Investigation on the Hydrodynamic Performance of An Ultra Deep Turret-Moored FLNG System

Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of the vessel and its mooring lines, has been addressed in details. Based on the bounda...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 26; no. 1; pp. 77 - 93
Main Author 赵文华 杨建民 胡志强 肖龙飞 彭涛
Format Journal Article
LanguageEnglish
Published Heidelberg Chinese Ocean Engineering Society 01.03.2012
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-012-0006-4

Cover

More Information
Summary:Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of the vessel and its mooring lines, has been addressed in details. Based on the boundary element method, a 3-D panel model of the FLNG vessel and the related free water surface model are established, and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated. A systematic model test program consisting of the white noise wave test, offset test and irregular wave test combined with current and wind, etc. is performed to verify the numerical model. Owing to the depth limit of the water basin, the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system. The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests. The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.
Bibliography:FLNG; hydrodynamics; model tests; truncated mooring system; coupled analysis
32-1441/P
ZHAO Wen-hua , YANG Jian-min HU Zhi-qiang , XIAO Long-fei and PENG Tao (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University Shanghai 200240, China)
Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of the vessel and its mooring lines, has been addressed in details. Based on the boundary element method, a 3-D panel model of the FLNG vessel and the related free water surface model are established, and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated. A systematic model test program consisting of the white noise wave test, offset test and irregular wave test combined with current and wind, etc. is performed to verify the numerical model. Owing to the depth limit of the water basin, the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system. The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests. The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0890-5487
2191-8945
DOI:10.1007/s13344-012-0006-4