Advances in the device design and printing technology for eco-friendly organic photovoltaics

Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to phot...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 16; no. 1; pp. 76 - 88
Main Authors Li, Haojie, Liu, Siqi, Wu, Xueting, Yao, Shengyi, Hu, Xiaotian, Chen, Yiwang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 18.01.2023
Subjects
Online AccessGet full text
ISSN1754-5692
1754-5706
DOI10.1039/d2ee03246e

Cover

Abstract Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules. This perspective systematically discusses strategies of optimization of active layer films in the preparation of organic photovoltaic (OPV) devices by green printing.
AbstractList Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules.
Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules. This perspective systematically discusses strategies of optimization of active layer films in the preparation of organic photovoltaic (OPV) devices by green printing.
Author Li, Haojie
Chen, Yiwang
Yao, Shengyi
Hu, Xiaotian
Liu, Siqi
Wu, Xueting
AuthorAffiliation College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)
Nantong 226010
99 Ziyang Avenue
999 Xuefu Avenue
School of future technology
National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education
School of Physics and Materials
Jiangxi Normal University
Nanchang University
Peking University Yangtze Delta Institute of Optoelectronics
AuthorAffiliation_xml – sequence: 0
  name: Nanchang University
– sequence: 0
  name: National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education
– sequence: 0
  name: Nantong 226010
– sequence: 0
  name: Jiangxi Normal University
– sequence: 0
  name: School of Physics and Materials
– sequence: 0
  name: 999 Xuefu Avenue
– sequence: 0
  name: College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)
– sequence: 0
  name: Peking University Yangtze Delta Institute of Optoelectronics
– sequence: 0
  name: 99 Ziyang Avenue
– sequence: 0
  name: School of future technology
Author_xml – sequence: 1
  givenname: Haojie
  surname: Li
  fullname: Li, Haojie
– sequence: 2
  givenname: Siqi
  surname: Liu
  fullname: Liu, Siqi
– sequence: 3
  givenname: Xueting
  surname: Wu
  fullname: Wu, Xueting
– sequence: 4
  givenname: Shengyi
  surname: Yao
  fullname: Yao, Shengyi
– sequence: 5
  givenname: Xiaotian
  surname: Hu
  fullname: Hu, Xiaotian
– sequence: 6
  givenname: Yiwang
  surname: Chen
  fullname: Chen, Yiwang
BookMark eNptkd1LwzAUxYNMcJu--C4EfBOqSdom7eOY9QMGvuibUNL0psuoyUyywf57O-cHiE_nwv2de-GcCRpZZwGhc0quKUnLm5YBkJRlHI7QmIo8S3JB-Oh75iU7QZMQVoRwRkQ5Rq-zdiutgoCNxXEJuIWtUXsJprNY2havvbHR2A5HUEvretftsHYeg3KJ9gZs2--w8520RuH10kW3dX2URoVTdKxlH-DsS6fo5a56nj8ki6f7x_lskag0EzEB0HkmSt1KkZdEaCU15VqQMtMNy5pGCT0sSUpAF6wQQGlKWcsbXjBSANXpFF0e7q69e99AiPXKbbwdXtZMcJ7Rgg2eKSIHSnkXggddKxNlNM5GL01fU1LvM6xvWVV9ZlgNlqs_liGMN-l3_8MXB9gH9cP9FpJ-ANUAfqM
CitedBy_id crossref_primary_10_1016_j_cej_2023_146038
crossref_primary_10_1038_s41467_023_41978_0
crossref_primary_10_1002_marc_202400433
crossref_primary_10_1002_anie_202416866
crossref_primary_10_1002_adma_202302946
crossref_primary_10_1021_acs_macromol_4c01082
crossref_primary_10_1002_adma_202411989
crossref_primary_10_1002_smll_202404066
crossref_primary_10_1007_s40843_024_3156_6
crossref_primary_10_1039_D4EE02963A
crossref_primary_10_1002_adfm_202414844
crossref_primary_10_1039_D3TC01443F
crossref_primary_10_1016_j_cej_2023_144095
crossref_primary_10_1002_ange_202420226
crossref_primary_10_1016_j_mser_2024_100828
crossref_primary_10_1002_adfm_202409723
crossref_primary_10_1039_D4CC04053H
crossref_primary_10_1039_D4EE02467B
crossref_primary_10_1002_adma_202303729
crossref_primary_10_1088_1402_4896_ad5154
crossref_primary_10_1002_smll_202401080
crossref_primary_10_1002_adfm_202310865
crossref_primary_10_1002_aenm_202300904
crossref_primary_10_1016_j_cej_2024_152558
crossref_primary_10_1002_adfm_202414317
crossref_primary_10_1002_adma_202404824
crossref_primary_10_1002_ange_202416016
crossref_primary_10_1021_jacs_5c00004
crossref_primary_10_1016_j_cej_2024_151920
crossref_primary_10_1002_anie_202420226
crossref_primary_10_26599_NRE_2022_9120088
crossref_primary_10_1002_solr_202300029
crossref_primary_10_1021_acsami_4c13907
crossref_primary_10_1021_acs_jpclett_4c02676
crossref_primary_10_1021_acsami_4c11805
crossref_primary_10_1021_acs_macromol_4c02672
crossref_primary_10_1021_acsnano_5c01172
crossref_primary_10_1002_ange_202404297
crossref_primary_10_1016_j_mattod_2024_06_008
crossref_primary_10_1039_D4EE04623D
crossref_primary_10_1039_D3LF00183K
crossref_primary_10_1002_adfm_202315825
crossref_primary_10_1007_s11426_023_1608_6
crossref_primary_10_1002_adfm_202413814
crossref_primary_10_1002_ange_202416866
crossref_primary_10_1016_j_orgel_2024_107075
crossref_primary_10_1016_j_mtener_2023_101322
crossref_primary_10_1016_j_progpolymsci_2023_101711
crossref_primary_10_1002_adfm_202314178
crossref_primary_10_1016_j_nanoen_2023_109226
crossref_primary_10_1021_acs_jpcc_4c00708
crossref_primary_10_1002_anie_202416016
crossref_primary_10_1016_j_cej_2024_148728
crossref_primary_10_1039_D3EE02354K
crossref_primary_10_1021_acsami_5c00117
crossref_primary_10_1002_smsc_202400034
crossref_primary_10_1002_anie_202404297
crossref_primary_10_1002_adma_202313098
crossref_primary_10_1016_j_apsusc_2023_159051
crossref_primary_10_1021_acsmacrolett_4c00195
crossref_primary_10_3390_polym15163462
crossref_primary_10_1002_adma_202307863
crossref_primary_10_26599_NRE_2023_9120088
Cites_doi 10.1016/j.isci.2022.104090
10.1002/aenm.201000054
10.1002/adma.202202659
10.1002/adma.201906045
10.1039/D0TC01313G
10.1016/j.nanoen.2019.104327
10.1007/s11426-021-1180-6
10.1016/j.joule.2020.07.028
10.1038/nphoton.2012.11
10.1002/solr.201800060
10.1039/C9GC02288K
10.1007/s10118-022-2803-4
10.1039/C5EE01917F
10.1002/adfm.202100791
10.1002/adma.201905480
10.1016/j.matt.2022.08.011
10.1002/adma.201704837
10.1039/C9TC05713G
10.1038/s41563-022-01244-y
10.1021/acsaem.1c01447
10.1002/adfm.202000417
10.1002/adsu.202100235
10.1002/adma.201903441
10.1039/b617536h
10.1002/ange.202208815
10.1016/j.cis.2019.102080
10.1021/acsenergylett.2c01082
10.1002/adma.201903649
10.1021/acsami.1c13245
10.1002/adma.201707114
10.1002/ange.202209580
10.1016/j.orgel.2011.05.020
10.1038/ncomms7229
10.1021/acsami.7b19548
10.1016/j.orgel.2020.106027
10.1002/solr.202100213
10.1002/adma.202002302
10.1002/ange.202209021
10.1021/acs.macromol.9b00411
10.1002/solr.201900385
10.1002/aesr.202100043
10.1002/adma.201902899
10.1002/cphc.201402734
10.1021/acsami.1c23332
10.1016/j.nanoen.2021.106678
10.1002/aenm.202100098
10.1021/acsami.1c22135
10.1007/s11426-021-1128-1
10.1016/j.cej.2021.132407
10.1016/j.orgel.2020.105871
10.1002/adfm.202102694
10.1039/C8EE01150H
10.1002/adfm.201301509
10.1016/j.joule.2019.11.006
10.1002/adma.202201604
10.1002/adfm.202003223
10.1002/aenm.201700566
10.1126/science.270.5243.1789
10.1021/acsenergylett.2c01364
10.1016/j.cej.2022.139496
10.1038/s41560-021-00923-5
10.1002/solr.202000592
10.1039/D0TC02032J
10.1002/adfm.201707278
10.1002/adfm.202107567
10.1021/acsami.0c23035
10.1002/solr.201800196
10.1002/solr.202000108
10.1016/j.orgel.2019.03.052
10.1038/ncomms9975
10.1007/s11426-021-1094-y
10.1021/jacs.2c05303
10.1039/C9TC05358A
10.1002/adfm.202110209
10.1039/c0gc00918k
10.1002/solr.201800333
10.1002/adfm.202202011
10.1038/s41467-018-02833-9
10.1021/acsami.2c05504
10.1002/aenm.202101768
10.1038/s41560-018-0263-4
10.1039/D0EE02034F
10.1039/D1TA07046K
10.1038/s41467-019-11001-6
10.1007/s11426-022-1256-8
10.1002/adfm.202009996
10.1038/s41467-018-07017-z
10.1039/D0EE03506H
10.1007/s11664-021-09238-3
10.1039/C6EE02255C
10.1021/acsenergylett.1c02244
10.1016/j.synthmet.2018.05.001
10.1088/1361-6528/ac020b
10.1007/s40843-017-9080-x
10.1039/D2EE00639A
10.1002/adfm.202107827
10.1002/adma.201902210
10.1002/aenm.202201338
10.1002/adma.202103017
10.1016/j.commatsci.2011.12.012
10.1016/j.joule.2019.12.004
10.1039/b904997p
10.1039/D1EE01336J
10.1016/j.joule.2021.02.010
10.1002/adma.202105114
10.1002/adma.202107659
10.1002/solr.202101024
10.1016/j.cej.2022.136515
10.1002/adfm.202105794
10.1002/adma.202105301
10.1002/adfm.201501039
10.1016/j.orgel.2020.105893
10.1039/C8TA10882J
10.1007/s10118-021-2586-z
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d2ee03246e
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 88
ExternalDocumentID 10_1039_D2EE03246E
d2ee03246e
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c347t-eef5479fda75907fcaf16f7094fb24bbc7f9fd030ef8287e11312d6b68208e1f3
ISSN 1754-5692
IngestDate Mon Jun 30 12:01:25 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 01:45:53 EDT 2025
Tue Dec 17 20:59:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-eef5479fda75907fcaf16f7094fb24bbc7f9fd030ef8287e11312d6b68208e1f3
Notes Xiaotian Hu is a full professor at Nanchang University. He received his PhD from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2019. He joined the Nanchang University in the same year. He has published more than 80 research papers in journals such as Nature Communication, Joule, Advanced Materials, Angewandte Chemie International Edition, Science Bulletin, Science China Chemistry, etc. His research interests are mainly focused on the printing fabrication and modular design of wearable perovskite/organic solar cells.
Yiwang Chen is a full professor of Chemistry at Nanchang University and Jiangxi Normal University. He was honored with the National Science Fund for Distinguished Young Scholars in 2014. His research interests include polymer/perovskite solar cells, supercapacitors, electrocatalysis for zinc-air batteries and fuel cells, and intelligent elastomers and fibers. He has published more than 500 research papers and 40 invention patents as well as 4 books. His research project has been awarded the "second class prize of science and technology in universities of China" in 2019 and a gold medal of The Geneva Salon International Des Inventions in 2022.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5483-8800
0000-0003-4709-7623
PQID 2766418211
PQPubID 2047494
PageCount 13
ParticipantIDs rsc_primary_d2ee03246e
crossref_primary_10_1039_D2EE03246E
crossref_citationtrail_10_1039_D2EE03246E
proquest_journals_2766418211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-18
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-18
  day: 18
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D2EE03246E/cit35/1) 2021; 33
Yu (D2EE03246E/cit3/1) 1995; 270
Yao (D2EE03246E/cit16/1) 2022; 134
Sun (D2EE03246E/cit24/1) 2019; 31
Yuan (D2EE03246E/cit90/1) 2021; 11
Du (D2EE03246E/cit107/1) 2021; 5
Park (D2EE03246E/cit47/1) 2020; 86
Zhou (D2EE03246E/cit78/1) 2021; 4
Chen (D2EE03246E/cit63/1) 2021; 6
Xu (D2EE03246E/cit11/1) 2021; 39
Wodo (D2EE03246E/cit36/1) 2012; 55
McDowell (D2EE03246E/cit48/1) 2018; 30
Wan (D2EE03246E/cit105/1) 2022; 32
Park (D2EE03246E/cit38/1) 2011; 12
Capello (D2EE03246E/cit29/1) 2007; 9
Wang (D2EE03246E/cit87/1) 2022; 32
Richard (D2EE03246E/cit91/1) 2020; 275
Kumari (D2EE03246E/cit37/1) 2018; 28
Zhu (D2EE03246E/cit100/1) 2019; 31
Zhao (D2EE03246E/cit98/1) 2020; 32
Xu (D2EE03246E/cit71/1) 2019; 31
Wu (D2EE03246E/cit66/1) 2018; 2
Liu (D2EE03246E/cit44/1) 2018; 242
Huang (D2EE03246E/cit4/1) 2019; 10
Li (D2EE03246E/cit93/1) 2022; 15
An (D2EE03246E/cit77/1) 2020; 8
Xue (D2EE03246E/cit102/1) 2022; 34
Hu (D2EE03246E/cit85/1) 2020; 8
Liu (D2EE03246E/cit69/1) 2022; 25
Liu (D2EE03246E/cit104/1) 2022; 429
Ma (D2EE03246E/cit22/1) 2022; 7
Xu (D2EE03246E/cit20/1) 2022
Beach (D2EE03246E/cit1/1) 2009; 2
Jiang (D2EE03246E/cit17/1) 2022
Sun (D2EE03246E/cit27/1) 2020; 4
Yan (D2EE03246E/cit25/1) 2019; 31
Dong (D2EE03246E/cit95/1) 2020; 4
Kim (D2EE03246E/cit108/1) 2021; 9
Park (D2EE03246E/cit55/1) 2016; 9
Dong (D2EE03246E/cit6/1) 2022; 32
Ning (D2EE03246E/cit80/1) 2021; 14
Meng (D2EE03246E/cit92/1) 2019; 31
Liao (D2EE03246E/cit110/1) 2020; 4
Fan (D2EE03246E/cit74/1) 2021; 11
Sprau (D2EE03246E/cit52/1) 2015; 8
Al-Shekaili (D2EE03246E/cit86/1) 2021; 50
Zhang (D2EE03246E/cit15/1) 2021; 89
Henderson (D2EE03246E/cit28/1) 2011; 13
Ball (D2EE03246E/cit7/1) 2022; 7
Chai (D2EE03246E/cit26/1) 2021; 14
Fu (D2EE03246E/cit49/1) 2021; 5
Bao (D2EE03246E/cit53/1) 2021; 33
Walker (D2EE03246E/cit42/1) 2011; 1
Yu (D2EE03246E/cit56/1) 2018; 9
Park (D2EE03246E/cit51/1) 2017; 7
Li (D2EE03246E/cit83/1) 2023; 452
Li (D2EE03246E/cit61/1) 2018; 2
Du (D2EE03246E/cit88/1) 2021; 31
Xia (D2EE03246E/cit64/1) 2019; 73
Li (D2EE03246E/cit34/1) 2012; 6
Liu (D2EE03246E/cit13/1) 2022; 65
Liu (D2EE03246E/cit19/1) 2022; 65
Xie (D2EE03246E/cit70/1) 2019; 4
Franeker (D2EE03246E/cit73/1) 2015; 6
Liao (D2EE03246E/cit62/1) 2019; 7
Niu (D2EE03246E/cit2/1) 2015; 6
Zhao (D2EE03246E/cit99/1) 2021; 34
Burgués-Ceballos (D2EE03246E/cit41/1) 2014; 24
Hong (D2EE03246E/cit50/1) 2019; 31
Li (D2EE03246E/cit21/1) 2022; 144
Strohm (D2EE03246E/cit39/1) 2018; 11
Kumari (D2EE03246E/cit111/1) 2020; 68
Gu (D2EE03246E/cit89/1) 2018; 9
Sprau (D2EE03246E/cit45/1) 2021; 2
Song (D2EE03246E/cit75/1) 2022; 91
Deng (D2EE03246E/cit82/1) 2022; 443
Song (D2EE03246E/cit8/1) 2021; 31
Wu (D2EE03246E/cit33/1) 2022; 7
Machui (D2EE03246E/cit46/1) 2015; 16
Xu (D2EE03246E/cit72/1) 2020; 13
Chen (D2EE03246E/cit12/1) 2022; 65
Zhao (D2EE03246E/cit54/1) 2017; 60
Kranthiraja (D2EE03246E/cit60/1) 2018; 10
Guo (D2EE03246E/cit106/1) 2022; 6
Meng (D2EE03246E/cit10/1) 2022; 40
Li (D2EE03246E/cit96/1) 2021; 13
Zhu (D2EE03246E/cit23/1) 2022; 21
Yuan (D2EE03246E/cit68/1) 2021; 13
Han (D2EE03246E/cit112/1) 2020; 4
Zhang (D2EE03246E/cit114/1) 2020; 8
Zhang (D2EE03246E/cit81/1) 2022; 32
Liu (D2EE03246E/cit30/1) 2020; 30
Holmes (D2EE03246E/cit43/1) 2019; 21
Huang (D2EE03246E/cit84/1) 2020; 8
Li (D2EE03246E/cit97/1) 2022; 14
Zhou (D2EE03246E/cit32/1) 2022; 14
Wang (D2EE03246E/cit65/1) 2021; 5
Zhao (D2EE03246E/cit76/1) 2017; 30
Song (D2EE03246E/cit57/1) 2022; 5
Liu (D2EE03246E/cit31/1) 2019; 52
Xing (D2EE03246E/cit14/1) 2020; 30
Liu (D2EE03246E/cit58/1) 2022; 14
Qin (D2EE03246E/cit9/1) 2021; 33
Li (D2EE03246E/cit79/1) 2021; 5
Chaturvedi (D2EE03246E/cit101/1) 2020; 31
Yu (D2EE03246E/cit109/1) 2021; 31
Xia (D2EE03246E/cit59/1) 2022; 34
Li (D2EE03246E/cit67/1) 2022; 65
Zhao (D2EE03246E/cit103/1) 2019; 3
Chen (D2EE03246E/cit18/1) 2022
Liu (D2EE03246E/cit94/1) 2022; 34
Tait (D2EE03246E/cit40/1) 2015; 25
Fan (D2EE03246E/cit5/1) 2018; 3
Cheng (D2EE03246E/cit113/1) 2020; 85
References_xml – volume: 25
  start-page: 104090
  year: 2022
  ident: D2EE03246E/cit69/1
  publication-title: IScience
  doi: 10.1016/j.isci.2022.104090
– volume: 1
  start-page: 221
  year: 2011
  ident: D2EE03246E/cit42/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201000054
– volume: 34
  start-page: 2202659
  year: 2022
  ident: D2EE03246E/cit102/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202659
– volume: 31
  start-page: 1906045
  year: 2019
  ident: D2EE03246E/cit71/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906045
– volume: 8
  start-page: 7718
  year: 2020
  ident: D2EE03246E/cit84/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC01313G
– volume: 68
  start-page: 104327
  year: 2020
  ident: D2EE03246E/cit111/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104327
– volume: 65
  start-page: 224
  year: 2022
  ident: D2EE03246E/cit13/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1180-6
– volume: 4
  start-page: 2004
  year: 2020
  ident: D2EE03246E/cit95/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.028
– volume: 6
  start-page: 153
  year: 2012
  ident: D2EE03246E/cit34/1
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.11
– volume: 2
  start-page: 1800060
  year: 2018
  ident: D2EE03246E/cit66/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800060
– volume: 21
  start-page: 5090
  year: 2019
  ident: D2EE03246E/cit43/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC02288K
– volume: 40
  start-page: 1522
  year: 2022
  ident: D2EE03246E/cit10/1
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-022-2803-4
– volume: 8
  start-page: 2744
  year: 2015
  ident: D2EE03246E/cit52/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01917F
– volume: 31
  start-page: 2100791
  year: 2021
  ident: D2EE03246E/cit109/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100791
– volume: 31
  start-page: 1905480
  year: 2019
  ident: D2EE03246E/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905480
– volume: 5
  start-page: 4047
  year: 2022
  ident: D2EE03246E/cit57/1
  publication-title: Matter
  doi: 10.1016/j.matt.2022.08.011
– volume: 30
  start-page: 1704837
  year: 2017
  ident: D2EE03246E/cit76/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704837
– volume: 8
  start-page: 2135
  year: 2020
  ident: D2EE03246E/cit85/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05713G
– volume: 21
  start-page: 656
  year: 2022
  ident: D2EE03246E/cit23/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01244-y
– volume: 4
  start-page: 8175
  year: 2021
  ident: D2EE03246E/cit78/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01447
– volume: 30
  start-page: 2000417
  year: 2020
  ident: D2EE03246E/cit14/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000417
– volume: 5
  start-page: 2100235
  year: 2021
  ident: D2EE03246E/cit49/1
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.202100235
– volume: 31
  start-page: 1903441
  year: 2019
  ident: D2EE03246E/cit50/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903441
– volume: 9
  start-page: 927
  year: 2007
  ident: D2EE03246E/cit29/1
  publication-title: Green Chem.
  doi: 10.1039/b617536h
– start-page: e202208815
  year: 2022
  ident: D2EE03246E/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202208815
– volume: 275
  start-page: 102080
  year: 2020
  ident: D2EE03246E/cit91/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2019.102080
– volume: 7
  start-page: 2196
  year: 2022
  ident: D2EE03246E/cit33/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01082
– volume: 31
  start-page: 1903649
  year: 2019
  ident: D2EE03246E/cit92/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903649
– volume: 13
  start-page: 57654
  year: 2021
  ident: D2EE03246E/cit68/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c13245
– volume: 30
  start-page: 1707114
  year: 2018
  ident: D2EE03246E/cit48/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707114
– start-page: e202209580
  year: 2022
  ident: D2EE03246E/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202209580
– volume: 12
  start-page: 1465
  year: 2011
  ident: D2EE03246E/cit38/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2011.05.020
– volume: 6
  start-page: 6229
  year: 2015
  ident: D2EE03246E/cit73/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7229
– volume: 10
  start-page: 13748
  year: 2018
  ident: D2EE03246E/cit60/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19548
– volume: 89
  start-page: 106027
  year: 2021
  ident: D2EE03246E/cit15/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.106027
– volume: 5
  start-page: 2100213
  year: 2021
  ident: D2EE03246E/cit107/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100213
– volume: 32
  start-page: 2002302
  year: 2020
  ident: D2EE03246E/cit98/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002302
– volume: 134
  start-page: e202209021
  year: 2022
  ident: D2EE03246E/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202209021
– volume: 52
  start-page: 4359
  year: 2019
  ident: D2EE03246E/cit31/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00411
– volume: 4
  start-page: 1900385
  year: 2019
  ident: D2EE03246E/cit70/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900385
– volume: 2
  start-page: 2100043
  year: 2021
  ident: D2EE03246E/cit45/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202100043
– volume: 31
  start-page: 1902899
  year: 2019
  ident: D2EE03246E/cit100/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902899
– volume: 16
  start-page: 1275
  year: 2015
  ident: D2EE03246E/cit46/1
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.201402734
– volume: 14
  start-page: 9386
  year: 2022
  ident: D2EE03246E/cit58/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23332
– volume: 91
  start-page: 106678
  year: 2022
  ident: D2EE03246E/cit75/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106678
– volume: 11
  start-page: 2100098
  year: 2021
  ident: D2EE03246E/cit90/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100098
– volume: 14
  start-page: 7093
  year: 2022
  ident: D2EE03246E/cit32/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22135
– volume: 65
  start-page: 373
  year: 2022
  ident: D2EE03246E/cit67/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1128-1
– volume: 429
  start-page: 132407
  year: 2022
  ident: D2EE03246E/cit104/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132407
– volume: 85
  start-page: 105871
  year: 2020
  ident: D2EE03246E/cit113/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.105871
– volume: 31
  start-page: 2102694
  year: 2021
  ident: D2EE03246E/cit8/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102694
– volume: 11
  start-page: 2225
  year: 2018
  ident: D2EE03246E/cit39/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01150H
– volume: 24
  start-page: 1449
  year: 2014
  ident: D2EE03246E/cit41/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301509
– volume: 4
  start-page: 189
  year: 2020
  ident: D2EE03246E/cit110/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.006
– volume: 34
  start-page: 2201604
  year: 2022
  ident: D2EE03246E/cit94/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201604
– volume: 30
  start-page: 2003223
  year: 2020
  ident: D2EE03246E/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003223
– volume: 7
  start-page: 1700566
  year: 2017
  ident: D2EE03246E/cit51/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700566
– volume: 270
  start-page: 1789
  year: 1995
  ident: D2EE03246E/cit3/1
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 7
  start-page: 2547
  year: 2022
  ident: D2EE03246E/cit22/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01364
– volume: 452
  start-page: 139496
  year: 2023
  ident: D2EE03246E/cit83/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139496
– volume: 6
  start-page: 1045
  year: 2021
  ident: D2EE03246E/cit63/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00923-5
– volume: 5
  start-page: 2000592
  year: 2021
  ident: D2EE03246E/cit79/1
  publication-title: Solar RRL
  doi: 10.1002/solr.202000592
– volume: 8
  start-page: 11532
  year: 2020
  ident: D2EE03246E/cit114/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC02032J
– volume: 28
  start-page: 1707278
  year: 2018
  ident: D2EE03246E/cit37/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707278
– volume: 32
  start-page: 2107567
  year: 2022
  ident: D2EE03246E/cit105/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107567
– volume: 13
  start-page: 10239
  year: 2021
  ident: D2EE03246E/cit96/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c23035
– volume: 2
  start-page: 1800196
  year: 2018
  ident: D2EE03246E/cit61/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800196
– volume: 4
  start-page: 2000108
  year: 2020
  ident: D2EE03246E/cit112/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000108
– volume: 73
  start-page: 205
  year: 2019
  ident: D2EE03246E/cit64/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2019.03.052
– volume: 6
  start-page: 8975
  year: 2015
  ident: D2EE03246E/cit2/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9975
– volume: 65
  start-page: 182
  year: 2022
  ident: D2EE03246E/cit12/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1094-y
– volume: 144
  start-page: 14731
  year: 2022
  ident: D2EE03246E/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05303
– volume: 8
  start-page: 270
  year: 2020
  ident: D2EE03246E/cit77/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05358A
– volume: 32
  start-page: 2110209
  year: 2022
  ident: D2EE03246E/cit6/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110209
– volume: 13
  start-page: 854
  year: 2011
  ident: D2EE03246E/cit28/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00918k
– volume: 3
  start-page: 1800333
  year: 2019
  ident: D2EE03246E/cit103/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800333
– volume: 32
  start-page: 2202011
  year: 2022
  ident: D2EE03246E/cit81/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202202011
– volume: 9
  start-page: 534
  year: 2018
  ident: D2EE03246E/cit89/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02833-9
– volume: 14
  start-page: 31054
  year: 2022
  ident: D2EE03246E/cit97/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05504
– volume: 11
  start-page: 2101768
  year: 2021
  ident: D2EE03246E/cit74/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101768
– volume: 3
  start-page: 1051
  year: 2018
  ident: D2EE03246E/cit5/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0263-4
– volume: 13
  start-page: 4381
  year: 2020
  ident: D2EE03246E/cit72/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02034F
– volume: 9
  start-page: 24622
  year: 2021
  ident: D2EE03246E/cit108/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07046K
– volume: 10
  start-page: 3038
  year: 2019
  ident: D2EE03246E/cit4/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11001-6
– volume: 65
  start-page: 1457
  year: 2022
  ident: D2EE03246E/cit19/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-022-1256-8
– volume: 31
  start-page: 2009996
  year: 2020
  ident: D2EE03246E/cit101/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009996
– volume: 9
  start-page: 4645
  year: 2018
  ident: D2EE03246E/cit56/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07017-z
– volume: 14
  start-page: 3469
  year: 2021
  ident: D2EE03246E/cit26/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03506H
– volume: 50
  start-page: 6828
  year: 2021
  ident: D2EE03246E/cit86/1
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-021-09238-3
– volume: 9
  start-page: 3464
  year: 2016
  ident: D2EE03246E/cit55/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02255C
– volume: 7
  start-page: 180
  year: 2022
  ident: D2EE03246E/cit7/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02244
– volume: 242
  start-page: 17
  year: 2018
  ident: D2EE03246E/cit44/1
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2018.05.001
– volume: 33
  start-page: 072002
  year: 2021
  ident: D2EE03246E/cit35/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac020b
– volume: 60
  start-page: 697
  year: 2017
  ident: D2EE03246E/cit54/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9080-x
– volume: 15
  start-page: 2130
  year: 2022
  ident: D2EE03246E/cit93/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00639A
– volume: 32
  start-page: 2107827
  year: 2022
  ident: D2EE03246E/cit87/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107827
– volume: 31
  start-page: 1902210
  year: 2019
  ident: D2EE03246E/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902210
– start-page: 2201338
  year: 2022
  ident: D2EE03246E/cit20/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/aenm.202201338
– volume: 33
  start-page: 2103017
  year: 2021
  ident: D2EE03246E/cit9/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103017
– volume: 55
  start-page: 113
  year: 2012
  ident: D2EE03246E/cit36/1
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.12.012
– volume: 4
  start-page: 407
  year: 2020
  ident: D2EE03246E/cit27/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.12.004
– volume: 2
  start-page: 1038
  year: 2009
  ident: D2EE03246E/cit1/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b904997p
– volume: 14
  start-page: 5919
  year: 2021
  ident: D2EE03246E/cit80/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01336J
– volume: 5
  start-page: 945
  year: 2021
  ident: D2EE03246E/cit65/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.02.010
– volume: 34
  start-page: 2105114
  year: 2021
  ident: D2EE03246E/cit99/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105114
– volume: 34
  start-page: 2107659
  year: 2022
  ident: D2EE03246E/cit59/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107659
– volume: 6
  start-page: 2101024
  year: 2022
  ident: D2EE03246E/cit106/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202101024
– volume: 443
  start-page: 136515
  year: 2022
  ident: D2EE03246E/cit82/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136515
– volume: 31
  start-page: 2105794
  year: 2021
  ident: D2EE03246E/cit88/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105794
– volume: 33
  start-page: 2105301
  year: 2021
  ident: D2EE03246E/cit53/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105301
– volume: 25
  start-page: 3393
  year: 2015
  ident: D2EE03246E/cit40/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501039
– volume: 86
  start-page: 105893
  year: 2020
  ident: D2EE03246E/cit47/1
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2020.105893
– volume: 7
  start-page: 716
  year: 2019
  ident: D2EE03246E/cit62/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10882J
– volume: 39
  start-page: 1441
  year: 2021
  ident: D2EE03246E/cit11/1
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-021-2586-z
SSID ssj0062079
Score 2.6125202
Snippet Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Boiling points
Commercialization
Fabrication
Optimization
Photovoltaic cells
Photovoltaics
Printing
Solar cells
Solvents
Title Advances in the device design and printing technology for eco-friendly organic photovoltaics
URI https://www.proquest.com/docview/2766418211
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ_Y7UUPxq_GtdVMohdjqMAMM3DcKKaa6sVtsgeTDQxvLKaB2rKH9q_3zQwDbFwT9QLkDZDNvB_va98HIa8SkGmRVhAoHqqAZ0UZpCV6rUybziYiAbAjWT5_ESdn_NMqWY0lBLa6pCuP1e3OupL_4SrSkK-mSvYfODu8FAl4jfzFI3IYj3_F44X7A__aJytWYL57PJmsjL4FQN2PghhC6K7Jt2oDbVocVxc3_WQn9ebyvO1aFFdd4VPgfcjeFQgalEwK43w55YiNUzcCu2h_1BPaxkZY65_1oAAsZbWx1daD2Cls0PbrOTTfb-ppMCI2qVjBlvyUCQ8S4cbbHcOEJkOxJXTFb-ByElSKqS5Od0r5kJkmqVUMEKI9KGDUZUOG4bi4R_ZjiXbVjOwv8uXHU6-nRRzaTozDT_bNa1n2dnx621wZfZC9Kz8gxhoiywfkfu9B0IWDw0NyB5pH5N6kr-Rj8s0Dg9YNRWBQBwzqgEERGNQDg47AoAgMOgUG7YFBt4DxhJx9yJfvToJ-jEagGJddAKATLjNdFTLJQqlVoSOhJfr1uox5WSqpcRGFPWgz_QCiiEVxJUqBxmEKkWYHZNa0DTwlVDLgMZco5pMQrZoi1XHBJNMl6tRESDUnr_1urVXfY96MOrlY21wHlq3fx3ludzafk5fDvZeus8rOu478pq_7L-96bfjJ0TGOojk5QEYMz498e_anhUNydwTuEZl1Vxt4jnZlV77oAfILQXh7Ew
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+device+design+and+printing+technology+for+eco-friendly+organic+photovoltaics&rft.jtitle=Energy+%26+environmental+science&rft.au=Li%2C+Haojie&rft.au=Liu%2C+Siqi&rft.au=Wu%2C+Xueting&rft.au=Yao%2C+Shengyi&rft.date=2023-01-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=16&rft.issue=1&rft.spage=76&rft.epage=88&rft_id=info:doi/10.1039%2Fd2ee03246e&rft.externalDocID=d2ee03246e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon