Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans

Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 43; no. 6; pp. 2303 - 2316
Main Authors Kuang, Hulin, Wang, Yahui, Liu, Jin, Wang, Jie, Cao, Quanliang, Hu, Bo, Qiu, Wu, Wang, Jianxin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2024.3362879

Cover

Abstract Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.
AbstractList Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.
Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.
Author Kuang, Hulin
Wang, Yahui
Qiu, Wu
Liu, Jin
Hu, Bo
Cao, Quanliang
Wang, Jie
Wang, Jianxin
Author_xml – sequence: 1
  givenname: Hulin
  orcidid: 0000-0001-7341-9871
  surname: Kuang
  fullname: Kuang, Hulin
  email: hulinkuang@csu.edu.cn
  organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
– sequence: 2
  givenname: Yahui
  orcidid: 0009-0001-1987-4504
  surname: Wang
  fullname: Wang, Yahui
  email: yahuiwang@csu.edu.cn
  organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
– sequence: 3
  givenname: Jin
  orcidid: 0000-0002-4961-7074
  surname: Liu
  fullname: Liu, Jin
  email: liujin06@csu.edu.cn
  organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
– sequence: 4
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  email: jwang@csu.edu.cn
  organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
– sequence: 5
  givenname: Quanliang
  orcidid: 0000-0003-3691-2311
  surname: Cao
  fullname: Cao, Quanliang
  email: quanliangcao@hust.edu.cn
  organization: Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Bo
  surname: Hu
  fullname: Hu, Bo
  email: hubo@mail.hust.edu.cn
  organization: Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 7
  givenname: Wu
  orcidid: 0000-0001-7827-8270
  surname: Qiu
  fullname: Qiu, Wu
  email: wuqiu@hust.edu.cn
  organization: School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 8
  givenname: Jianxin
  orcidid: 0000-0003-1516-0480
  surname: Wang
  fullname: Wang, Jianxin
  email: jxwang@mail.csu.edu.cn
  organization: Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38319756$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFOweELHHpJYv_JY6PVUTpSsty2EVwixxnQt0mdrEdoX4Cvna97IJQD0gjjTT6vZnRe2foxHkHCL2mZEkpUe93n1ZLRphYcl6xWqpnaEHLsi5YKb6doAVhsi4IqdgpOovxlhAqSqJeoFNec6pkWS3Qr-uHLtgeN5tNsQvaxcGHCQLeQPrpwx3-atMNbmww86gDvgKd5gB45RIEbZL1DmcBvjRzytNobmCyBm9T8HeA1xD3wBa-T-CS_k3n2nhXNN6loGPCzQ5vTT77Ej0f9Bjh1bGfoy9XH3bNdbH-_HHVXK4Lw0WdCtoRIXTPe6ikFj1lSvZdqeqho73sWFf1slJS12qQigKp9WCUJEpL0hmTi5-ji8Pe--B_zBBTO9loYBy1Az_HlinGOROcyoy-e4Le-jm4_F3LSSUkYZzwTL09UnM3Qd_eBzvp8ND-sTgD5ACY4GMMMPxFKGn3KbY5xXafYntMMUuqJxJjD_5l0-z4P-Gbg9ACwD93xP5VyR8BTIyqFQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109893
crossref_primary_10_26599_BDMA_2024_9020083
crossref_primary_10_1016_j_compbiomed_2024_109312
crossref_primary_10_1109_TNB_2024_3441533
crossref_primary_10_3390_biomedicines12061221
crossref_primary_10_1109_TMI_2024_3414842
crossref_primary_10_1007_s10278_024_01322_4
crossref_primary_10_1016_j_media_2025_103545
crossref_primary_10_1007_s11042_024_20443_0
crossref_primary_10_1007_s10462_025_11119_8
crossref_primary_10_1016_j_jestch_2024_101760
crossref_primary_10_1007_s13042_024_02469_w
crossref_primary_10_3390_biomedicines12030580
Cites_doi 10.1007/978-3-031-25066-8_9
10.1109/CVPR52688.2022.01186
10.1109/CVPR52688.2022.00714
10.1056/NEJMoa1414792
10.1007/978-3-030-87199-4_16
10.1109/WACV51458.2022.00181
10.1007/978-3-030-46640-4_25
10.1117/12.2549176
10.1109/ICCV48922.2021.00986
10.5853/jos.2016.01424
10.1109/ICCV51070.2023.00371
10.1109/ACCESS.2020.2995632
10.1109/CVPR.2017.660
10.1148/radiol.2020192703
10.1007/978-3-030-00889-5_1
10.1148/radiol.2020191193
10.1109/ICCV48922.2021.00009
10.1109/TIM.2022.3178991
10.1016/j.jemermed.2018.05.010
10.1016/j.media.2023.102802
10.1016/j.cmpb.2022.107157
10.1007/s11548-022-02570-x
10.1177/1747493020915141
10.1016/j.media.2021.102327
10.1038/s41592-020-01008-z
10.1609/aaai.v36i3.20252
10.1109/TETCI.2023.3309626
10.1007/978-3-030-87234-2_41
10.1109/ISBI.2019.8759475
10.48550/arXiv.2102.04306
10.18287/2412-6179-CO-1233
10.1016/j.media.2020.101791
10.1109/ICIP.2016.7532329
10.1038/s41467-022-30695-9
10.1161/01.STR.28.3.491
10.1109/TMI.2014.2377694
10.1109/TMI.2022.3142321
10.1109/CVPR52688.2022.01055
10.1109/CVPR.2018.00813
10.1007/s11263-022-01739-w
10.1007/978-3-030-32248-9_95
10.1109/EMBC46164.2021.9630336
10.1016/j.media.2023.102749
10.1007/978-3-030-87193-2_11
10.1109/TRPMS.2023.3246496
10.1007/978-3-319-24574-4_28
10.1016/j.media.2021.101984
10.1007/978-3-031-31407-0_21
10.1007/978-3-030-87193-2_69
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2024.3362879
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2316
ExternalDocumentID 38319756
10_1109_TMI_2024_3362879
10423037
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62102454
  funderid: 10.13039/501100001809
– fundername: Hubei Provincial Key Research and Development Program
  grantid: 2022BCE042; 2023BCB007
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF1201200; 2022YFE0209900; 2023YFC2410802
– fundername: High Performance Computing Center of Central South University
– fundername: High Performance Computing Platformof the Huazhong University of Science and Technology
– fundername: Fundamental Research Funds for the Central Universities of Central South University
  grantid: 1053320213221
  funderid: 10.13039/501100002822
– fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2022RC1031
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c348t-1b044ad3de67a4d1297db598fb1d7b2b6d7697a89f791e08afc9709a70bccbcc3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 01:19:12 EDT 2025
Mon Jun 30 03:24:05 EDT 2025
Wed Feb 19 01:58:45 EST 2025
Wed Oct 01 03:55:34 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:02:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-1b044ad3de67a4d1297db598fb1d7b2b6d7697a89f791e08afc9709a70bccbcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-1987-4504
0000-0002-4961-7074
0000-0001-7341-9871
0000-0003-1516-0480
0000-0003-3691-2311
0000-0001-7827-8270
PMID 38319756
PQID 3064702303
PQPubID 85460
PageCount 14
ParticipantIDs pubmed_primary_38319756
proquest_miscellaneous_2923324317
ieee_primary_10423037
crossref_citationtrail_10_1109_TMI_2024_3362879
proquest_journals_3064702303
crossref_primary_10_1109_TMI_2024_3362879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
Han (ref43) 2021
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Zhou (ref18) 2021
ref49
Cheng (ref58) 2023
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Yao (ref37) 2022
Chang (ref16) 2021
ref36
ref31
ref33
ref32
ref2
ref1
ref38
Oktay (ref30) 2018
ref24
ref23
ref26
Zhang (ref13) 2022
ref25
ref20
Dosovitskiy (ref39) 2020
ref22
ref21
Park (ref12) 2022
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref15
  doi: 10.1109/CVPR52688.2022.01186
– ident: ref25
  doi: 10.1109/CVPR52688.2022.00714
– ident: ref49
  doi: 10.1056/NEJMoa1414792
– year: 2022
  ident: ref13
  article-title: ViTAEv2: Vision transformer advanced by exploring inductive bias for image recognition and beyond
  publication-title: arXiv:2202.10108
– ident: ref17
  doi: 10.1007/978-3-030-87199-4_16
– ident: ref19
  doi: 10.1109/WACV51458.2022.00181
– ident: ref31
  doi: 10.1007/978-3-030-46640-4_25
– ident: ref53
  doi: 10.1117/12.2549176
– year: 2021
  ident: ref16
  article-title: TransClaw U-Net: Claw U-Net with transformers for medical image segmentation
  publication-title: arXiv:2107.05188
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref52
  doi: 10.5853/jos.2016.01424
– year: 2023
  ident: ref58
  article-title: SAM-Med2D
  publication-title: arXiv:2308.16184
– ident: ref57
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref4
  doi: 10.1109/ACCESS.2020.2995632
– ident: ref29
  doi: 10.1109/CVPR.2017.660
– ident: ref48
  doi: 10.1148/radiol.2020192703
– ident: ref28
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref26
  doi: 10.1148/radiol.2020191193
– ident: ref14
  doi: 10.1109/ICCV48922.2021.00009
– ident: ref11
  doi: 10.1109/TIM.2022.3178991
– ident: ref50
  doi: 10.1016/j.jemermed.2018.05.010
– year: 2021
  ident: ref18
  article-title: NnFormer: Interleaved transformer for volumetric segmentation
  publication-title: arXiv:2109.03201
– year: 2018
  ident: ref30
  article-title: Attention U-Net: Learning where to look for the pancreas
  publication-title: arXiv:1804.03999
– ident: ref23
  doi: 10.1016/j.media.2023.102802
– year: 2022
  ident: ref37
  article-title: Dual vision transformer
  publication-title: arXiv:2207.04976
– ident: ref34
  doi: 10.1016/j.cmpb.2022.107157
– ident: ref3
  doi: 10.1007/s11548-022-02570-x
– year: 2022
  ident: ref12
  article-title: How do vision transformers work?
  publication-title: arXiv:2202.06709
– ident: ref51
  doi: 10.1177/1747493020915141
– year: 2020
  ident: ref39
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref41
  doi: 10.1016/j.media.2021.102327
– ident: ref32
  doi: 10.1038/s41592-020-01008-z
– ident: ref20
  doi: 10.1609/aaai.v36i3.20252
– ident: ref24
  doi: 10.1109/TETCI.2023.3309626
– ident: ref27
  doi: 10.1007/978-3-030-87234-2_41
– ident: ref45
  doi: 10.1109/ISBI.2019.8759475
– ident: ref8
  doi: 10.48550/arXiv.2102.04306
– ident: ref36
  doi: 10.18287/2412-6179-CO-1233
– ident: ref7
  doi: 10.1016/j.media.2020.101791
– ident: ref47
  doi: 10.1109/ICIP.2016.7532329
– ident: ref56
  doi: 10.1038/s41467-022-30695-9
– ident: ref1
  doi: 10.1161/01.STR.28.3.491
– ident: ref55
  doi: 10.1109/TMI.2014.2377694
– ident: ref44
  doi: 10.1109/TMI.2022.3142321
– ident: ref42
  doi: 10.1109/CVPR52688.2022.01055
– ident: ref9
  doi: 10.1109/CVPR.2018.00813
– ident: ref22
  doi: 10.1007/s11263-022-01739-w
– ident: ref46
  doi: 10.1007/978-3-030-32248-9_95
– ident: ref21
  doi: 10.1109/EMBC46164.2021.9630336
– ident: ref54
  doi: 10.1016/j.media.2023.102749
– ident: ref40
  doi: 10.1007/978-3-030-87193-2_11
– ident: ref5
  doi: 10.1109/TRPMS.2023.3246496
– year: 2021
  ident: ref43
  article-title: On the connection between local attention and dynamic depth-wise convolution
  publication-title: arXiv:2106.04263
– ident: ref2
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref6
  doi: 10.1016/j.media.2021.101984
– ident: ref35
  doi: 10.1007/978-3-031-31407-0_21
– ident: ref33
  doi: 10.1007/978-3-030-87193-2_69
SSID ssj0014509
Score 2.5541413
Snippet Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2303
SubjectTerms Acute ischemic stroke
Algorithms
Artificial intelligence
Artificial neural networks
Biomedical imaging
Brain - diagnostic imaging
Coders
Computed tomography
Convolutional neural networks
Datasets
Diagnosis
Feature extraction
feature interaction
Humans
hybrid CNN-transformer network
Image segmentation
Ischemia
Ischemic Stroke - diagnostic imaging
Learning
lesion segmentation
Lesions
Modules
Neural networks
Neural Networks, Computer
Neuroimaging
non-contrast CT
Segmentation
Stroke
Tomography, X-Ray Computed - methods
Transformers
Volumetric analysis
Title Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans
URI https://ieeexplore.ieee.org/document/10423037
https://www.ncbi.nlm.nih.gov/pubmed/38319756
https://www.proquest.com/docview/3064702303
https://www.proquest.com/docview/2923324317
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RHhAcCpQCgYIWiQsHpxt747WPVUQVEPElqejN2pehKtjIsQ_lD_C3mdm1owipCMkHy96115oZzzc7L4B3upK8SqyMlOY2EspWUWazJJKJsqg_rK44JTivinR5KT5dza-GZHWfC-Oc88Fnbkqn3pdvG9PTVhlKOCp_nsgDOJBZGpK1di4DMQ_xHDGVjOVpPPokeX62WX1ESzAW0wR_15mkSqFomM1ySW2r99SR769yN9T0KufiERTjYkOkyc207_TU_PqrjuN_f81jOBrAJzsP3PIE7rn6GB7ulSQ8hvurwdn-FH4vbymdiy2KItqM-Na1rAiR4-zLdfeNLa5bH8nKCEv2rWN-izFkSzCcwM5N3-FVNKIpDJ-tu7a5ceyzo106tnZffwzJTzXDo2jqiOpltWrbscWGrZHw2xO4vPiwWSyjoW9DZBKRddFMc4FUT6xLpRIWEYW0ep5nlZ5ZqWOdWpnmUmV5JfOZ45mqTC55riTXxuCRPIPDuqndC2DC-Qr0lnCpwGFaxEaJ1MQWcZHQdgJnI_lKMxQ1p94a30tv3PC8RNqXRPtyoP0E3u9m_AwFPf4x9oTItjcuUGwCpyOLlIPIb0sy5SRZdMkE3u5uo7CSB0bVrum3ZYxwGhEsYrYJPA-stXv4yJEv73jpK3hAawthaqdw2LW9e42AqNNvvCD8ASANBSw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAceJQWAgWMxIVDtt7EiZNjtaLawm4uuxW9RX6lVIUEZZMD_AH-NmM7Wa2QipByiBI7cTQzmW88L4D3suK0ijUPhaQ6ZEJXYaazOOSx0Kg_tKyoTXBeFun8gn26TC6HZHWXC2OMccFnZmJPnS9fN6q3W2Uo4aj8aczvwr2EMZb4dK2t04AlPqIjskVjaRqNXkman6yX52gLRmwS4w8747ZWKJpm05zbxtU7Csl1WLkdbDqlc_YYinG5PtbkZtJ3cqJ-_VXJ8b-_5wk8GuAnOfX88hTumPoAHu4UJTyA-8vB3f4Mfs9_2oQuMiuKcD0iXNOSwseOky_X3Vcyu25dLCuxaLJvDXGbjD5fguAEcqr6Dq-iGW0D8cmqa5sbQxbG7tORlbn6PqQ_1QSPoqlDWzGrFZuOzNZkhaTfHMLF2cf1bB4OnRtCFbOsC6eSMqR7rE3KBdOIKbiWSZ5Vcqq5jGSqeZpzkeUVz6eGZqJSOae54FQqhUd8BHt1U5sXQJhxNei1RaYMh0kWKcFSFWlERkzqAE5G8pVqKGtuu2t8K515Q_MSaV9a2pcD7QP4sJ3xw5f0-MfYQ0u2nXGeYgEcjyxSDkK_Ka0xx61NFwfwbnsbxdX6YERtmn5TRgioEcMiagvguWet7cNHjnx5y0vfwoP5erkoF-fF51ewb9fpg9aOYa9re_Ma4VEn3zih-APuXAh5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+CNN-Transformer+Network+With+Circular+Feature+Interaction+for+Acute+Ischemic+Stroke+Lesion+Segmentation+on+Non-Contrast+CT+Scans&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kuang%2C+Hulin&rft.au=Wang%2C+Yahui&rft.au=Liu%2C+Jin&rft.au=Wang%2C+Jie&rft.date=2024-06-01&rft.eissn=1558-254X&rft.volume=43&rft.issue=6&rft.spage=2303&rft_id=info:doi/10.1109%2FTMI.2024.3362879&rft_id=info%3Apmid%2F38319756&rft.externalDocID=38319756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon