Paddy yield prediction based on 2D images of rice panicles using regression techniques

Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 40; no. 6; pp. 4457 - 4471
Main Authors Pankaj, Kumar, Brajesh, Bharti, P. K., Vishnoi, Vibhor Kumar, Kumar, Krishan, Mohan, Shashank, Singh, Krishan Pal
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-023-03092-6

Cover

Abstract Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of rice panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination ( R 2 ) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with R 2 = 0.97, RMSE = 0.14, and MAE = 0.11.
AbstractList Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of rice panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination (R2) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with R2 = 0.97, RMSE = 0.14, and MAE = 0.11.
Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of rice panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination ( R 2 ) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with R 2 = 0.97, RMSE = 0.14, and MAE = 0.11.
Author Kumar, Krishan
Bharti, P. K.
Vishnoi, Vibhor Kumar
Singh, Krishan Pal
Pankaj
Kumar, Brajesh
Mohan, Shashank
Author_xml – sequence: 1
  surname: Pankaj
  fullname: Pankaj
  organization: Department of Computer Science and IT, MJP Rohilkhand University, Department of Computer Science and Engineering, Shri Venkateshwara University
– sequence: 2
  givenname: Brajesh
  orcidid: 0000-0001-8100-7287
  surname: Kumar
  fullname: Kumar, Brajesh
  email: bkumar@mjpru.ac.in
  organization: Department of Computer Science and IT, MJP Rohilkhand University, Atal Center for Artificial Intelligence, MJP Rohilkhand University
– sequence: 3
  givenname: P. K.
  surname: Bharti
  fullname: Bharti, P. K.
  organization: Department of Computer Science and Engineering, Shri Venkateshwara University
– sequence: 4
  givenname: Vibhor Kumar
  orcidid: 0000-0002-6682-4171
  surname: Vishnoi
  fullname: Vishnoi, Vibhor Kumar
  organization: College of Computing Sciences and Information Technology, Teerthanker Mahaveer University
– sequence: 5
  givenname: Krishan
  surname: Kumar
  fullname: Kumar, Krishan
  organization: Department of Computer Science, Gurukula Kangri (Deemed to be University)
– sequence: 6
  givenname: Shashank
  surname: Mohan
  fullname: Mohan, Shashank
  organization: Department of Biosystems and Agricultural Engineering, Michigan State University
– sequence: 7
  givenname: Krishan Pal
  surname: Singh
  fullname: Singh, Krishan Pal
  organization: Atal Center for Artificial Intelligence, MJP Rohilkhand University
BookMark eNqFkM1OwzAQhC1UJNrCC3CyxDngjd3YOaLyK1WCA3C1HHsTXIWk2Omhb49LkJA4lJPX1nw745mRSdd3SMg5sEtgTF5FxriEjOU8Y5yVeVYckSkInmc5h8WETBlIleVSlSdkFuOapbsU5ZS8PRvndnTnsXV0E9B5O_i-o5WJ6Gga8hvqP0yDkfY1Dd4i3ZjO2zY9bKPvGhqwCRjjHhrQvnf-c4vxlBzXpo149nPOyevd7cvyIVs93T8ur1eZ5UIOmaskCiMUsMqCUcqAE0VVpmwLLGwF0tW1EyksGmsEYKlsUdaoWCUdCjB8Ti7GvZvQ730Hve63oUuWmrNiwfmiAPWfCgRTAEmVjyob-hgD1noT0tfDTgPT-5b12LJOLevvlnWRIPUHsn4w-wqHYHx7GOUjGpNP12D4TXWA-gLUuJL5
CitedBy_id crossref_primary_10_3390_agronomy14102264
crossref_primary_10_1016_j_compag_2024_109852
crossref_primary_10_1109_ACCESS_2024_3478738
Cites_doi 10.1016/j.biosystemseng.2020.02.014
10.1016/j.compag.2019.05.020
10.1016/j.asr.2022.06.073
10.1016/j.compag.2023.107807
10.1007/s00371-023-02823-z
10.1016/j.biosystemseng.2019.11.001
10.1007/s00371-022-02742-5
10.1016/j.jafr.2021.100186
10.1016/j.neucom.2021.10.125
10.1016/j.agwat.2021.107317
10.1016/j.patrec.2017.08.011
10.1016/j.matpr.2021.02.578
10.1016/j.compag.2021.106036
10.1080/01431160412331269698
10.1029/2020GL090848
10.1016/j.crope.2023.03.001
10.1016/j.jag.2022.102725
10.1016/j.agrformet.2020.108096
10.1016/j.fcr.2019.02.022
10.1016/j.compag.2019.104859
10.1016/j.matcom.2020.12.011
10.1142/9097
10.1007/978-1-4419-9326-7
10.1007/BF00994018
10.1007/s00371-021-02164-9
10.1007/s00371-022-02443-z
10.1016/j.isprsjprs.2021.02.008
10.1016/j.agrformet.2019.107886
10.1080/01431161.2017.1365390
10.1016/j.fcr.2012.11.018
10.1080/01431161.2019.1577571
10.1080/01431161.2017.1348636
10.3390/rs61110335
10.1080/10485252.2012.715161
10.1109/ICARCV.2014.7064414
10.1023/B:STCO.0000035301.49549.88
10.1016/j.fcr.2021.108098
10.1080/01431161.2018.1448484
10.1007/s00371-021-02116-3
10.1016/j.rse.2019.111460
10.1016/S0031-3203(99)00154-5
10.1080/01431161.2019.1597303
10.1109/ICEngTechnol.2017.8308186
10.5194/nhess-22-3751-2022
10.1109/ICBDA.2017.8078730
10.1016/j.jag.2023.103292
10.1007/s00371-023-02895-x
10.17632/s9mn5xg4wj1
10.1016/j.cmpb.2013.11.004
10.1016/j.atech.2022.100049
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00371-023-03092-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Computer Science Collection
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Agriculture
EISSN 1432-2315
EndPage 4471
ExternalDocumentID 10_1007_s00371_023_03092_6
GeographicLocations China
India
GeographicLocations_xml – name: China
– name: India
GrantInformation_xml – fundername: Department of Higher Education, Government of Uttar Pradesh
  grantid: Number-45/2022/869/Seventy-4-2022/001-70-4099-1-2022
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c347t-db7e4a4810bc1a88a1d46b91775e6cb17dffd4001eaca41e98c69fe80b7de41a3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 22:54:01 EDT 2025
Fri Jul 25 09:39:51 EDT 2025
Wed Oct 01 01:50:32 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 21 02:41:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Regression
Image processing
Rice panicle
Machine learning
Yield prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-db7e4a4810bc1a88a1d46b91775e6cb17dffd4001eaca41e98c69fe80b7de41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8100-7287
0000-0002-6682-4171
PQID 3065140811
PQPubID 2043737
PageCount 15
ParticipantIDs proquest_journals_3065335618
proquest_journals_3065140811
crossref_primary_10_1007_s00371_023_03092_6
crossref_citationtrail_10_1007_s00371_023_03092_6
springer_journals_10_1007_s00371_023_03092_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Rana, K., Malik, N., Ozturk, U.: Landsifier v1.0: a python library to estimate likely triggers of mapped landslides. Nat. Haz. Earth Syst. Sci, 22(11):3751–3764, (2022) https://doi.org/10.5194/nhess-22-3751-2022, https://nhess.copernicus.org/articles/22/3751/2022
Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET), pp 1–6 (2017) https://doi.org/10.1109/ICEngTechnol.2017.8308186
SmolaAJ SchölkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88
Mateo-Sanchis, A., Piles, M., Muñoz-Marí, J., Adsuara, J.E., Pérez-Suay, A., Camps-Valls, G.: Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 234:111460 (2019) https://doi.org/10.1016/j.rse.2019.111460, https://www.sciencedirect.com/science/article/pii/S0034425719304791
SanchesGMDuftDGKöllnOTdos Santos LucianoACCastroSGQDOkunoFMFrancoHCJThe potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fieldsInt. J. Remote Sens.20183915–165402541410.1080/01431161.2018.1448484
Kim, K., sik, Hong, J.: A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Patt. Recognit. Lett, 98:39–45, (2017) https://doi.org/10.1016/j.patrec.2017.08.011, https://www.sciencedirect.com/science/article/pii/S0167865517302672
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International conference on control automation robotics & vision (ICARCV), pp 844–848, (2014) https://doi.org/10.1109/ICARCV.2014.7064414
Maimon, O.Z., Rokach, L.: Data mining with decision trees: theory and applications, Vol 81. World scientific (2014)
PalMRandom forest classifier for remote sensing classificationInt. J. Remote Sens.200526121722210.1080/01431160412331269698
Liu, Y., Heuvelink, G.B., Bai, Z., He, P., Xu, X., Ding, W., Huang, S.: Analysis of spatio-temporal variation of crop yield in china using stepwise multiple linear regression. Field Crops Res., 264:108098 (2021) https://doi.org/10.1016/j.fcr.2021.108098, https://www.sciencedirect.com/science/article/pii/S0378429021000447
Prabakaran, G., Vaithiyanathan, D., Ganesan, M.: Fpga based effective agriculture productivity prediction system using fuzzy support vector machine. Mathemat. Comput. Simul. 185:1–16, (2021) https://doi.org/10.1016/j.matcom.2020.12.011, https://www.sciencedirect.com/science/article/pii/S0378475420304663
AzarATElshazlyHIHassanienAEElkoranyAMA random forest classifier for lymph diseasesComput. Meth. Progr. Biomed.2014113246547310.1016/j.cmpb.2013.11.004
CedricLSAdoniWYHAworkaRZoueuJTMutomboFKKrichenMKimpoloCLMCrops yield prediction based on machine learning models: case of west african countriesSmart Agricult. Technol.2022210004910.1016/j.atech.2022.100049
NakanoHTanakaRGuanSOhdanHPredicting rice grain yield using normalized difference vegetation index from UAV and greenseekerCrop Environ.202322596510.1016/j.crope.2023.03.001
Chivasa, W., Mutanga, O., Biradar, C.: Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: a review. Int. J. Remote Sens. 38(23):6816–6845, (2017) https://doi.org/10.1080/01431161.2017.1365390
BieniekAMogaAAn efficient watershed algorithm based on connected componentsPatt. Recognit.200033690791610.1016/S0031-3203(99)00154-5
Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult. 163:104859, (2019a) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842
Basir, M.S., Chowdhury, M., Islam, M.N., Ashik-E-Rabbani, M.: Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in bangladesh. J. Agricult. Food Res. 5:100186 (2021) https://doi.org/10.1016/j.jafr.2021.100186, https://www.sciencedirect.com/science/article/pii/S2666154321000880
Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult, 163:104859, (2019b) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842
MaJLiuBJiLZhuZWuYJiaoWField-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imageryInt. J. Appl. Earth Obs. Geoinf.202311810329210.1016/j.jag.2023.103292
GeipelJLinkJClaupeinWCombined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft systemRemote Sens.2014611103351035510.3390/rs61110335
KumarBDikshitOHyperspectral image classification based on morphological profiles and decision fusionInt. J. Remote Sens.201738205830585410.1080/01431161.2017.1348636
SaganVMaimaitijiangMBhadraSMaimaitiyimingMBrownDRSidikePFritschiFBField-scale crop yield prediction using multi-temporal worldview-3 and planetscope satellite data and deep learningISPRS J. Photogramm. Remote. Sens.202117426528110.1016/j.isprsjprs.2021.02.008
Zhang, M., Zhou, J., Sudduth, K.A., Kitchen, N.R.: Estimation of maize yield and effects of variable-rate nitrogen application using uav-based rgb imagery. Biosystems Engineering 189:24–35, (2020) https://doi.org/10.1016/j.biosystemseng.2019.11.001, https://www.sciencedirect.com/science/article/pii/S153751101930875X
Feng, A., Zhou, J., Vories, E.D., Sudduth, K.A., Zhang, M.: Yield estimation in cotton using uav-based multi-sensor imagery. Biosyst. Eng. 193:101–114 (2020) https://doi.org/10.1016/j.biosystemseng.2020.02.014, https://www.sciencedirect.com/science/article/pii/S1537511020300544
Velmurugan, P., Kannagi, A., Varsha, M.: Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Mater. Today: Proceed. (2021) https://doi.org/10.1016/j.matpr.2021.02.578, https://www.sciencedirect.com/science/article/pii/S2214785321017235
Zhao, S., Zheng, H., Chi, M., Chai, X., Liu, Y.: Rapid yield prediction in paddy fields based on 2D image modelling of rice panicles. Comput. Electr. Agricult, 162:759–766, (2019) https://doi.org/10.1016/j.compag.2019.05.020, https://www.sciencedirect.com/science/article/pii/S0168169919303023
WanLCenHZhuJZhangJZhuYSunDDuXZhaiLWengHLiYLiXBaoYShouJHeYGrain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer - a case study of small farmlands in the South of ChinaAgric. For. Meteorol.202029110809610.1016/j.agrformet.2020.108096
HeBQianSNiuYVisual recognition and location algorithm based on optimized yolov3 detector and RGB depth cameraVis. Comput.202310.1007/s00371-023-02895-x
StephenAPunithaAChandrasekarAOptimal deep generative adversarial network and convolutional neural network for rice leaf disease predictionVis. Comput.202310.1007/s00371-023-02823-z
SchwalbertRAAmadoTCorassaGPottLPPrasadPCiampittiIASatellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern brazilAgric. For. Meteorol.202028410788610.1016/j.agrformet.2019.107886
CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF00994018
RoyMHLarocqueDRobustness of random forests for regressionJ. Nonparam. Stat.20122449931006299548810.1080/10485252.2012.715161
Choudhary, K., Shi, W., Dong, Y., Paringer, R.: Random forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Adv. Space Res. (2022) https://doi.org/10.1016/j.asr.2022.06.073, https://www.sciencedirect.com/science/article/pii/S0273117722005737
GajjarRGajjarNThakorVJPatelNPRupareliaSReal-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platformVis. Comput.2022382923293810.1007/s00371-021-02164-9
MarjaniZadeh, M.S.J., Sand Turral, H.: More people, more food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} worse water? - water pollution from agriculture: a global review. Food and Agriculture Organization of the United Nations (2018)
Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., He, Y. Grain yield prediction of rice using multi-temporal uav-based rgb and multispectral images and model transfer - a case study of small farmlands in the south of china. Agricult. Forest Meteorol, 291:108096, (2020b) https://doi.org/10.1016/j.agrformet.2020.108096, https://www.sciencedirect.com/science/article/pii/S0168192320301982
DesloiresJIencoDBotrelAOut-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methodsComput. Electron. Agric.202320910780710.1016/j.compag.2023.107807
ServiaHPareethSMichailovskyCIde FraitureCKarimiPOperational framework to predict field level crop biomass using remote sensing and data driven modelsInt. J. Appl. Earth Obs. Geoinf.202210810272510.1016/j.jag.2022.102725
EscalanteHJRodríguez-SánchezSJiménez-LizárragaMMorales-ReyesACallejaJDLVazquezRBarley yield and fertilization analysis from uav imagery: a deep learning approachInt. J. Remote Sens.20194072493251610.1080/01431161.2019.1577571
ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7
RußGPernerPData mining of agricultural yield data: a comparison of regression models applications and theoretical aspectsAdvances in data mining2009Berlin and HeidelbergSpringer2437
Sharma, V., Tripathi, A.K., Mittal, H., Parmar, A., Soni, A., Amarwal, R.: Weedgan: a novel generative adversarial network for cotton weed identification. Vis. Comput. (2022). https://doi.org/10.1007/s
A Stephen (3092_CR48) 2023
J Geipel (3092_CR13) 2014; 6
B He (3092_CR15) 2023
AJ Prakash (3092_CR36) 2023; 39
3092_CR25
3092_CR22
3092_CR23
3092_CR28
3092_CR26
3092_CR27
J Ma (3092_CR24) 2023; 118
A Bieniek (3092_CR4) 2000; 33
3092_CR20
H Nakano (3092_CR29) 2023; 2
3092_CR1
3092_CR3
3092_CR6
L Wan (3092_CR51) 2020; 291
3092_CR7
AJ Smola (3092_CR47) 2004; 14
MH Roy (3092_CR39) 2012; 24
A Liaw (3092_CR21) 2002; 2
S Olanrewaju (3092_CR33) 2019; 40
G Ruß (3092_CR40) 2009
HJ Escalante (3092_CR10) 2019; 40
3092_CR35
H Servia (3092_CR44) 2022; 108
3092_CR38
RA Schwalbert (3092_CR43) 2020; 284
3092_CR31
3092_CR32
3092_CR30
AT Azar (3092_CR2) 2014; 113
LS Cedric (3092_CR5) 2022; 2
S Shafiee (3092_CR45) 2021; 183
3092_CR46
3092_CR49
R Gajjar (3092_CR12) 2022; 38
C Cortes (3092_CR8) 1995; 20
K Rana (3092_CR37) 2021; 38
J Desloires (3092_CR9) 2023; 209
M Pal (3092_CR34) 2005; 26
V Sagan (3092_CR41) 2021; 174
MH Junos (3092_CR17) 2022; 38
3092_CR14
3092_CR11
C Zhang (3092_CR54) 2012
3092_CR55
3092_CR56
3092_CR18
3092_CR16
3092_CR50
B Kumar (3092_CR19) 2017; 38
GM Sanches (3092_CR42) 2018; 39
3092_CR53
3092_CR52
References_xml – reference: MaJLiuBJiLZhuZWuYJiaoWField-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imageryInt. J. Appl. Earth Obs. Geoinf.202311810329210.1016/j.jag.2023.103292
– reference: OlanrewajuSRajanNIbrahimAMRuddJCLiuSSuiRJessupKEXueQUsing aerial imagery and digital photography to monitor growth and yield in winter wheatInt. J. Remote Sens.201940186905692910.1080/01431161.2019.1597303
– reference: CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF00994018
– reference: GeipelJLinkJClaupeinWCombined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft systemRemote Sens.2014611103351035510.3390/rs61110335
– reference: Kim, K., sik, Hong, J.: A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Patt. Recognit. Lett, 98:39–45, (2017) https://doi.org/10.1016/j.patrec.2017.08.011, https://www.sciencedirect.com/science/article/pii/S0167865517302672
– reference: Mateo-Sanchis, A., Piles, M., Muñoz-Marí, J., Adsuara, J.E., Pérez-Suay, A., Camps-Valls, G.: Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 234:111460 (2019) https://doi.org/10.1016/j.rse.2019.111460, https://www.sciencedirect.com/science/article/pii/S0034425719304791
– reference: Prabakaran, G., Vaithiyanathan, D., Ganesan, M.: Fpga based effective agriculture productivity prediction system using fuzzy support vector machine. Mathemat. Comput. Simul. 185:1–16, (2021) https://doi.org/10.1016/j.matcom.2020.12.011, https://www.sciencedirect.com/science/article/pii/S0378475420304663
– reference: BieniekAMogaAAn efficient watershed algorithm based on connected componentsPatt. Recognit.200033690791610.1016/S0031-3203(99)00154-5
– reference: StephenAPunithaAChandrasekarAOptimal deep generative adversarial network and convolutional neural network for rice leaf disease predictionVis. Comput.202310.1007/s00371-023-02823-z
– reference: Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., He, Y. Grain yield prediction of rice using multi-temporal uav-based rgb and multispectral images and model transfer - a case study of small farmlands in the south of china. Agricult. Forest Meteorol, 291:108096, (2020b) https://doi.org/10.1016/j.agrformet.2020.108096, https://www.sciencedirect.com/science/article/pii/S0168192320301982
– reference: DesloiresJIencoDBotrelAOut-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methodsComput. Electron. Agric.202320910780710.1016/j.compag.2023.107807
– reference: PrakashAJPrakasamPAn intelligent fruits classification in precision agriculture using bilinear pooling convolutional neural networksVis. Comput.2023391765178110.1007/s00371-022-02443-z
– reference: Rana, K., Malik, N., Ozturk, U.: Landsifier v1.0: a python library to estimate likely triggers of mapped landslides. Nat. Haz. Earth Syst. Sci, 22(11):3751–3764, (2022) https://doi.org/10.5194/nhess-22-3751-2022, https://nhess.copernicus.org/articles/22/3751/2022/
– reference: SchwalbertRAAmadoTCorassaGPottLPPrasadPCiampittiIASatellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern brazilAgric. For. Meteorol.202028410788610.1016/j.agrformet.2019.107886
– reference: JunosMHMohd KhairuddinASThannirmalaiSDahariMAutomatic detection of oil palm fruits from UAV images using an improved yolo modelVis. Comput.2022382341235510.1007/s00371-021-02116-3
– reference: Feng, A., Zhou, J., Vories, E.D., Sudduth, K.A., Zhang, M.: Yield estimation in cotton using uav-based multi-sensor imagery. Biosyst. Eng. 193:101–114 (2020) https://doi.org/10.1016/j.biosystemseng.2020.02.014, https://www.sciencedirect.com/science/article/pii/S1537511020300544
– reference: CedricLSAdoniWYHAworkaRZoueuJTMutomboFKKrichenMKimpoloCLMCrops yield prediction based on machine learning models: case of west african countriesSmart Agricult. Technol.2022210004910.1016/j.atech.2022.100049
– reference: SaganVMaimaitijiangMBhadraSMaimaitiyimingMBrownDRSidikePFritschiFBField-scale crop yield prediction using multi-temporal worldview-3 and planetscope satellite data and deep learningISPRS J. Photogramm. Remote. Sens.202117426528110.1016/j.isprsjprs.2021.02.008
– reference: Yang, Q., Shi, L., Han, J., Zha, Y., Zhu, P.: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using uav-based remotely sensed images. Field Crops Res., 235:142–153, (2019) https://doi.org/10.1016/j.fcr.2019.02.022, https://www.sciencedirect.com/science/article/pii/S037842901831390X
– reference: WanLCenHZhuJZhangJZhuYSunDDuXZhaiLWengHLiYLiXBaoYShouJHeYGrain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer - a case study of small farmlands in the South of ChinaAgric. For. Meteorol.202029110809610.1016/j.agrformet.2020.108096
– reference: Maimon, O.Z., Rokach, L.: Data mining with decision trees: theory and applications, Vol 81. World scientific (2014)
– reference: Velmurugan, P., Kannagi, A., Varsha, M.: Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Mater. Today: Proceed. (2021) https://doi.org/10.1016/j.matpr.2021.02.578, https://www.sciencedirect.com/science/article/pii/S2214785321017235
– reference: Huang, H., Wei, X., Zhou, Y.: An overview on twin support vector regression. Neurocomputing 490:80–92, (2022) https://doi.org/10.1016/j.neucom.2021.10.125, https://www.sciencedirect.com/science/article/pii/S0925231222003101
– reference: Zhao, S., Zheng, H., Chi, M., Chai, X., Liu, Y.: Rapid yield prediction in paddy fields based on 2D image modelling of rice panicles. Comput. Electr. Agricult, 162:759–766, (2019) https://doi.org/10.1016/j.compag.2019.05.020, https://www.sciencedirect.com/science/article/pii/S0168169919303023
– reference: Choudhary, K., Shi, W., Dong, Y., Paringer, R.: Random forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Adv. Space Res. (2022) https://doi.org/10.1016/j.asr.2022.06.073, https://www.sciencedirect.com/science/article/pii/S0273117722005737
– reference: RanaKOzturkUMalikNLandslide geometry reveals its triggerGeophys. Res. Lett.20213841810.1029/2020GL090848
– reference: Mateo-Sagasta, J., Zadeh, S.M., Turral, H.: More People, More food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} Worse Water? - Water Pollution from Agriculture: a Global Review. Tech. rep, International Water Management Institute, Rome, Italy (2018)
– reference: Liu, Y., Chi, M., Zheng, H., Zhao, S., Chai, C.: Data for: rapid yield predictions in paddy fields based on 2D image modelling of rice panicles. Mendeley Data, (2019) https://doi.org/10.17632/s9mn5xg4wj1
– reference: KumarBDikshitOHyperspectral image classification based on morphological profiles and decision fusionInt. J. Remote Sens.201738205830585410.1080/01431161.2017.1348636
– reference: RoyMHLarocqueDRobustness of random forests for regressionJ. Nonparam. Stat.20122449931006299548810.1080/10485252.2012.715161
– reference: ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7
– reference: ServiaHPareethSMichailovskyCIde FraitureCKarimiPOperational framework to predict field level crop biomass using remote sensing and data driven modelsInt. J. Appl. Earth Obs. Geoinf.202210810272510.1016/j.jag.2022.102725
– reference: Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International conference on control automation robotics & vision (ICARCV), pp 844–848, (2014) https://doi.org/10.1109/ICARCV.2014.7064414
– reference: LiawAWienerMClassification and regression by random forestR News200221822
– reference: Zhang, M., Zhou, J., Sudduth, K.A., Kitchen, N.R.: Estimation of maize yield and effects of variable-rate nitrogen application using uav-based rgb imagery. Biosystems Engineering 189:24–35, (2020) https://doi.org/10.1016/j.biosystemseng.2019.11.001, https://www.sciencedirect.com/science/article/pii/S153751101930875X
– reference: SanchesGMDuftDGKöllnOTdos Santos LucianoACCastroSGQDOkunoFMFrancoHCJThe potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fieldsInt. J. Remote Sens.20183915–165402541410.1080/01431161.2018.1448484
– reference: Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET), pp 1–6 (2017) https://doi.org/10.1109/ICEngTechnol.2017.8308186
– reference: PalMRandom forest classifier for remote sensing classificationInt. J. Remote Sens.200526121722210.1080/01431160412331269698
– reference: Guo, T., Dong, J., Li, H., Gao, Y.: Simple convolutional neural network on image classification. In: 2017 IEEE 2nd International conference on big data analysis (ICBDA), pp 721–724, (2017) https://doi.org/10.1109/ICBDA.2017.8078730
– reference: RußGPernerPData mining of agricultural yield data: a comparison of regression models applications and theoretical aspectsAdvances in data mining2009Berlin and HeidelbergSpringer2437
– reference: EscalanteHJRodríguez-SánchezSJiménez-LizárragaMMorales-ReyesACallejaJDLVazquezRBarley yield and fertilization analysis from uav imagery: a deep learning approachInt. J. Remote Sens.20194072493251610.1080/01431161.2019.1577571
– reference: Ohana-Levi, N., Ben-Gal, A., Munitz, S., Netzer, Y.: Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models. Agricult Water Manag. 262:107317, (2022) https://doi.org/10.1016/j.agwat.2021.107317, https://www.sciencedirect.com/science/article/pii/S0378377421005941
– reference: SmolaAJ SchölkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88
– reference: Basir, M.S., Chowdhury, M., Islam, M.N., Ashik-E-Rabbani, M.: Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in bangladesh. J. Agricult. Food Res. 5:100186 (2021) https://doi.org/10.1016/j.jafr.2021.100186, https://www.sciencedirect.com/science/article/pii/S2666154321000880
– reference: GajjarRGajjarNThakorVJPatelNPRupareliaSReal-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platformVis. Comput.2022382923293810.1007/s00371-021-02164-9
– reference: Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult, 163:104859, (2019b) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842
– reference: NakanoHTanakaRGuanSOhdanHPredicting rice grain yield using normalized difference vegetation index from UAV and greenseekerCrop Environ.202322596510.1016/j.crope.2023.03.001
– reference: AzarATElshazlyHIHassanienAEElkoranyAMA random forest classifier for lymph diseasesComput. Meth. Progr. Biomed.2014113246547310.1016/j.cmpb.2013.11.004
– reference: Liu, Y., Heuvelink, G.B., Bai, Z., He, P., Xu, X., Ding, W., Huang, S.: Analysis of spatio-temporal variation of crop yield in china using stepwise multiple linear regression. Field Crops Res., 264:108098 (2021) https://doi.org/10.1016/j.fcr.2021.108098, https://www.sciencedirect.com/science/article/pii/S0378429021000447
– reference: Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult. 163:104859, (2019a) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842
– reference: MarjaniZadeh, M.S.J., Sand Turral, H.: More people, more food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} worse water? - water pollution from agriculture: a global review. Food and Agriculture Organization of the United Nations (2018)
– reference: van Wart, J., Kersebaum, K.C., Peng, S., Milner, M., Cassman, K.G.: Estimating crop yield potential at regional to national scales. Field Crops Research 143:34–43 (2013) https://doi.org/10.1016/j.fcr.2012.11.018, https://www.sciencedirect.com/science/article/pii/S0378429012004066, crop Yield Gap Analysis - Rationale, Methods and Applications
– reference: Chivasa, W., Mutanga, O., Biradar, C.: Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: a review. Int. J. Remote Sens. 38(23):6816–6845, (2017) https://doi.org/10.1080/01431161.2017.1365390
– reference: HeBQianSNiuYVisual recognition and location algorithm based on optimized yolov3 detector and RGB depth cameraVis. Comput.202310.1007/s00371-023-02895-x
– reference: ShafieeSLiedLMBurudIDiesethJAAlsheikhMLillemoMSequential forward selection and support vector regression in comparison to lasso regression for spring wheat yield prediction based on uav imageryComput. Electron. Agric.202118310603610.1016/j.compag.2021.106036
– reference: Sharma, V., Tripathi, A.K., Mittal, H., Parmar, A., Soni, A., Amarwal, R.: Weedgan: a novel generative adversarial network for cotton weed identification. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02742-5
– ident: 3092_CR11
  doi: 10.1016/j.biosystemseng.2020.02.014
– ident: 3092_CR56
  doi: 10.1016/j.compag.2019.05.020
– ident: 3092_CR7
  doi: 10.1016/j.asr.2022.06.073
– volume: 209
  start-page: 107807
  year: 2023
  ident: 3092_CR9
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107807
– ident: 3092_CR26
– year: 2023
  ident: 3092_CR48
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-023-02823-z
– ident: 3092_CR55
  doi: 10.1016/j.biosystemseng.2019.11.001
– start-page: 24
  volume-title: Advances in data mining
  year: 2009
  ident: 3092_CR40
– ident: 3092_CR46
  doi: 10.1007/s00371-022-02742-5
– ident: 3092_CR3
  doi: 10.1016/j.jafr.2021.100186
– ident: 3092_CR16
  doi: 10.1016/j.neucom.2021.10.125
– ident: 3092_CR32
  doi: 10.1016/j.agwat.2021.107317
– ident: 3092_CR18
  doi: 10.1016/j.patrec.2017.08.011
– ident: 3092_CR50
  doi: 10.1016/j.matpr.2021.02.578
– volume: 183
  start-page: 106036
  year: 2021
  ident: 3092_CR45
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106036
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  ident: 3092_CR34
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 38
  start-page: 1
  issue: 4
  year: 2021
  ident: 3092_CR37
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090848
– volume: 2
  start-page: 59
  issue: 2
  year: 2023
  ident: 3092_CR29
  publication-title: Crop Environ.
  doi: 10.1016/j.crope.2023.03.001
– volume: 108
  start-page: 102725
  year: 2022
  ident: 3092_CR44
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2022.102725
– volume: 291
  start-page: 108096
  year: 2020
  ident: 3092_CR51
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108096
– ident: 3092_CR53
  doi: 10.1016/j.fcr.2019.02.022
– ident: 3092_CR30
  doi: 10.1016/j.compag.2019.104859
– ident: 3092_CR35
  doi: 10.1016/j.matcom.2020.12.011
– ident: 3092_CR25
  doi: 10.1142/9097
– volume-title: Ensemble machine learning: methods and applications
  year: 2012
  ident: 3092_CR54
  doi: 10.1007/978-1-4419-9326-7
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 3092_CR8
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 3092_CR52
  doi: 10.1016/j.agrformet.2020.108096
– volume: 38
  start-page: 2923
  year: 2022
  ident: 3092_CR12
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02164-9
– volume: 39
  start-page: 1765
  year: 2023
  ident: 3092_CR36
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-022-02443-z
– volume: 174
  start-page: 265
  year: 2021
  ident: 3092_CR41
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2021.02.008
– volume: 2
  start-page: 18
  year: 2002
  ident: 3092_CR21
  publication-title: R News
– volume: 284
  start-page: 107886
  year: 2020
  ident: 3092_CR43
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107886
– ident: 3092_CR6
  doi: 10.1080/01431161.2017.1365390
– ident: 3092_CR49
  doi: 10.1016/j.fcr.2012.11.018
– volume: 40
  start-page: 2493
  issue: 7
  year: 2019
  ident: 3092_CR10
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1577571
– volume: 38
  start-page: 5830
  issue: 20
  year: 2017
  ident: 3092_CR19
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1348636
– volume: 6
  start-page: 10335
  issue: 11
  year: 2014
  ident: 3092_CR13
  publication-title: Remote Sens.
  doi: 10.3390/rs61110335
– volume: 24
  start-page: 993
  issue: 4
  year: 2012
  ident: 3092_CR39
  publication-title: J. Nonparam. Stat.
  doi: 10.1080/10485252.2012.715161
– ident: 3092_CR20
  doi: 10.1109/ICARCV.2014.7064414
– volume: 14
  start-page: 199
  year: 2004
  ident: 3092_CR47
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: 3092_CR23
  doi: 10.1016/j.fcr.2021.108098
– volume: 39
  start-page: 5402
  issue: 15–16
  year: 2018
  ident: 3092_CR42
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1448484
– volume: 38
  start-page: 2341
  year: 2022
  ident: 3092_CR17
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-021-02116-3
– ident: 3092_CR28
  doi: 10.1016/j.rse.2019.111460
– volume: 33
  start-page: 907
  issue: 6
  year: 2000
  ident: 3092_CR4
  publication-title: Patt. Recognit.
  doi: 10.1016/S0031-3203(99)00154-5
– ident: 3092_CR27
– volume: 40
  start-page: 6905
  issue: 18
  year: 2019
  ident: 3092_CR33
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1597303
– ident: 3092_CR1
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: 3092_CR38
  doi: 10.5194/nhess-22-3751-2022
– ident: 3092_CR14
  doi: 10.1109/ICBDA.2017.8078730
– ident: 3092_CR31
  doi: 10.1016/j.compag.2019.104859
– volume: 118
  start-page: 103292
  year: 2023
  ident: 3092_CR24
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2023.103292
– year: 2023
  ident: 3092_CR15
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-023-02895-x
– ident: 3092_CR22
  doi: 10.17632/s9mn5xg4wj1
– volume: 113
  start-page: 465
  issue: 2
  year: 2014
  ident: 3092_CR2
  publication-title: Comput. Meth. Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.11.004
– volume: 2
  start-page: 100049
  year: 2022
  ident: 3092_CR5
  publication-title: Smart Agricult. Technol.
  doi: 10.1016/j.atech.2022.100049
SSID ssj0017749
Score 2.3929346
Snippet Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4457
SubjectTerms Accuracy
Agricultural production
Agriculture
Algorithms
Artificial Intelligence
Artificial neural networks
Availability
Color imagery
Computer Graphics
Computer Science
Corn
Cotton
Crop yield
Crops
Datasets
Decision trees
Farmers
Food security
Image acquisition
Image processing
Image Processing and Computer Vision
Machine learning
Original Article
Performance evaluation
Regression
Regression analysis
Remote sensing
Rice
Root-mean-square errors
Satellites
Support vector machines
Unmanned aerial vehicles
Vegetation
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6x5cIeVrxW211APnBbLGLHTdwDQjyFkKjQChC3yLEnFRK0pe0e-PfMuEkLSHBLlESWZuxvZjIz3wDsJjp4Ra6xJOxDSfGXli4pK5nkpe5iJ80q5Abnq152cWsu7zv3S9BremG4rLLBxAjUYej5H_k-TzinYMAqdTh6ljw1irOrzQgNV49WCAeRYuwbLGtmxmrB8vFZ7_rfPK9Azk50iBXFTtwDWrfRxGa6yF4nyYZJTjtomb03VQv_80PKNFqi81X4UbuQ4mim8zVYwsE6fD_qj2saDaS7NzSDG3B3TfDyIl64WE2MxpyaYXUItmBB0IU-FQ9PBCwTMawEswwJwohYLye4Lr4vxtif1csOxJz0dbIJt-dnNycXsp6nIH1q8qlkJmXjjFVJ6ZWz1qlgspLitbyDmS9VHqoq0JlWBMbOKOxan3UrtEmZBzTKpT-hNRgO8BcI7xwaJDQNiMYG6zB0dcdp4x2myuk2qEZ0ha_JxnnmxWMxp0mO4i5I3EUUd5G14e_8m9GMauPLt7cajRT1sZsUi03y6eM0JY_RtmGvUeLi8eeL_f56sT-wosnXmVWQbUFrOv6P2-SrTMudegO-Aiwp5KQ
  priority: 102
  providerName: ProQuest
Title Paddy yield prediction based on 2D images of rice panicles using regression techniques
URI https://link.springer.com/article/10.1007/s00371-023-03092-6
https://www.proquest.com/docview/3065140811
https://www.proquest.com/docview/3065335618
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-2315
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeDAY4AYjykHbhCpSdM2O26wgUBME2IITlXauAgJBtrGgX-P07UdIEDilEpJW8lJ7M-y_Rng0JM2FQSNOek-5OR_SW68JONelMgWBn6YoStwvuqH50N1cRfcFUVhkzLbvQxJ5pq6KnbL2eU42RjuwgKSh4tQCxydF53ioWxXsQMCNDnoFeQfuTrPolTm5298NUdzjPktLJpbm946rBYwkbVn-7oBCziqw1rZgoEVN7IOK5_4BDfhdkB65J29u6w09jp2MRgnd-ZMlWX0IE_Z4zNpkAl7yZijE2KkDPLEOOYS4B_YGB9mibEjVrG7TrZg2OvenJzzonECT30VTbmjTFZGaeElqTBaG2FVmJBjFgUYpomIbJZZuryCtK5RAls6DVsZai-JLCph_G1YGr2McAdYagwqJLVpEZW22qBtycBIlRr0hZENEKX84rRgFXfNLZ7iig85l3lMMo9zmcdhA46qd15nnBp_rt4vtyUu7tckdv3uyTXUQvw67fsEDXUDjsudnE___rPd_y3fg2VJIGeWOrYPS9PxGx4QSJkmTVjUvbMm1Nq9TqfvxrP7yy6NnW5_cN3MT-wHWM3iRw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcKvpSU6DdQ3tqV_WuN_b6gBBPhQIRqqDi5q53x1ElmoQkFcqf47cxu1knbSW4cbO1fkgz429nPDPfAHxMpLOCXGNO2Iec4i_JTVLVPMkrWWA7zWr0Dc6n3axzob5dti-X4LbphfFllQ0mBqB2A-v_kX_1E84pGNBCbA-vuZ8a5bOrzQgNE0cruK1AMRYbO45xekMh3HjraJ_0_UnKw4PzvQ6PUwa4TVU-4Z5fWBmlRVJZYbQ2wqmsoigmb2NmK5G7unZk6YIgyiiBhbZZUaNOqtyhEial5z6BFZWqgoK_ld2D7tn3eR6DnKvggAuK1XzPaWzbCc17gS2P057JfZpD8uzfrXHh7_6Xog073-EaPI8uK9uZ2dgLWML-S1jd6Y0ibQfS2V-0hq_gxxnB2ZRNfXEcG458Ksirn_kd0zE6kPvs128CsjEb1MyzGjHCpFCfx3wdfo-NsDerz-2zOcns-DVcPIpk38Byf9DHt8CsMaiQ0NshKu20QVfItpHKGkyFkS0QjehKG8nN_YyNq3JOyxzEXZK4yyDuMmvB5_k9wxm1x4NXbzQaKeNnPi4XRnnvcpqSh6pb8KVR4mL5_pe9e_hlH-Bp5_z0pDw56h6vwzNJftasem0DliejP7hJftKkeh-NkcHPx7b_O6WII0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOPAaI8cyBG0Q0adZ2R8SYeIsDQ9yqtHEnJOimrRz273H6GiCGxK1S0layY_uzbH8BOHakiQVBY06-DznlX5JrJ0q440eyjS3XS9AOON8_eFc9dfPSevkyxZ93u1clyWKmwbI0pdnZ0CRn9eBbzjTHKd5wWyKQ3JuHRWWJEuhE9-R5XUcgcJMDYEG5kp35LMdmfv_G99A0xZs_SqR55Omuw2oJGdl5oeMNmMO0AWvVdQystM4GrHzhFtyE50fyKRM2sR1qbDiy9RirA2bDlmH0IDvs9Z28yZgNEmaphRg5hrxJjtlm-D4bYb9okk1ZzfQ63oJe9_Lp4oqXlyjw2FV-xi19stIqEE4UCx0EWhjlRZSk-S304kj4JkkMGbIgD6yVwHYQe-0EAyfyDSqh3W1YSAcp7gCLtUaF5EINogpMoNG0ZUtLFWt0hZZNEJX8wrhkGLcXXbyFNTdyLvOQZB7mMg-9JpzU7wwLfo0_d-9XaglLWxuHlPQQ6iNoI2Yuuy7BxKAJp5Ump8uzf7b7v-1HsPTY6YZ31w-3e7AsCfsUHWX7sJCNPvCAsEsWHebH8xOx7-Pf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paddy+yield+prediction+based+on+2D+images+of+rice+panicles+using+regression+techniques&rft.jtitle=The+Visual+computer&rft.au=Pankaj&rft.au=Kumar%2C+Brajesh&rft.au=Bharti%2C+P.+K.&rft.au=Vishnoi%2C+Vibhor+Kumar&rft.date=2024-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=6&rft.spage=4457&rft.epage=4471&rft_id=info:doi/10.1007%2Fs00371-023-03092-6&rft.externalDocID=10_1007_s00371_023_03092_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon