Paddy yield prediction based on 2D images of rice panicles using regression techniques
Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are...
Saved in:
| Published in | The Visual computer Vol. 40; no. 6; pp. 4457 - 4471 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-2789 1432-2315 |
| DOI | 10.1007/s00371-023-03092-6 |
Cover
| Abstract | Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of
rice
panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination (
R
2
) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with
R
2
= 0.97, RMSE = 0.14, and MAE = 0.11. |
|---|---|
| AbstractList | Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of rice panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination (R2) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with R2 = 0.97, RMSE = 0.14, and MAE = 0.11. Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource consuming. With the availability of affordable handheld imaging and computing devices, the image processing-based yield prediction methods are gaining popularity. In this work, RGB images of rice panicles are captured using DSLR camera with simple background and processed to determine the panicle area in terms of number of pixels. A machine learning-based model is developed to make predictions for rice yield. The model is trained to make predictions on unseen data. Various machine learning-based regression algorithms including decision tree, random forest, support vector machine, and convolution neural network are tested. The experiments are performed on a publically available dataset from China as well as on a self-acquired dataset in India. The results have shown that image processing and machine learning-based methods can make yield predictions satisfactorily as evident from the coefficient of determination ( R 2 ) that ranges 0.80–0.97 for different cultivars. The prediction error is determined in terms of root mean square error (RMSE) and mean absolute error (MAE). RMSE for different methods lies between 0.14 and 0.40, whereas MAE varies from 0.11 to 0.30. Among the tested algorithms, linear regression achieved the best precision with R 2 = 0.97, RMSE = 0.14, and MAE = 0.11. |
| Author | Kumar, Krishan Bharti, P. K. Vishnoi, Vibhor Kumar Singh, Krishan Pal Pankaj Kumar, Brajesh Mohan, Shashank |
| Author_xml | – sequence: 1 surname: Pankaj fullname: Pankaj organization: Department of Computer Science and IT, MJP Rohilkhand University, Department of Computer Science and Engineering, Shri Venkateshwara University – sequence: 2 givenname: Brajesh orcidid: 0000-0001-8100-7287 surname: Kumar fullname: Kumar, Brajesh email: bkumar@mjpru.ac.in organization: Department of Computer Science and IT, MJP Rohilkhand University, Atal Center for Artificial Intelligence, MJP Rohilkhand University – sequence: 3 givenname: P. K. surname: Bharti fullname: Bharti, P. K. organization: Department of Computer Science and Engineering, Shri Venkateshwara University – sequence: 4 givenname: Vibhor Kumar orcidid: 0000-0002-6682-4171 surname: Vishnoi fullname: Vishnoi, Vibhor Kumar organization: College of Computing Sciences and Information Technology, Teerthanker Mahaveer University – sequence: 5 givenname: Krishan surname: Kumar fullname: Kumar, Krishan organization: Department of Computer Science, Gurukula Kangri (Deemed to be University) – sequence: 6 givenname: Shashank surname: Mohan fullname: Mohan, Shashank organization: Department of Biosystems and Agricultural Engineering, Michigan State University – sequence: 7 givenname: Krishan Pal surname: Singh fullname: Singh, Krishan Pal organization: Atal Center for Artificial Intelligence, MJP Rohilkhand University |
| BookMark | eNqFkM1OwzAQhC1UJNrCC3CyxDngjd3YOaLyK1WCA3C1HHsTXIWk2Omhb49LkJA4lJPX1nw745mRSdd3SMg5sEtgTF5FxriEjOU8Y5yVeVYckSkInmc5h8WETBlIleVSlSdkFuOapbsU5ZS8PRvndnTnsXV0E9B5O_i-o5WJ6Gga8hvqP0yDkfY1Dd4i3ZjO2zY9bKPvGhqwCRjjHhrQvnf-c4vxlBzXpo149nPOyevd7cvyIVs93T8ur1eZ5UIOmaskCiMUsMqCUcqAE0VVpmwLLGwF0tW1EyksGmsEYKlsUdaoWCUdCjB8Ti7GvZvQ730Hve63oUuWmrNiwfmiAPWfCgRTAEmVjyob-hgD1noT0tfDTgPT-5b12LJOLevvlnWRIPUHsn4w-wqHYHx7GOUjGpNP12D4TXWA-gLUuJL5 |
| CitedBy_id | crossref_primary_10_3390_agronomy14102264 crossref_primary_10_1016_j_compag_2024_109852 crossref_primary_10_1109_ACCESS_2024_3478738 |
| Cites_doi | 10.1016/j.biosystemseng.2020.02.014 10.1016/j.compag.2019.05.020 10.1016/j.asr.2022.06.073 10.1016/j.compag.2023.107807 10.1007/s00371-023-02823-z 10.1016/j.biosystemseng.2019.11.001 10.1007/s00371-022-02742-5 10.1016/j.jafr.2021.100186 10.1016/j.neucom.2021.10.125 10.1016/j.agwat.2021.107317 10.1016/j.patrec.2017.08.011 10.1016/j.matpr.2021.02.578 10.1016/j.compag.2021.106036 10.1080/01431160412331269698 10.1029/2020GL090848 10.1016/j.crope.2023.03.001 10.1016/j.jag.2022.102725 10.1016/j.agrformet.2020.108096 10.1016/j.fcr.2019.02.022 10.1016/j.compag.2019.104859 10.1016/j.matcom.2020.12.011 10.1142/9097 10.1007/978-1-4419-9326-7 10.1007/BF00994018 10.1007/s00371-021-02164-9 10.1007/s00371-022-02443-z 10.1016/j.isprsjprs.2021.02.008 10.1016/j.agrformet.2019.107886 10.1080/01431161.2017.1365390 10.1016/j.fcr.2012.11.018 10.1080/01431161.2019.1577571 10.1080/01431161.2017.1348636 10.3390/rs61110335 10.1080/10485252.2012.715161 10.1109/ICARCV.2014.7064414 10.1023/B:STCO.0000035301.49549.88 10.1016/j.fcr.2021.108098 10.1080/01431161.2018.1448484 10.1007/s00371-021-02116-3 10.1016/j.rse.2019.111460 10.1016/S0031-3203(99)00154-5 10.1080/01431161.2019.1597303 10.1109/ICEngTechnol.2017.8308186 10.5194/nhess-22-3751-2022 10.1109/ICBDA.2017.8078730 10.1016/j.jag.2023.103292 10.1007/s00371-023-02895-x 10.17632/s9mn5xg4wj1 10.1016/j.cmpb.2013.11.004 10.1016/j.atech.2022.100049 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00371-023-03092-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Computer Science Collection Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Agriculture |
| EISSN | 1432-2315 |
| EndPage | 4471 |
| ExternalDocumentID | 10_1007_s00371_023_03092_6 |
| GeographicLocations | China India |
| GeographicLocations_xml | – name: China – name: India |
| GrantInformation_xml | – fundername: Department of Higher Education, Government of Uttar Pradesh grantid: Number-45/2022/869/Seventy-4-2022/001-70-4099-1-2022 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c347t-db7e4a4810bc1a88a1d46b91775e6cb17dffd4001eaca41e98c69fe80b7de41a3 |
| IEDL.DBID | U2A |
| ISSN | 0178-2789 |
| IngestDate | Fri Jul 25 22:54:01 EDT 2025 Fri Jul 25 09:39:51 EDT 2025 Wed Oct 01 01:50:32 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 21 02:41:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Regression Image processing Rice panicle Machine learning Yield prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-db7e4a4810bc1a88a1d46b91775e6cb17dffd4001eaca41e98c69fe80b7de41a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8100-7287 0000-0002-6682-4171 |
| PQID | 3065140811 |
| PQPubID | 2043737 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3065335618 proquest_journals_3065140811 crossref_primary_10_1007_s00371_023_03092_6 crossref_citationtrail_10_1007_s00371_023_03092_6 springer_journals_10_1007_s00371_023_03092_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Rana, K., Malik, N., Ozturk, U.: Landsifier v1.0: a python library to estimate likely triggers of mapped landslides. Nat. Haz. Earth Syst. Sci, 22(11):3751–3764, (2022) https://doi.org/10.5194/nhess-22-3751-2022, https://nhess.copernicus.org/articles/22/3751/2022 Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET), pp 1–6 (2017) https://doi.org/10.1109/ICEngTechnol.2017.8308186 SmolaAJ SchölkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88 Mateo-Sanchis, A., Piles, M., Muñoz-Marí, J., Adsuara, J.E., Pérez-Suay, A., Camps-Valls, G.: Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 234:111460 (2019) https://doi.org/10.1016/j.rse.2019.111460, https://www.sciencedirect.com/science/article/pii/S0034425719304791 SanchesGMDuftDGKöllnOTdos Santos LucianoACCastroSGQDOkunoFMFrancoHCJThe potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fieldsInt. J. Remote Sens.20183915–165402541410.1080/01431161.2018.1448484 Kim, K., sik, Hong, J.: A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Patt. Recognit. Lett, 98:39–45, (2017) https://doi.org/10.1016/j.patrec.2017.08.011, https://www.sciencedirect.com/science/article/pii/S0167865517302672 Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International conference on control automation robotics & vision (ICARCV), pp 844–848, (2014) https://doi.org/10.1109/ICARCV.2014.7064414 Maimon, O.Z., Rokach, L.: Data mining with decision trees: theory and applications, Vol 81. World scientific (2014) PalMRandom forest classifier for remote sensing classificationInt. J. Remote Sens.200526121722210.1080/01431160412331269698 Liu, Y., Heuvelink, G.B., Bai, Z., He, P., Xu, X., Ding, W., Huang, S.: Analysis of spatio-temporal variation of crop yield in china using stepwise multiple linear regression. Field Crops Res., 264:108098 (2021) https://doi.org/10.1016/j.fcr.2021.108098, https://www.sciencedirect.com/science/article/pii/S0378429021000447 Prabakaran, G., Vaithiyanathan, D., Ganesan, M.: Fpga based effective agriculture productivity prediction system using fuzzy support vector machine. Mathemat. Comput. Simul. 185:1–16, (2021) https://doi.org/10.1016/j.matcom.2020.12.011, https://www.sciencedirect.com/science/article/pii/S0378475420304663 AzarATElshazlyHIHassanienAEElkoranyAMA random forest classifier for lymph diseasesComput. Meth. Progr. Biomed.2014113246547310.1016/j.cmpb.2013.11.004 CedricLSAdoniWYHAworkaRZoueuJTMutomboFKKrichenMKimpoloCLMCrops yield prediction based on machine learning models: case of west african countriesSmart Agricult. Technol.2022210004910.1016/j.atech.2022.100049 NakanoHTanakaRGuanSOhdanHPredicting rice grain yield using normalized difference vegetation index from UAV and greenseekerCrop Environ.202322596510.1016/j.crope.2023.03.001 Chivasa, W., Mutanga, O., Biradar, C.: Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: a review. Int. J. Remote Sens. 38(23):6816–6845, (2017) https://doi.org/10.1080/01431161.2017.1365390 BieniekAMogaAAn efficient watershed algorithm based on connected componentsPatt. Recognit.200033690791610.1016/S0031-3203(99)00154-5 Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult. 163:104859, (2019a) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842 Basir, M.S., Chowdhury, M., Islam, M.N., Ashik-E-Rabbani, M.: Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in bangladesh. J. Agricult. Food Res. 5:100186 (2021) https://doi.org/10.1016/j.jafr.2021.100186, https://www.sciencedirect.com/science/article/pii/S2666154321000880 Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult, 163:104859, (2019b) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842 MaJLiuBJiLZhuZWuYJiaoWField-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imageryInt. J. Appl. Earth Obs. Geoinf.202311810329210.1016/j.jag.2023.103292 GeipelJLinkJClaupeinWCombined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft systemRemote Sens.2014611103351035510.3390/rs61110335 KumarBDikshitOHyperspectral image classification based on morphological profiles and decision fusionInt. J. Remote Sens.201738205830585410.1080/01431161.2017.1348636 SaganVMaimaitijiangMBhadraSMaimaitiyimingMBrownDRSidikePFritschiFBField-scale crop yield prediction using multi-temporal worldview-3 and planetscope satellite data and deep learningISPRS J. Photogramm. Remote. Sens.202117426528110.1016/j.isprsjprs.2021.02.008 Zhang, M., Zhou, J., Sudduth, K.A., Kitchen, N.R.: Estimation of maize yield and effects of variable-rate nitrogen application using uav-based rgb imagery. Biosystems Engineering 189:24–35, (2020) https://doi.org/10.1016/j.biosystemseng.2019.11.001, https://www.sciencedirect.com/science/article/pii/S153751101930875X Feng, A., Zhou, J., Vories, E.D., Sudduth, K.A., Zhang, M.: Yield estimation in cotton using uav-based multi-sensor imagery. Biosyst. Eng. 193:101–114 (2020) https://doi.org/10.1016/j.biosystemseng.2020.02.014, https://www.sciencedirect.com/science/article/pii/S1537511020300544 Velmurugan, P., Kannagi, A., Varsha, M.: Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Mater. Today: Proceed. (2021) https://doi.org/10.1016/j.matpr.2021.02.578, https://www.sciencedirect.com/science/article/pii/S2214785321017235 Zhao, S., Zheng, H., Chi, M., Chai, X., Liu, Y.: Rapid yield prediction in paddy fields based on 2D image modelling of rice panicles. Comput. Electr. Agricult, 162:759–766, (2019) https://doi.org/10.1016/j.compag.2019.05.020, https://www.sciencedirect.com/science/article/pii/S0168169919303023 WanLCenHZhuJZhangJZhuYSunDDuXZhaiLWengHLiYLiXBaoYShouJHeYGrain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer - a case study of small farmlands in the South of ChinaAgric. For. Meteorol.202029110809610.1016/j.agrformet.2020.108096 HeBQianSNiuYVisual recognition and location algorithm based on optimized yolov3 detector and RGB depth cameraVis. Comput.202310.1007/s00371-023-02895-x StephenAPunithaAChandrasekarAOptimal deep generative adversarial network and convolutional neural network for rice leaf disease predictionVis. Comput.202310.1007/s00371-023-02823-z SchwalbertRAAmadoTCorassaGPottLPPrasadPCiampittiIASatellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern brazilAgric. For. Meteorol.202028410788610.1016/j.agrformet.2019.107886 CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF00994018 RoyMHLarocqueDRobustness of random forests for regressionJ. Nonparam. Stat.20122449931006299548810.1080/10485252.2012.715161 Choudhary, K., Shi, W., Dong, Y., Paringer, R.: Random forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Adv. Space Res. (2022) https://doi.org/10.1016/j.asr.2022.06.073, https://www.sciencedirect.com/science/article/pii/S0273117722005737 GajjarRGajjarNThakorVJPatelNPRupareliaSReal-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platformVis. Comput.2022382923293810.1007/s00371-021-02164-9 MarjaniZadeh, M.S.J., Sand Turral, H.: More people, more food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} worse water? - water pollution from agriculture: a global review. Food and Agriculture Organization of the United Nations (2018) Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., He, Y. Grain yield prediction of rice using multi-temporal uav-based rgb and multispectral images and model transfer - a case study of small farmlands in the south of china. Agricult. Forest Meteorol, 291:108096, (2020b) https://doi.org/10.1016/j.agrformet.2020.108096, https://www.sciencedirect.com/science/article/pii/S0168192320301982 DesloiresJIencoDBotrelAOut-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methodsComput. Electron. Agric.202320910780710.1016/j.compag.2023.107807 ServiaHPareethSMichailovskyCIde FraitureCKarimiPOperational framework to predict field level crop biomass using remote sensing and data driven modelsInt. J. Appl. Earth Obs. Geoinf.202210810272510.1016/j.jag.2022.102725 EscalanteHJRodríguez-SánchezSJiménez-LizárragaMMorales-ReyesACallejaJDLVazquezRBarley yield and fertilization analysis from uav imagery: a deep learning approachInt. J. Remote Sens.20194072493251610.1080/01431161.2019.1577571 ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7 RußGPernerPData mining of agricultural yield data: a comparison of regression models applications and theoretical aspectsAdvances in data mining2009Berlin and HeidelbergSpringer2437 Sharma, V., Tripathi, A.K., Mittal, H., Parmar, A., Soni, A., Amarwal, R.: Weedgan: a novel generative adversarial network for cotton weed identification. Vis. Comput. (2022). https://doi.org/10.1007/s A Stephen (3092_CR48) 2023 J Geipel (3092_CR13) 2014; 6 B He (3092_CR15) 2023 AJ Prakash (3092_CR36) 2023; 39 3092_CR25 3092_CR22 3092_CR23 3092_CR28 3092_CR26 3092_CR27 J Ma (3092_CR24) 2023; 118 A Bieniek (3092_CR4) 2000; 33 3092_CR20 H Nakano (3092_CR29) 2023; 2 3092_CR1 3092_CR3 3092_CR6 L Wan (3092_CR51) 2020; 291 3092_CR7 AJ Smola (3092_CR47) 2004; 14 MH Roy (3092_CR39) 2012; 24 A Liaw (3092_CR21) 2002; 2 S Olanrewaju (3092_CR33) 2019; 40 G Ruß (3092_CR40) 2009 HJ Escalante (3092_CR10) 2019; 40 3092_CR35 H Servia (3092_CR44) 2022; 108 3092_CR38 RA Schwalbert (3092_CR43) 2020; 284 3092_CR31 3092_CR32 3092_CR30 AT Azar (3092_CR2) 2014; 113 LS Cedric (3092_CR5) 2022; 2 S Shafiee (3092_CR45) 2021; 183 3092_CR46 3092_CR49 R Gajjar (3092_CR12) 2022; 38 C Cortes (3092_CR8) 1995; 20 K Rana (3092_CR37) 2021; 38 J Desloires (3092_CR9) 2023; 209 M Pal (3092_CR34) 2005; 26 V Sagan (3092_CR41) 2021; 174 MH Junos (3092_CR17) 2022; 38 3092_CR14 3092_CR11 C Zhang (3092_CR54) 2012 3092_CR55 3092_CR56 3092_CR18 3092_CR16 3092_CR50 B Kumar (3092_CR19) 2017; 38 GM Sanches (3092_CR42) 2018; 39 3092_CR53 3092_CR52 |
| References_xml | – reference: MaJLiuBJiLZhuZWuYJiaoWField-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imageryInt. J. Appl. Earth Obs. Geoinf.202311810329210.1016/j.jag.2023.103292 – reference: OlanrewajuSRajanNIbrahimAMRuddJCLiuSSuiRJessupKEXueQUsing aerial imagery and digital photography to monitor growth and yield in winter wheatInt. J. Remote Sens.201940186905692910.1080/01431161.2019.1597303 – reference: CortesCVapnikVSupport-vector networksMach. Learn.199520327329710.1007/BF00994018 – reference: GeipelJLinkJClaupeinWCombined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft systemRemote Sens.2014611103351035510.3390/rs61110335 – reference: Kim, K., sik, Hong, J.: A hybrid decision tree algorithm for mixed numeric and categorical data in regression analysis. Patt. Recognit. Lett, 98:39–45, (2017) https://doi.org/10.1016/j.patrec.2017.08.011, https://www.sciencedirect.com/science/article/pii/S0167865517302672 – reference: Mateo-Sanchis, A., Piles, M., Muñoz-Marí, J., Adsuara, J.E., Pérez-Suay, A., Camps-Valls, G.: Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 234:111460 (2019) https://doi.org/10.1016/j.rse.2019.111460, https://www.sciencedirect.com/science/article/pii/S0034425719304791 – reference: Prabakaran, G., Vaithiyanathan, D., Ganesan, M.: Fpga based effective agriculture productivity prediction system using fuzzy support vector machine. Mathemat. Comput. Simul. 185:1–16, (2021) https://doi.org/10.1016/j.matcom.2020.12.011, https://www.sciencedirect.com/science/article/pii/S0378475420304663 – reference: BieniekAMogaAAn efficient watershed algorithm based on connected componentsPatt. Recognit.200033690791610.1016/S0031-3203(99)00154-5 – reference: StephenAPunithaAChandrasekarAOptimal deep generative adversarial network and convolutional neural network for rice leaf disease predictionVis. Comput.202310.1007/s00371-023-02823-z – reference: Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., He, Y. Grain yield prediction of rice using multi-temporal uav-based rgb and multispectral images and model transfer - a case study of small farmlands in the south of china. Agricult. Forest Meteorol, 291:108096, (2020b) https://doi.org/10.1016/j.agrformet.2020.108096, https://www.sciencedirect.com/science/article/pii/S0168192320301982 – reference: DesloiresJIencoDBotrelAOut-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methodsComput. Electron. Agric.202320910780710.1016/j.compag.2023.107807 – reference: PrakashAJPrakasamPAn intelligent fruits classification in precision agriculture using bilinear pooling convolutional neural networksVis. Comput.2023391765178110.1007/s00371-022-02443-z – reference: Rana, K., Malik, N., Ozturk, U.: Landsifier v1.0: a python library to estimate likely triggers of mapped landslides. Nat. Haz. Earth Syst. Sci, 22(11):3751–3764, (2022) https://doi.org/10.5194/nhess-22-3751-2022, https://nhess.copernicus.org/articles/22/3751/2022/ – reference: SchwalbertRAAmadoTCorassaGPottLPPrasadPCiampittiIASatellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern brazilAgric. For. Meteorol.202028410788610.1016/j.agrformet.2019.107886 – reference: JunosMHMohd KhairuddinASThannirmalaiSDahariMAutomatic detection of oil palm fruits from UAV images using an improved yolo modelVis. Comput.2022382341235510.1007/s00371-021-02116-3 – reference: Feng, A., Zhou, J., Vories, E.D., Sudduth, K.A., Zhang, M.: Yield estimation in cotton using uav-based multi-sensor imagery. Biosyst. Eng. 193:101–114 (2020) https://doi.org/10.1016/j.biosystemseng.2020.02.014, https://www.sciencedirect.com/science/article/pii/S1537511020300544 – reference: CedricLSAdoniWYHAworkaRZoueuJTMutomboFKKrichenMKimpoloCLMCrops yield prediction based on machine learning models: case of west african countriesSmart Agricult. Technol.2022210004910.1016/j.atech.2022.100049 – reference: SaganVMaimaitijiangMBhadraSMaimaitiyimingMBrownDRSidikePFritschiFBField-scale crop yield prediction using multi-temporal worldview-3 and planetscope satellite data and deep learningISPRS J. Photogramm. Remote. Sens.202117426528110.1016/j.isprsjprs.2021.02.008 – reference: Yang, Q., Shi, L., Han, J., Zha, Y., Zhu, P.: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using uav-based remotely sensed images. Field Crops Res., 235:142–153, (2019) https://doi.org/10.1016/j.fcr.2019.02.022, https://www.sciencedirect.com/science/article/pii/S037842901831390X – reference: WanLCenHZhuJZhangJZhuYSunDDuXZhaiLWengHLiYLiXBaoYShouJHeYGrain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer - a case study of small farmlands in the South of ChinaAgric. For. Meteorol.202029110809610.1016/j.agrformet.2020.108096 – reference: Maimon, O.Z., Rokach, L.: Data mining with decision trees: theory and applications, Vol 81. World scientific (2014) – reference: Velmurugan, P., Kannagi, A., Varsha, M.: Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Mater. Today: Proceed. (2021) https://doi.org/10.1016/j.matpr.2021.02.578, https://www.sciencedirect.com/science/article/pii/S2214785321017235 – reference: Huang, H., Wei, X., Zhou, Y.: An overview on twin support vector regression. Neurocomputing 490:80–92, (2022) https://doi.org/10.1016/j.neucom.2021.10.125, https://www.sciencedirect.com/science/article/pii/S0925231222003101 – reference: Zhao, S., Zheng, H., Chi, M., Chai, X., Liu, Y.: Rapid yield prediction in paddy fields based on 2D image modelling of rice panicles. Comput. Electr. Agricult, 162:759–766, (2019) https://doi.org/10.1016/j.compag.2019.05.020, https://www.sciencedirect.com/science/article/pii/S0168169919303023 – reference: Choudhary, K., Shi, W., Dong, Y., Paringer, R.: Random forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine. Adv. Space Res. (2022) https://doi.org/10.1016/j.asr.2022.06.073, https://www.sciencedirect.com/science/article/pii/S0273117722005737 – reference: RanaKOzturkUMalikNLandslide geometry reveals its triggerGeophys. Res. Lett.20213841810.1029/2020GL090848 – reference: Mateo-Sagasta, J., Zadeh, S.M., Turral, H.: More People, More food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} Worse Water? - Water Pollution from Agriculture: a Global Review. Tech. rep, International Water Management Institute, Rome, Italy (2018) – reference: Liu, Y., Chi, M., Zheng, H., Zhao, S., Chai, C.: Data for: rapid yield predictions in paddy fields based on 2D image modelling of rice panicles. Mendeley Data, (2019) https://doi.org/10.17632/s9mn5xg4wj1 – reference: KumarBDikshitOHyperspectral image classification based on morphological profiles and decision fusionInt. J. Remote Sens.201738205830585410.1080/01431161.2017.1348636 – reference: RoyMHLarocqueDRobustness of random forests for regressionJ. Nonparam. Stat.20122449931006299548810.1080/10485252.2012.715161 – reference: ZhangCMaYEnsemble machine learning: methods and applications2012New YorkSpringer10.1007/978-1-4419-9326-7 – reference: ServiaHPareethSMichailovskyCIde FraitureCKarimiPOperational framework to predict field level crop biomass using remote sensing and data driven modelsInt. J. Appl. Earth Obs. Geoinf.202210810272510.1016/j.jag.2022.102725 – reference: Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International conference on control automation robotics & vision (ICARCV), pp 844–848, (2014) https://doi.org/10.1109/ICARCV.2014.7064414 – reference: LiawAWienerMClassification and regression by random forestR News200221822 – reference: Zhang, M., Zhou, J., Sudduth, K.A., Kitchen, N.R.: Estimation of maize yield and effects of variable-rate nitrogen application using uav-based rgb imagery. Biosystems Engineering 189:24–35, (2020) https://doi.org/10.1016/j.biosystemseng.2019.11.001, https://www.sciencedirect.com/science/article/pii/S153751101930875X – reference: SanchesGMDuftDGKöllnOTdos Santos LucianoACCastroSGQDOkunoFMFrancoHCJThe potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fieldsInt. J. Remote Sens.20183915–165402541410.1080/01431161.2018.1448484 – reference: Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET), pp 1–6 (2017) https://doi.org/10.1109/ICEngTechnol.2017.8308186 – reference: PalMRandom forest classifier for remote sensing classificationInt. J. Remote Sens.200526121722210.1080/01431160412331269698 – reference: Guo, T., Dong, J., Li, H., Gao, Y.: Simple convolutional neural network on image classification. In: 2017 IEEE 2nd International conference on big data analysis (ICBDA), pp 721–724, (2017) https://doi.org/10.1109/ICBDA.2017.8078730 – reference: RußGPernerPData mining of agricultural yield data: a comparison of regression models applications and theoretical aspectsAdvances in data mining2009Berlin and HeidelbergSpringer2437 – reference: EscalanteHJRodríguez-SánchezSJiménez-LizárragaMMorales-ReyesACallejaJDLVazquezRBarley yield and fertilization analysis from uav imagery: a deep learning approachInt. J. Remote Sens.20194072493251610.1080/01431161.2019.1577571 – reference: Ohana-Levi, N., Ben-Gal, A., Munitz, S., Netzer, Y.: Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models. Agricult Water Manag. 262:107317, (2022) https://doi.org/10.1016/j.agwat.2021.107317, https://www.sciencedirect.com/science/article/pii/S0378377421005941 – reference: SmolaAJ SchölkopfBA tutorial on support vector regressionStat Comput200414199222208639810.1023/B:STCO.0000035301.49549.88 – reference: Basir, M.S., Chowdhury, M., Islam, M.N., Ashik-E-Rabbani, M.: Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in bangladesh. J. Agricult. Food Res. 5:100186 (2021) https://doi.org/10.1016/j.jafr.2021.100186, https://www.sciencedirect.com/science/article/pii/S2666154321000880 – reference: GajjarRGajjarNThakorVJPatelNPRupareliaSReal-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platformVis. Comput.2022382923293810.1007/s00371-021-02164-9 – reference: Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult, 163:104859, (2019b) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842 – reference: NakanoHTanakaRGuanSOhdanHPredicting rice grain yield using normalized difference vegetation index from UAV and greenseekerCrop Environ.202322596510.1016/j.crope.2023.03.001 – reference: AzarATElshazlyHIHassanienAEElkoranyAMA random forest classifier for lymph diseasesComput. Meth. Progr. Biomed.2014113246547310.1016/j.cmpb.2013.11.004 – reference: Liu, Y., Heuvelink, G.B., Bai, Z., He, P., Xu, X., Ding, W., Huang, S.: Analysis of spatio-temporal variation of crop yield in china using stepwise multiple linear regression. Field Crops Res., 264:108098 (2021) https://doi.org/10.1016/j.fcr.2021.108098, https://www.sciencedirect.com/science/article/pii/S0378429021000447 – reference: Nevavuori, P., Narra, N., Lipping, T.: Crop yield prediction with deep convolutional neural networks. Comput. Electr. Agricult. 163:104859, (2019a) https://doi.org/10.1016/j.compag.2019.104859, https://www.sciencedirect.com/science/article/pii/S0168169919306842 – reference: MarjaniZadeh, M.S.J., Sand Turral, H.: More people, more food…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document} worse water? - water pollution from agriculture: a global review. Food and Agriculture Organization of the United Nations (2018) – reference: van Wart, J., Kersebaum, K.C., Peng, S., Milner, M., Cassman, K.G.: Estimating crop yield potential at regional to national scales. Field Crops Research 143:34–43 (2013) https://doi.org/10.1016/j.fcr.2012.11.018, https://www.sciencedirect.com/science/article/pii/S0378429012004066, crop Yield Gap Analysis - Rationale, Methods and Applications – reference: Chivasa, W., Mutanga, O., Biradar, C.: Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: a review. Int. J. Remote Sens. 38(23):6816–6845, (2017) https://doi.org/10.1080/01431161.2017.1365390 – reference: HeBQianSNiuYVisual recognition and location algorithm based on optimized yolov3 detector and RGB depth cameraVis. Comput.202310.1007/s00371-023-02895-x – reference: ShafieeSLiedLMBurudIDiesethJAAlsheikhMLillemoMSequential forward selection and support vector regression in comparison to lasso regression for spring wheat yield prediction based on uav imageryComput. Electron. Agric.202118310603610.1016/j.compag.2021.106036 – reference: Sharma, V., Tripathi, A.K., Mittal, H., Parmar, A., Soni, A., Amarwal, R.: Weedgan: a novel generative adversarial network for cotton weed identification. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02742-5 – ident: 3092_CR11 doi: 10.1016/j.biosystemseng.2020.02.014 – ident: 3092_CR56 doi: 10.1016/j.compag.2019.05.020 – ident: 3092_CR7 doi: 10.1016/j.asr.2022.06.073 – volume: 209 start-page: 107807 year: 2023 ident: 3092_CR9 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107807 – ident: 3092_CR26 – year: 2023 ident: 3092_CR48 publication-title: Vis. Comput. doi: 10.1007/s00371-023-02823-z – ident: 3092_CR55 doi: 10.1016/j.biosystemseng.2019.11.001 – start-page: 24 volume-title: Advances in data mining year: 2009 ident: 3092_CR40 – ident: 3092_CR46 doi: 10.1007/s00371-022-02742-5 – ident: 3092_CR3 doi: 10.1016/j.jafr.2021.100186 – ident: 3092_CR16 doi: 10.1016/j.neucom.2021.10.125 – ident: 3092_CR32 doi: 10.1016/j.agwat.2021.107317 – ident: 3092_CR18 doi: 10.1016/j.patrec.2017.08.011 – ident: 3092_CR50 doi: 10.1016/j.matpr.2021.02.578 – volume: 183 start-page: 106036 year: 2021 ident: 3092_CR45 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106036 – volume: 26 start-page: 217 issue: 1 year: 2005 ident: 3092_CR34 publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 38 start-page: 1 issue: 4 year: 2021 ident: 3092_CR37 publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090848 – volume: 2 start-page: 59 issue: 2 year: 2023 ident: 3092_CR29 publication-title: Crop Environ. doi: 10.1016/j.crope.2023.03.001 – volume: 108 start-page: 102725 year: 2022 ident: 3092_CR44 publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2022.102725 – volume: 291 start-page: 108096 year: 2020 ident: 3092_CR51 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108096 – ident: 3092_CR53 doi: 10.1016/j.fcr.2019.02.022 – ident: 3092_CR30 doi: 10.1016/j.compag.2019.104859 – ident: 3092_CR35 doi: 10.1016/j.matcom.2020.12.011 – ident: 3092_CR25 doi: 10.1142/9097 – volume-title: Ensemble machine learning: methods and applications year: 2012 ident: 3092_CR54 doi: 10.1007/978-1-4419-9326-7 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 3092_CR8 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 3092_CR52 doi: 10.1016/j.agrformet.2020.108096 – volume: 38 start-page: 2923 year: 2022 ident: 3092_CR12 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02164-9 – volume: 39 start-page: 1765 year: 2023 ident: 3092_CR36 publication-title: Vis. Comput. doi: 10.1007/s00371-022-02443-z – volume: 174 start-page: 265 year: 2021 ident: 3092_CR41 publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2021.02.008 – volume: 2 start-page: 18 year: 2002 ident: 3092_CR21 publication-title: R News – volume: 284 start-page: 107886 year: 2020 ident: 3092_CR43 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107886 – ident: 3092_CR6 doi: 10.1080/01431161.2017.1365390 – ident: 3092_CR49 doi: 10.1016/j.fcr.2012.11.018 – volume: 40 start-page: 2493 issue: 7 year: 2019 ident: 3092_CR10 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1577571 – volume: 38 start-page: 5830 issue: 20 year: 2017 ident: 3092_CR19 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1348636 – volume: 6 start-page: 10335 issue: 11 year: 2014 ident: 3092_CR13 publication-title: Remote Sens. doi: 10.3390/rs61110335 – volume: 24 start-page: 993 issue: 4 year: 2012 ident: 3092_CR39 publication-title: J. Nonparam. Stat. doi: 10.1080/10485252.2012.715161 – ident: 3092_CR20 doi: 10.1109/ICARCV.2014.7064414 – volume: 14 start-page: 199 year: 2004 ident: 3092_CR47 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – ident: 3092_CR23 doi: 10.1016/j.fcr.2021.108098 – volume: 39 start-page: 5402 issue: 15–16 year: 2018 ident: 3092_CR42 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1448484 – volume: 38 start-page: 2341 year: 2022 ident: 3092_CR17 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02116-3 – ident: 3092_CR28 doi: 10.1016/j.rse.2019.111460 – volume: 33 start-page: 907 issue: 6 year: 2000 ident: 3092_CR4 publication-title: Patt. Recognit. doi: 10.1016/S0031-3203(99)00154-5 – ident: 3092_CR27 – volume: 40 start-page: 6905 issue: 18 year: 2019 ident: 3092_CR33 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1597303 – ident: 3092_CR1 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: 3092_CR38 doi: 10.5194/nhess-22-3751-2022 – ident: 3092_CR14 doi: 10.1109/ICBDA.2017.8078730 – ident: 3092_CR31 doi: 10.1016/j.compag.2019.104859 – volume: 118 start-page: 103292 year: 2023 ident: 3092_CR24 publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2023.103292 – year: 2023 ident: 3092_CR15 publication-title: Vis. Comput. doi: 10.1007/s00371-023-02895-x – ident: 3092_CR22 doi: 10.17632/s9mn5xg4wj1 – volume: 113 start-page: 465 issue: 2 year: 2014 ident: 3092_CR2 publication-title: Comput. Meth. Progr. Biomed. doi: 10.1016/j.cmpb.2013.11.004 – volume: 2 start-page: 100049 year: 2022 ident: 3092_CR5 publication-title: Smart Agricult. Technol. doi: 10.1016/j.atech.2022.100049 |
| SSID | ssj0017749 |
| Score | 2.3929346 |
| Snippet | Crop yield predictions are important for crop monitoring and agronomic management. The traditional methods for yield predictions are complicated and resource... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4457 |
| SubjectTerms | Accuracy Agricultural production Agriculture Algorithms Artificial Intelligence Artificial neural networks Availability Color imagery Computer Graphics Computer Science Corn Cotton Crop yield Crops Datasets Decision trees Farmers Food security Image acquisition Image processing Image Processing and Computer Vision Machine learning Original Article Performance evaluation Regression Regression analysis Remote sensing Rice Root-mean-square errors Satellites Support vector machines Unmanned aerial vehicles Vegetation Wheat |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6x5cIeVrxW211APnBbLGLHTdwDQjyFkKjQChC3yLEnFRK0pe0e-PfMuEkLSHBLlESWZuxvZjIz3wDsJjp4Ra6xJOxDSfGXli4pK5nkpe5iJ80q5Abnq152cWsu7zv3S9BremG4rLLBxAjUYej5H_k-TzinYMAqdTh6ljw1irOrzQgNV49WCAeRYuwbLGtmxmrB8vFZ7_rfPK9Azk50iBXFTtwDWrfRxGa6yF4nyYZJTjtomb03VQv_80PKNFqi81X4UbuQ4mim8zVYwsE6fD_qj2saDaS7NzSDG3B3TfDyIl64WE2MxpyaYXUItmBB0IU-FQ9PBCwTMawEswwJwohYLye4Lr4vxtif1csOxJz0dbIJt-dnNycXsp6nIH1q8qlkJmXjjFVJ6ZWz1qlgspLitbyDmS9VHqoq0JlWBMbOKOxan3UrtEmZBzTKpT-hNRgO8BcI7xwaJDQNiMYG6zB0dcdp4x2myuk2qEZ0ha_JxnnmxWMxp0mO4i5I3EUUd5G14e_8m9GMauPLt7cajRT1sZsUi03y6eM0JY_RtmGvUeLi8eeL_f56sT-wosnXmVWQbUFrOv6P2-SrTMudegO-Aiwp5KQ priority: 102 providerName: ProQuest |
| Title | Paddy yield prediction based on 2D images of rice panicles using regression techniques |
| URI | https://link.springer.com/article/10.1007/s00371-023-03092-6 https://www.proquest.com/docview/3065140811 https://www.proquest.com/docview/3065335618 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-2315 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeDAY4AYjykHbhCpSdM2O26wgUBME2IITlXauAgJBtrGgX-P07UdIEDilEpJW8lJ7M-y_Rng0JM2FQSNOek-5OR_SW68JONelMgWBn6YoStwvuqH50N1cRfcFUVhkzLbvQxJ5pq6KnbL2eU42RjuwgKSh4tQCxydF53ioWxXsQMCNDnoFeQfuTrPolTm5298NUdzjPktLJpbm946rBYwkbVn-7oBCziqw1rZgoEVN7IOK5_4BDfhdkB65J29u6w09jp2MRgnd-ZMlWX0IE_Z4zNpkAl7yZijE2KkDPLEOOYS4B_YGB9mibEjVrG7TrZg2OvenJzzonECT30VTbmjTFZGaeElqTBaG2FVmJBjFgUYpomIbJZZuryCtK5RAls6DVsZai-JLCph_G1YGr2McAdYagwqJLVpEZW22qBtycBIlRr0hZENEKX84rRgFXfNLZ7iig85l3lMMo9zmcdhA46qd15nnBp_rt4vtyUu7tckdv3uyTXUQvw67fsEDXUDjsudnE___rPd_y3fg2VJIGeWOrYPS9PxGx4QSJkmTVjUvbMm1Nq9TqfvxrP7yy6NnW5_cN3MT-wHWM3iRw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcKvpSU6DdQ3tqV_WuN_b6gBBPhQIRqqDi5q53x1ElmoQkFcqf47cxu1knbSW4cbO1fkgz429nPDPfAHxMpLOCXGNO2Iec4i_JTVLVPMkrWWA7zWr0Dc6n3axzob5dti-X4LbphfFllQ0mBqB2A-v_kX_1E84pGNBCbA-vuZ8a5bOrzQgNE0cruK1AMRYbO45xekMh3HjraJ_0_UnKw4PzvQ6PUwa4TVU-4Z5fWBmlRVJZYbQ2wqmsoigmb2NmK5G7unZk6YIgyiiBhbZZUaNOqtyhEial5z6BFZWqgoK_ld2D7tn3eR6DnKvggAuK1XzPaWzbCc17gS2P057JfZpD8uzfrXHh7_6Xog073-EaPI8uK9uZ2dgLWML-S1jd6Y0ibQfS2V-0hq_gxxnB2ZRNfXEcG458Ksirn_kd0zE6kPvs128CsjEb1MyzGjHCpFCfx3wdfo-NsDerz-2zOcns-DVcPIpk38Byf9DHt8CsMaiQ0NshKu20QVfItpHKGkyFkS0QjehKG8nN_YyNq3JOyxzEXZK4yyDuMmvB5_k9wxm1x4NXbzQaKeNnPi4XRnnvcpqSh6pb8KVR4mL5_pe9e_hlH-Bp5_z0pDw56h6vwzNJftasem0DliejP7hJftKkeh-NkcHPx7b_O6WII0U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOPAaI8cyBG0Q0adZ2R8SYeIsDQ9yqtHEnJOimrRz273H6GiCGxK1S0layY_uzbH8BOHakiQVBY06-DznlX5JrJ0q440eyjS3XS9AOON8_eFc9dfPSevkyxZ93u1clyWKmwbI0pdnZ0CRn9eBbzjTHKd5wWyKQ3JuHRWWJEuhE9-R5XUcgcJMDYEG5kp35LMdmfv_G99A0xZs_SqR55Omuw2oJGdl5oeMNmMO0AWvVdQystM4GrHzhFtyE50fyKRM2sR1qbDiy9RirA2bDlmH0IDvs9Z28yZgNEmaphRg5hrxJjtlm-D4bYb9okk1ZzfQ63oJe9_Lp4oqXlyjw2FV-xi19stIqEE4UCx0EWhjlRZSk-S304kj4JkkMGbIgD6yVwHYQe-0EAyfyDSqh3W1YSAcp7gCLtUaF5EINogpMoNG0ZUtLFWt0hZZNEJX8wrhkGLcXXbyFNTdyLvOQZB7mMg-9JpzU7wwLfo0_d-9XaglLWxuHlPQQ6iNoI2Yuuy7BxKAJp5Ump8uzf7b7v-1HsPTY6YZ31w-3e7AsCfsUHWX7sJCNPvCAsEsWHebH8xOx7-Pf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paddy+yield+prediction+based+on+2D+images+of+rice+panicles+using+regression+techniques&rft.jtitle=The+Visual+computer&rft.au=Pankaj&rft.au=Kumar%2C+Brajesh&rft.au=Bharti%2C+P.+K.&rft.au=Vishnoi%2C+Vibhor+Kumar&rft.date=2024-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=40&rft.issue=6&rft.spage=4457&rft.epage=4471&rft_id=info:doi/10.1007%2Fs00371-023-03092-6&rft.externalDocID=10_1007_s00371_023_03092_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |