DKEMA: GPU-based and dynamic key-dependent efficient message authentication algorithm

Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 78; no. 12; pp. 14034 - 14071
Main Authors Noura, Hassan N., Couturier, Raphaël, Salman, Ola, Mazouzi, Kamel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
1573-0484
DOI10.1007/s11227-022-04433-3

Cover

Abstract Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub:  https://github.com/rcouturier/GPU-DKEMA.git .
AbstractList Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub: https://github.com/rcouturier/GPU-DKEMA.git.
Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is basedon the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that theproposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA).
Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new efficient cryptographic schemes. Existing cryptographic algorithms, especially the Message Authentication Algorithms (MAAs) such as Hash Message Authentication Code (HMAC) and Ciphered Message Authentication Code (CMAC), are not designed to benefit from the GPU characteristics, which results in degraded performance of their GPU implementations. This gives rise to a trade-off between the design concept and the performance level. In this paper, a new MAA, called ’DKEMA’, is proposed to better suit the GPU functionality. This scheme is based on the dynamic key-dependent scheme with one round of substitution and diffusion operations. The experimental results show that the proposed solution is highly effective on Tesla V100 and A100 GPUs, and the throughput is, respectively, more than 400GB/s and 500GB/s. Therefore, DKEMA can be considered as a promising MAA candidate for GPU implementation, achieving the desired cryptographic properties such as high randomness, collision tolerance in addition to message and key avalanche effect. The experimental results show that the proposed solution, based on the dynamic key approach, is immune towards well-known authentication and cryptanalysis attacks. In addition, DKEMA, consisting of one round compression function, presents an enhancement in terms of performance compared to existing algorithms (e.g. AES and SHA). The code is available in GitHub:  https://github.com/rcouturier/GPU-DKEMA.git .
Author Noura, Hassan N.
Salman, Ola
Mazouzi, Kamel
Couturier, Raphaël
Author_xml – sequence: 1
  givenname: Hassan N.
  surname: Noura
  fullname: Noura, Hassan N.
  organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute
– sequence: 2
  givenname: Raphaël
  orcidid: 0000-0003-1490-9592
  surname: Couturier
  fullname: Couturier, Raphaël
  email: raphael.couturier@univ-fcomte.fr
  organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute
– sequence: 3
  givenname: Ola
  surname: Salman
  fullname: Salman, Ola
  organization: American University of Beirut, Electrical and Computer Engineering Department
– sequence: 4
  givenname: Kamel
  surname: Mazouzi
  fullname: Mazouzi, Kamel
  organization: University Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute
BackLink https://hal.science/hal-04257375$$DView record in HAL
BookMark eNqNkMFOGzEQhq0KpAbaF-hppZ44mI7H3tjbWwQUqqaih-ZsTbyzydLEG9Ybqrw9TheJG-rJ_q3vH42_M3ESu8hCfFJwqQDsl6QUopWAKMEYraV-JyaqtDpHZ07EBCoE6UqD78VZSg8AYLTVE7G4_nHzc_a1uP21kEtKXBcU66I-RNq2ofjDB1nzjmPNcSi4adrQHm9bTolWXNB-WOfcBhraLha0WXV9O6y3H8RpQ5vEH1_Oc7H4dvP76k7O72-_X83mMmjjBolgXYNkl2CDNaEGy8gElQ2GQ866WjqslgbYMagKa3JUTqelJnbYEOpzoce5-7ijw1_abPyub7fUH7wCfzTjRzM-m_H_zHidWxdja02vfEetv5vN_fENDGZ1tnxSmf08sru-e9xzGvxDt-9j_pTHaaVKmCK6TOFIhb5Lqefm_9Z4WT5lOK64fx39RusZ4j2Raw
Cites_doi 10.1007/978-3-662-49301-4_8
10.1109/HPCC.2012.119
10.1007/s13389-017-0175-4
10.1007/s11071-015-1970-z
10.1109/MetroInd4.0IoT51437.2021.9488454
10.1007/s12652-021-02913-7
10.1007/s11042-018-5660-y
10.1016/j.chaos.2009.02.001
10.1007/s11042-018-6845-0
10.1007/s11042-017-5124-9
10.1007/s11227-015-1479-8
10.1007/s10586-016-0536-2
10.1007/11426639_2
10.1186/1687-6180-2013-126
10.1007/s11042-018-7000-7
10.1016/j.vehcom.2021.100416
10.1145/3485525
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s11227-022-04433-3
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 14071
ExternalDocumentID oai:HAL:hal-04257375v1
10_1007_s11227_022_04433_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
ABJCF
BGLVJ
CCPQU
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c348t-2078f2a7b07c74cd07e2ea097c4ec4cd39b829b40e8e0192da8a56653ae82fa23
IEDL.DBID UNPAY
ISSN 0920-8542
1573-0484
IngestDate Sun Oct 26 04:08:16 EDT 2025
Tue Oct 14 19:59:45 EDT 2025
Thu Sep 25 00:43:15 EDT 2025
Wed Oct 01 03:43:53 EDT 2025
Fri Feb 21 02:45:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Lightweight GPU message authentication algorithm
Security and performance analysis
Cryptanalysis
Dynamic key dependent cryptographic primitives
Parallel keyed hash function
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-2078f2a7b07c74cd07e2ea097c4ec4cd39b829b40e8e0192da8a56653ae82fa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1490-9592
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04257375
PQID 2691506228
PQPubID 2043774
PageCount 38
ParticipantIDs unpaywall_primary_10_1007_s11227_022_04433_3
hal_primary_oai_HAL_hal_04257375v1
proquest_journals_2691506228
crossref_primary_10_1007_s11227_022_04433_3
springer_journals_10_1007_s11227_022_04433_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References FawazZNouraHMostefaouiAAn efficient and secure cipher scheme for images confidentiality preservationSignal Process: Image Commun20164290108
Guy L Steele J and Sebastiano V. Lxm: better splittable pseudorandom number generators (and almost as fast). Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–31, 2021
LeeW-KCheongH-SPhanRCGoiB-MFast implementation of block ciphers and PRNGs in maxwell GPU architectureCluster Comput201619133534710.1007/s10586-016-0536-2
AbdelrahmanAAFouadMMDahshanHAnalysis on the aes implementation with various granularities on different gpu architecturesAdv Electr Electron Eng2017153526535
Rone K , Linda Ruth P, Çetin Kaya K (2016). Bitsliced High-performance AES-ECB on GPUs. In The New Codebreakers, Springer, pp. 125–133
Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption Standard. Alpha Press, 2009
Noura H N (2012) Conception et simulation des générateurs, crypto-systèmes et fonctions de hachage basés chaos performants. PhD thesis, université de Nantes
AminMFaragallahOSAbd El-LatifAAChaos-based hash function (cbhf) for cryptographic applicationsChaos, Solitons Fractals200942276777210.1016/j.chaos.2009.02.001
BeaulieuRShorsDSmithJTreatman-ClarkSWeeksBWingersLSimon and speck: block ciphers for the internet of thingsIACR Cryptol ePrint Archive201520155851382.94059
NouraHSleemLNouraMMansourMMChehabACouturierRA new efficient lightweight and secure image cipher schemeMultimed Tools Appl20187712154571548410.1007/s11042-017-5124-9
AkhavanASamsudinAAkhshaniAA novel parallel hash function based on 3d chaotic mapEURASIP J Adv Signal Process20132013111210.1186/1687-6180-2013-126
PeccerilloBBartoliniSKoçÇ KParallel Bitsliced AES through PHAST: a single-source high-performance library for multi-cores and GPUsJ Cryptograph Eng2017921597110.1007/s13389-017-0175-4
Noura H N, Salman O, Couturier R, and Chehab A (2021) Lorca: Lightweight round block and stream cipher algorithms for IoV systems. Vehicular Communications, pp. 100416
NouraHNChehabACouturierREfficient & secure cipher scheme with dynamic key-dependent mode of operationSignal Processing: Image Commun201978448464
Parisot A, Bento LM, Machado RC (2021) Testing and selecting lightweight pseudo-random number generators for iot devices. In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), IEEE, pp. 715–720
Ahmed A A, Mohamed MF, Hisham D, and Ahmed M M (2017) High performance cuda aes implementation: a quantitative performance analysis approach. In 2017 Computing Conference, IEEE, pp. 1077–1085
Nvidia, CUDA. A C Programming guide, version 9.0. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Ahmed A A, Hisham D, and Gouda I S (2018)Enhancing the actual throughput of the aes algorithm on the pascal gpu architecture. In 2018 3rd International Conference on System Reliability and Safety (ICSRS), IEEE, pp. 97–103
Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu. (2012) Implementation and analysis of AES encryption on GPU. In High performance computing and communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), IEEE, pp. 843–848
NouraH NChehabANouraMCouturierRMansourMMLightweight, dynamic and efficient image encryption schemeMultimed Tools Appl20187812165271656110.1007/s11042-018-7000-7
MenezesAlfred JVanstoneScott AVan OorschotPaul CHandbook of applied cryptography19961Boca Raton, FL, USACRC Press Inc0868.94001
John Vi, Messier M and Pravir C. (2002) Cryptography for secure communications. O’Reilly Media Inc, Network security with openssl
StallingsWilliamCryptography and network security: principles and practice2017NJPearson Upper Saddle River
Andrew L and Summed-Area Variance Shadow Maps. Chapter 36. aes encryption and decryption on the gpu | nvidia developer. https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu, 2007
KansoAGheblehMA structure-based chaotic hashing schemeNonlinear Dyn2015811–22740335501110.1007/s11071-015-1970-z
NouraHNNouraMChehabAMansourMMCouturierREfficient and secure cipher scheme for multimedia contentsMultimed Tools Appl20187811148376610.1007/s11042-018-6845-0
Joan D and Vincent R. The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media, 2013
Guang-liang G, Quan Q, Rui Z (2015) Different implementations of AES cryptographic algorithm. In High performance computing and communications (HPCC), IEEE 7th International Symposium on Cyberspace Safety and Security (CSS),IEEE, pp. 1848–1853
YangBLiZZhengSYangYHash function construction based on coupled map lattice for communication securityIn Global Mobile Congress2009200917
Raphaël C (2013) Designing scientific applications on GPUs. Numerical Analysis Scientific Computating. Chapman & Hall/CR
BahiJCouturierRGuyeuxCHéamP-CEfficient and cryptographically secure generation of chaotic pseudorandom numbers on GPUJ Supercomput201571103877390310.1007/s11227-015-1479-8
Runtong Z , Like C (2008) A block cipher using key-dependent S-box and P-boxes. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on, IEEE, pp. 1463–1468
NouraHNSalmanOCouturierRChehabANovel one round message authentication scheme for constrained iot devicesJ Ambient Intell Humanized Comput20211314839910.1007/s12652-021-02913-7
NouraHChehabASleemLNouraMCouturierRMansourMMOne round cipher algorithm for multimedia IoT devicesMultimed Tools Appl201877141838341310.1007/s11042-018-5660-y
Pseudo-random numbers/splitmix64 - rosetta code. https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
Ivan D (1990) A design principle for hash functions. In Proceedings of the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, Springer-Verlag, London, UK, UK, pp. 416–427
WangXHongboYHow to break md5 and other hash functions2005In In EUROCRYPTSpringer-Verlag10.1007/11426639_2
Like C , Runtong Z (2008) A Key-dependent Cipher DSDP. In Electronic Commerce and Security, 2008 International Symposium on, IEEE, pp. 310–313
4433_CR1
M Amin (4433_CR36) 2009; 42
A Akhavan (4433_CR32) 2013; 2013
4433_CR5
4433_CR4
HN Noura (4433_CR15) 2018; 78
4433_CR3
4433_CR7
4433_CR6
4433_CR23
4433_CR22
4433_CR20
HN Noura (4433_CR26) 2019; 78
4433_CR27
X Wang (4433_CR29) 2005
4433_CR24
Alfred J Menezes (4433_CR34) 1996
A Kanso (4433_CR37) 2015; 81
4433_CR28
R Beaulieu (4433_CR14) 2015; 2015
W-K Lee (4433_CR9) 2016; 19
H Noura (4433_CR13) 2018; 77
J Bahi (4433_CR8) 2015; 71
B Yang (4433_CR33) 2009; 2009
AA Abdelrahman (4433_CR21) 2017; 15
4433_CR30
H N Noura (4433_CR16) 2018; 78
B Peccerillo (4433_CR10) 2017; 9
4433_CR12
William Stallings (4433_CR2) 2017
4433_CR11
4433_CR31
4433_CR38
HN Noura (4433_CR25) 2021; 13
H Noura (4433_CR17) 2018; 77
4433_CR35
4433_CR19
Z Fawaz (4433_CR18) 2016; 42
References_xml – reference: Noura H N (2012) Conception et simulation des générateurs, crypto-systèmes et fonctions de hachage basés chaos performants. PhD thesis, université de Nantes
– reference: StallingsWilliamCryptography and network security: principles and practice2017NJPearson Upper Saddle River
– reference: Parisot A, Bento LM, Machado RC (2021) Testing and selecting lightweight pseudo-random number generators for iot devices. In 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), IEEE, pp. 715–720
– reference: Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu. (2012) Implementation and analysis of AES encryption on GPU. In High performance computing and communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), IEEE, pp. 843–848
– reference: Ahmed A A, Hisham D, and Gouda I S (2018)Enhancing the actual throughput of the aes algorithm on the pascal gpu architecture. In 2018 3rd International Conference on System Reliability and Safety (ICSRS), IEEE, pp. 97–103
– reference: Rone K , Linda Ruth P, Çetin Kaya K (2016). Bitsliced High-performance AES-ECB on GPUs. In The New Codebreakers, Springer, pp. 125–133
– reference: LeeW-KCheongH-SPhanRCGoiB-MFast implementation of block ciphers and PRNGs in maxwell GPU architectureCluster Comput201619133534710.1007/s10586-016-0536-2
– reference: Andrew L and Summed-Area Variance Shadow Maps. Chapter 36. aes encryption and decryption on the gpu | nvidia developer. https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu, 2007
– reference: Runtong Z , Like C (2008) A block cipher using key-dependent S-box and P-boxes. In Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on, IEEE, pp. 1463–1468
– reference: NouraHNChehabACouturierREfficient & secure cipher scheme with dynamic key-dependent mode of operationSignal Processing: Image Commun201978448464
– reference: Like C , Runtong Z (2008) A Key-dependent Cipher DSDP. In Electronic Commerce and Security, 2008 International Symposium on, IEEE, pp. 310–313
– reference: Guang-liang G, Quan Q, Rui Z (2015) Different implementations of AES cryptographic algorithm. In High performance computing and communications (HPCC), IEEE 7th International Symposium on Cyberspace Safety and Security (CSS),IEEE, pp. 1848–1853
– reference: Ahmed A A, Mohamed MF, Hisham D, and Ahmed M M (2017) High performance cuda aes implementation: a quantitative performance analysis approach. In 2017 Computing Conference, IEEE, pp. 1077–1085
– reference: Guy L Steele J and Sebastiano V. Lxm: better splittable pseudorandom number generators (and almost as fast). Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–31, 2021
– reference: NouraH NChehabANouraMCouturierRMansourMMLightweight, dynamic and efficient image encryption schemeMultimed Tools Appl20187812165271656110.1007/s11042-018-7000-7
– reference: PeccerilloBBartoliniSKoçÇ KParallel Bitsliced AES through PHAST: a single-source high-performance library for multi-cores and GPUsJ Cryptograph Eng2017921597110.1007/s13389-017-0175-4
– reference: WangXHongboYHow to break md5 and other hash functions2005In In EUROCRYPTSpringer-Verlag10.1007/11426639_2
– reference: AminMFaragallahOSAbd El-LatifAAChaos-based hash function (cbhf) for cryptographic applicationsChaos, Solitons Fractals200942276777210.1016/j.chaos.2009.02.001
– reference: Ivan D (1990) A design principle for hash functions. In Proceedings of the 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, Springer-Verlag, London, UK, UK, pp. 416–427
– reference: MenezesAlfred JVanstoneScott AVan OorschotPaul CHandbook of applied cryptography19961Boca Raton, FL, USACRC Press Inc0868.94001
– reference: Raphaël C (2013) Designing scientific applications on GPUs. Numerical Analysis Scientific Computating. Chapman & Hall/CR
– reference: NouraHSleemLNouraMMansourMMChehabACouturierRA new efficient lightweight and secure image cipher schemeMultimed Tools Appl20187712154571548410.1007/s11042-017-5124-9
– reference: Nvidia, CUDA. A C Programming guide, version 9.0. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
– reference: KansoAGheblehMA structure-based chaotic hashing schemeNonlinear Dyn2015811–22740335501110.1007/s11071-015-1970-z
– reference: AkhavanASamsudinAAkhshaniAA novel parallel hash function based on 3d chaotic mapEURASIP J Adv Signal Process20132013111210.1186/1687-6180-2013-126
– reference: YangBLiZZhengSYangYHash function construction based on coupled map lattice for communication securityIn Global Mobile Congress2009200917
– reference: NouraHNNouraMChehabAMansourMMCouturierREfficient and secure cipher scheme for multimedia contentsMultimed Tools Appl20187811148376610.1007/s11042-018-6845-0
– reference: BahiJCouturierRGuyeuxCHéamP-CEfficient and cryptographically secure generation of chaotic pseudorandom numbers on GPUJ Supercomput201571103877390310.1007/s11227-015-1479-8
– reference: NouraHNSalmanOCouturierRChehabANovel one round message authentication scheme for constrained iot devicesJ Ambient Intell Humanized Comput20211314839910.1007/s12652-021-02913-7
– reference: John Vi, Messier M and Pravir C. (2002) Cryptography for secure communications. O’Reilly Media Inc, Network security with openssl
– reference: Joan D and Vincent R. The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media, 2013
– reference: BeaulieuRShorsDSmithJTreatman-ClarkSWeeksBWingersLSimon and speck: block ciphers for the internet of thingsIACR Cryptol ePrint Archive201520155851382.94059
– reference: NouraHChehabASleemLNouraMCouturierRMansourMMOne round cipher algorithm for multimedia IoT devicesMultimed Tools Appl201877141838341310.1007/s11042-018-5660-y
– reference: AbdelrahmanAAFouadMMDahshanHAnalysis on the aes implementation with various granularities on different gpu architecturesAdv Electr Electron Eng2017153526535
– reference: Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption Standard. Alpha Press, 2009
– reference: Noura H N, Salman O, Couturier R, and Chehab A (2021) Lorca: Lightweight round block and stream cipher algorithms for IoV systems. Vehicular Communications, pp. 100416
– reference: FawazZNouraHMostefaouiAAn efficient and secure cipher scheme for images confidentiality preservationSignal Process: Image Commun20164290108
– reference: Pseudo-random numbers/splitmix64 - rosetta code. https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
– ident: 4433_CR19
– ident: 4433_CR5
  doi: 10.1007/978-3-662-49301-4_8
– ident: 4433_CR3
  doi: 10.1109/HPCC.2012.119
– volume: 2009
  start-page: 1
  year: 2009
  ident: 4433_CR33
  publication-title: In Global Mobile Congress
– volume: 9
  start-page: 159
  issue: 2
  year: 2017
  ident: 4433_CR10
  publication-title: J Cryptograph Eng
  doi: 10.1007/s13389-017-0175-4
– ident: 4433_CR27
– ident: 4433_CR1
– ident: 4433_CR7
– volume-title: Handbook of applied cryptography
  year: 1996
  ident: 4433_CR34
– ident: 4433_CR23
– volume: 81
  start-page: 27
  issue: 1–2
  year: 2015
  ident: 4433_CR37
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-1970-z
– ident: 4433_CR31
  doi: 10.1109/MetroInd4.0IoT51437.2021.9488454
– volume: 13
  start-page: 483
  issue: 1
  year: 2021
  ident: 4433_CR25
  publication-title: J Ambient Intell Humanized Comput
  doi: 10.1007/s12652-021-02913-7
– volume: 77
  start-page: 18383
  issue: 14
  year: 2018
  ident: 4433_CR13
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5660-y
– volume: 42
  start-page: 767
  issue: 2
  year: 2009
  ident: 4433_CR36
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2009.02.001
– ident: 4433_CR12
– volume: 78
  start-page: 14837
  issue: 11
  year: 2018
  ident: 4433_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6845-0
– volume: 15
  start-page: 526
  issue: 3
  year: 2017
  ident: 4433_CR21
  publication-title: Adv Electr Electron Eng
– ident: 4433_CR35
– volume: 77
  start-page: 15457
  issue: 12
  year: 2018
  ident: 4433_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5124-9
– ident: 4433_CR20
– volume: 78
  start-page: 448
  year: 2019
  ident: 4433_CR26
  publication-title: Signal Processing: Image Commun
– volume: 71
  start-page: 3877
  issue: 10
  year: 2015
  ident: 4433_CR8
  publication-title: J Supercomput
  doi: 10.1007/s11227-015-1479-8
– volume: 42
  start-page: 90
  year: 2016
  ident: 4433_CR18
  publication-title: Signal Process: Image Commun
– volume: 19
  start-page: 335
  issue: 1
  year: 2016
  ident: 4433_CR9
  publication-title: Cluster Comput
  doi: 10.1007/s10586-016-0536-2
– ident: 4433_CR28
– volume-title: How to break md5 and other hash functions
  year: 2005
  ident: 4433_CR29
  doi: 10.1007/11426639_2
– ident: 4433_CR6
– volume: 2015
  start-page: 585
  year: 2015
  ident: 4433_CR14
  publication-title: IACR Cryptol ePrint Archive
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: 4433_CR32
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/1687-6180-2013-126
– ident: 4433_CR22
– ident: 4433_CR4
– volume: 78
  start-page: 16527
  issue: 12
  year: 2018
  ident: 4433_CR16
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-7000-7
– volume-title: Cryptography and network security: principles and practice
  year: 2017
  ident: 4433_CR2
– ident: 4433_CR24
  doi: 10.1016/j.vehcom.2021.100416
– ident: 4433_CR38
– ident: 4433_CR11
– ident: 4433_CR30
  doi: 10.1145/3485525
SSID ssj0004373
Score 2.2899985
Snippet Recently, benefiting from the advancement in the Graphic Processing Unit (GPU) technology, there is an increased interest in implementing and designing new...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14034
SubjectTerms Algorithms
Compilers
Computer Science
Cryptography
Cryptography and Security
Distributed, Parallel, and Cluster Computing
Emerging Technologies
Encryption
Graphics processing units
Interpreters
Modeling and Simulation
Multiagent Systems
Performance degradation
Processor Architectures
Programming Languages
Software Engineering
Ubiquitous Computing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSDb3F9EcSbG-jm0aTeFnVdfOHBwt5K2iSrsFbZrYr_3qTb7iqI6K1pS1rmkZlkZr4BONJCOrYyijUnAjMbhVg6q4JtJJUbUKtDX-B8cxt2Y3bZ472qKGxUZ7vXIclypZ4Wu7WIm85nnweMUYrpLMxzD-flpDgm7Wk1JB3HlSO3MZKckapU5uc5vpmj2QefDPnF05wER5dg4TV_UR_vajD4Yn86q7BcOY6oPeb0GsyYfB1W6qYMqNLRDYjPrs5v2ifo4i7G3kRppHKN9LjxPHIqi-u-twUyJX6Ev3rynVD6Bimf8J4X1UEeUoP-8_CxeHjahLhzfn_axVXvBJxRJgsn_EJaokQaiEywTAfCEKOCSGTMZG5Mo9TxJGWBkcZ7eVpJ5Tw7TpWRxCpCt2Auf87NNiAi3YbbGOsImDErQ2VTyi2XYWg5N5o14LgmYfIyhshIpmDInuCJI3hSEjyhDTh0VJ686NGtu-3rxN8r1w8q-FurAXs1E5JKp0YJCSMPh0iIbECzZsz08W-fbE6Y94c_3Pnf7LuwSEqB8kmBezBXDF_NvnNUivSglMtPH07bMA
  priority: 102
  providerName: Springer Nature
Title DKEMA: GPU-based and dynamic key-dependent efficient message authentication algorithm
URI https://link.springer.com/article/10.1007/s11227-022-04433-3
https://www.proquest.com/docview/2691506228
https://hal.science/hal-04257375
UnpaywallVersion submittedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51dw_AgfIUS9uVhbhRV1k_EodbCrtdUbrqgUjtKXJiu4vYplWbBcGv7ziPbcuhglPsZCQn_mbicTLzDcB7EymEVXBqJIuocHFIFa4q1MVKY4c7E_oE56N5OEvFlxN5sgGky4VZoMfZvvt9m9Y6xSPZg0Eo0dvuwyCdHyenNYUe7nyUrOvjjFEIZZVo82Ka7Lgxw_F9uHogBOeU31t7egsf-XjHrVz_CX0Cj1blpf79Sy-Xdxab6WYT9HhdcxT6GJMfe6sq3yv-_MXg-NBzPIOnradJkkY1nsOGLV_AZlfFgbRG_RLSz4eTo-QjOThOqV_TDNGlIaapVE_QxmlXKLcitiac8K1zXzrlzBLtI-TLqv3yR_Ty7OLqe7U4fwXpdPLt04y2xRZowYWq0Foi5ZiO8iAqIlGYILLM6iCOCmEL7PM4RxBzEVhlvVtotNLoCkqurWJOM_4a-uVFad8AYQp36NY6BKEQToXa5Vw6qcLQSWmNGMKHDobssuHUyG7Zkz1oGYKW1aBlfAjvcALXgp4Oe5Z8zfy5blJ_joew3QGZtUZ4nbEw9vyJjKkh7Hbg3l5-aMjdtQL8wx2-_T_xLXjMaqX0UYTb0K-uVnYHPZsqH8Egme7vz_3x4PRwMoJeypJRq_I3KPLx5w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N7gH2AONLK2PDQnsDS6k_YmdvFR_roEV7IBJvlhPbLVIJqE1B--9np0kLEprgLU4iJ7qf7Tv77n4H8MMI6WFlFBtOBGYuibH0WgW7RGrfoM7EIcF5cBX3UnZxw2_qpLBpE-3euCSrlXqZ7NYhvrsQfR4xRimmK_AxEFgFxvyUdJfZkHTuV078xkhyRupUmdf7eKGOVkYhGPKZpblwjn6C1VnxoP8-6fH4mf45_wzrteGIunOkN-GDLbZgoynKgOo5ug3p6eXZoPsT_fqT4qCiDNKFQWZeeB75KYuburclshV_RLi6C5VQhhbpEPBelPVBHtLj4f3kthzd7UB6fnZ90sN17QScUyZLP_iFdESLLBK5YLmJhCVWR4nImc19myaZxyRjkZU2WHlGS-0tO061lcRpQnehVdwX9gsgIv2G21rnBZgzJ2PtMsodl3HsOLeGteGoEaF6mFNkqCUZchC48gJXlcAVbcOhl_LixcBu3ev2VbhXrR9U8MdOG_YbEFQ9p6aKxEmgQ_SIt-G4AWb5-H-fPF6A94Y_3Htf7wew2rse9FX_99XlV1gj1eAKAYL70ConM_vNGy1l9r0ao_8AjT_eHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkKA9UChUXaBgIW7FIvgRO9xWwHZ5ikMjcbOc2Aak3eyKhlb999h57C4SQu0tTqJJNI_MODPzDcC-EdKLlVFsOBGYuSTG0nsV7BKp_YI6E4cG5-ubuJ-yizt-N9PFX1W7tynJuqchoDQV5eHYuMNp49sR8aRDJXrEGKWYzsMiC0AJXqNT0p12RtI6x5z4TZLkjDRtM2_TeOWa5h9CYeRM1DlJlH6E5edirP_-0YPBjC_qrcJKE0Sibi31NZizxWf41A5oQI29rkN6enl23T1GP25THNyVQbowyNRD6JE3X9zOwC2RrbAkwtEwTEW5t0iH4veibH7qIT24Hz09lg_DDUh7Zz9P-riZo4BzymTpDUFIR7TIIpELlptIWGJ1lIic2dyvaZJ5-WQsstKGiM9oqX2Ux6m2kjhN6BdYKEaF_QqISL_5ttZ5BubMyVi7jHLHZRw7zq1hHfjeslCNa7gMNQVGDgxXnuGqYriiHdjzXJ7cGJCu-90rFc5V3xIq-O-jDmy3QlCNff1SJE4CNCIhsgMHrWCml9975MFEeP_whpv_R30Xlm5Pe-rq_OZyCz6QSrdCreA2LJRPz_abj1_KbKdS0Reo0OJY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcgAO3ZaHuu22sqrewCjrR-z0tmqhq_IQh0aCU-TENou6BARZqvbXd5zHQntA9BYnIznxN5MZJzPfAHy0SiOsglMrmaLCJzHV6FWoT7TBAfc2DgXOxyfxJBXfzuTZEpCuFmaKEWf77g_HtNYpruQyrMQSo-0erKQnp-PzmkIPdz5a1v1xRiiEslq0dTFNddyI4fwhXT0SgnPK__I9y9OQ-fgorFz8CV2H1Xl5Y379NLPZI2dz0G-SHu9qjsKQY_Jjb17le8Xvfxgcn3qOl_CijTTJuFGNV7Dkyg3od10cSGvUm5B-Odw_Hn8iX09TGnyaJaa0xDad6gnaOO0a5VbE1YQT4egqtE65cMSEDPmyar_8ETO7uL69rKZXW5Ae7H__PKFtswVacKErtBalPTMqj1ShRGEj5ZgzUaIK4Qoc8yRHEHMROe1CWGiNNhgKSm6cZt4wvg298rp0r4EwjTt05zyCUAivY-NzLr3UceyldFYMYKeDIbtpODWyB_bkAFqGoGU1aBkfwAdcwIVgoMOejI-ycK5b1PvRAIYdkFlrhHcZi5PAn8iYHsBuB-7D5aem3F0owDPu8M3_ib-FNVYrZcgiHEKvup27dxjZVPn7Vrn_AI-f7e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DKEMA%3A+GPU-based+and+dynamic+key-dependent+efficient+message+authentication+algorithm&rft.jtitle=The+Journal+of+supercomputing&rft.au=Noura%2C+Hassan+N&rft.au=Couturier+Rapha%C3%ABl&rft.au=Salman+Ola&rft.au=Mazouzi+Kamel&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=12&rft.spage=14034&rft.epage=14071&rft_id=info:doi/10.1007%2Fs11227-022-04433-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon