Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer’s disease

Abstract At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medica...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 1
Main Authors Wang, Shuaiqun, Zheng, Kai, Kong, Wei, Huang, Ruiwen, Liu, Lulu, Wen, Gen, Yu, Yaling
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac515

Cover

Abstract Abstract At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.
AbstractList At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.
Abstract At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.
At present, the study on the pathogenesis of Alzheimer's disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.At present, the study on the pathogenesis of Alzheimer's disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.
Author Wen, Gen
Kong, Wei
Wang, Shuaiqun
Yu, Yaling
Zheng, Kai
Huang, Ruiwen
Liu, Lulu
Author_xml – sequence: 1
  givenname: Shuaiqun
  surname: Wang
  fullname: Wang, Shuaiqun
  email: wangsq@shmtu.edu.cn
– sequence: 2
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
– sequence: 3
  givenname: Wei
  surname: Kong
  fullname: Kong, Wei
– sequence: 4
  givenname: Ruiwen
  surname: Huang
  fullname: Huang, Ruiwen
– sequence: 5
  givenname: Lulu
  surname: Liu
  fullname: Liu, Lulu
– sequence: 6
  givenname: Gen
  surname: Wen
  fullname: Wen, Gen
– sequence: 7
  givenname: Yaling
  surname: Yu
  fullname: Yu, Yaling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36502428$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFEEQhhuJmA89eZcGQQQZ0z39NXMMS4yBGEH03PRHzW6Hmem1u-cQvfg3_Hv-EnvZzSWIpyqqnnop3vcUHc1xBoReUvKekp6d22DPrTVOUPEEnVCuVMOJ4Ee7XqpGcMmO0WnOd4S0RHX0GTpmUpCWt90J-vlpGUuYojcj9qYYPCw5xBlbk8Hj2lxfXX65vV1hM65jCmUz4SEm7KGAK2Fe460pm7iGOThskwkzTrCuAhmb2eM6h4zr8GL8sYEwQfrz63fGPmSo-s_R08GMGV4c6hn69uHy6-pjc_P56np1cdM4xrvSUPC9E0pKo6gzTvbKcS8G75xkXAGxXhAOyrueit22E95wb6WTA5WgODtDb_e62xS_L5CLnkJ2MI5mhrhk3SrB2r7tFKno60foXVzSXL_TjFLGJVUtrdSrA7XYCbzepjCZdK8fbK0A3QMuxZwTDNqFYkr1pVSPRk2J3kWna3T6EF29effo5kH23_SbPR2X7X_BvyEQqd8
CitedBy_id crossref_primary_10_1002_hbm_70017
crossref_primary_10_1093_bib_bbae051
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_3934_NAR_2024027
crossref_primary_10_3390_ijms25031796
Cites_doi 10.1038/s41598-020-59327-2
10.1109/ACCESS.2021.3059520
10.1093/brain/awaa068
10.3389/fncel.2021.695479
10.1038/nature25988
10.1093/bib/bbac093
10.1016/j.neurobiolaging.2018.04.005
10.1002/alz.12079
10.1016/j.media.2020.101656
10.2174/156720511796391827
10.3233/JAD-2000-23-403
10.1109/JBHI.2020.2973324
10.1109/TMI.2016.2548501
10.1016/j.patcog.2016.10.009
10.1016/j.jneumeth.2017.12.010
10.1016/j.neuroimage.2011.12.076
10.1186/s12864-020-6463-x
10.1016/j.patcog.2016.08.025
10.1016/j.neuroimage.2017.07.059
10.1186/1471-2105-14-S4-S1
10.1093/bioinformatics/btz967
10.1109/TBME.2017.2771483
10.1038/nature20129
10.1016/j.neuroimage.2019.116459
10.1016/j.scib.2019.05.008
10.3389/fnhum.2010.00192
10.1016/S1474-4422(21)00066-1
10.3389/fnagi.2020.00107
10.1056/NEJMoa2100708
10.1073/pnas.2634794100
10.1016/j.drugalcdep.2018.08.009
10.1016/j.neuroscience.2019.10.006
10.1371/journal.pone.0206547
10.1007/978-3-319-75468-0_19
10.1016/j.media.2015.10.008
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac515
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36502428
10_1093_bib_bbac515
10.1093/bib/bbac515
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  grantid: 18ZR1417200
– fundername: National Natural Science Foundation of China
  grantid: 61803257
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-1ed9c5766a71cac697c4d5fdcc6347e0bd504e7dc915c69785da4db6c6f16e743
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Sep 04 18:48:59 EDT 2025
Fri Oct 03 06:02:08 EDT 2025
Wed Feb 19 02:25:06 EST 2025
Wed Oct 01 04:16:09 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Wed Apr 02 06:58:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords improved genetic evolution random neural network cluster
pathogenic factors
Alzheimer’s disease
multimodal data fusion
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-1ed9c5766a71cac697c4d5fdcc6347e0bd504e7dc915c69785da4db6c6f16e743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36502428
PQID 3113461721
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2753292870
proquest_journals_3113461721
pubmed_primary_36502428
crossref_citationtrail_10_1093_bib_bbac515
crossref_primary_10_1093_bib_bbac515
oup_primary_10_1093_bib_bbac515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Ramsden (2023011917143740100_ref31) 2021
Tong (2023011917143740100_ref40) 2017; 63
Zhu (2023011917143740100_ref16) 2018; 555
Katsel (2023011917143740100_ref26) 2018; 13
Liu (2023011917143740100_ref39) 2018; 22
Durazzo (2023011917143740100_ref32) 2018; 192
Association, A.S (2023011917143740100_ref2) 2019; 15
Bi (2023011917143740100_ref21) 2022; 23
Cheng (2023011917143740100_ref44) 2017
Bi (2023011917143740100_ref20) 2020; 24
Flores (2023011917143740100_ref36) 2020; 16
Liu (2023011917143740100_ref25) 2020; 208
Greenstein (2023011917143740100_ref12) 2012; 3
Cole (2023011917143740100_ref17) 2017; 163
Bamford (2023011917143740100_ref28) 2020; 424
Pohlkamp (2023011917143740100_ref29) 2016; 539
Mintun (2023011917143740100_ref1) 2021; 384
Dalboni da Rocha (2023011917143740100_ref27) 2020; 10
Bi (2023011917143740100_ref14) 2020; 36
Jia (2023011917143740100_ref18) 2019; 64
Wang (2023011917143740100_ref13) 2013; 14
Yang (2023011917143740100_ref11) 2010; 4
(2023011917143740100_ref5) 2017
Dimitriadis (2023011917143740100_ref4) 2017; 302
Hu (2023011917143740100_ref9) 2017; 65
Wu (2023011917143740100_ref34) 2020; 12
Moeskops (2023011917143740100_ref15) 2016; 35
Berron (2023011917143740100_ref35) 2020; 143
Meda (2023011917143740100_ref7) 2012; 60
Dubois (2023011917143740100_ref3) 2021; 20
Du (2023011917143740100_ref8) 2020; 61
Muller (2023011917143740100_ref30) 2011; 8
Park (2023011917143740100_ref22) 2020; 10
Wang (2023011917143740100_ref38) 2021; 15
Abdel-Hafiz (2023011917143740100_ref23) 2018; 69
Zhu (2023011917143740100_ref41) 2017; 38
Altaf (2023011917143740100_ref42) 2017
Wei (2023011917143740100_ref10) 2021; 9
Meyermans (2023011917143740100_ref19) 2020; 21
Choi (2023011917143740100_ref33) 2018
Li (2023011917143740100_ref43) 2017
Grant (2023011917143740100_ref37) 2000; 2
Jin (2023011917143740100_ref24) 2004; 101
Yi (2023011917143740100_ref6) 2017; 61
References_xml – volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917143740100_ref27
  article-title: Fractional Anisotropy changes in parahippocampal cingulum due to Alzheimer’s Disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59327-2
– volume: 9
  start-page: 30528
  year: 2021
  ident: 2023011917143740100_ref10
  article-title: An improved multi-task sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Alzheimer’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059520
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023011917143740100_ref22
  article-title: SWATH-MS analysis of cerebrospinal fluid to generate a robust battery of biomarkers for Alzheimer’s disease
  publication-title: Sci Rep
– volume: 143
  start-page: 1233
  issue: 4
  year: 2020
  ident: 2023011917143740100_ref35
  article-title: Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awaa068
– volume: 15
  start-page: 695479
  year: 2021
  ident: 2023011917143740100_ref38
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2021.695479
– volume: 555
  start-page: 487
  issue: 7697
  year: 2018
  ident: 2023011917143740100_ref16
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 23
  start-page: bbac093
  issue: 3
  year: 2022
  ident: 2023011917143740100_ref21
  article-title: IHGC-GAN: influence hypergraph convolutional generative adversarial network for risk prediction of late mild cognitive impairment based on imaging genetic data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac093
– volume: 69
  start-page: 1
  year: 2018
  ident: 2023011917143740100_ref23
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2018.04.005
– volume: 16
  start-page: 843
  issue: 6
  year: 2020
  ident: 2023011917143740100_ref36
  article-title: Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer’s disease
  publication-title: Alzheimer's Dementia
  doi: 10.1002/alz.12079
– volume: 61
  year: 2020
  ident: 2023011917143740100_ref8
  article-title: Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101656
– volume: 8
  start-page: 573
  issue: 5
  year: 2011
  ident: 2023011917143740100_ref30
  article-title: The AICD interacting protein DAB1 is up-regulated in Alzheimer frontal cortex brain samples and causes deregulation of proteins involved in gene expression changes
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720511796391827
– volume: 2
  start-page: 207
  issue: 3–4
  year: 2000
  ident: 2023011917143740100_ref37
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2000-23-403
– volume: 24
  start-page: 2973
  issue: 10
  year: 2020
  ident: 2023011917143740100_ref20
  article-title: Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2973324
– volume: 35
  start-page: 1252
  issue: 5
  year: 2016
  ident: 2023011917143740100_ref15
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 63
  start-page: 171
  year: 2017
  ident: 2023011917143740100_ref40
  article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.10.009
– volume: 302
  start-page: 14
  year: 2017
  ident: 2023011917143740100_ref4
  article-title: Random Forest Feature Selection, Fusion and Ensemble Strategy: Combining Multiple Morphological MRI Measures to Discriminate among healthy elderly, MCI, cMCI and Alzheimer’s disease patients: from the Alzheimer’s disease neuroimaging initiative (ADNI) data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2017.12.010
– volume: 60
  start-page: 1608
  issue: 3
  year: 2012
  ident: 2023011917143740100_ref7
  article-title: A large scale multivariate parallel ICA method reveals novel imaging-genetic relationships for Alzheimer’s disease in the ADNI cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.076
– volume: 21
  start-page: 114
  year: 2020
  ident: 2023011917143740100_ref19
  article-title: How to study runs of homozygosity using PLINK? A guide for analyzing medium den-sity SNP data in livestock and pet species
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6463-x
– volume: 61
  start-page: 524
  year: 2017
  ident: 2023011917143740100_ref6
  article-title: Joint sparse principal component analysis
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.08.025
– volume: 163
  start-page: 115
  year: 2017
  ident: 2023011917143740100_ref17
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume-title: AI communications
  year: 2017
  ident: 2023011917143740100_ref5
  article-title: Linear discriminant analysis: a detailed tutorial
– volume: 14
  start-page: 1
  issue: 16
  year: 2013
  ident: 2023011917143740100_ref13
  article-title: Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S4-S1
– volume: 36
  start-page: 2561
  issue: 8
  year: 2020
  ident: 2023011917143740100_ref14
  article-title: Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz967
– volume-title: IEEE Future Technologies Conference
  year: 2017
  ident: 2023011917143740100_ref42
  article-title: Multi-class Alzheimer disease classification using hybrid features
– volume: 15
  start-page: 321
  issue: 3
  year: 2019
  ident: 2023011917143740100_ref2
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimers Dement
– volume: 65
  start-page: 1
  issue: 2
  year: 2017
  ident: 2023011917143740100_ref9
  article-title: Adaptive sparse multiple canonical correlation analysis with application to imaging (epi) genomics study of schizophrenia
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2771483
– volume: 539
  start-page: E4
  issue: 7630
  year: 2016
  ident: 2023011917143740100_ref29
  article-title: Ephrin Bs and canonical Reelin signalling
  publication-title: Nature
  doi: 10.1038/nature20129
– volume: 208
  year: 2020
  ident: 2023011917143740100_ref25
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 64
  start-page: 953
  year: 2019
  ident: 2023011917143740100_ref18
  article-title: RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.05.008
– volume: 4
  start-page: 192
  year: 2010
  ident: 2023011917143740100_ref11
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2010.00192
– volume: 3
  start-page: 53
  year: 2012
  ident: 2023011917143740100_ref12
  article-title: Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls
  publication-title: Front Psych
– volume: 22
  start-page: 2801
  issue: 9
  year: 2018
  ident: 2023011917143740100_ref39
  article-title: Regulatory mechanism of microRNA-377 on CDH13 expression in the cell model of Alzheimer’s disease
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 20
  start-page: 484
  issue: 6
  year: 2021
  ident: 2023011917143740100_ref3
  article-title: Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(21)00066-1
– volume: 12
  start-page: 107
  year: 2020
  ident: 2023011917143740100_ref34
  article-title: Differences in cerebral structure associated with depressive symptoms in the elderly with Alzheimer’s disease
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2020.00107
– volume: 384
  start-page: 1691
  issue: 18
  year: 2021
  ident: 2023011917143740100_ref1
  article-title: Donanemab in early Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2100708
– volume: 101
  start-page: 343
  issue: 1
  year: 2004
  ident: 2023011917143740100_ref24
  article-title: Increased hippocampal neurogenesis in Alzheimer’s disease
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2634794100
– volume: 192
  start-page: 277
  year: 2018
  ident: 2023011917143740100_ref32
  article-title: Cigarette smoking is associated with cortical thinning in anterior frontal regions, insula and regions showing atrophy in early Alzheimer’s Disease
  publication-title: Drug Alcohol Depend
  doi: 10.1016/j.drugalcdep.2018.08.009
– volume: 424
  start-page: 184
  year: 2020
  ident: 2023011917143740100_ref28
  article-title: The interaction between contactin and amyloid precursor protein and its role in Alzheimer’s disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.10.006
– volume-title: Lipid peroxidation and pathological disruption of the ApoE/Reelin-ApoER2-DAB1 axis in sporadic Alzheimer’s disease
  year: 2021
  ident: 2023011917143740100_ref31
– volume: 13
  issue: 11
  year: 2018
  ident: 2023011917143740100_ref26
  article-title: Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer’s disease and normalized by treatment with anti-diabetic agents
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0206547
– start-page: 169
  volume-title: Island of Reil (Insula) in the Human Brain
  year: 2018
  ident: 2023011917143740100_ref33
  doi: 10.1007/978-3-319-75468-0_19
– volume: 38
  start-page: 205
  year: 2017
  ident: 2023011917143740100_ref41
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.10.008
– volume-title: 2017 IEEE International Conference on Imaging Systems and Techniques (IST)
  year: 2017
  ident: 2023011917143740100_ref43
– volume-title: 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI)
  year: 2017
  ident: 2023011917143740100_ref44
SSID ssj0020781
Score 2.4053066
Snippet Abstract At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often...
At present, the study on the pathogenesis of Alzheimer’s disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the...
At present, the study on the pathogenesis of Alzheimer's disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Alzheimer Disease - genetics
Alzheimer's disease
Brain
Brain - diagnostic imaging
Clusters
Correlation analysis
Data analysis
Data integration
Evolution & development
Evolutionary algorithms
Evolutionary genetics
Functional magnetic resonance imaging
Gene polymorphism
Genes
Genetic algorithms
Genetic analysis
Genetic diversity
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging
Nucleotides
Pathogenesis
Polymorphism
Single-nucleotide polymorphism
Title Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/36502428
https://www.proquest.com/docview/3113461721
https://www.proquest.com/docview/2753292870
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-4054
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: ABDBF
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231105
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: OVEED
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIb6tVV_AkBLvJZpMcS6lWxQqi0FvYpxbaRPo4qBf_hn_PX-JMkhZ8oLeQnbCwM5v5ZmdnPkKO0SeBZxOeM4nzeMydBygj9oLQ8igKpVRFO4brrujc88te2KsuyI5_SeEnwanqq1OlpA6LWnJwv0hUcHfTm8dV2K-mLCKKPOzuXpXhffv2i-P5Usz2A1MWvuVslaxUoJA2Sy2ukQWbrZOlkibyeYO8FlWyw9yADN7opG6KZ1wUPZCh8HBx3r7tdltUDh5yCPYfhxSgKDUWEwTgmijSDudgKX1NFVJCUKRjAHOjMjP0Af92FF42By-Ptj-0o4-39zGtMjeb5P6sfdfqeBVpgqcDHk88Zk2iIYgQMmJaapFEmpvQGa1FwCPbUCZscBsZnbAQR-PQSG6U0MIxYQFPbJHFLM_sDqEidszFzleAcXjD2QSwnY2YZZL7THO_Rk5mK5rqqqM4ElsM0jKzHaSw_Gm1_DVyPBd-Khtp_C52CKr5W6I-U1ta7bdxGjAWcARjrEaO5sOwUzD9ITObT8epD5GZn2Bit0a2S3XP5wkAqAJYiXf_nX6PLCPjPJ7CsKROFiejqd0HXDJRB4DIL64OCtv8BLwG4dA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+data+fusion+based+on+IGERNNC+algorithm+for+detecting+pathogenic+brain+regions+and+genes+in+Alzheimer%E2%80%99s+disease&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Shuaiqun&rft.au=Zheng%2C+Kai&rft.au=Kong%2C+Wei&rft.au=Huang%2C+Ruiwen&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon