Advances in the device design and printing technology for eco-friendly organic photovoltaics
Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to phot...
Saved in:
Published in | Energy & environmental science Vol. 16; no. 1; pp. 76 - 88 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1754-5692 1754-5706 |
DOI | 10.1039/d2ee03246e |
Cover
Abstract | Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules.
This perspective systematically discusses strategies of optimization of active layer films in the preparation of organic photovoltaic (OPV) devices by green printing. |
---|---|
AbstractList | Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules. Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low solubility and high boiling point of green solvents cause difficulties in morphology exploration and tuning, and are eventually detrimental to photovoltaic properties. In this perspective, the recent research advances in green solvent-treated OSCs are summarized, and solvent selection strategies along with the associated optimization strategies in green printing of OSCs are discussed. Furthermore, the optimization strategies of OSCs fabricated using a large-area printing process are discussed in-depth to provide theoretical guidance for the large-scale fabrication of organic photovoltaic (OPV) modules. This perspective systematically discusses strategies of optimization of active layer films in the preparation of organic photovoltaic (OPV) devices by green printing. |
Author | Li, Haojie Chen, Yiwang Yao, Shengyi Hu, Xiaotian Liu, Siqi Wu, Xueting |
AuthorAffiliation | College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nantong 226010 99 Ziyang Avenue 999 Xuefu Avenue School of future technology National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education School of Physics and Materials Jiangxi Normal University Nanchang University Peking University Yangtze Delta Institute of Optoelectronics |
AuthorAffiliation_xml | – sequence: 0 name: Nanchang University – sequence: 0 name: National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education – sequence: 0 name: Nantong 226010 – sequence: 0 name: Jiangxi Normal University – sequence: 0 name: School of Physics and Materials – sequence: 0 name: 999 Xuefu Avenue – sequence: 0 name: College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) – sequence: 0 name: Peking University Yangtze Delta Institute of Optoelectronics – sequence: 0 name: 99 Ziyang Avenue – sequence: 0 name: School of future technology |
Author_xml | – sequence: 1 givenname: Haojie surname: Li fullname: Li, Haojie – sequence: 2 givenname: Siqi surname: Liu fullname: Liu, Siqi – sequence: 3 givenname: Xueting surname: Wu fullname: Wu, Xueting – sequence: 4 givenname: Shengyi surname: Yao fullname: Yao, Shengyi – sequence: 5 givenname: Xiaotian surname: Hu fullname: Hu, Xiaotian – sequence: 6 givenname: Yiwang surname: Chen fullname: Chen, Yiwang |
BookMark | eNptkd1LwzAUxYNMcJu--C4EfBOqSdom7eOY9QMGvuibUNL0psuoyUyywf57O-cHiE_nwv2de-GcCRpZZwGhc0quKUnLm5YBkJRlHI7QmIo8S3JB-Oh75iU7QZMQVoRwRkQ5Rq-zdiutgoCNxXEJuIWtUXsJprNY2havvbHR2A5HUEvretftsHYeg3KJ9gZs2--w8520RuH10kW3dX2URoVTdKxlH-DsS6fo5a56nj8ki6f7x_lskag0EzEB0HkmSt1KkZdEaCU15VqQMtMNy5pGCT0sSUpAF6wQQGlKWcsbXjBSANXpFF0e7q69e99AiPXKbbwdXtZMcJ7Rgg2eKSIHSnkXggddKxNlNM5GL01fU1LvM6xvWVV9ZlgNlqs_liGMN-l3_8MXB9gH9cP9FpJ-ANUAfqM |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146038 crossref_primary_10_1038_s41467_023_41978_0 crossref_primary_10_1002_marc_202400433 crossref_primary_10_1002_anie_202416866 crossref_primary_10_1002_adma_202302946 crossref_primary_10_1021_acs_macromol_4c01082 crossref_primary_10_1002_adma_202411989 crossref_primary_10_1002_smll_202404066 crossref_primary_10_1007_s40843_024_3156_6 crossref_primary_10_1039_D4EE02963A crossref_primary_10_1002_adfm_202414844 crossref_primary_10_1039_D3TC01443F crossref_primary_10_1016_j_cej_2023_144095 crossref_primary_10_1002_ange_202420226 crossref_primary_10_1016_j_mser_2024_100828 crossref_primary_10_1002_adfm_202409723 crossref_primary_10_1039_D4CC04053H crossref_primary_10_1039_D4EE02467B crossref_primary_10_1002_adma_202303729 crossref_primary_10_1088_1402_4896_ad5154 crossref_primary_10_1002_smll_202401080 crossref_primary_10_1002_adfm_202310865 crossref_primary_10_1002_aenm_202300904 crossref_primary_10_1016_j_cej_2024_152558 crossref_primary_10_1002_adfm_202414317 crossref_primary_10_1002_adma_202404824 crossref_primary_10_1002_ange_202416016 crossref_primary_10_1021_jacs_5c00004 crossref_primary_10_1016_j_cej_2024_151920 crossref_primary_10_1002_anie_202420226 crossref_primary_10_26599_NRE_2022_9120088 crossref_primary_10_1002_solr_202300029 crossref_primary_10_1021_acsami_4c13907 crossref_primary_10_1021_acs_jpclett_4c02676 crossref_primary_10_1021_acsami_4c11805 crossref_primary_10_1021_acs_macromol_4c02672 crossref_primary_10_1021_acsnano_5c01172 crossref_primary_10_1002_ange_202404297 crossref_primary_10_1016_j_mattod_2024_06_008 crossref_primary_10_1039_D4EE04623D crossref_primary_10_1039_D3LF00183K crossref_primary_10_1002_adfm_202315825 crossref_primary_10_1007_s11426_023_1608_6 crossref_primary_10_1002_adfm_202413814 crossref_primary_10_1002_ange_202416866 crossref_primary_10_1016_j_orgel_2024_107075 crossref_primary_10_1016_j_mtener_2023_101322 crossref_primary_10_1016_j_progpolymsci_2023_101711 crossref_primary_10_1002_adfm_202314178 crossref_primary_10_1016_j_nanoen_2023_109226 crossref_primary_10_1021_acs_jpcc_4c00708 crossref_primary_10_1002_anie_202416016 crossref_primary_10_1016_j_cej_2024_148728 crossref_primary_10_1039_D3EE02354K crossref_primary_10_1021_acsami_5c00117 crossref_primary_10_1002_smsc_202400034 crossref_primary_10_1002_anie_202404297 crossref_primary_10_1002_adma_202313098 crossref_primary_10_1016_j_apsusc_2023_159051 crossref_primary_10_1021_acsmacrolett_4c00195 crossref_primary_10_3390_polym15163462 crossref_primary_10_1002_adma_202307863 crossref_primary_10_26599_NRE_2023_9120088 |
Cites_doi | 10.1016/j.isci.2022.104090 10.1002/aenm.201000054 10.1002/adma.202202659 10.1002/adma.201906045 10.1039/D0TC01313G 10.1016/j.nanoen.2019.104327 10.1007/s11426-021-1180-6 10.1016/j.joule.2020.07.028 10.1038/nphoton.2012.11 10.1002/solr.201800060 10.1039/C9GC02288K 10.1007/s10118-022-2803-4 10.1039/C5EE01917F 10.1002/adfm.202100791 10.1002/adma.201905480 10.1016/j.matt.2022.08.011 10.1002/adma.201704837 10.1039/C9TC05713G 10.1038/s41563-022-01244-y 10.1021/acsaem.1c01447 10.1002/adfm.202000417 10.1002/adsu.202100235 10.1002/adma.201903441 10.1039/b617536h 10.1002/ange.202208815 10.1016/j.cis.2019.102080 10.1021/acsenergylett.2c01082 10.1002/adma.201903649 10.1021/acsami.1c13245 10.1002/adma.201707114 10.1002/ange.202209580 10.1016/j.orgel.2011.05.020 10.1038/ncomms7229 10.1021/acsami.7b19548 10.1016/j.orgel.2020.106027 10.1002/solr.202100213 10.1002/adma.202002302 10.1002/ange.202209021 10.1021/acs.macromol.9b00411 10.1002/solr.201900385 10.1002/aesr.202100043 10.1002/adma.201902899 10.1002/cphc.201402734 10.1021/acsami.1c23332 10.1016/j.nanoen.2021.106678 10.1002/aenm.202100098 10.1021/acsami.1c22135 10.1007/s11426-021-1128-1 10.1016/j.cej.2021.132407 10.1016/j.orgel.2020.105871 10.1002/adfm.202102694 10.1039/C8EE01150H 10.1002/adfm.201301509 10.1016/j.joule.2019.11.006 10.1002/adma.202201604 10.1002/adfm.202003223 10.1002/aenm.201700566 10.1126/science.270.5243.1789 10.1021/acsenergylett.2c01364 10.1016/j.cej.2022.139496 10.1038/s41560-021-00923-5 10.1002/solr.202000592 10.1039/D0TC02032J 10.1002/adfm.201707278 10.1002/adfm.202107567 10.1021/acsami.0c23035 10.1002/solr.201800196 10.1002/solr.202000108 10.1016/j.orgel.2019.03.052 10.1038/ncomms9975 10.1007/s11426-021-1094-y 10.1021/jacs.2c05303 10.1039/C9TC05358A 10.1002/adfm.202110209 10.1039/c0gc00918k 10.1002/solr.201800333 10.1002/adfm.202202011 10.1038/s41467-018-02833-9 10.1021/acsami.2c05504 10.1002/aenm.202101768 10.1038/s41560-018-0263-4 10.1039/D0EE02034F 10.1039/D1TA07046K 10.1038/s41467-019-11001-6 10.1007/s11426-022-1256-8 10.1002/adfm.202009996 10.1038/s41467-018-07017-z 10.1039/D0EE03506H 10.1007/s11664-021-09238-3 10.1039/C6EE02255C 10.1021/acsenergylett.1c02244 10.1016/j.synthmet.2018.05.001 10.1088/1361-6528/ac020b 10.1007/s40843-017-9080-x 10.1039/D2EE00639A 10.1002/adfm.202107827 10.1002/adma.201902210 10.1002/aenm.202201338 10.1002/adma.202103017 10.1016/j.commatsci.2011.12.012 10.1016/j.joule.2019.12.004 10.1039/b904997p 10.1039/D1EE01336J 10.1016/j.joule.2021.02.010 10.1002/adma.202105114 10.1002/adma.202107659 10.1002/solr.202101024 10.1016/j.cej.2022.136515 10.1002/adfm.202105794 10.1002/adma.202105301 10.1002/adfm.201501039 10.1016/j.orgel.2020.105893 10.1039/C8TA10882J 10.1007/s10118-021-2586-z |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d2ee03246e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 88 |
ExternalDocumentID | 10_1039_D2EE03246E d2ee03246e |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c347t-eef5479fda75907fcaf16f7094fb24bbc7f9fd030ef8287e11312d6b68208e1f3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:01:25 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 01:45:53 EDT 2025 Tue Dec 17 20:59:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-eef5479fda75907fcaf16f7094fb24bbc7f9fd030ef8287e11312d6b68208e1f3 |
Notes | Xiaotian Hu is a full professor at Nanchang University. He received his PhD from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2019. He joined the Nanchang University in the same year. He has published more than 80 research papers in journals such as Nature Communication, Joule, Advanced Materials, Angewandte Chemie International Edition, Science Bulletin, Science China Chemistry, etc. His research interests are mainly focused on the printing fabrication and modular design of wearable perovskite/organic solar cells. Yiwang Chen is a full professor of Chemistry at Nanchang University and Jiangxi Normal University. He was honored with the National Science Fund for Distinguished Young Scholars in 2014. His research interests include polymer/perovskite solar cells, supercapacitors, electrocatalysis for zinc-air batteries and fuel cells, and intelligent elastomers and fibers. He has published more than 500 research papers and 40 invention patents as well as 4 books. His research project has been awarded the "second class prize of science and technology in universities of China" in 2019 and a gold medal of The Geneva Salon International Des Inventions in 2022. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5483-8800 0000-0003-4709-7623 |
PQID | 2766418211 |
PQPubID | 2047494 |
PageCount | 13 |
ParticipantIDs | rsc_primary_d2ee03246e crossref_primary_10_1039_D2EE03246E crossref_citationtrail_10_1039_D2EE03246E proquest_journals_2766418211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-18 |
PublicationDateYYYYMMDD | 2023-01-18 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D2EE03246E/cit35/1) 2021; 33 Yu (D2EE03246E/cit3/1) 1995; 270 Yao (D2EE03246E/cit16/1) 2022; 134 Sun (D2EE03246E/cit24/1) 2019; 31 Yuan (D2EE03246E/cit90/1) 2021; 11 Du (D2EE03246E/cit107/1) 2021; 5 Park (D2EE03246E/cit47/1) 2020; 86 Zhou (D2EE03246E/cit78/1) 2021; 4 Chen (D2EE03246E/cit63/1) 2021; 6 Xu (D2EE03246E/cit11/1) 2021; 39 Wodo (D2EE03246E/cit36/1) 2012; 55 McDowell (D2EE03246E/cit48/1) 2018; 30 Wan (D2EE03246E/cit105/1) 2022; 32 Park (D2EE03246E/cit38/1) 2011; 12 Capello (D2EE03246E/cit29/1) 2007; 9 Wang (D2EE03246E/cit87/1) 2022; 32 Richard (D2EE03246E/cit91/1) 2020; 275 Kumari (D2EE03246E/cit37/1) 2018; 28 Zhu (D2EE03246E/cit100/1) 2019; 31 Zhao (D2EE03246E/cit98/1) 2020; 32 Xu (D2EE03246E/cit71/1) 2019; 31 Wu (D2EE03246E/cit66/1) 2018; 2 Liu (D2EE03246E/cit44/1) 2018; 242 Huang (D2EE03246E/cit4/1) 2019; 10 Li (D2EE03246E/cit93/1) 2022; 15 An (D2EE03246E/cit77/1) 2020; 8 Xue (D2EE03246E/cit102/1) 2022; 34 Hu (D2EE03246E/cit85/1) 2020; 8 Liu (D2EE03246E/cit69/1) 2022; 25 Liu (D2EE03246E/cit104/1) 2022; 429 Ma (D2EE03246E/cit22/1) 2022; 7 Xu (D2EE03246E/cit20/1) 2022 Beach (D2EE03246E/cit1/1) 2009; 2 Jiang (D2EE03246E/cit17/1) 2022 Sun (D2EE03246E/cit27/1) 2020; 4 Yan (D2EE03246E/cit25/1) 2019; 31 Dong (D2EE03246E/cit95/1) 2020; 4 Kim (D2EE03246E/cit108/1) 2021; 9 Park (D2EE03246E/cit55/1) 2016; 9 Dong (D2EE03246E/cit6/1) 2022; 32 Ning (D2EE03246E/cit80/1) 2021; 14 Meng (D2EE03246E/cit92/1) 2019; 31 Liao (D2EE03246E/cit110/1) 2020; 4 Fan (D2EE03246E/cit74/1) 2021; 11 Sprau (D2EE03246E/cit52/1) 2015; 8 Al-Shekaili (D2EE03246E/cit86/1) 2021; 50 Zhang (D2EE03246E/cit15/1) 2021; 89 Henderson (D2EE03246E/cit28/1) 2011; 13 Ball (D2EE03246E/cit7/1) 2022; 7 Chai (D2EE03246E/cit26/1) 2021; 14 Fu (D2EE03246E/cit49/1) 2021; 5 Bao (D2EE03246E/cit53/1) 2021; 33 Walker (D2EE03246E/cit42/1) 2011; 1 Yu (D2EE03246E/cit56/1) 2018; 9 Park (D2EE03246E/cit51/1) 2017; 7 Li (D2EE03246E/cit83/1) 2023; 452 Li (D2EE03246E/cit61/1) 2018; 2 Du (D2EE03246E/cit88/1) 2021; 31 Xia (D2EE03246E/cit64/1) 2019; 73 Li (D2EE03246E/cit34/1) 2012; 6 Liu (D2EE03246E/cit13/1) 2022; 65 Liu (D2EE03246E/cit19/1) 2022; 65 Xie (D2EE03246E/cit70/1) 2019; 4 Franeker (D2EE03246E/cit73/1) 2015; 6 Liao (D2EE03246E/cit62/1) 2019; 7 Niu (D2EE03246E/cit2/1) 2015; 6 Zhao (D2EE03246E/cit99/1) 2021; 34 Burgués-Ceballos (D2EE03246E/cit41/1) 2014; 24 Hong (D2EE03246E/cit50/1) 2019; 31 Li (D2EE03246E/cit21/1) 2022; 144 Strohm (D2EE03246E/cit39/1) 2018; 11 Kumari (D2EE03246E/cit111/1) 2020; 68 Gu (D2EE03246E/cit89/1) 2018; 9 Sprau (D2EE03246E/cit45/1) 2021; 2 Song (D2EE03246E/cit75/1) 2022; 91 Deng (D2EE03246E/cit82/1) 2022; 443 Song (D2EE03246E/cit8/1) 2021; 31 Wu (D2EE03246E/cit33/1) 2022; 7 Machui (D2EE03246E/cit46/1) 2015; 16 Xu (D2EE03246E/cit72/1) 2020; 13 Chen (D2EE03246E/cit12/1) 2022; 65 Zhao (D2EE03246E/cit54/1) 2017; 60 Kranthiraja (D2EE03246E/cit60/1) 2018; 10 Guo (D2EE03246E/cit106/1) 2022; 6 Meng (D2EE03246E/cit10/1) 2022; 40 Li (D2EE03246E/cit96/1) 2021; 13 Zhu (D2EE03246E/cit23/1) 2022; 21 Yuan (D2EE03246E/cit68/1) 2021; 13 Han (D2EE03246E/cit112/1) 2020; 4 Zhang (D2EE03246E/cit114/1) 2020; 8 Zhang (D2EE03246E/cit81/1) 2022; 32 Liu (D2EE03246E/cit30/1) 2020; 30 Holmes (D2EE03246E/cit43/1) 2019; 21 Huang (D2EE03246E/cit84/1) 2020; 8 Li (D2EE03246E/cit97/1) 2022; 14 Zhou (D2EE03246E/cit32/1) 2022; 14 Wang (D2EE03246E/cit65/1) 2021; 5 Zhao (D2EE03246E/cit76/1) 2017; 30 Song (D2EE03246E/cit57/1) 2022; 5 Liu (D2EE03246E/cit31/1) 2019; 52 Xing (D2EE03246E/cit14/1) 2020; 30 Liu (D2EE03246E/cit58/1) 2022; 14 Qin (D2EE03246E/cit9/1) 2021; 33 Li (D2EE03246E/cit79/1) 2021; 5 Chaturvedi (D2EE03246E/cit101/1) 2020; 31 Yu (D2EE03246E/cit109/1) 2021; 31 Xia (D2EE03246E/cit59/1) 2022; 34 Li (D2EE03246E/cit67/1) 2022; 65 Zhao (D2EE03246E/cit103/1) 2019; 3 Chen (D2EE03246E/cit18/1) 2022 Liu (D2EE03246E/cit94/1) 2022; 34 Tait (D2EE03246E/cit40/1) 2015; 25 Fan (D2EE03246E/cit5/1) 2018; 3 Cheng (D2EE03246E/cit113/1) 2020; 85 |
References_xml | – volume: 25 start-page: 104090 year: 2022 ident: D2EE03246E/cit69/1 publication-title: IScience doi: 10.1016/j.isci.2022.104090 – volume: 1 start-page: 221 year: 2011 ident: D2EE03246E/cit42/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000054 – volume: 34 start-page: 2202659 year: 2022 ident: D2EE03246E/cit102/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202659 – volume: 31 start-page: 1906045 year: 2019 ident: D2EE03246E/cit71/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906045 – volume: 8 start-page: 7718 year: 2020 ident: D2EE03246E/cit84/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01313G – volume: 68 start-page: 104327 year: 2020 ident: D2EE03246E/cit111/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104327 – volume: 65 start-page: 224 year: 2022 ident: D2EE03246E/cit13/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1180-6 – volume: 4 start-page: 2004 year: 2020 ident: D2EE03246E/cit95/1 publication-title: Joule doi: 10.1016/j.joule.2020.07.028 – volume: 6 start-page: 153 year: 2012 ident: D2EE03246E/cit34/1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.11 – volume: 2 start-page: 1800060 year: 2018 ident: D2EE03246E/cit66/1 publication-title: Sol. RRL doi: 10.1002/solr.201800060 – volume: 21 start-page: 5090 year: 2019 ident: D2EE03246E/cit43/1 publication-title: Green Chem. doi: 10.1039/C9GC02288K – volume: 40 start-page: 1522 year: 2022 ident: D2EE03246E/cit10/1 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-022-2803-4 – volume: 8 start-page: 2744 year: 2015 ident: D2EE03246E/cit52/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01917F – volume: 31 start-page: 2100791 year: 2021 ident: D2EE03246E/cit109/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100791 – volume: 31 start-page: 1905480 year: 2019 ident: D2EE03246E/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.201905480 – volume: 5 start-page: 4047 year: 2022 ident: D2EE03246E/cit57/1 publication-title: Matter doi: 10.1016/j.matt.2022.08.011 – volume: 30 start-page: 1704837 year: 2017 ident: D2EE03246E/cit76/1 publication-title: Adv. Mater. doi: 10.1002/adma.201704837 – volume: 8 start-page: 2135 year: 2020 ident: D2EE03246E/cit85/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05713G – volume: 21 start-page: 656 year: 2022 ident: D2EE03246E/cit23/1 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01244-y – volume: 4 start-page: 8175 year: 2021 ident: D2EE03246E/cit78/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01447 – volume: 30 start-page: 2000417 year: 2020 ident: D2EE03246E/cit14/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000417 – volume: 5 start-page: 2100235 year: 2021 ident: D2EE03246E/cit49/1 publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.202100235 – volume: 31 start-page: 1903441 year: 2019 ident: D2EE03246E/cit50/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903441 – volume: 9 start-page: 927 year: 2007 ident: D2EE03246E/cit29/1 publication-title: Green Chem. doi: 10.1039/b617536h – start-page: e202208815 year: 2022 ident: D2EE03246E/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202208815 – volume: 275 start-page: 102080 year: 2020 ident: D2EE03246E/cit91/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.102080 – volume: 7 start-page: 2196 year: 2022 ident: D2EE03246E/cit33/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01082 – volume: 31 start-page: 1903649 year: 2019 ident: D2EE03246E/cit92/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903649 – volume: 13 start-page: 57654 year: 2021 ident: D2EE03246E/cit68/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c13245 – volume: 30 start-page: 1707114 year: 2018 ident: D2EE03246E/cit48/1 publication-title: Adv. Mater. doi: 10.1002/adma.201707114 – start-page: e202209580 year: 2022 ident: D2EE03246E/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202209580 – volume: 12 start-page: 1465 year: 2011 ident: D2EE03246E/cit38/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2011.05.020 – volume: 6 start-page: 6229 year: 2015 ident: D2EE03246E/cit73/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7229 – volume: 10 start-page: 13748 year: 2018 ident: D2EE03246E/cit60/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19548 – volume: 89 start-page: 106027 year: 2021 ident: D2EE03246E/cit15/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.106027 – volume: 5 start-page: 2100213 year: 2021 ident: D2EE03246E/cit107/1 publication-title: Sol. RRL doi: 10.1002/solr.202100213 – volume: 32 start-page: 2002302 year: 2020 ident: D2EE03246E/cit98/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002302 – volume: 134 start-page: e202209021 year: 2022 ident: D2EE03246E/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202209021 – volume: 52 start-page: 4359 year: 2019 ident: D2EE03246E/cit31/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00411 – volume: 4 start-page: 1900385 year: 2019 ident: D2EE03246E/cit70/1 publication-title: Sol. RRL doi: 10.1002/solr.201900385 – volume: 2 start-page: 2100043 year: 2021 ident: D2EE03246E/cit45/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202100043 – volume: 31 start-page: 1902899 year: 2019 ident: D2EE03246E/cit100/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902899 – volume: 16 start-page: 1275 year: 2015 ident: D2EE03246E/cit46/1 publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.201402734 – volume: 14 start-page: 9386 year: 2022 ident: D2EE03246E/cit58/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23332 – volume: 91 start-page: 106678 year: 2022 ident: D2EE03246E/cit75/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106678 – volume: 11 start-page: 2100098 year: 2021 ident: D2EE03246E/cit90/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100098 – volume: 14 start-page: 7093 year: 2022 ident: D2EE03246E/cit32/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22135 – volume: 65 start-page: 373 year: 2022 ident: D2EE03246E/cit67/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1128-1 – volume: 429 start-page: 132407 year: 2022 ident: D2EE03246E/cit104/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132407 – volume: 85 start-page: 105871 year: 2020 ident: D2EE03246E/cit113/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.105871 – volume: 31 start-page: 2102694 year: 2021 ident: D2EE03246E/cit8/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102694 – volume: 11 start-page: 2225 year: 2018 ident: D2EE03246E/cit39/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01150H – volume: 24 start-page: 1449 year: 2014 ident: D2EE03246E/cit41/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301509 – volume: 4 start-page: 189 year: 2020 ident: D2EE03246E/cit110/1 publication-title: Joule doi: 10.1016/j.joule.2019.11.006 – volume: 34 start-page: 2201604 year: 2022 ident: D2EE03246E/cit94/1 publication-title: Adv. Mater. doi: 10.1002/adma.202201604 – volume: 30 start-page: 2003223 year: 2020 ident: D2EE03246E/cit30/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003223 – volume: 7 start-page: 1700566 year: 2017 ident: D2EE03246E/cit51/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700566 – volume: 270 start-page: 1789 year: 1995 ident: D2EE03246E/cit3/1 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 7 start-page: 2547 year: 2022 ident: D2EE03246E/cit22/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01364 – volume: 452 start-page: 139496 year: 2023 ident: D2EE03246E/cit83/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139496 – volume: 6 start-page: 1045 year: 2021 ident: D2EE03246E/cit63/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00923-5 – volume: 5 start-page: 2000592 year: 2021 ident: D2EE03246E/cit79/1 publication-title: Solar RRL doi: 10.1002/solr.202000592 – volume: 8 start-page: 11532 year: 2020 ident: D2EE03246E/cit114/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC02032J – volume: 28 start-page: 1707278 year: 2018 ident: D2EE03246E/cit37/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707278 – volume: 32 start-page: 2107567 year: 2022 ident: D2EE03246E/cit105/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107567 – volume: 13 start-page: 10239 year: 2021 ident: D2EE03246E/cit96/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c23035 – volume: 2 start-page: 1800196 year: 2018 ident: D2EE03246E/cit61/1 publication-title: Sol. RRL doi: 10.1002/solr.201800196 – volume: 4 start-page: 2000108 year: 2020 ident: D2EE03246E/cit112/1 publication-title: Sol. RRL doi: 10.1002/solr.202000108 – volume: 73 start-page: 205 year: 2019 ident: D2EE03246E/cit64/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2019.03.052 – volume: 6 start-page: 8975 year: 2015 ident: D2EE03246E/cit2/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9975 – volume: 65 start-page: 182 year: 2022 ident: D2EE03246E/cit12/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1094-y – volume: 144 start-page: 14731 year: 2022 ident: D2EE03246E/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05303 – volume: 8 start-page: 270 year: 2020 ident: D2EE03246E/cit77/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05358A – volume: 32 start-page: 2110209 year: 2022 ident: D2EE03246E/cit6/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110209 – volume: 13 start-page: 854 year: 2011 ident: D2EE03246E/cit28/1 publication-title: Green Chem. doi: 10.1039/c0gc00918k – volume: 3 start-page: 1800333 year: 2019 ident: D2EE03246E/cit103/1 publication-title: Sol. RRL doi: 10.1002/solr.201800333 – volume: 32 start-page: 2202011 year: 2022 ident: D2EE03246E/cit81/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202202011 – volume: 9 start-page: 534 year: 2018 ident: D2EE03246E/cit89/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02833-9 – volume: 14 start-page: 31054 year: 2022 ident: D2EE03246E/cit97/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05504 – volume: 11 start-page: 2101768 year: 2021 ident: D2EE03246E/cit74/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101768 – volume: 3 start-page: 1051 year: 2018 ident: D2EE03246E/cit5/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0263-4 – volume: 13 start-page: 4381 year: 2020 ident: D2EE03246E/cit72/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02034F – volume: 9 start-page: 24622 year: 2021 ident: D2EE03246E/cit108/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07046K – volume: 10 start-page: 3038 year: 2019 ident: D2EE03246E/cit4/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11001-6 – volume: 65 start-page: 1457 year: 2022 ident: D2EE03246E/cit19/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-022-1256-8 – volume: 31 start-page: 2009996 year: 2020 ident: D2EE03246E/cit101/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009996 – volume: 9 start-page: 4645 year: 2018 ident: D2EE03246E/cit56/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07017-z – volume: 14 start-page: 3469 year: 2021 ident: D2EE03246E/cit26/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03506H – volume: 50 start-page: 6828 year: 2021 ident: D2EE03246E/cit86/1 publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-09238-3 – volume: 9 start-page: 3464 year: 2016 ident: D2EE03246E/cit55/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02255C – volume: 7 start-page: 180 year: 2022 ident: D2EE03246E/cit7/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02244 – volume: 242 start-page: 17 year: 2018 ident: D2EE03246E/cit44/1 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2018.05.001 – volume: 33 start-page: 072002 year: 2021 ident: D2EE03246E/cit35/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/ac020b – volume: 60 start-page: 697 year: 2017 ident: D2EE03246E/cit54/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9080-x – volume: 15 start-page: 2130 year: 2022 ident: D2EE03246E/cit93/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00639A – volume: 32 start-page: 2107827 year: 2022 ident: D2EE03246E/cit87/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107827 – volume: 31 start-page: 1902210 year: 2019 ident: D2EE03246E/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902210 – start-page: 2201338 year: 2022 ident: D2EE03246E/cit20/1 publication-title: Adv. Funct. Mater. doi: 10.1002/aenm.202201338 – volume: 33 start-page: 2103017 year: 2021 ident: D2EE03246E/cit9/1 publication-title: Adv. Mater. doi: 10.1002/adma.202103017 – volume: 55 start-page: 113 year: 2012 ident: D2EE03246E/cit36/1 publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2011.12.012 – volume: 4 start-page: 407 year: 2020 ident: D2EE03246E/cit27/1 publication-title: Joule doi: 10.1016/j.joule.2019.12.004 – volume: 2 start-page: 1038 year: 2009 ident: D2EE03246E/cit1/1 publication-title: Energy Environ. Sci. doi: 10.1039/b904997p – volume: 14 start-page: 5919 year: 2021 ident: D2EE03246E/cit80/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01336J – volume: 5 start-page: 945 year: 2021 ident: D2EE03246E/cit65/1 publication-title: Joule doi: 10.1016/j.joule.2021.02.010 – volume: 34 start-page: 2105114 year: 2021 ident: D2EE03246E/cit99/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105114 – volume: 34 start-page: 2107659 year: 2022 ident: D2EE03246E/cit59/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107659 – volume: 6 start-page: 2101024 year: 2022 ident: D2EE03246E/cit106/1 publication-title: Sol. RRL doi: 10.1002/solr.202101024 – volume: 443 start-page: 136515 year: 2022 ident: D2EE03246E/cit82/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136515 – volume: 31 start-page: 2105794 year: 2021 ident: D2EE03246E/cit88/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105794 – volume: 33 start-page: 2105301 year: 2021 ident: D2EE03246E/cit53/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105301 – volume: 25 start-page: 3393 year: 2015 ident: D2EE03246E/cit40/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501039 – volume: 86 start-page: 105893 year: 2020 ident: D2EE03246E/cit47/1 publication-title: Org. Electron. doi: 10.1016/j.orgel.2020.105893 – volume: 7 start-page: 716 year: 2019 ident: D2EE03246E/cit62/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10882J – volume: 39 start-page: 1441 year: 2021 ident: D2EE03246E/cit11/1 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-021-2586-z |
SSID | ssj0062079 |
Score | 2.6125202 |
Snippet | Green solvent-treated organic solar cells (OSCs) have demonstrated significant potential in terms of commercialization in recent years. However, the low... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 76 |
SubjectTerms | Boiling points Commercialization Fabrication Optimization Photovoltaic cells Photovoltaics Printing Solar cells Solvents |
Title | Advances in the device design and printing technology for eco-friendly organic photovoltaics |
URI | https://www.proquest.com/docview/2766418211 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ_Y7UUPxq_GtdVMohdjqMAMM3DcKKaa6sVtsgeTDQxvLKaB2rKH9q_3zQwDbFwT9QLkDZDNvB_va98HIa8SkGmRVhAoHqqAZ0UZpCV6rUybziYiAbAjWT5_ESdn_NMqWY0lBLa6pCuP1e3OupL_4SrSkK-mSvYfODu8FAl4jfzFI3IYj3_F44X7A__aJytWYL57PJmsjL4FQN2PghhC6K7Jt2oDbVocVxc3_WQn9ebyvO1aFFdd4VPgfcjeFQgalEwK43w55YiNUzcCu2h_1BPaxkZY65_1oAAsZbWx1daD2Cls0PbrOTTfb-ppMCI2qVjBlvyUCQ8S4cbbHcOEJkOxJXTFb-ByElSKqS5Od0r5kJkmqVUMEKI9KGDUZUOG4bi4R_ZjiXbVjOwv8uXHU6-nRRzaTozDT_bNa1n2dnx621wZfZC9Kz8gxhoiywfkfu9B0IWDw0NyB5pH5N6kr-Rj8s0Dg9YNRWBQBwzqgEERGNQDg47AoAgMOgUG7YFBt4DxhJx9yJfvToJ-jEagGJddAKATLjNdFTLJQqlVoSOhJfr1uox5WSqpcRGFPWgz_QCiiEVxJUqBxmEKkWYHZNa0DTwlVDLgMZco5pMQrZoi1XHBJNMl6tRESDUnr_1urVXfY96MOrlY21wHlq3fx3ludzafk5fDvZeus8rOu478pq_7L-96bfjJ0TGOojk5QEYMz498e_anhUNydwTuEZl1Vxt4jnZlV77oAfILQXh7Ew |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+device+design+and+printing+technology+for+eco-friendly+organic+photovoltaics&rft.jtitle=Energy+%26+environmental+science&rft.au=Li%2C+Haojie&rft.au=Liu%2C+Siqi&rft.au=Wu%2C+Xueting&rft.au=Yao%2C+Shengyi&rft.date=2023-01-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=16&rft.issue=1&rft.spage=76&rft.epage=88&rft_id=info:doi/10.1039%2Fd2ee03246e&rft.externalDocID=d2ee03246e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |