Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures
The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geo...
Saved in:
| Published in | Additive manufacturing Vol. 41; p. 101949 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2214-8604 2214-7810 2214-7810 |
| DOI | 10.1016/j.addma.2021.101949 |
Cover
| Abstract | The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geometrical defects that mainly result in deviations of the effective geometry from the nominal one. This change in the final printed shape is the primary cause of the gap between the as-designed and as-manufactured mechanical behavior of AM products. Thus, the possibility to incorporate the precise manufactured geometries into the computational analysis is crucial for the quality and performance assessment of the final parts. Computed tomography (CT) is an accurate method for the acquisition of the manufactured shape. However, it is often not feasible to integrate the CT-based geometrical information into the traditional computational analysis due to the complexity of the meshing procedure for such high-resolution geometrical models and the prohibitive numerical costs. In this work, an embedded numerical framework is applied to efficiently simulate and compare the mechanical behavior of as-designed to as-manufactured octet-truss lattice structures. The parts are produced using laser powder bed fusion (LPBF). Employing an immersed boundary method, namely the Finite Cell Method (FCM), we perform direct numerical simulations (DNS) and first-order numerical homogenization analysis of a tensile test for a 3D printed octet-truss structure. Numerical results based on CT scan (as-manufactured geometry) show an excellent agreement with experimental measurements, whereas both DNS and first-order numerical homogenization performed directly on the 3D virtual model (as-designed geometry) of the structure show a significant deviation from experimental data.
[Display omitted]
•Incorporation of as-manufactured lattice geometries in numerical analysis is challenging.•Immersed methods allow to account for process-induced defects in an efficient image-to-numerical-characterization workflow.•Numerical experiments are performed directly on the CT images of octet-truss lattices.•As-manufactured results are validated through experimental measurements. |
|---|---|
| AbstractList | The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geometrical defects that mainly result in deviations of the effective geometry from the nominal one. This change in the final printed shape is the primary cause of the gap between the as-designed and as-manufactured mechanical behavior of AM products. Thus, the possibility to incorporate the precise manufactured geometries into the computational analysis is crucial for the quality and performance assessment of the final parts. Computed tomography (CT) is an accurate method for the acquisition of the manufactured shape. However, it is often not feasible to integrate the CT-based geometrical information into the traditional computational analysis due to the complexity of the meshing procedure for such high-resolution geometrical models and the prohibitive numerical costs. In this work, an embedded numerical framework is applied to efficiently simulate and compare the mechanical behavior of as-designed to as-manufactured octet-truss lattice structures. The parts are produced using laser powder bed fusion (LPBF). Employing an immersed boundary method, namely the Finite Cell Method (FCM), we perform direct numerical simulations (DNS) and first-order numerical homogenization analysis of a tensile test for a 3D printed octet-truss structure. Numerical results based on CT scan (as-manufactured geometry) show an excellent agreement with experimental measurements, whereas both DNS and first-order numerical homogenization performed directly on the 3D virtual model (as-designed geometry) of the structure show a significant deviation from experimental data.
[Display omitted]
•Incorporation of as-manufactured lattice geometries in numerical analysis is challenging.•Immersed methods allow to account for process-induced defects in an efficient image-to-numerical-characterization workflow.•Numerical experiments are performed directly on the CT images of octet-truss lattices.•As-manufactured results are validated through experimental measurements. |
| ArticleNumber | 101949 |
| Author | Niiranen, J. Hosseini, S.B. Auricchio, F. Rank, E. Kollmannsberger, S. Alaimo, G. Korshunova, N. Carraturo, M. Reali, A. |
| Author_xml | – sequence: 1 givenname: N. surname: Korshunova fullname: Korshunova, N. email: nina.korshunova@tum.de organization: Chair of Computational Modeling and Simulation, München, Technical University of Munich, Germany – sequence: 2 givenname: G. surname: Alaimo fullname: Alaimo, G. organization: Department of Civil Engineering and Architecture, University of Pavia, Italy – sequence: 3 givenname: S.B. surname: Hosseini fullname: Hosseini, S.B. organization: Department of Civil Engineering, Aalto University, Finland – sequence: 4 givenname: M. surname: Carraturo fullname: Carraturo, M. organization: Department of Civil Engineering and Architecture, University of Pavia, Italy – sequence: 5 givenname: A. surname: Reali fullname: Reali, A. organization: Department of Civil Engineering and Architecture, University of Pavia, Italy – sequence: 6 givenname: J. surname: Niiranen fullname: Niiranen, J. organization: Department of Civil Engineering, Aalto University, Finland – sequence: 7 givenname: F. surname: Auricchio fullname: Auricchio, F. organization: Department of Civil Engineering and Architecture, University of Pavia, Italy – sequence: 8 givenname: E. surname: Rank fullname: Rank, E. organization: Institute for Advanced Study, München,Technical University of Munich, Germany – sequence: 9 givenname: S. surname: Kollmannsberger fullname: Kollmannsberger, S. organization: Chair of Computational Modeling and Simulation, München, Technical University of Munich, Germany |
| BookMark | eNqNkL9OwzAQhy1UJErpE7DkBVJsx02cgQFV_KlUiQVm62JfqKvUqWy3tDw9adOJAZh89zt_tu67JgPXOiTkltEJoyy_W03AmDVMOOXsmJSivCBDzplIC8no4FzLnIorMg5hRSll06woJR-S_XwNH5hWENAkbrtGbzU0iV6CBx277guibV0CziS433TBGl3sbuygsaaftXUS0QXbYFLhEna29ces7fiYRr8NIWkgRqsxCV2r49ZjuCGXNTQBx-dzRN6fHt9mL-ni9Xk-e1ikOhMypiyTual4XpicVkXJNeqMSi5qWko0mRRFVVeIBcgSK6Ql00JQADpl0vCM6mxERP_u1m3g8AlNozbdEuAPilF1FKhW6iRQHQWqXmCHlT2mfRuCx1ppG0_rRg-2-YPNfrD_-_G-p7CzsbPoVdAWnUZjPeqoTGt_5b8BywKi2w |
| CitedBy_id | crossref_primary_10_1016_j_matdes_2021_109693 crossref_primary_10_1002_nme_6810 crossref_primary_10_1016_j_addma_2023_103415 crossref_primary_10_1002_advs_202300912 crossref_primary_10_1007_s12206_024_2201_7 crossref_primary_10_1111_cgf_15224 crossref_primary_10_1142_S0219455421501492 crossref_primary_10_1002_mdp2_249 crossref_primary_10_1007_s00170_024_13871_7 crossref_primary_10_1007_s00466_023_02424_6 crossref_primary_10_1016_j_engappai_2024_108993 crossref_primary_10_1021_acsami_3c13270 crossref_primary_10_3389_fbioe_2022_819005 crossref_primary_10_1007_s00466_023_02394_9 crossref_primary_10_47495_okufbed_1207865 crossref_primary_10_1007_s00170_022_08716_0 crossref_primary_10_2139_ssrn_4184541 |
| Cites_doi | 10.1016/j.eml.2018.06.004 10.1016/j.camwa.2020.07.018 10.1016/j.cja.2018.08.017 10.1016/j.matdes.2018.01.059 10.1016/j.jallcom.2019.03.344 10.1016/j.matdes.2019.108091 10.1016/j.camwa.2017.01.004 10.1016/j.matdes.2019.107685 10.1557/mrs.2019.231 10.1007/s10237-007-0109-7 10.1016/j.finel.2019.01.009 10.1016/j.compositesb.2018.10.053 10.1016/j.jmbbm.2017.11.044 10.1016/j.ijsolstr.2017.12.025 10.1016/j.engstruct.2018.11.045 10.1016/j.jmbbm.2016.04.041 10.1016/0022-5096(94)90022-1 10.1016/j.prostr.2017.11.068 10.1007/s00466-007-0173-y 10.1016/j.matdes.2016.01.146 10.1016/j.matdes.2019.108385 10.1080/15376494.2018.1536816 10.1016/j.jmps.2013.10.015 10.1016/j.ijmachtools.2012.06.002 10.1016/j.ijfatigue.2020.105946 10.1016/j.actbio.2017.09.013 10.1016/j.ijfatigue.2019.03.019 10.1002/nme.4269 10.1090/S0025-5718-1973-0351118-5 10.1115/1.4037305 10.1016/j.phpro.2016.08.002 10.1142/S0219455415400180 10.1016/j.matdes.2019.108137 10.1016/j.ijmecsci.2019.04.054 10.1038/s41598-018-23414-2 10.1016/j.commatsci.2011.10.017 10.1016/j.jallcom.2019.03.135 10.3390/ma13092204 10.1016/j.rcim.2017.06.006 10.1002/cnm.2951 10.1016/j.compositesb.2018.02.012 10.1016/j.matdes.2013.01.071 10.1016/j.matdes.2019.107671 10.1016/j.mex.2018.09.006 10.1016/j.ijfatigue.2020.105623 10.1016/j.jmps.2017.07.003 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.addma.2021.101949 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2214-7810 |
| ExternalDocumentID | oai:mediatum.ub.tum.de:node/1608901 10_1016_j_addma_2021_101949 S2214860421001147 |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c348t-1386db267d60b792cec30824f098ed3847bfbee7a89ebe091c440aa0518d230c3 |
| IEDL.DBID | .~1 |
| ISSN | 2214-8604 2214-7810 |
| IngestDate | Tue Aug 19 19:55:21 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Wed Oct 01 02:29:58 EDT 2025 Fri Feb 23 02:44:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Octet-truss lattice Computed tomography Geometrical defects Additive manufacturing Finite Cell Method Numerical homogenization Finite Element method |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c348t-1386db267d60b792cec30824f098ed3847bfbee7a89ebe091c440aa0518d230c3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/abs/pii/S2214860421001147 |
| ParticipantIDs | unpaywall_primary_10_1016_j_addma_2021_101949 crossref_citationtrail_10_1016_j_addma_2021_101949 crossref_primary_10_1016_j_addma_2021_101949 elsevier_sciencedirect_doi_10_1016_j_addma_2021_101949 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Additive manufacturing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Elhaddad, Zander, Bog, Kudela, Kollmannsberger, Kirschke, Baum, Ruess, Rank (bib16) 2018; 34 Dong, Tang, Zhao (bib11) 2017; 139 Renishaw-PLC, Data sheet: SS 316L-0407 powder for additive manufacturing. Renishaw-PLC, 2020. Refai, Montemurro, Brugger, Saintier (bib43) 2020; 27 Lietaert, Cutolo, Boey, Van Hooreweder (bib27) 2018; 8 Elhaddad, Zander, Kollmannsberger, Shadavakhsh, Nübel, Rank (bib17) 2015; 15 Yang, Ruess, Kollmannsberger, Düster, Rank (bib55) 2012; 91 Lozanovski, Leary, Tran, Shidid, Qian, Choong, Brandt (bib29) 2019; 171 Pasini, Guest (bib38) 2019; 44 Lei, Li, Meng, Zhou, Liu, Zhang, Wang, Fang (bib26) 2019; 169 Liu, Kamm, García-Moreno, Banhart, Pasini (bib28) 2017; 107 Rashed, Ashraf, Mines, Hazell (bib41) 2016; 95 Parvizian, Düster, Rank (bib37) 2007; 41 Yang, Hsu, Baughman, Godfrey, Medina, Menon, Wiener (bib54) 2017 (bib2) 2017 Jomo, Zander, Elhaddad, Özcan, Kollmannsberger, Mundani, Rank (bib23) 2017; 74 Dallago, Fontanari, Torresani, Leoni, Pederzolli, Potrich, Benedetti (bib7) 2018; 78 Jomo, de Prenter, Elhaddad, D’Angella, Verhoosel, Kollmannsberger, Kirschke, Nübel, van Brummelen, Rank (bib24) 2019; 163 Dallago, Raghavendra, Luchin, Zappini, Pasini, Benedetti (bib9) 2021; 142 Dong, Liu, Li, Liang (bib12) 2019; 791 Pahr, Zysset (bib36) 2008; 7 Ngo, Kashani, Imbalzano, Nguyen, Hui (bib34) 2018; 143 Yan, Hao, Hussein, Raymont (bib53) 2012; 62 Vigliotti, Deshpande, Pasini (bib51) 2014; 64 Korshunova, Jomo, Lékó, Reznik, Balázs, Kollmannsberger (bib25) 2020; 80 Dallago, Winiarski, Zanini, Carmignato, Benedetti (bib10) 2019; 124 Düster, Rank, Szabó (bib15) 2017; 2 Wang, Lei, Zhu, Chen, Fang (bib52) 2019; 789 Buchanan, Gardner (bib5) 2019; 180 Sing, Wiria, Yeong (bib47) 2018; 49 Tancogne-Dejean, Mohr (bib49) 2018; 138 Nemat-Nasser, Hori, Achenbach (bib33) 2013 Portela, Greer, Kochmann (bib39) 2018; 22 Babuska (bib3) 1973; 27 Campoli, Borleffs, AminYavari, Wauthle, Weinans, Zadpoor (bib6) 2013; 49 Zhou, Zhang, Zeng, Yang, Lei, Li, Wang (bib56) 2019; 32 Bagheri, Melancon, Liu, Johnston, Pasini (bib4) 2017; 70 Heinze, Bleistein, Düster, Diebels, Jung (bib21) 2017; 98 Zohdi, Wriggers (bib57) 2004 Refai, Brugger, Montemurro, Saintier (bib42) 2020; 138 Tian, Qi, Chao, Liang, Fu (bib50) 2019; 162 M. Dallago, V. Fontanari, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry. Procedia Structural Integrity, 7:116-123 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017. Hazanov, Huet (bib20) 1994; 42 Al-Saedi, Masood, Faizan-Ur-Rab, Alomarah, Ponnusamy (bib1) 2018; 144 Maconachie, Leary, Lozanovski, Zhang, Qian, Faruque, Brandt (bib30) 2019; 183 Shidid, Leary, Choong, Brandt (bib46) 2016; 83 Melancon, Bagheri, Johnston, Liu, Tanzer, Pasini (bib32) 2017; 63 P. Platek, J. Sienkiewicz, J. Janiszewski, F. Jiang, investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). page 2204, 20202. du Plessis, Yadroitsava, Yadroitsev (bib14) 2020; 187 du Plessis, Sperling, Beerlink, Tshabalala, Hoosain, Mathe, leRoux (bib13) 2018; 5 Mazur, Leary, McMillan, Sun, Shidid, Brandt (bib31) 2017 Nguyen, Béchet, Geuzaine, Noels (bib35) 2012; 55 Sanaei, Fatemi, Phan (bib45) 2019; 182 Suquet (bib48) 1985 ISO/ASTM52900-15 (bib22) 2015 Geng, Wu, Sun, Fang (bib18) 2019; 157–158 Gross, Seelig (bib19) 2017 Maconachie (10.1016/j.addma.2021.101949_bib30) 2019; 183 Ngo (10.1016/j.addma.2021.101949_bib34) 2018; 143 Nemat-Nasser (10.1016/j.addma.2021.101949_bib33) 2013 Nguyen (10.1016/j.addma.2021.101949_bib35) 2012; 55 Sanaei (10.1016/j.addma.2021.101949_bib45) 2019; 182 Pahr (10.1016/j.addma.2021.101949_bib36) 2008; 7 Shidid (10.1016/j.addma.2021.101949_bib46) 2016; 83 Lietaert (10.1016/j.addma.2021.101949_bib27) 2018; 8 Babuska (10.1016/j.addma.2021.101949_bib3) 1973; 27 Vigliotti (10.1016/j.addma.2021.101949_bib51) 2014; 64 Heinze (10.1016/j.addma.2021.101949_bib21) 2017; 98 (10.1016/j.addma.2021.101949_bib2) 2017 Elhaddad (10.1016/j.addma.2021.101949_bib16) 2018; 34 Yan (10.1016/j.addma.2021.101949_bib53) 2012; 62 Dong (10.1016/j.addma.2021.101949_bib12) 2019; 791 Al-Saedi (10.1016/j.addma.2021.101949_bib1) 2018; 144 Geng (10.1016/j.addma.2021.101949_bib18) 2019; 157–158 Gross (10.1016/j.addma.2021.101949_bib19) 2017 Jomo (10.1016/j.addma.2021.101949_bib23) 2017; 74 Bagheri (10.1016/j.addma.2021.101949_bib4) 2017; 70 Portela (10.1016/j.addma.2021.101949_bib39) 2018; 22 Zohdi (10.1016/j.addma.2021.101949_bib57) 2004 Zhou (10.1016/j.addma.2021.101949_bib56) 2019; 32 Yang (10.1016/j.addma.2021.101949_bib55) 2012; 91 Mazur (10.1016/j.addma.2021.101949_bib31) 2017 Yang (10.1016/j.addma.2021.101949_bib54) 2017 10.1016/j.addma.2021.101949_bib44 Sing (10.1016/j.addma.2021.101949_bib47) 2018; 49 du Plessis (10.1016/j.addma.2021.101949_bib13) 2018; 5 Korshunova (10.1016/j.addma.2021.101949_bib25) 2020; 80 Refai (10.1016/j.addma.2021.101949_bib43) 2020; 27 Düster (10.1016/j.addma.2021.101949_bib15) 2017; 2 Rashed (10.1016/j.addma.2021.101949_bib41) 2016; 95 Pasini (10.1016/j.addma.2021.101949_bib38) 2019; 44 Tian (10.1016/j.addma.2021.101949_bib50) 2019; 162 du Plessis (10.1016/j.addma.2021.101949_bib14) 2020; 187 Liu (10.1016/j.addma.2021.101949_bib28) 2017; 107 10.1016/j.addma.2021.101949_bib40 Refai (10.1016/j.addma.2021.101949_bib42) 2020; 138 Melancon (10.1016/j.addma.2021.101949_bib32) 2017; 63 Campoli (10.1016/j.addma.2021.101949_bib6) 2013; 49 Lozanovski (10.1016/j.addma.2021.101949_bib29) 2019; 171 Wang (10.1016/j.addma.2021.101949_bib52) 2019; 789 Buchanan (10.1016/j.addma.2021.101949_bib5) 2019; 180 Dallago (10.1016/j.addma.2021.101949_bib7) 2018; 78 Dallago (10.1016/j.addma.2021.101949_bib10) 2019; 124 Hazanov (10.1016/j.addma.2021.101949_bib20) 1994; 42 Elhaddad (10.1016/j.addma.2021.101949_bib17) 2015; 15 Dong (10.1016/j.addma.2021.101949_bib11) 2017; 139 10.1016/j.addma.2021.101949_bib8 Suquet (10.1016/j.addma.2021.101949_bib48) 1985 ISO/ASTM52900-15 (10.1016/j.addma.2021.101949_bib22) 2015 Parvizian (10.1016/j.addma.2021.101949_bib37) 2007; 41 Lei (10.1016/j.addma.2021.101949_bib26) 2019; 169 Tancogne-Dejean (10.1016/j.addma.2021.101949_bib49) 2018; 138 Jomo (10.1016/j.addma.2021.101949_bib24) 2019; 163 Dallago (10.1016/j.addma.2021.101949_bib9) 2021; 142 |
| References_xml | – reference: P. Platek, J. Sienkiewicz, J. Janiszewski, F. Jiang, investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). page 2204, 20202. – volume: 163 start-page: 14 year: 2019 end-page: 30 ident: bib24 article-title: Robust and parallel scalable iterative solutions for large-scale finite cell analyses publication-title: Fin. Elem. Anal. Des. – volume: 78 start-page: 381 year: 2018 end-page: 394 ident: bib7 article-title: Fatigue and biological properties of ti-6al-4v eli cellular structures with variously arranged cubic cells made by selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 144 start-page: 32 year: 2018 end-page: 44 ident: bib1 article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM publication-title: Mater. Des. – year: 2017 ident: bib54 article-title: Additive Manufacturing of Metals: The Technology, Materials, Design and Production – volume: 169 year: 2019 ident: bib26 article-title: Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and publication-title: Mater. Des. – volume: 138 year: 2020 ident: bib42 article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (slm) publication-title: Int. J. Fatigue – volume: 95 start-page: 518 year: 2016 end-page: 533 ident: bib41 article-title: Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications publication-title: Mater. Des. – volume: 80 start-page: 2462 year: 2020 end-page: 2480 ident: bib25 article-title: Image-based material characterization of complex microarchitectured additively manufactured structures publication-title: Comput. Math. Appl. – volume: 789 start-page: 852 year: 2019 end-page: 859 ident: bib52 article-title: Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting publication-title: J. Alloy. Compd. – volume: 15 year: 2015 ident: bib17 article-title: Finite Cell Method: High‐Order Structural Dynamics for Complex Geometries publication-title: Int. J. Struct. Stab. Dyn. – volume: 791 start-page: 490 year: 2019 end-page: 500 ident: bib12 article-title: Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices publication-title: J. Alloy. Compd. – volume: 64 start-page: 44 year: 2014 end-page: 60 ident: bib51 article-title: Non linear constitutive models for lattice materials publication-title: J. Mech. Phys. Solids – volume: 22 start-page: 138 year: 2018 end-page: 148 ident: bib39 article-title: Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures publication-title: Extreme Mech. Lett. – volume: 62 start-page: 32 year: 2012 end-page: 38 ident: bib53 article-title: Evaluations of cellular lattice structures manufactured using selective laser melting publication-title: Int. J. Mach. Tools Manuf. – reference: M. Dallago, V. Fontanari, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry. Procedia Structural Integrity, 7:116-123 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017. – volume: 143 start-page: 172 year: 2018 end-page: 196 ident: bib34 article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges publication-title: Compos. Part B Eng. – volume: 138 start-page: 24 year: 2018 end-page: 39 ident: bib49 article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy publication-title: Int. J. Solids Struct. – volume: 70 start-page: 17 year: 2017 end-page: 27 ident: bib4 article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting publication-title: J. Mech. Behav. Biomed. Mater. – year: 2017 ident: bib19 article-title: Fracture Mechanics: With an Introduction to Micromechanics – volume: 180 start-page: 332 year: 2019 end-page: 348 ident: bib5 article-title: Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges publication-title: Eng. Struct. – volume: 27 start-page: 1966 year: 2020 end-page: 1982 ident: bib43 article-title: Determination of the effective elastic properties of titanium lattice structures publication-title: Mech. Adv. Mater. Struct. – year: 2004 ident: bib57 article-title: An Introduction to Computational Micromechanics publication-title: Lecture Notes in Applied and Computational Mechanics – volume: 49 start-page: 957 year: 2013 end-page: 965 ident: bib6 article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing publication-title: Mater. Des. – volume: 63 start-page: 350 year: 2017 end-page: 368 ident: bib32 article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants publication-title: Acta Biomater. – year: 2015 ident: bib22 article-title: ASTM E 111-17: Standard Test Method for Young?s Modulus, Tangent Modulus, and Chord Modulus – volume: 5 start-page: 1117 year: 2018 end-page: 1123 ident: bib13 article-title: Standard method for microct-based additive manufacturing quality control 2: Density measurement publication-title: MethodsX – volume: 42 start-page: 1995 year: 1994 end-page: 2011 ident: bib20 article-title: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume publication-title: J. Mech. Phys. Solids – volume: 7 start-page: 463 year: 2008 end-page: 476 ident: bib36 article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone publication-title: Biomech. Model. Mechanobiol. – volume: 182 year: 2019 ident: bib45 article-title: Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing publication-title: Mater. Des. – volume: 124 start-page: 348 year: 2019 end-page: 360 ident: bib10 article-title: On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting publication-title: Int. J. Fatigue – volume: 157–158 start-page: 231 year: 2019 end-page: 242 ident: bib18 article-title: Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction publication-title: Int. J. Mech. Sci. – volume: 107 start-page: 160 year: 2017 end-page: 184 ident: bib28 article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting publication-title: J. Mech. Phys. Solids – volume: 183 year: 2019 ident: bib30 article-title: SLM lattice structures: Properties, performance, applications and challenges publication-title: Mater. Des. – volume: 32 start-page: 1727 year: 2019 end-page: 1732 ident: bib56 article-title: Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by slm publication-title: Chin. J. Aeronaut. – volume: 44 start-page: 766 year: 2019 end-page: 772 ident: bib38 article-title: Imperfect architected materials: mechanics and topology optimization publication-title: MRS Bull. – start-page: 119 year: 2017 end-page: 161 ident: bib31 article-title: 5 - mechanical properties of Ti6Al4V and alsi12mg lattice structures manufactured by selective laser melting (slm) publication-title: Laser Additive Manufacturing, Woodhead Publishing Series in Electronic and Optical Materials – volume: 2 start-page: 1 year: 2017 end-page: 35 ident: bib15 article-title: The p-version of the finite element method and finite cell methods publication-title: Encyclopedia of Computational Mechanics – volume: 171 year: 2019 ident: bib29 article-title: Computational modelling of strut defects in SLM manufactured lattice structures publication-title: Mater. Des. – volume: 83 start-page: 4 year: 2016 end-page: 14 ident: bib46 article-title: Just-in-time design and additive manufacture of patient-specific medical implants publication-title: Phys. Procedia – volume: 98 start-page: 682 year: 2017 end-page: 695 ident: bib21 article-title: Experimental and numerical investigation of single pores for identification of effective metal foams properties publication-title: J. Appl. Math. Mech. – volume: 74 start-page: 126 year: 2017 end-page: 142 ident: bib23 article-title: Parallelization of the multi-level hp-adaptive finite cell method publication-title: Comput. Math. Appl. – year: 2017 ident: bib2 article-title: ISO / ASTM52900-15: Standard Terminology for Additive Manufacturing? General Principles - Terminology – volume: 139 start-page: 32 year: 2017 end-page: 38 ident: bib11 article-title: A survey of modeling of lattice structures fabricated by additive manufacturing publication-title: J. Mech. Des. – volume: 162 start-page: 1 year: 2019 end-page: 10 ident: bib50 article-title: Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures publication-title: Compos. Part B Eng. – volume: 142 year: 2021 ident: bib9 article-title: The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion publication-title: Int. J. Fatigue – volume: 41 start-page: 121 year: 2007 end-page: 133 ident: bib37 article-title: Finite cell method publication-title: Comput. Mech. – volume: 91 start-page: 457 year: 2012 end-page: 471 ident: bib55 article-title: An efficient integration technique for the voxel-based finite cell method publication-title: Int. J. Numer. Methods Eng. – volume: 49 start-page: 170 year: 2018 end-page: 180 ident: bib47 article-title: Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior publication-title: Robot. Comput.-Integr. Manuf. – volume: 8 start-page: 4957 year: 2018 ident: bib27 article-title: Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load publication-title: Sci. Rep. – reference: Renishaw-PLC, Data sheet: SS 316L-0407 powder for additive manufacturing. Renishaw-PLC, 2020. – volume: 55 start-page: 390 year: 2012 end-page: 406 ident: bib35 article-title: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation publication-title: Comput. Mater. Sci. – volume: 34 year: 2018 ident: bib16 article-title: Multi-level hp-finite cell method for embedded interface problems with application in biomechanics publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 187 year: 2020 ident: bib14 article-title: Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights publication-title: Mater. Des. – year: 2013 ident: bib33 article-title: Micromechanics: Overall Properties of Heterogeneous Materials – year: 1985 ident: bib48 article-title: Elements of Homogenization for Inelastic Solid Mechanics – volume: 27 start-page: 221 year: 1973 end-page: 228 ident: bib3 article-title: The Finite Element Method with Penalty publication-title: Math. Comput. – volume: 22 start-page: 138 year: 2018 ident: 10.1016/j.addma.2021.101949_bib39 article-title: Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2018.06.004 – volume: 80 start-page: 2462 issue: 11 year: 2020 ident: 10.1016/j.addma.2021.101949_bib25 article-title: Image-based material characterization of complex microarchitectured additively manufactured structures publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.07.018 – volume: 32 start-page: 1727 issue: 7 year: 2019 ident: 10.1016/j.addma.2021.101949_bib56 article-title: Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by slm publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2018.08.017 – volume: 144 start-page: 32 year: 2018 ident: 10.1016/j.addma.2021.101949_bib1 article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.01.059 – volume: 791 start-page: 490 year: 2019 ident: 10.1016/j.addma.2021.101949_bib12 article-title: Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.03.344 – volume: 182 year: 2019 ident: 10.1016/j.addma.2021.101949_bib45 article-title: Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108091 – year: 2017 ident: 10.1016/j.addma.2021.101949_bib19 – volume: 74 start-page: 126 issue: 1 year: 2017 ident: 10.1016/j.addma.2021.101949_bib23 article-title: Parallelization of the multi-level hp-adaptive finite cell method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.01.004 – volume: 169 year: 2019 ident: 10.1016/j.addma.2021.101949_bib26 article-title: Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ -CT-based finite element analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107685 – volume: 44 start-page: 766 issue: 10 year: 2019 ident: 10.1016/j.addma.2021.101949_bib38 article-title: Imperfect architected materials: mechanics and topology optimization publication-title: MRS Bull. doi: 10.1557/mrs.2019.231 – year: 1985 ident: 10.1016/j.addma.2021.101949_bib48 – volume: 7 start-page: 463 issue: 6 year: 2008 ident: 10.1016/j.addma.2021.101949_bib36 article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-007-0109-7 – volume: 163 start-page: 14 year: 2019 ident: 10.1016/j.addma.2021.101949_bib24 article-title: Robust and parallel scalable iterative solutions for large-scale finite cell analyses publication-title: Fin. Elem. Anal. Des. doi: 10.1016/j.finel.2019.01.009 – volume: 162 start-page: 1 year: 2019 ident: 10.1016/j.addma.2021.101949_bib50 article-title: Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.10.053 – volume: 78 start-page: 381 year: 2018 ident: 10.1016/j.addma.2021.101949_bib7 article-title: Fatigue and biological properties of ti-6al-4v eli cellular structures with variously arranged cubic cells made by selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.11.044 – year: 2004 ident: 10.1016/j.addma.2021.101949_bib57 article-title: An Introduction to Computational Micromechanics – volume: 138 start-page: 24 year: 2018 ident: 10.1016/j.addma.2021.101949_bib49 article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.12.025 – volume: 180 start-page: 332 year: 2019 ident: 10.1016/j.addma.2021.101949_bib5 article-title: Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.11.045 – volume: 70 start-page: 17 year: 2017 ident: 10.1016/j.addma.2021.101949_bib4 article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.04.041 – volume: 42 start-page: 1995 issue: 12 year: 1994 ident: 10.1016/j.addma.2021.101949_bib20 article-title: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(94)90022-1 – ident: 10.1016/j.addma.2021.101949_bib8 doi: 10.1016/j.prostr.2017.11.068 – volume: 41 start-page: 121 issue: 1 year: 2007 ident: 10.1016/j.addma.2021.101949_bib37 article-title: Finite cell method publication-title: Comput. Mech. doi: 10.1007/s00466-007-0173-y – volume: 95 start-page: 518 year: 2016 ident: 10.1016/j.addma.2021.101949_bib41 article-title: Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.146 – volume: 187 year: 2020 ident: 10.1016/j.addma.2021.101949_bib14 article-title: Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108385 – ident: 10.1016/j.addma.2021.101949_bib44 – year: 2013 ident: 10.1016/j.addma.2021.101949_bib33 – volume: 27 start-page: 1966 issue: 23 year: 2020 ident: 10.1016/j.addma.2021.101949_bib43 article-title: Determination of the effective elastic properties of titanium lattice structures publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2018.1536816 – year: 2015 ident: 10.1016/j.addma.2021.101949_bib22 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.addma.2021.101949_bib15 article-title: The p-version of the finite element method and finite cell methods – volume: 98 start-page: 682 year: 2017 ident: 10.1016/j.addma.2021.101949_bib21 article-title: Experimental and numerical investigation of single pores for identification of effective metal foams properties publication-title: J. Appl. Math. Mech. – volume: 64 start-page: 44 year: 2014 ident: 10.1016/j.addma.2021.101949_bib51 article-title: Non linear constitutive models for lattice materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.10.015 – volume: 62 start-page: 32 year: 2012 ident: 10.1016/j.addma.2021.101949_bib53 article-title: Evaluations of cellular lattice structures manufactured using selective laser melting publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2012.06.002 – volume: 142 year: 2021 ident: 10.1016/j.addma.2021.101949_bib9 article-title: The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2020.105946 – volume: 63 start-page: 350 year: 2017 ident: 10.1016/j.addma.2021.101949_bib32 article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.013 – year: 2017 ident: 10.1016/j.addma.2021.101949_bib54 – volume: 124 start-page: 348 year: 2019 ident: 10.1016/j.addma.2021.101949_bib10 article-title: On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.03.019 – start-page: 119 year: 2017 ident: 10.1016/j.addma.2021.101949_bib31 article-title: 5 - mechanical properties of Ti6Al4V and alsi12mg lattice structures manufactured by selective laser melting (slm) – volume: 91 start-page: 457 issue: 5 year: 2012 ident: 10.1016/j.addma.2021.101949_bib55 article-title: An efficient integration technique for the voxel-based finite cell method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4269 – volume: 27 start-page: 221 issue: 122 year: 1973 ident: 10.1016/j.addma.2021.101949_bib3 article-title: The Finite Element Method with Penalty publication-title: Math. Comput. doi: 10.1090/S0025-5718-1973-0351118-5 – volume: 139 start-page: 32 year: 2017 ident: 10.1016/j.addma.2021.101949_bib11 article-title: A survey of modeling of lattice structures fabricated by additive manufacturing publication-title: J. Mech. Des. doi: 10.1115/1.4037305 – volume: 83 start-page: 4 year: 2016 ident: 10.1016/j.addma.2021.101949_bib46 article-title: Just-in-time design and additive manufacture of patient-specific medical implants publication-title: Phys. Procedia doi: 10.1016/j.phpro.2016.08.002 – year: 2017 ident: 10.1016/j.addma.2021.101949_bib2 – volume: 15 issue: 7 year: 2015 ident: 10.1016/j.addma.2021.101949_bib17 article-title: Finite Cell Method: High‐Order Structural Dynamics for Complex Geometries publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455415400180 – volume: 183 year: 2019 ident: 10.1016/j.addma.2021.101949_bib30 article-title: SLM lattice structures: Properties, performance, applications and challenges publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108137 – volume: 157–158 start-page: 231 year: 2019 ident: 10.1016/j.addma.2021.101949_bib18 article-title: Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.04.054 – volume: 8 start-page: 4957 year: 2018 ident: 10.1016/j.addma.2021.101949_bib27 article-title: Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load publication-title: Sci. Rep. doi: 10.1038/s41598-018-23414-2 – volume: 55 start-page: 390 year: 2012 ident: 10.1016/j.addma.2021.101949_bib35 article-title: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.10.017 – volume: 789 start-page: 852 year: 2019 ident: 10.1016/j.addma.2021.101949_bib52 article-title: Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.03.135 – ident: 10.1016/j.addma.2021.101949_bib40 doi: 10.3390/ma13092204 – volume: 49 start-page: 170 year: 2018 ident: 10.1016/j.addma.2021.101949_bib47 article-title: Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2017.06.006 – volume: 34 issue: 4 year: 2018 ident: 10.1016/j.addma.2021.101949_bib16 article-title: Multi-level hp-finite cell method for embedded interface problems with application in biomechanics publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2951 – volume: 143 start-page: 172 year: 2018 ident: 10.1016/j.addma.2021.101949_bib34 article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.02.012 – volume: 49 start-page: 957 year: 2013 ident: 10.1016/j.addma.2021.101949_bib6 article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.01.071 – volume: 171 year: 2019 ident: 10.1016/j.addma.2021.101949_bib29 article-title: Computational modelling of strut defects in SLM manufactured lattice structures publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107671 – volume: 5 start-page: 1117 year: 2018 ident: 10.1016/j.addma.2021.101949_bib13 article-title: Standard method for microct-based additive manufacturing quality control 2: Density measurement publication-title: MethodsX doi: 10.1016/j.mex.2018.09.006 – volume: 138 year: 2020 ident: 10.1016/j.addma.2021.101949_bib42 article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (slm) publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2020.105623 – volume: 107 start-page: 160 year: 2017 ident: 10.1016/j.addma.2021.101949_bib28 article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.07.003 |
| SSID | ssj0001537982 |
| Score | 2.4960833 |
| SecondaryResourceType | review_article |
| Snippet | The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 101949 |
| SubjectTerms | Additive manufacturing Computed tomography Finite Cell Method Finite Element method Geometrical defects Numerical homogenization Octet-truss lattice |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9zexAf_BYnKnnw0e4jbdP0cYhzCg5BB_OppGmK09oNt-LHX-9d044pMhR8K-FC0v4ud1dy9ztCToTrxUjFZUXS1pajRcuSdgSACNdXbabtNsdq5Os-7w2cq6E7rJCLshYG0yoL229sem6ti5Fm8TWbMpw2J6NR85bBMoKD4rXzqlBvhdS4C0F5ldQG_ZvOPbaWw514IuclyJ9RvuQfyjO94IjnFESsjSM-0mr-7KNWs3Qi319lkiz4oO4GeSh3b1JPnhrZLGyoj2_Ejv_weptkvYhTacfIbpGKTrfJ2gJ74Q55u3wGY2ShH4xompmrn4SqOQW0qfCkMo3oYiMBCso9Mq2c6DimeQp9omlJGIBjY5g_s7AeZEoTOcMEPWqYbrMXPd0lg-753VnPKho5WMp2BLa7F9i2insRb4Wez5RWyJLjxC1f6MgGBxnGodaeFD7oFEQwynFaUoK9EBH8Iil7j1TTcar3CfW5dDVTzJYKgOKhkL7HYgFhIIRKKmR1wkroAlWwnGOzjSQo09kegxzvAPEODN51cjqfNDEkH8vFeakTwRcwA3BDyydacw36zUIHf5Q_JFWAQh9BmDQLj4sj8AlRwRON priority: 102 providerName: Unpaywall |
| Title | Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures |
| URI | https://dx.doi.org/10.1016/j.addma.2021.101949 https://www.sciencedirect.com/science/article/abs/pii/S2214860421001147 |
| UnpaywallVersion | submittedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2214-7810 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537982 issn: 2214-7810 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2214-7810 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537982 issn: 2214-7810 databaseCode: ACRLP dateStart: 20141001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2214-7810 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537982 issn: 2214-7810 databaseCode: .~1 dateStart: 20141001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2214-7810 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537982 issn: 2214-7810 databaseCode: AIKHN dateStart: 20141001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2214-7810 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537982 issn: 2214-7810 databaseCode: AKRWK dateStart: 20141001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPqgP4ifOj5EHH41b07RNH8dwbIpD0MF8KmmawqR2AzfUF_9275p2TpAhPpWGHCn5Xe6u7d3vCLmQXpAiFRdLlGuYMLLNlJsAINILtcON6_hYjXw39PsjcTP2xjXSrWphMK2ytP3WphfWuhxplbvZmk0mrQcOS0gflM4pKkKxolyIALsYXH06399ZPDcIi55ROJ-hQEU-VKR5wfku-Ie4gyMhcmr-7qA2F_lMfbypLFtxQL1dslNGjrRjH26P1Ey-T7ZX-AQPyPvgBcwDQ8-U0Hxhf8ZkVC9JmW3NJVV5Qlep_Smo28Q2V6LTlBZJ7ZmhVQk_jk1Bfs6wQuOVZmqOKXPUcs8u4IX9kIx614_dPitbKzDtCokN6CU2kvKDxG_HQci10chbI9J2KE3igsuK09iYQMkQUIaYQgvRVgpOsEzgpUW7R6SeT3NzTGjoK89wzV2lYff8WKow4KmEwAyCFx3zBuHVfka65B3H9hdZVCWYPUcFCBGCEFkQGuRyKTSztBvrp_sVUNEP7YnAMawXZEtY_7LQyX8XOiVbeGdTJc9IHQAy5xDOzONmoa9NstEZ3PaHcB0N7ztPXzhc9k4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAwOiKcYzxw4Etamr_SIJqYB2y5s0m5VmqbSUOkmsQm48Nuxm3YMCU2Ia1orVT7Hdhr7MyFXwgtSpOJiiXQ0c7WwmHQSAER4obK5dmwfq5H7A787ch_G3rhG2lUtDKZVlrbf2PTCWpcjrXI1W7PJpPXEYQrhg9LZRUVosEE2XY8HeAK7-bS_f7R4ThAWTaNQgKFExT5U5HnBBi8IiLiNIyGSav7uoRqLfCY_3mSWrXigzi7ZKUNHemu-bo_UdL5PtlcIBQ_I-_0L2AeGrimh-cLcxmRULVmZTdEllXlCV7n9KejbxHRXotOUFlntmaZVDT-OTUF-zrBE45Vmco45c9SQzy7gxH5IRp27YbvLyt4KTDmuwA70AjtJ-UHiW3EQcqUVEte4qRUKnTjgs-I01jqQIgSYIahQrmtJCVtYJHBqUc4RqefTXB8TGvrS01xxRypYPT8WMgx4KiAyg-hFxbxJeLWekSqJx7H_RRZVGWbPUQFChCBEBoQmuV4KzQzvxvrX_Qqo6If6ROAZ1guyJax_mejkvxNdkkZ32O9FvfvB4ynZwicmb_KM1AEsfQ6xzTy-KHT3CzaJ9jM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9zexAf_BYnKnnw0e4jbdP0cYhzCg5BB_OppGmK09oNt-LHX-9d044pMhR8K-FC0v4ud1dy9ztCToTrxUjFZUXS1pajRcuSdgSACNdXbabtNsdq5Os-7w2cq6E7rJCLshYG0yoL229sem6ti5Fm8TWbMpw2J6NR85bBMoKD4rXzqlBvhdS4C0F5ldQG_ZvOPbaWw514IuclyJ9RvuQfyjO94IjnFESsjSM-0mr-7KNWs3Qi319lkiz4oO4GeSh3b1JPnhrZLGyoj2_Ejv_weptkvYhTacfIbpGKTrfJ2gJ74Q55u3wGY2ShH4xompmrn4SqOQW0qfCkMo3oYiMBCso9Mq2c6DimeQp9omlJGIBjY5g_s7AeZEoTOcMEPWqYbrMXPd0lg-753VnPKho5WMp2BLa7F9i2insRb4Wez5RWyJLjxC1f6MgGBxnGodaeFD7oFEQwynFaUoK9EBH8Iil7j1TTcar3CfW5dDVTzJYKgOKhkL7HYgFhIIRKKmR1wkroAlWwnGOzjSQo09kegxzvAPEODN51cjqfNDEkH8vFeakTwRcwA3BDyydacw36zUIHf5Q_JFWAQh9BmDQLj4sj8AlRwRON |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+numerical+characterization+and+experimental+validation+of+tensile+behavior+of+octet-truss+lattice+structures&rft.jtitle=Additive+manufacturing&rft.au=Korshunova%2C+N.&rft.au=Alaimo%2C+G.&rft.au=Hosseini%2C+S.B.&rft.au=Carraturo%2C+M.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=41&rft_id=info:doi/10.1016%2Fj.addma.2021.101949&rft.externalDocID=S2214860421001147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |