT_eHA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkKA9UChUXaBgIW7FIvgRO9xWwHZ5ikMjcbOc2Aak3eyKhlb999h57C4SQu0tTqJJNI_MODPzDcC-EdKLlVFsOBGYuSTG0nsV7BKp_YI6E4cG5-ubuJ-yizt-N9PFX1W7tynJuqchoDQV5eHYuMNp49sR8aRDJXrEGKWYzsMiC0AJXqNT0p12RtI6x5z4TZLkjDRtM2_TeOWa5h9CYeRM1DlJlH6E5edirP_-0YPBjC_qrcJKE0Sibi31NZizxWf41A5oQI29rkN6enl23T1GP25THNyVQbowyNRD6JE3X9zOwC2RrbAkwtEwTEW5t0iH4veibH7qIT24Hz09lg_DDUh7Zz9P-riZo4BzymTpDUFIR7TIIpELlptIWGJ1lIic2dyvaZJ5-WQsstKGiM9oqX2Ux6m2kjhN6BdYKEaF_QqISL_5ttZ5BubMyVi7jHLHZRw7zq1hHfjeslCNa7gMNQVGDgxXnuGqYriiHdjzXJ7cGJCu-90rFc5V3xIq-O-jDmy3QlCNff1SJE4CNCIhsgMHrWCml9975MFEeP_whpv_R30Xlm5Pe-rq_OZyCz6QSrdCreA2LJRPz_abj1_KbKdS0Reo0OJY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcgAO3ZaHuu22sqrewCjrR-z0tmqhq_IQh0aCU-TENou6BARZqvbXd5zHQntA9BYnIznxN5MZJzPfAHy0SiOsglMrmaLCJzHV6FWoT7TBAfc2DgXOxyfxJBXfzuTZEpCuFmaKEWf77g_HtNYpruQyrMQSo-0erKQnp-PzmkIPdz5a1v1xRiiEslq0dTFNddyI4fwhXT0SgnPK__I9y9OQ-fgorFz8CV2H1Xl5Y379NLPZI2dz0G-SHu9qjsKQY_Jjb17le8Xvfxgcn3qOl_CijTTJuFGNV7Dkyg3od10cSGvUm5B-Odw_Hn8iX09TGnyaJaa0xDad6gnaOO0a5VbE1YQT4egqtE65cMSEDPmyar_8ETO7uL69rKZXW5Ae7H__PKFtswVacKErtBalPTMqj1ShRGEj5ZgzUaIK4Qoc8yRHEHMROe1CWGiNNhgKSm6cZt4wvg298rp0r4EwjTt05zyCUAivY-NzLr3UceyldFYMYKeDIbtpODWyB_bkAFqGoGU1aBkfwAdcwIVgoMOejI-ycK5b1PvRAIYdkFlrhHcZi5PAn8iYHsBuB-7D5aem3F0owDPu8M3_ib-FNVYrZcgiHEKvup27dxjZVPn7Vrn_AI-f7e4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DKEMA%3A+GPU-based+and+dynamic+key-dependent+efficient+message+authentication+algorithm&rft.jtitle=The+Journal+of+supercomputing&rft.au=Noura%2C+Hassan+N&rft.au=Couturier+Rapha%C3%ABl&rft.au=Salman+Ola&rft.au=Mazouzi+Kamel&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=12&rft.spage=14034&rft.epage=14071&rft_id=info:doi/10.1007%2Fs11227-022-04433-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |