Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures

The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geo...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 41; p. 101949
Main Authors Korshunova, N., Alaimo, G., Hosseini, S.B., Carraturo, M., Reali, A., Niiranen, J., Auricchio, F., Rank, E., Kollmannsberger, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text
ISSN2214-8604
2214-7810
2214-7810
DOI10.1016/j.addma.2021.101949

Cover

Abstract The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geometrical defects that mainly result in deviations of the effective geometry from the nominal one. This change in the final printed shape is the primary cause of the gap between the as-designed and as-manufactured mechanical behavior of AM products. Thus, the possibility to incorporate the precise manufactured geometries into the computational analysis is crucial for the quality and performance assessment of the final parts. Computed tomography (CT) is an accurate method for the acquisition of the manufactured shape. However, it is often not feasible to integrate the CT-based geometrical information into the traditional computational analysis due to the complexity of the meshing procedure for such high-resolution geometrical models and the prohibitive numerical costs. In this work, an embedded numerical framework is applied to efficiently simulate and compare the mechanical behavior of as-designed to as-manufactured octet-truss lattice structures. The parts are produced using laser powder bed fusion (LPBF). Employing an immersed boundary method, namely the Finite Cell Method (FCM), we perform direct numerical simulations (DNS) and first-order numerical homogenization analysis of a tensile test for a 3D printed octet-truss structure. Numerical results based on CT scan (as-manufactured geometry) show an excellent agreement with experimental measurements, whereas both DNS and first-order numerical homogenization performed directly on the 3D virtual model (as-designed geometry) of the structure show a significant deviation from experimental data. [Display omitted] •Incorporation of as-manufactured lattice geometries in numerical analysis is challenging.•Immersed methods allow to account for process-induced defects in an efficient image-to-numerical-characterization workflow.•Numerical experiments are performed directly on the CT images of octet-truss lattices.•As-manufactured results are validated through experimental measurements.
AbstractList The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design flexibility comes, however, with the complexity of the underlying physics. In fact, metal additive manufacturing introduces process-induced geometrical defects that mainly result in deviations of the effective geometry from the nominal one. This change in the final printed shape is the primary cause of the gap between the as-designed and as-manufactured mechanical behavior of AM products. Thus, the possibility to incorporate the precise manufactured geometries into the computational analysis is crucial for the quality and performance assessment of the final parts. Computed tomography (CT) is an accurate method for the acquisition of the manufactured shape. However, it is often not feasible to integrate the CT-based geometrical information into the traditional computational analysis due to the complexity of the meshing procedure for such high-resolution geometrical models and the prohibitive numerical costs. In this work, an embedded numerical framework is applied to efficiently simulate and compare the mechanical behavior of as-designed to as-manufactured octet-truss lattice structures. The parts are produced using laser powder bed fusion (LPBF). Employing an immersed boundary method, namely the Finite Cell Method (FCM), we perform direct numerical simulations (DNS) and first-order numerical homogenization analysis of a tensile test for a 3D printed octet-truss structure. Numerical results based on CT scan (as-manufactured geometry) show an excellent agreement with experimental measurements, whereas both DNS and first-order numerical homogenization performed directly on the 3D virtual model (as-designed geometry) of the structure show a significant deviation from experimental data. [Display omitted] •Incorporation of as-manufactured lattice geometries in numerical analysis is challenging.•Immersed methods allow to account for process-induced defects in an efficient image-to-numerical-characterization workflow.•Numerical experiments are performed directly on the CT images of octet-truss lattices.•As-manufactured results are validated through experimental measurements.
ArticleNumber 101949
Author Niiranen, J.
Hosseini, S.B.
Auricchio, F.
Rank, E.
Kollmannsberger, S.
Alaimo, G.
Korshunova, N.
Carraturo, M.
Reali, A.
Author_xml – sequence: 1
  givenname: N.
  surname: Korshunova
  fullname: Korshunova, N.
  email: nina.korshunova@tum.de
  organization: Chair of Computational Modeling and Simulation, München, Technical University of Munich, Germany
– sequence: 2
  givenname: G.
  surname: Alaimo
  fullname: Alaimo, G.
  organization: Department of Civil Engineering and Architecture, University of Pavia, Italy
– sequence: 3
  givenname: S.B.
  surname: Hosseini
  fullname: Hosseini, S.B.
  organization: Department of Civil Engineering, Aalto University, Finland
– sequence: 4
  givenname: M.
  surname: Carraturo
  fullname: Carraturo, M.
  organization: Department of Civil Engineering and Architecture, University of Pavia, Italy
– sequence: 5
  givenname: A.
  surname: Reali
  fullname: Reali, A.
  organization: Department of Civil Engineering and Architecture, University of Pavia, Italy
– sequence: 6
  givenname: J.
  surname: Niiranen
  fullname: Niiranen, J.
  organization: Department of Civil Engineering, Aalto University, Finland
– sequence: 7
  givenname: F.
  surname: Auricchio
  fullname: Auricchio, F.
  organization: Department of Civil Engineering and Architecture, University of Pavia, Italy
– sequence: 8
  givenname: E.
  surname: Rank
  fullname: Rank, E.
  organization: Institute for Advanced Study, München,Technical University of Munich, Germany
– sequence: 9
  givenname: S.
  surname: Kollmannsberger
  fullname: Kollmannsberger, S.
  organization: Chair of Computational Modeling and Simulation, München, Technical University of Munich, Germany
BookMark eNqNkL9OwzAQhy1UJErpE7DkBVJsx02cgQFV_KlUiQVm62JfqKvUqWy3tDw9adOJAZh89zt_tu67JgPXOiTkltEJoyy_W03AmDVMOOXsmJSivCBDzplIC8no4FzLnIorMg5hRSll06woJR-S_XwNH5hWENAkbrtGbzU0iV6CBx277guibV0CziS433TBGl3sbuygsaaftXUS0QXbYFLhEna29ces7fiYRr8NIWkgRqsxCV2r49ZjuCGXNTQBx-dzRN6fHt9mL-ni9Xk-e1ikOhMypiyTual4XpicVkXJNeqMSi5qWko0mRRFVVeIBcgSK6Ql00JQADpl0vCM6mxERP_u1m3g8AlNozbdEuAPilF1FKhW6iRQHQWqXmCHlT2mfRuCx1ppG0_rRg-2-YPNfrD_-_G-p7CzsbPoVdAWnUZjPeqoTGt_5b8BywKi2w
CitedBy_id crossref_primary_10_1016_j_matdes_2021_109693
crossref_primary_10_1002_nme_6810
crossref_primary_10_1016_j_addma_2023_103415
crossref_primary_10_1002_advs_202300912
crossref_primary_10_1007_s12206_024_2201_7
crossref_primary_10_1111_cgf_15224
crossref_primary_10_1142_S0219455421501492
crossref_primary_10_1002_mdp2_249
crossref_primary_10_1007_s00170_024_13871_7
crossref_primary_10_1007_s00466_023_02424_6
crossref_primary_10_1016_j_engappai_2024_108993
crossref_primary_10_1021_acsami_3c13270
crossref_primary_10_3389_fbioe_2022_819005
crossref_primary_10_1007_s00466_023_02394_9
crossref_primary_10_47495_okufbed_1207865
crossref_primary_10_1007_s00170_022_08716_0
crossref_primary_10_2139_ssrn_4184541
Cites_doi 10.1016/j.eml.2018.06.004
10.1016/j.camwa.2020.07.018
10.1016/j.cja.2018.08.017
10.1016/j.matdes.2018.01.059
10.1016/j.jallcom.2019.03.344
10.1016/j.matdes.2019.108091
10.1016/j.camwa.2017.01.004
10.1016/j.matdes.2019.107685
10.1557/mrs.2019.231
10.1007/s10237-007-0109-7
10.1016/j.finel.2019.01.009
10.1016/j.compositesb.2018.10.053
10.1016/j.jmbbm.2017.11.044
10.1016/j.ijsolstr.2017.12.025
10.1016/j.engstruct.2018.11.045
10.1016/j.jmbbm.2016.04.041
10.1016/0022-5096(94)90022-1
10.1016/j.prostr.2017.11.068
10.1007/s00466-007-0173-y
10.1016/j.matdes.2016.01.146
10.1016/j.matdes.2019.108385
10.1080/15376494.2018.1536816
10.1016/j.jmps.2013.10.015
10.1016/j.ijmachtools.2012.06.002
10.1016/j.ijfatigue.2020.105946
10.1016/j.actbio.2017.09.013
10.1016/j.ijfatigue.2019.03.019
10.1002/nme.4269
10.1090/S0025-5718-1973-0351118-5
10.1115/1.4037305
10.1016/j.phpro.2016.08.002
10.1142/S0219455415400180
10.1016/j.matdes.2019.108137
10.1016/j.ijmecsci.2019.04.054
10.1038/s41598-018-23414-2
10.1016/j.commatsci.2011.10.017
10.1016/j.jallcom.2019.03.135
10.3390/ma13092204
10.1016/j.rcim.2017.06.006
10.1002/cnm.2951
10.1016/j.compositesb.2018.02.012
10.1016/j.matdes.2013.01.071
10.1016/j.matdes.2019.107671
10.1016/j.mex.2018.09.006
10.1016/j.ijfatigue.2020.105623
10.1016/j.jmps.2017.07.003
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.addma.2021.101949
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID oai:mediatum.ub.tum.de:node/1608901
10_1016_j_addma_2021_101949
S2214860421001147
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c348t-1386db267d60b792cec30824f098ed3847bfbee7a89ebe091c440aa0518d230c3
IEDL.DBID .~1
ISSN 2214-8604
2214-7810
IngestDate Tue Aug 19 19:55:21 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Oct 01 02:29:58 EDT 2025
Fri Feb 23 02:44:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Octet-truss lattice
Computed tomography
Geometrical defects
Additive manufacturing
Finite Cell Method
Numerical homogenization
Finite Element method
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-1386db267d60b792cec30824f098ed3847bfbee7a89ebe091c440aa0518d230c3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/abs/pii/S2214860421001147
ParticipantIDs unpaywall_primary_10_1016_j_addma_2021_101949
crossref_citationtrail_10_1016_j_addma_2021_101949
crossref_primary_10_1016_j_addma_2021_101949
elsevier_sciencedirect_doi_10_1016_j_addma_2021_101949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Additive manufacturing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Elhaddad, Zander, Bog, Kudela, Kollmannsberger, Kirschke, Baum, Ruess, Rank (bib16) 2018; 34
Dong, Tang, Zhao (bib11) 2017; 139
Renishaw-PLC, Data sheet: SS 316L-0407 powder for additive manufacturing. Renishaw-PLC, 2020.
Refai, Montemurro, Brugger, Saintier (bib43) 2020; 27
Lietaert, Cutolo, Boey, Van Hooreweder (bib27) 2018; 8
Elhaddad, Zander, Kollmannsberger, Shadavakhsh, Nübel, Rank (bib17) 2015; 15
Yang, Ruess, Kollmannsberger, Düster, Rank (bib55) 2012; 91
Lozanovski, Leary, Tran, Shidid, Qian, Choong, Brandt (bib29) 2019; 171
Pasini, Guest (bib38) 2019; 44
Lei, Li, Meng, Zhou, Liu, Zhang, Wang, Fang (bib26) 2019; 169
Liu, Kamm, García-Moreno, Banhart, Pasini (bib28) 2017; 107
Rashed, Ashraf, Mines, Hazell (bib41) 2016; 95
Parvizian, Düster, Rank (bib37) 2007; 41
Yang, Hsu, Baughman, Godfrey, Medina, Menon, Wiener (bib54) 2017
(bib2) 2017
Jomo, Zander, Elhaddad, Özcan, Kollmannsberger, Mundani, Rank (bib23) 2017; 74
Dallago, Fontanari, Torresani, Leoni, Pederzolli, Potrich, Benedetti (bib7) 2018; 78
Jomo, de Prenter, Elhaddad, D’Angella, Verhoosel, Kollmannsberger, Kirschke, Nübel, van Brummelen, Rank (bib24) 2019; 163
Dallago, Raghavendra, Luchin, Zappini, Pasini, Benedetti (bib9) 2021; 142
Dong, Liu, Li, Liang (bib12) 2019; 791
Pahr, Zysset (bib36) 2008; 7
Ngo, Kashani, Imbalzano, Nguyen, Hui (bib34) 2018; 143
Yan, Hao, Hussein, Raymont (bib53) 2012; 62
Vigliotti, Deshpande, Pasini (bib51) 2014; 64
Korshunova, Jomo, Lékó, Reznik, Balázs, Kollmannsberger (bib25) 2020; 80
Dallago, Winiarski, Zanini, Carmignato, Benedetti (bib10) 2019; 124
Düster, Rank, Szabó (bib15) 2017; 2
Wang, Lei, Zhu, Chen, Fang (bib52) 2019; 789
Buchanan, Gardner (bib5) 2019; 180
Sing, Wiria, Yeong (bib47) 2018; 49
Tancogne-Dejean, Mohr (bib49) 2018; 138
Nemat-Nasser, Hori, Achenbach (bib33) 2013
Portela, Greer, Kochmann (bib39) 2018; 22
Babuska (bib3) 1973; 27
Campoli, Borleffs, AminYavari, Wauthle, Weinans, Zadpoor (bib6) 2013; 49
Zhou, Zhang, Zeng, Yang, Lei, Li, Wang (bib56) 2019; 32
Bagheri, Melancon, Liu, Johnston, Pasini (bib4) 2017; 70
Heinze, Bleistein, Düster, Diebels, Jung (bib21) 2017; 98
Zohdi, Wriggers (bib57) 2004
Refai, Brugger, Montemurro, Saintier (bib42) 2020; 138
Tian, Qi, Chao, Liang, Fu (bib50) 2019; 162
M. Dallago, V. Fontanari, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry. Procedia Structural Integrity, 7:116-123 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017.
Hazanov, Huet (bib20) 1994; 42
Al-Saedi, Masood, Faizan-Ur-Rab, Alomarah, Ponnusamy (bib1) 2018; 144
Maconachie, Leary, Lozanovski, Zhang, Qian, Faruque, Brandt (bib30) 2019; 183
Shidid, Leary, Choong, Brandt (bib46) 2016; 83
Melancon, Bagheri, Johnston, Liu, Tanzer, Pasini (bib32) 2017; 63
P. Platek, J. Sienkiewicz, J. Janiszewski, F. Jiang, investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). page 2204, 20202.
du Plessis, Yadroitsava, Yadroitsev (bib14) 2020; 187
du Plessis, Sperling, Beerlink, Tshabalala, Hoosain, Mathe, leRoux (bib13) 2018; 5
Mazur, Leary, McMillan, Sun, Shidid, Brandt (bib31) 2017
Nguyen, Béchet, Geuzaine, Noels (bib35) 2012; 55
Sanaei, Fatemi, Phan (bib45) 2019; 182
Suquet (bib48) 1985
ISO/ASTM52900-15 (bib22) 2015
Geng, Wu, Sun, Fang (bib18) 2019; 157–158
Gross, Seelig (bib19) 2017
Maconachie (10.1016/j.addma.2021.101949_bib30) 2019; 183
Ngo (10.1016/j.addma.2021.101949_bib34) 2018; 143
Nemat-Nasser (10.1016/j.addma.2021.101949_bib33) 2013
Nguyen (10.1016/j.addma.2021.101949_bib35) 2012; 55
Sanaei (10.1016/j.addma.2021.101949_bib45) 2019; 182
Pahr (10.1016/j.addma.2021.101949_bib36) 2008; 7
Shidid (10.1016/j.addma.2021.101949_bib46) 2016; 83
Lietaert (10.1016/j.addma.2021.101949_bib27) 2018; 8
Babuska (10.1016/j.addma.2021.101949_bib3) 1973; 27
Vigliotti (10.1016/j.addma.2021.101949_bib51) 2014; 64
Heinze (10.1016/j.addma.2021.101949_bib21) 2017; 98
(10.1016/j.addma.2021.101949_bib2) 2017
Elhaddad (10.1016/j.addma.2021.101949_bib16) 2018; 34
Yan (10.1016/j.addma.2021.101949_bib53) 2012; 62
Dong (10.1016/j.addma.2021.101949_bib12) 2019; 791
Al-Saedi (10.1016/j.addma.2021.101949_bib1) 2018; 144
Geng (10.1016/j.addma.2021.101949_bib18) 2019; 157–158
Gross (10.1016/j.addma.2021.101949_bib19) 2017
Jomo (10.1016/j.addma.2021.101949_bib23) 2017; 74
Bagheri (10.1016/j.addma.2021.101949_bib4) 2017; 70
Portela (10.1016/j.addma.2021.101949_bib39) 2018; 22
Zohdi (10.1016/j.addma.2021.101949_bib57) 2004
Zhou (10.1016/j.addma.2021.101949_bib56) 2019; 32
Yang (10.1016/j.addma.2021.101949_bib55) 2012; 91
Mazur (10.1016/j.addma.2021.101949_bib31) 2017
Yang (10.1016/j.addma.2021.101949_bib54) 2017
10.1016/j.addma.2021.101949_bib44
Sing (10.1016/j.addma.2021.101949_bib47) 2018; 49
du Plessis (10.1016/j.addma.2021.101949_bib13) 2018; 5
Korshunova (10.1016/j.addma.2021.101949_bib25) 2020; 80
Refai (10.1016/j.addma.2021.101949_bib43) 2020; 27
Düster (10.1016/j.addma.2021.101949_bib15) 2017; 2
Rashed (10.1016/j.addma.2021.101949_bib41) 2016; 95
Pasini (10.1016/j.addma.2021.101949_bib38) 2019; 44
Tian (10.1016/j.addma.2021.101949_bib50) 2019; 162
du Plessis (10.1016/j.addma.2021.101949_bib14) 2020; 187
Liu (10.1016/j.addma.2021.101949_bib28) 2017; 107
10.1016/j.addma.2021.101949_bib40
Refai (10.1016/j.addma.2021.101949_bib42) 2020; 138
Melancon (10.1016/j.addma.2021.101949_bib32) 2017; 63
Campoli (10.1016/j.addma.2021.101949_bib6) 2013; 49
Lozanovski (10.1016/j.addma.2021.101949_bib29) 2019; 171
Wang (10.1016/j.addma.2021.101949_bib52) 2019; 789
Buchanan (10.1016/j.addma.2021.101949_bib5) 2019; 180
Dallago (10.1016/j.addma.2021.101949_bib7) 2018; 78
Dallago (10.1016/j.addma.2021.101949_bib10) 2019; 124
Hazanov (10.1016/j.addma.2021.101949_bib20) 1994; 42
Elhaddad (10.1016/j.addma.2021.101949_bib17) 2015; 15
Dong (10.1016/j.addma.2021.101949_bib11) 2017; 139
10.1016/j.addma.2021.101949_bib8
Suquet (10.1016/j.addma.2021.101949_bib48) 1985
ISO/ASTM52900-15 (10.1016/j.addma.2021.101949_bib22) 2015
Parvizian (10.1016/j.addma.2021.101949_bib37) 2007; 41
Lei (10.1016/j.addma.2021.101949_bib26) 2019; 169
Tancogne-Dejean (10.1016/j.addma.2021.101949_bib49) 2018; 138
Jomo (10.1016/j.addma.2021.101949_bib24) 2019; 163
Dallago (10.1016/j.addma.2021.101949_bib9) 2021; 142
References_xml – reference: P. Platek, J. Sienkiewicz, J. Janiszewski, F. Jiang, investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). page 2204, 20202.
– volume: 163
  start-page: 14
  year: 2019
  end-page: 30
  ident: bib24
  article-title: Robust and parallel scalable iterative solutions for large-scale finite cell analyses
  publication-title: Fin. Elem. Anal. Des.
– volume: 78
  start-page: 381
  year: 2018
  end-page: 394
  ident: bib7
  article-title: Fatigue and biological properties of ti-6al-4v eli cellular structures with variously arranged cubic cells made by selective laser melting
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 144
  start-page: 32
  year: 2018
  end-page: 44
  ident: bib1
  article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM
  publication-title: Mater. Des.
– year: 2017
  ident: bib54
  article-title: Additive Manufacturing of Metals: The Technology, Materials, Design and Production
– volume: 169
  year: 2019
  ident: bib26
  article-title: Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and
  publication-title: Mater. Des.
– volume: 138
  year: 2020
  ident: bib42
  article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (slm)
  publication-title: Int. J. Fatigue
– volume: 95
  start-page: 518
  year: 2016
  end-page: 533
  ident: bib41
  article-title: Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications
  publication-title: Mater. Des.
– volume: 80
  start-page: 2462
  year: 2020
  end-page: 2480
  ident: bib25
  article-title: Image-based material characterization of complex microarchitectured additively manufactured structures
  publication-title: Comput. Math. Appl.
– volume: 789
  start-page: 852
  year: 2019
  end-page: 859
  ident: bib52
  article-title: Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting
  publication-title: J. Alloy. Compd.
– volume: 15
  year: 2015
  ident: bib17
  article-title: Finite Cell Method: High‐Order Structural Dynamics for Complex Geometries
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 791
  start-page: 490
  year: 2019
  end-page: 500
  ident: bib12
  article-title: Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices
  publication-title: J. Alloy. Compd.
– volume: 64
  start-page: 44
  year: 2014
  end-page: 60
  ident: bib51
  article-title: Non linear constitutive models for lattice materials
  publication-title: J. Mech. Phys. Solids
– volume: 22
  start-page: 138
  year: 2018
  end-page: 148
  ident: bib39
  article-title: Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures
  publication-title: Extreme Mech. Lett.
– volume: 62
  start-page: 32
  year: 2012
  end-page: 38
  ident: bib53
  article-title: Evaluations of cellular lattice structures manufactured using selective laser melting
  publication-title: Int. J. Mach. Tools Manuf.
– reference: M. Dallago, V. Fontanari, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry. Procedia Structural Integrity, 7:116-123 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017.
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  ident: bib34
  article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
  publication-title: Compos. Part B Eng.
– volume: 138
  start-page: 24
  year: 2018
  end-page: 39
  ident: bib49
  article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy
  publication-title: Int. J. Solids Struct.
– volume: 70
  start-page: 17
  year: 2017
  end-page: 27
  ident: bib4
  article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 2017
  ident: bib19
  article-title: Fracture Mechanics: With an Introduction to Micromechanics
– volume: 180
  start-page: 332
  year: 2019
  end-page: 348
  ident: bib5
  article-title: Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges
  publication-title: Eng. Struct.
– volume: 27
  start-page: 1966
  year: 2020
  end-page: 1982
  ident: bib43
  article-title: Determination of the effective elastic properties of titanium lattice structures
  publication-title: Mech. Adv. Mater. Struct.
– year: 2004
  ident: bib57
  article-title: An Introduction to Computational Micromechanics
  publication-title: Lecture Notes in Applied and Computational Mechanics
– volume: 49
  start-page: 957
  year: 2013
  end-page: 965
  ident: bib6
  article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing
  publication-title: Mater. Des.
– volume: 63
  start-page: 350
  year: 2017
  end-page: 368
  ident: bib32
  article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants
  publication-title: Acta Biomater.
– year: 2015
  ident: bib22
  article-title: ASTM E 111-17: Standard Test Method for Young?s Modulus, Tangent Modulus, and Chord Modulus
– volume: 5
  start-page: 1117
  year: 2018
  end-page: 1123
  ident: bib13
  article-title: Standard method for microct-based additive manufacturing quality control 2: Density measurement
  publication-title: MethodsX
– volume: 42
  start-page: 1995
  year: 1994
  end-page: 2011
  ident: bib20
  article-title: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume
  publication-title: J. Mech. Phys. Solids
– volume: 7
  start-page: 463
  year: 2008
  end-page: 476
  ident: bib36
  article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone
  publication-title: Biomech. Model. Mechanobiol.
– volume: 182
  year: 2019
  ident: bib45
  article-title: Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing
  publication-title: Mater. Des.
– volume: 124
  start-page: 348
  year: 2019
  end-page: 360
  ident: bib10
  article-title: On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting
  publication-title: Int. J. Fatigue
– volume: 157–158
  start-page: 231
  year: 2019
  end-page: 242
  ident: bib18
  article-title: Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction
  publication-title: Int. J. Mech. Sci.
– volume: 107
  start-page: 160
  year: 2017
  end-page: 184
  ident: bib28
  article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting
  publication-title: J. Mech. Phys. Solids
– volume: 183
  year: 2019
  ident: bib30
  article-title: SLM lattice structures: Properties, performance, applications and challenges
  publication-title: Mater. Des.
– volume: 32
  start-page: 1727
  year: 2019
  end-page: 1732
  ident: bib56
  article-title: Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by slm
  publication-title: Chin. J. Aeronaut.
– volume: 44
  start-page: 766
  year: 2019
  end-page: 772
  ident: bib38
  article-title: Imperfect architected materials: mechanics and topology optimization
  publication-title: MRS Bull.
– start-page: 119
  year: 2017
  end-page: 161
  ident: bib31
  article-title: 5 - mechanical properties of Ti6Al4V and alsi12mg lattice structures manufactured by selective laser melting (slm)
  publication-title: Laser Additive Manufacturing, Woodhead Publishing Series in Electronic and Optical Materials
– volume: 2
  start-page: 1
  year: 2017
  end-page: 35
  ident: bib15
  article-title: The p-version of the finite element method and finite cell methods
  publication-title: Encyclopedia of Computational Mechanics
– volume: 171
  year: 2019
  ident: bib29
  article-title: Computational modelling of strut defects in SLM manufactured lattice structures
  publication-title: Mater. Des.
– volume: 83
  start-page: 4
  year: 2016
  end-page: 14
  ident: bib46
  article-title: Just-in-time design and additive manufacture of patient-specific medical implants
  publication-title: Phys. Procedia
– volume: 98
  start-page: 682
  year: 2017
  end-page: 695
  ident: bib21
  article-title: Experimental and numerical investigation of single pores for identification of effective metal foams properties
  publication-title: J. Appl. Math. Mech.
– volume: 74
  start-page: 126
  year: 2017
  end-page: 142
  ident: bib23
  article-title: Parallelization of the multi-level hp-adaptive finite cell method
  publication-title: Comput. Math. Appl.
– year: 2017
  ident: bib2
  article-title: ISO / ASTM52900-15: Standard Terminology for Additive Manufacturing? General Principles - Terminology
– volume: 139
  start-page: 32
  year: 2017
  end-page: 38
  ident: bib11
  article-title: A survey of modeling of lattice structures fabricated by additive manufacturing
  publication-title: J. Mech. Des.
– volume: 162
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib50
  article-title: Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures
  publication-title: Compos. Part B Eng.
– volume: 142
  year: 2021
  ident: bib9
  article-title: The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion
  publication-title: Int. J. Fatigue
– volume: 41
  start-page: 121
  year: 2007
  end-page: 133
  ident: bib37
  article-title: Finite cell method
  publication-title: Comput. Mech.
– volume: 91
  start-page: 457
  year: 2012
  end-page: 471
  ident: bib55
  article-title: An efficient integration technique for the voxel-based finite cell method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 49
  start-page: 170
  year: 2018
  end-page: 180
  ident: bib47
  article-title: Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 8
  start-page: 4957
  year: 2018
  ident: bib27
  article-title: Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load
  publication-title: Sci. Rep.
– reference: Renishaw-PLC, Data sheet: SS 316L-0407 powder for additive manufacturing. Renishaw-PLC, 2020.
– volume: 55
  start-page: 390
  year: 2012
  end-page: 406
  ident: bib35
  article-title: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation
  publication-title: Comput. Mater. Sci.
– volume: 34
  year: 2018
  ident: bib16
  article-title: Multi-level hp-finite cell method for embedded interface problems with application in biomechanics
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 187
  year: 2020
  ident: bib14
  article-title: Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights
  publication-title: Mater. Des.
– year: 2013
  ident: bib33
  article-title: Micromechanics: Overall Properties of Heterogeneous Materials
– year: 1985
  ident: bib48
  article-title: Elements of Homogenization for Inelastic Solid Mechanics
– volume: 27
  start-page: 221
  year: 1973
  end-page: 228
  ident: bib3
  article-title: The Finite Element Method with Penalty
  publication-title: Math. Comput.
– volume: 22
  start-page: 138
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib39
  article-title: Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2018.06.004
– volume: 80
  start-page: 2462
  issue: 11
  year: 2020
  ident: 10.1016/j.addma.2021.101949_bib25
  article-title: Image-based material characterization of complex microarchitectured additively manufactured structures
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.07.018
– volume: 32
  start-page: 1727
  issue: 7
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib56
  article-title: Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by slm
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2018.08.017
– volume: 144
  start-page: 32
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib1
  article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.01.059
– volume: 791
  start-page: 490
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib12
  article-title: Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.03.344
– volume: 182
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib45
  article-title: Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108091
– year: 2017
  ident: 10.1016/j.addma.2021.101949_bib19
– volume: 74
  start-page: 126
  issue: 1
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib23
  article-title: Parallelization of the multi-level hp-adaptive finite cell method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.01.004
– volume: 169
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib26
  article-title: Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ -CT-based finite element analysis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107685
– volume: 44
  start-page: 766
  issue: 10
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib38
  article-title: Imperfect architected materials: mechanics and topology optimization
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2019.231
– year: 1985
  ident: 10.1016/j.addma.2021.101949_bib48
– volume: 7
  start-page: 463
  issue: 6
  year: 2008
  ident: 10.1016/j.addma.2021.101949_bib36
  article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-007-0109-7
– volume: 163
  start-page: 14
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib24
  article-title: Robust and parallel scalable iterative solutions for large-scale finite cell analyses
  publication-title: Fin. Elem. Anal. Des.
  doi: 10.1016/j.finel.2019.01.009
– volume: 162
  start-page: 1
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib50
  article-title: Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.10.053
– volume: 78
  start-page: 381
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib7
  article-title: Fatigue and biological properties of ti-6al-4v eli cellular structures with variously arranged cubic cells made by selective laser melting
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.11.044
– year: 2004
  ident: 10.1016/j.addma.2021.101949_bib57
  article-title: An Introduction to Computational Micromechanics
– volume: 138
  start-page: 24
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib49
  article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.12.025
– volume: 180
  start-page: 332
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib5
  article-title: Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.11.045
– volume: 70
  start-page: 17
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib4
  article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.04.041
– volume: 42
  start-page: 1995
  issue: 12
  year: 1994
  ident: 10.1016/j.addma.2021.101949_bib20
  article-title: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(94)90022-1
– ident: 10.1016/j.addma.2021.101949_bib8
  doi: 10.1016/j.prostr.2017.11.068
– volume: 41
  start-page: 121
  issue: 1
  year: 2007
  ident: 10.1016/j.addma.2021.101949_bib37
  article-title: Finite cell method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0173-y
– volume: 95
  start-page: 518
  year: 2016
  ident: 10.1016/j.addma.2021.101949_bib41
  article-title: Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.146
– volume: 187
  year: 2020
  ident: 10.1016/j.addma.2021.101949_bib14
  article-title: Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108385
– ident: 10.1016/j.addma.2021.101949_bib44
– year: 2013
  ident: 10.1016/j.addma.2021.101949_bib33
– volume: 27
  start-page: 1966
  issue: 23
  year: 2020
  ident: 10.1016/j.addma.2021.101949_bib43
  article-title: Determination of the effective elastic properties of titanium lattice structures
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376494.2018.1536816
– year: 2015
  ident: 10.1016/j.addma.2021.101949_bib22
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib15
  article-title: The p-version of the finite element method and finite cell methods
– volume: 98
  start-page: 682
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib21
  article-title: Experimental and numerical investigation of single pores for identification of effective metal foams properties
  publication-title: J. Appl. Math. Mech.
– volume: 64
  start-page: 44
  year: 2014
  ident: 10.1016/j.addma.2021.101949_bib51
  article-title: Non linear constitutive models for lattice materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.10.015
– volume: 62
  start-page: 32
  year: 2012
  ident: 10.1016/j.addma.2021.101949_bib53
  article-title: Evaluations of cellular lattice structures manufactured using selective laser melting
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2012.06.002
– volume: 142
  year: 2021
  ident: 10.1016/j.addma.2021.101949_bib9
  article-title: The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2020.105946
– volume: 63
  start-page: 350
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib32
  article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.013
– year: 2017
  ident: 10.1016/j.addma.2021.101949_bib54
– volume: 124
  start-page: 348
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib10
  article-title: On the effect of geometrical imperfections and defects on the fatigue strength of cellular lattice structures additively manufactured via selective laser melting
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.03.019
– start-page: 119
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib31
  article-title: 5 - mechanical properties of Ti6Al4V and alsi12mg lattice structures manufactured by selective laser melting (slm)
– volume: 91
  start-page: 457
  issue: 5
  year: 2012
  ident: 10.1016/j.addma.2021.101949_bib55
  article-title: An efficient integration technique for the voxel-based finite cell method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4269
– volume: 27
  start-page: 221
  issue: 122
  year: 1973
  ident: 10.1016/j.addma.2021.101949_bib3
  article-title: The Finite Element Method with Penalty
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1973-0351118-5
– volume: 139
  start-page: 32
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib11
  article-title: A survey of modeling of lattice structures fabricated by additive manufacturing
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4037305
– volume: 83
  start-page: 4
  year: 2016
  ident: 10.1016/j.addma.2021.101949_bib46
  article-title: Just-in-time design and additive manufacture of patient-specific medical implants
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2016.08.002
– year: 2017
  ident: 10.1016/j.addma.2021.101949_bib2
– volume: 15
  issue: 7
  year: 2015
  ident: 10.1016/j.addma.2021.101949_bib17
  article-title: Finite Cell Method: High‐Order Structural Dynamics for Complex Geometries
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455415400180
– volume: 183
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib30
  article-title: SLM lattice structures: Properties, performance, applications and challenges
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108137
– volume: 157–158
  start-page: 231
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib18
  article-title: Damage characterizations and simulation of selective laser melting fabricated 3D re-entrant lattices based on in-situ CT testing and geometric reconstruction
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.04.054
– volume: 8
  start-page: 4957
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib27
  article-title: Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23414-2
– volume: 55
  start-page: 390
  year: 2012
  ident: 10.1016/j.addma.2021.101949_bib35
  article-title: Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.10.017
– volume: 789
  start-page: 852
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib52
  article-title: Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.03.135
– ident: 10.1016/j.addma.2021.101949_bib40
  doi: 10.3390/ma13092204
– volume: 49
  start-page: 170
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib47
  article-title: Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2017.06.006
– volume: 34
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib16
  article-title: Multi-level hp-finite cell method for embedded interface problems with application in biomechanics
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2951
– volume: 143
  start-page: 172
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib34
  article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.02.012
– volume: 49
  start-page: 957
  year: 2013
  ident: 10.1016/j.addma.2021.101949_bib6
  article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.01.071
– volume: 171
  year: 2019
  ident: 10.1016/j.addma.2021.101949_bib29
  article-title: Computational modelling of strut defects in SLM manufactured lattice structures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107671
– volume: 5
  start-page: 1117
  year: 2018
  ident: 10.1016/j.addma.2021.101949_bib13
  article-title: Standard method for microct-based additive manufacturing quality control 2: Density measurement
  publication-title: MethodsX
  doi: 10.1016/j.mex.2018.09.006
– volume: 138
  year: 2020
  ident: 10.1016/j.addma.2021.101949_bib42
  article-title: An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by selective laser melting (slm)
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2020.105623
– volume: 107
  start-page: 160
  year: 2017
  ident: 10.1016/j.addma.2021.101949_bib28
  article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.07.003
SSID ssj0001537982
Score 2.4960833
SecondaryResourceType review_article
Snippet The production of lightweight metal lattice structures has received much attention due to the recent developments in additive manufacturing (AM). The design...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101949
SubjectTerms Additive manufacturing
Computed tomography
Finite Cell Method
Finite Element method
Geometrical defects
Numerical homogenization
Octet-truss lattice
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9zexAf_BYnKnnw0e4jbdP0cYhzCg5BB_OppGmK09oNt-LHX-9d044pMhR8K-FC0v4ud1dy9ztCToTrxUjFZUXS1pajRcuSdgSACNdXbabtNsdq5Os-7w2cq6E7rJCLshYG0yoL229sem6ti5Fm8TWbMpw2J6NR85bBMoKD4rXzqlBvhdS4C0F5ldQG_ZvOPbaWw514IuclyJ9RvuQfyjO94IjnFESsjSM-0mr-7KNWs3Qi319lkiz4oO4GeSh3b1JPnhrZLGyoj2_Ejv_weptkvYhTacfIbpGKTrfJ2gJ74Q55u3wGY2ShH4xompmrn4SqOQW0qfCkMo3oYiMBCso9Mq2c6DimeQp9omlJGIBjY5g_s7AeZEoTOcMEPWqYbrMXPd0lg-753VnPKho5WMp2BLa7F9i2insRb4Wez5RWyJLjxC1f6MgGBxnGodaeFD7oFEQwynFaUoK9EBH8Iil7j1TTcar3CfW5dDVTzJYKgOKhkL7HYgFhIIRKKmR1wkroAlWwnGOzjSQo09kegxzvAPEODN51cjqfNDEkH8vFeakTwRcwA3BDyydacw36zUIHf5Q_JFWAQh9BmDQLj4sj8AlRwRON
  priority: 102
  providerName: Unpaywall
Title Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures
URI https://dx.doi.org/10.1016/j.addma.2021.101949
https://www.sciencedirect.com/science/article/abs/pii/S2214860421001147
UnpaywallVersion submittedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2214-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537982
  issn: 2214-7810
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2214-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537982
  issn: 2214-7810
  databaseCode: ACRLP
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2214-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537982
  issn: 2214-7810
  databaseCode: .~1
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2214-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537982
  issn: 2214-7810
  databaseCode: AIKHN
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-7810
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537982
  issn: 2214-7810
  databaseCode: AKRWK
  dateStart: 20141001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPqgP4ifOj5EHH41b07RNH8dwbIpD0MF8KmmawqR2AzfUF_9275p2TpAhPpWGHCn5Xe6u7d3vCLmQXpAiFRdLlGuYMLLNlJsAINILtcON6_hYjXw39PsjcTP2xjXSrWphMK2ytP3WphfWuhxplbvZmk0mrQcOS0gflM4pKkKxolyIALsYXH06399ZPDcIi55ROJ-hQEU-VKR5wfku-Ie4gyMhcmr-7qA2F_lMfbypLFtxQL1dslNGjrRjH26P1Ey-T7ZX-AQPyPvgBcwDQ8-U0Hxhf8ZkVC9JmW3NJVV5Qlep_Smo28Q2V6LTlBZJ7ZmhVQk_jk1Bfs6wQuOVZmqOKXPUcs8u4IX9kIx614_dPitbKzDtCokN6CU2kvKDxG_HQci10chbI9J2KE3igsuK09iYQMkQUIaYQgvRVgpOsEzgpUW7R6SeT3NzTGjoK89wzV2lYff8WKow4KmEwAyCFx3zBuHVfka65B3H9hdZVCWYPUcFCBGCEFkQGuRyKTSztBvrp_sVUNEP7YnAMawXZEtY_7LQyX8XOiVbeGdTJc9IHQAy5xDOzONmoa9NstEZ3PaHcB0N7ztPXzhc9k4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAwOiKcYzxw4Etamr_SIJqYB2y5s0m5VmqbSUOkmsQm48Nuxm3YMCU2Ia1orVT7Hdhr7MyFXwgtSpOJiiXQ0c7WwmHQSAER4obK5dmwfq5H7A787ch_G3rhG2lUtDKZVlrbf2PTCWpcjrXI1W7PJpPXEYQrhg9LZRUVosEE2XY8HeAK7-bS_f7R4ThAWTaNQgKFExT5U5HnBBi8IiLiNIyGSav7uoRqLfCY_3mSWrXigzi7ZKUNHemu-bo_UdL5PtlcIBQ_I-_0L2AeGrimh-cLcxmRULVmZTdEllXlCV7n9KejbxHRXotOUFlntmaZVDT-OTUF-zrBE45Vmco45c9SQzy7gxH5IRp27YbvLyt4KTDmuwA70AjtJ-UHiW3EQcqUVEte4qRUKnTjgs-I01jqQIgSYIahQrmtJCVtYJHBqUc4RqefTXB8TGvrS01xxRypYPT8WMgx4KiAyg-hFxbxJeLWekSqJx7H_RRZVGWbPUQFChCBEBoQmuV4KzQzvxvrX_Qqo6If6ROAZ1guyJax_mejkvxNdkkZ32O9FvfvB4ynZwicmb_KM1AEsfQ6xzTy-KHT3CzaJ9jM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9zexAf_BYnKnnw0e4jbdP0cYhzCg5BB_OppGmK09oNt-LHX-9d044pMhR8K-FC0v4ud1dy9ztCToTrxUjFZUXS1pajRcuSdgSACNdXbabtNsdq5Os-7w2cq6E7rJCLshYG0yoL229sem6ti5Fm8TWbMpw2J6NR85bBMoKD4rXzqlBvhdS4C0F5ldQG_ZvOPbaWw514IuclyJ9RvuQfyjO94IjnFESsjSM-0mr-7KNWs3Qi319lkiz4oO4GeSh3b1JPnhrZLGyoj2_Ejv_weptkvYhTacfIbpGKTrfJ2gJ74Q55u3wGY2ShH4xompmrn4SqOQW0qfCkMo3oYiMBCso9Mq2c6DimeQp9omlJGIBjY5g_s7AeZEoTOcMEPWqYbrMXPd0lg-753VnPKho5WMp2BLa7F9i2insRb4Wez5RWyJLjxC1f6MgGBxnGodaeFD7oFEQwynFaUoK9EBH8Iil7j1TTcar3CfW5dDVTzJYKgOKhkL7HYgFhIIRKKmR1wkroAlWwnGOzjSQo09kegxzvAPEODN51cjqfNDEkH8vFeakTwRcwA3BDyydacw36zUIHf5Q_JFWAQh9BmDQLj4sj8AlRwRON
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-based+numerical+characterization+and+experimental+validation+of+tensile+behavior+of+octet-truss+lattice+structures&rft.jtitle=Additive+manufacturing&rft.au=Korshunova%2C+N.&rft.au=Alaimo%2C+G.&rft.au=Hosseini%2C+S.B.&rft.au=Carraturo%2C+M.&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=41&rft_id=info:doi/10.1016%2Fj.addma.2021.101949&rft.externalDocID=S2214860421001147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon