Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans
Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 43; no. 6; pp. 2303 - 2316 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2024.3362879 |
Cover
| Abstract | Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis. |
|---|---|
| AbstractList | Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis. Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis. |
| Author | Kuang, Hulin Wang, Yahui Qiu, Wu Liu, Jin Hu, Bo Cao, Quanliang Wang, Jie Wang, Jianxin |
| Author_xml | – sequence: 1 givenname: Hulin orcidid: 0000-0001-7341-9871 surname: Kuang fullname: Kuang, Hulin email: hulinkuang@csu.edu.cn organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China – sequence: 2 givenname: Yahui orcidid: 0009-0001-1987-4504 surname: Wang fullname: Wang, Yahui email: yahuiwang@csu.edu.cn organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China – sequence: 3 givenname: Jin orcidid: 0000-0002-4961-7074 surname: Liu fullname: Liu, Jin email: liujin06@csu.edu.cn organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China – sequence: 4 givenname: Jie surname: Wang fullname: Wang, Jie email: jwang@csu.edu.cn organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China – sequence: 5 givenname: Quanliang orcidid: 0000-0003-3691-2311 surname: Cao fullname: Cao, Quanliang email: quanliangcao@hust.edu.cn organization: Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Bo surname: Hu fullname: Hu, Bo email: hubo@mail.hust.edu.cn organization: Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 7 givenname: Wu orcidid: 0000-0001-7827-8270 surname: Qiu fullname: Qiu, Wu email: wuqiu@hust.edu.cn organization: School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 8 givenname: Jianxin orcidid: 0000-0003-1516-0480 surname: Wang fullname: Wang, Jianxin email: jxwang@mail.csu.edu.cn organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38319756$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URLeFOweELHHpJYv_JY6PVUTpSsty2EVwixxnQt0mdrEdoX4Cvna97IJQD0gjjTT6vZnRe2foxHkHCL2mZEkpUe93n1ZLRphYcl6xWqpnaEHLsi5YKb6doAVhsi4IqdgpOovxlhAqSqJeoFNec6pkWS3Qr-uHLtgeN5tNsQvaxcGHCQLeQPrpwx3-atMNbmww86gDvgKd5gB45RIEbZL1DmcBvjRzytNobmCyBm9T8HeA1xD3wBa-T-CS_k3n2nhXNN6loGPCzQ5vTT77Ej0f9Bjh1bGfoy9XH3bNdbH-_HHVXK4Lw0WdCtoRIXTPe6ikFj1lSvZdqeqho73sWFf1slJS12qQigKp9WCUJEpL0hmTi5-ji8Pe--B_zBBTO9loYBy1Az_HlinGOROcyoy-e4Le-jm4_F3LSSUkYZzwTL09UnM3Qd_eBzvp8ND-sTgD5ACY4GMMMPxFKGn3KbY5xXafYntMMUuqJxJjD_5l0-z4P-Gbg9ACwD93xP5VyR8BTIyqFQ |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109893 crossref_primary_10_26599_BDMA_2024_9020083 crossref_primary_10_1016_j_compbiomed_2024_109312 crossref_primary_10_1109_TNB_2024_3441533 crossref_primary_10_3390_biomedicines12061221 crossref_primary_10_1109_TMI_2024_3414842 crossref_primary_10_1007_s10278_024_01322_4 crossref_primary_10_1016_j_media_2025_103545 crossref_primary_10_1007_s11042_024_20443_0 crossref_primary_10_1007_s10462_025_11119_8 crossref_primary_10_1016_j_jestch_2024_101760 crossref_primary_10_1007_s13042_024_02469_w crossref_primary_10_3390_biomedicines12030580 |
| Cites_doi | 10.1007/978-3-031-25066-8_9 10.1109/CVPR52688.2022.01186 10.1109/CVPR52688.2022.00714 10.1056/NEJMoa1414792 10.1007/978-3-030-87199-4_16 10.1109/WACV51458.2022.00181 10.1007/978-3-030-46640-4_25 10.1117/12.2549176 10.1109/ICCV48922.2021.00986 10.5853/jos.2016.01424 10.1109/ICCV51070.2023.00371 10.1109/ACCESS.2020.2995632 10.1109/CVPR.2017.660 10.1148/radiol.2020192703 10.1007/978-3-030-00889-5_1 10.1148/radiol.2020191193 10.1109/ICCV48922.2021.00009 10.1109/TIM.2022.3178991 10.1016/j.jemermed.2018.05.010 10.1016/j.media.2023.102802 10.1016/j.cmpb.2022.107157 10.1007/s11548-022-02570-x 10.1177/1747493020915141 10.1016/j.media.2021.102327 10.1038/s41592-020-01008-z 10.1609/aaai.v36i3.20252 10.1109/TETCI.2023.3309626 10.1007/978-3-030-87234-2_41 10.1109/ISBI.2019.8759475 10.48550/arXiv.2102.04306 10.18287/2412-6179-CO-1233 10.1016/j.media.2020.101791 10.1109/ICIP.2016.7532329 10.1038/s41467-022-30695-9 10.1161/01.STR.28.3.491 10.1109/TMI.2014.2377694 10.1109/TMI.2022.3142321 10.1109/CVPR52688.2022.01055 10.1109/CVPR.2018.00813 10.1007/s11263-022-01739-w 10.1007/978-3-030-32248-9_95 10.1109/EMBC46164.2021.9630336 10.1016/j.media.2023.102749 10.1007/978-3-030-87193-2_11 10.1109/TRPMS.2023.3246496 10.1007/978-3-319-24574-4_28 10.1016/j.media.2021.101984 10.1007/978-3-031-31407-0_21 10.1007/978-3-030-87193-2_69 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2024.3362879 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2316 |
| ExternalDocumentID | 38319756 10_1109_TMI_2024_3362879 10423037 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62102454 funderid: 10.13039/501100001809 – fundername: Hubei Provincial Key Research and Development Program grantid: 2022BCE042; 2023BCB007 – fundername: National Key Research and Development Program of China grantid: 2021YFF1201200; 2022YFE0209900; 2023YFC2410802 – fundername: High Performance Computing Center of Central South University – fundername: High Performance Computing Platformof the Huazhong University of Science and Technology – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: 1053320213221 funderid: 10.13039/501100002822 – fundername: Science and Technology Innovation Program of Hunan Province grantid: 2022RC1031 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c348t-1b044ad3de67a4d1297db598fb1d7b2b6d7697a89f791e08afc9709a70bccbcc3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 01:19:12 EDT 2025 Mon Jun 30 03:24:05 EDT 2025 Wed Feb 19 01:58:45 EST 2025 Wed Oct 01 03:55:34 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:02:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-1b044ad3de67a4d1297db598fb1d7b2b6d7697a89f791e08afc9709a70bccbcc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0001-1987-4504 0000-0002-4961-7074 0000-0001-7341-9871 0000-0003-1516-0480 0000-0003-3691-2311 0000-0001-7827-8270 |
| PMID | 38319756 |
| PQID | 3064702303 |
| PQPubID | 85460 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_38319756 proquest_miscellaneous_2923324317 ieee_primary_10423037 crossref_citationtrail_10_1109_TMI_2024_3362879 proquest_journals_3064702303 crossref_primary_10_1109_TMI_2024_3362879 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 Han (ref43) 2021 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Zhou (ref18) 2021 ref49 Cheng (ref58) 2023 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Yao (ref37) 2022 Chang (ref16) 2021 ref36 ref31 ref33 ref32 ref2 ref1 ref38 Oktay (ref30) 2018 ref24 ref23 ref26 Zhang (ref13) 2022 ref25 ref20 Dosovitskiy (ref39) 2020 ref22 ref21 Park (ref12) 2022 ref28 ref27 ref29 |
| References_xml | – ident: ref10 doi: 10.1007/978-3-031-25066-8_9 – ident: ref15 doi: 10.1109/CVPR52688.2022.01186 – ident: ref25 doi: 10.1109/CVPR52688.2022.00714 – ident: ref49 doi: 10.1056/NEJMoa1414792 – year: 2022 ident: ref13 article-title: ViTAEv2: Vision transformer advanced by exploring inductive bias for image recognition and beyond publication-title: arXiv:2202.10108 – ident: ref17 doi: 10.1007/978-3-030-87199-4_16 – ident: ref19 doi: 10.1109/WACV51458.2022.00181 – ident: ref31 doi: 10.1007/978-3-030-46640-4_25 – ident: ref53 doi: 10.1117/12.2549176 – year: 2021 ident: ref16 article-title: TransClaw U-Net: Claw U-Net with transformers for medical image segmentation publication-title: arXiv:2107.05188 – ident: ref38 doi: 10.1109/ICCV48922.2021.00986 – ident: ref52 doi: 10.5853/jos.2016.01424 – year: 2023 ident: ref58 article-title: SAM-Med2D publication-title: arXiv:2308.16184 – ident: ref57 doi: 10.1109/ICCV51070.2023.00371 – ident: ref4 doi: 10.1109/ACCESS.2020.2995632 – ident: ref29 doi: 10.1109/CVPR.2017.660 – ident: ref48 doi: 10.1148/radiol.2020192703 – ident: ref28 doi: 10.1007/978-3-030-00889-5_1 – ident: ref26 doi: 10.1148/radiol.2020191193 – ident: ref14 doi: 10.1109/ICCV48922.2021.00009 – ident: ref11 doi: 10.1109/TIM.2022.3178991 – ident: ref50 doi: 10.1016/j.jemermed.2018.05.010 – year: 2021 ident: ref18 article-title: NnFormer: Interleaved transformer for volumetric segmentation publication-title: arXiv:2109.03201 – year: 2018 ident: ref30 article-title: Attention U-Net: Learning where to look for the pancreas publication-title: arXiv:1804.03999 – ident: ref23 doi: 10.1016/j.media.2023.102802 – year: 2022 ident: ref37 article-title: Dual vision transformer publication-title: arXiv:2207.04976 – ident: ref34 doi: 10.1016/j.cmpb.2022.107157 – ident: ref3 doi: 10.1007/s11548-022-02570-x – year: 2022 ident: ref12 article-title: How do vision transformers work? publication-title: arXiv:2202.06709 – ident: ref51 doi: 10.1177/1747493020915141 – year: 2020 ident: ref39 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref41 doi: 10.1016/j.media.2021.102327 – ident: ref32 doi: 10.1038/s41592-020-01008-z – ident: ref20 doi: 10.1609/aaai.v36i3.20252 – ident: ref24 doi: 10.1109/TETCI.2023.3309626 – ident: ref27 doi: 10.1007/978-3-030-87234-2_41 – ident: ref45 doi: 10.1109/ISBI.2019.8759475 – ident: ref8 doi: 10.48550/arXiv.2102.04306 – ident: ref36 doi: 10.18287/2412-6179-CO-1233 – ident: ref7 doi: 10.1016/j.media.2020.101791 – ident: ref47 doi: 10.1109/ICIP.2016.7532329 – ident: ref56 doi: 10.1038/s41467-022-30695-9 – ident: ref1 doi: 10.1161/01.STR.28.3.491 – ident: ref55 doi: 10.1109/TMI.2014.2377694 – ident: ref44 doi: 10.1109/TMI.2022.3142321 – ident: ref42 doi: 10.1109/CVPR52688.2022.01055 – ident: ref9 doi: 10.1109/CVPR.2018.00813 – ident: ref22 doi: 10.1007/s11263-022-01739-w – ident: ref46 doi: 10.1007/978-3-030-32248-9_95 – ident: ref21 doi: 10.1109/EMBC46164.2021.9630336 – ident: ref54 doi: 10.1016/j.media.2023.102749 – ident: ref40 doi: 10.1007/978-3-030-87193-2_11 – ident: ref5 doi: 10.1109/TRPMS.2023.3246496 – year: 2021 ident: ref43 article-title: On the connection between local attention and dynamic depth-wise convolution publication-title: arXiv:2106.04263 – ident: ref2 doi: 10.1007/978-3-319-24574-4_28 – ident: ref6 doi: 10.1016/j.media.2021.101984 – ident: ref35 doi: 10.1007/978-3-031-31407-0_21 – ident: ref33 doi: 10.1007/978-3-030-87193-2_69 |
| SSID | ssj0014509 |
| Score | 2.5541413 |
| Snippet | Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2303 |
| SubjectTerms | Acute ischemic stroke Algorithms Artificial intelligence Artificial neural networks Biomedical imaging Brain - diagnostic imaging Coders Computed tomography Convolutional neural networks Datasets Diagnosis Feature extraction feature interaction Humans hybrid CNN-transformer network Image segmentation Ischemia Ischemic Stroke - diagnostic imaging Learning lesion segmentation Lesions Modules Neural networks Neural Networks, Computer Neuroimaging non-contrast CT Segmentation Stroke Tomography, X-Ray Computed - methods Transformers Volumetric analysis |
| Title | Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans |
| URI | https://ieeexplore.ieee.org/document/10423037 https://www.ncbi.nlm.nih.gov/pubmed/38319756 https://www.proquest.com/docview/3064702303 https://www.proquest.com/docview/2923324317 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RHhAcCpQCgYIWiQsHpxt747WPVUQVEPElqejN2pehKtjIsQ_lD_C3mdm1owipCMkHy96115oZzzc7L4B3upK8SqyMlOY2EspWUWazJJKJsqg_rK44JTivinR5KT5dza-GZHWfC-Oc88Fnbkqn3pdvG9PTVhlKOCp_nsgDOJBZGpK1di4DMQ_xHDGVjOVpPPokeX62WX1ESzAW0wR_15mkSqFomM1ySW2r99SR769yN9T0KufiERTjYkOkyc207_TU_PqrjuN_f81jOBrAJzsP3PIE7rn6GB7ulSQ8hvurwdn-FH4vbymdiy2KItqM-Na1rAiR4-zLdfeNLa5bH8nKCEv2rWN-izFkSzCcwM5N3-FVNKIpDJ-tu7a5ceyzo106tnZffwzJTzXDo2jqiOpltWrbscWGrZHw2xO4vPiwWSyjoW9DZBKRddFMc4FUT6xLpRIWEYW0ep5nlZ5ZqWOdWpnmUmV5JfOZ45mqTC55riTXxuCRPIPDuqndC2DC-Qr0lnCpwGFaxEaJ1MQWcZHQdgJnI_lKMxQ1p94a30tv3PC8RNqXRPtyoP0E3u9m_AwFPf4x9oTItjcuUGwCpyOLlIPIb0sy5SRZdMkE3u5uo7CSB0bVrum3ZYxwGhEsYrYJPA-stXv4yJEv73jpK3hAawthaqdw2LW9e42AqNNvvCD8ASANBSw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAceJQWAgWMxIVDtt7EiZNjtaLawm4uuxW9RX6lVIUEZZMD_AH-NmM7Wa2QipByiBI7cTQzmW88L4D3suK0ijUPhaQ6ZEJXYaazOOSx0Kg_tKyoTXBeFun8gn26TC6HZHWXC2OMccFnZmJPnS9fN6q3W2Uo4aj8aczvwr2EMZb4dK2t04AlPqIjskVjaRqNXkman6yX52gLRmwS4w8747ZWKJpm05zbxtU7Csl1WLkdbDqlc_YYinG5PtbkZtJ3cqJ-_VXJ8b-_5wk8GuAnOfX88hTumPoAHu4UJTyA-8vB3f4Mfs9_2oQuMiuKcD0iXNOSwseOky_X3Vcyu25dLCuxaLJvDXGbjD5fguAEcqr6Dq-iGW0D8cmqa5sbQxbG7tORlbn6PqQ_1QSPoqlDWzGrFZuOzNZkhaTfHMLF2cf1bB4OnRtCFbOsC6eSMqR7rE3KBdOIKbiWSZ5Vcqq5jGSqeZpzkeUVz6eGZqJSOae54FQqhUd8BHt1U5sXQJhxNei1RaYMh0kWKcFSFWlERkzqAE5G8pVqKGtuu2t8K515Q_MSaV9a2pcD7QP4sJ3xw5f0-MfYQ0u2nXGeYgEcjyxSDkK_Ka0xx61NFwfwbnsbxdX6YERtmn5TRgioEcMiagvguWet7cNHjnx5y0vfwoP5erkoF-fF51ewb9fpg9aOYa9re_Ma4VEn3zih-APuXAh5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+CNN-Transformer+Network+With+Circular+Feature+Interaction+for+Acute+Ischemic+Stroke+Lesion+Segmentation+on+Non-Contrast+CT+Scans&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kuang%2C+Hulin&rft.au=Wang%2C+Yahui&rft.au=Liu%2C+Jin&rft.au=Wang%2C+Jie&rft.date=2024-06-01&rft.eissn=1558-254X&rft.volume=43&rft.issue=6&rft.spage=2303&rft_id=info:doi/10.1109%2FTMI.2024.3362879&rft_id=info%3Apmid%2F38319756&rft.externalDocID=38319756 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |