Mapping almond stem water potential using machine learning and multispectral imagery
Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and acc...
        Saved in:
      
    
          | Published in | Irrigation science Vol. 43; no. 1; pp. 105 - 120 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.01.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0342-7188 1432-1319 1432-1319  | 
| DOI | 10.1007/s00271-024-00932-8 | 
Cover
| Abstract | Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R
2
 = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R
2
 = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R
2
 = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements. | 
    
|---|---|
| AbstractList | Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R² = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R² = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R² = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements. Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R 2 = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R 2 = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R 2 = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements. Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R2 = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R2 = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R2 = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements.  | 
    
| Author | Savchik, Peter Nocco, Mallika Kisekka, Isaya  | 
    
| Author_xml | – sequence: 1 givenname: Peter surname: Savchik fullname: Savchik, Peter organization: Department of Biological and Agricultural Engineering, UC Davis – sequence: 2 givenname: Mallika surname: Nocco fullname: Nocco, Mallika organization: Department of Land, Air, and Water Resources, UC Davis, Biological Systems Engineering, University of Wisconsin Madison – sequence: 3 givenname: Isaya surname: Kisekka fullname: Kisekka, Isaya email: ikisekka@ucdavis.edu organization: Department of Biological and Agricultural Engineering, UC Davis, Department of Land, Air, and Water Resources, UC Davis  | 
    
| BookMark | eNqNkE1LAzEQhoMoWKt_wNOCFy-rM0naZI9S_IKKl3oO2e20bslm12QX6b83tgXBg3gYMofnHd48Z-zYt54Yu0S4QQB1GwG4why4zAEKwXN9xEYo04ICi2M2AiF5rlDrU3YW4wYA1VTLEVu82K6r_Tqzrmn9Mos9Ndmn7SlkXduT72vrsiF-E42t3mtPmSMb_C6S-GZwfR07qvqQwLqxawrbc3aysi7SxeEds7eH-8XsKZ-_Pj7P7uZ5JaTq86UGTXKZGpK2WCoBshRCTHHCC440RZCimBRyVUIFXBeWF1AiKJJpVDkRYyb2dwff2e2ndc50IXUIW4NgvsWYvRiTxJidGKNT6nqf6kL7MVDsTVPHipyzntohGsEBBE5AQEKvfqGbdgg-_ckInKa-qCQmiu-pKrQxBlr9r8Whe0ywT9Z-Tv-R-gJG8ZCr | 
    
| Cites_doi | 10.3390/rs10020202 10.3390/s17112488 10.3390/rs12111748 10.1016/j.agwat.2022.107652 10.1016/S0168-1923(99)00030-1 10.1029/95WR01955 10.1016/j.isprsjprs.2016.01.011 10.1093/jxb/erl115 10.1016/j.isprsjprs.2014.02.013 10.1016/j.compag.2012.12.001 10.21273/HORTTECH.11.4.609 10.1126/science.196.4285.19 10.13031/trans.12970 10.1016/j.agwat.2013.05.014 10.1016/0002-1571(81)90032-7 10.1002/j.1537-2197.1991.tb14495.x 10.1016/j.jag.2017.02.013 10.3390/agronomy11112244 10.1016/j.compag.2018.02.013 10.1016/j.agwat.2015.12.009 10.1016/j.agwat.2019.02.003 10.1016/j.agwat.2019.04.020 10.1007/s11119-020-09711-9 10.5194/adgeo-5-89-2005 10.1109/tgrs.2008.2010457 10.1016/j.agwat.2022.107770 10.1371/journal.pone.0192037 10.1016/j.agwat.2004.09.020 10.1007/s11119-018-9607-0 10.3390/rs9090961 10.3390/app10165461 10.1016/j.agwat.2015.03.023 10.1080/14620316.2004.11511802 10.1016/j.patrec.2005.08.011 10.17660/ActaHortic.2008.792.54 10.1186/s12898-019-0233-0 10.1016/S0378-3774(97)00018-8 10.1029/wr017i004p01133  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Jan 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Jan 2025  | 
    
| DBID | C6C AAYXX CITATION 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 ADTOC UNPAY  | 
    
| DOI | 10.1007/s00271-024-00932-8 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Aqualine Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| EISSN | 1432-1319 | 
    
| EndPage | 120 | 
    
| ExternalDocumentID | 10.1007/s00271-024-00932-8 10_1007_s00271_024_00932_8  | 
    
| GeographicLocations | California | 
    
| GeographicLocations_xml | – name: California | 
    
| GrantInformation_xml | – fundername: Almond Board of California grantid: HORT69 Kisekka; HORT69 Kisekka; HORT69 Kisekka funderid: http://dx.doi.org/10.13039/100007822 – fundername: National Institute of Food and Agriculture grantid: 2021-68012-35914; 2021-68012-35914 funderid: http://dx.doi.org/10.13039/100005825  | 
    
| GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V LAS LK5 LLZTM M0K M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7U Z7Y Z8O Z8S ZMTXR ZOVNA ~02 ~8M ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c347t-d808e4d131e8a1b7304b3336152921e610439594fb0c0289a290b107e407e7b53 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 0342-7188 1432-1319  | 
    
| IngestDate | Sun Sep 07 11:15:15 EDT 2025 Fri Jul 11 18:24:10 EDT 2025 Fri Jul 25 19:12:19 EDT 2025 Wed Oct 01 04:33:42 EDT 2025 Fri Feb 21 02:38:11 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c347t-d808e4d131e8a1b7304b3336152921e610439594fb0c0289a290b107e407e7b53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://doi.org/10.1007/s00271-024-00932-8 | 
    
| PQID | 3163041741 | 
    
| PQPubID | 54025 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00271_024_00932_8 proquest_miscellaneous_3200315030 proquest_journals_3163041741 crossref_primary_10_1007_s00271_024_00932_8 springer_journals_10_1007_s00271_024_00932_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250100 2025-01-00 20250101  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Irrigation science | 
    
| PublicationTitleAbbrev | Irrig Sci | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | K Drechsler (932_CR13) 2022; 271 A Fulton (932_CR17) 2001; 11 M Belgiu (932_CR3) 2016; 114 GA Carter (932_CR8) 1991; 78 K Drechsler (932_CR14) 2019; 216 GS Campbell (932_CR7) 1982 M Romero (932_CR41) 2018; 147 932_CR1 P Krause (932_CR30) 2005; 5 S Idso (932_CR26) 1981; 24 B King (932_CR29) 2016; 167 RD Jackson (932_CR27) 1981; 17 David Goldhamer & Robert Beede (932_CR10) 2004; 79 A Durigon (932_CR15) 2013; 127 D Vanella (932_CR45) 2022; 269 A Naor (932_CR36) 2008; 792 P Martí (932_CR32) 2013; 91 F Zhang (932_CR48) 2019; 19 R Dhillon (932_CR12) 2018; 20 932_CR23 HG Jones (932_CR28) 1999; 95 M Möller (932_CR35) 2007; 58 TA Parker (932_CR38) 2020; 12 932_CR44 S Gutierrez (932_CR22) 2018; 13 J Andreu (932_CR2) 1997; vol. 35 GC Starr (932_CR43) 2005; 72 PJ Blaya-Ros (932_CR5) 2020; 10 I Colomina (932_CR9) 2014; 92 S Virnodkar (932_CR46) 2020; 21 J Berni (932_CR4) 2009; 47 M Yang (932_CR47) 2021; 11 932_CR18 K Loggenberg (932_CR31) 2018; 10 KL Hsu (932_CR24) 1995; 31 SB Idso (932_CR25) 1977; 196 932_CR19 LG Santesteban (932_CR42) 2019; 221 JN Meyers (932_CR33) 2019; 62 932_CR6 CZ Espinoza (932_CR16) 2017; 9 932_CR37 KC DeJonge (932_CR11) 2015; 156 PO Gislason (932_CR20) 2006; 27 932_CR34 T Poblete (932_CR39) 2017; 17 I Pôças (932_CR40) 2017; 58 DA Goldhamer (932_CR21) 2005  | 
    
| References_xml | – volume: 10 start-page: 202 issue: 2 year: 2018 ident: 932_CR31 publication-title: Remote Sensing doi: 10.3390/rs10020202 – volume: 17 start-page: 2488 issue: 11 year: 2017 ident: 932_CR39 publication-title: Sensors doi: 10.3390/s17112488 – volume: 12 start-page: 1748 issue: 11 year: 2020 ident: 932_CR38 publication-title: Remote Sensing doi: 10.3390/rs12111748 – volume: 269 year: 2022 ident: 932_CR45 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.107652 – ident: 932_CR6 – start-page: 25 volume-title: Advances in Irrigation year: 1982 ident: 932_CR7 – volume: 95 start-page: 139 issue: 3 year: 1999 ident: 932_CR28 publication-title: Agric for Meteorol doi: 10.1016/S0168-1923(99)00030-1 – volume: 31 start-page: 2517 year: 1995 ident: 932_CR24 publication-title: Water Resour Res doi: 10.1029/95WR01955 – volume: 114 start-page: 24 year: 2016 ident: 932_CR3 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 58 start-page: 827 year: 2007 ident: 932_CR35 publication-title: J Exp Bot doi: 10.1093/jxb/erl115 – volume: 92 start-page: 79 year: 2014 ident: 932_CR9 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 91 start-page: 75 year: 2013 ident: 932_CR32 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2012.12.001 – volume: 11 start-page: 609 issue: 4 year: 2001 ident: 932_CR17 publication-title: HortTechnology Horttech doi: 10.21273/HORTTECH.11.4.609 – ident: 932_CR19 – volume: 196 start-page: 19 year: 1977 ident: 932_CR25 publication-title: Science doi: 10.1126/science.196.4285.19 – volume: 62 start-page: 19 issue: 1 year: 2019 ident: 932_CR33 publication-title: Trans ASABE doi: 10.13031/trans.12970 – ident: 932_CR37 – volume: 127 start-page: 1 year: 2013 ident: 932_CR15 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2013.05.014 – volume: 24 start-page: 45 year: 1981 ident: 932_CR26 publication-title: Agric Meteorol doi: 10.1016/0002-1571(81)90032-7 – volume: 78 start-page: 916 issue: 7 year: 1991 ident: 932_CR8 publication-title: Am J Bot doi: 10.1002/j.1537-2197.1991.tb14495.x – ident: 932_CR23 – volume: 58 start-page: 177 year: 2017 ident: 932_CR40 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2017.02.013 – volume: 11 start-page: 2244 issue: 11 year: 2021 ident: 932_CR47 publication-title: Agronomy doi: 10.3390/agronomy11112244 – ident: 932_CR44 – ident: 932_CR1 – volume: 147 start-page: 109 year: 2018 ident: 932_CR41 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.02.013 – volume: 167 start-page: 38 year: 2016 ident: 932_CR29 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2015.12.009 – volume: 216 start-page: 214 year: 2019 ident: 932_CR14 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2019.02.003 – volume: 221 start-page: 202 year: 2019 ident: 932_CR42 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2019.04.020 – volume: 21 start-page: 1121 year: 2020 ident: 932_CR46 publication-title: Precision Agric doi: 10.1007/s11119-020-09711-9 – start-page: 103 volume-title: Pistachio production manual year: 2005 ident: 932_CR21 – volume: 5 start-page: 89 year: 2005 ident: 932_CR30 publication-title: Adv Geosci doi: 10.5194/adgeo-5-89-2005 – ident: 932_CR34 – volume: 47 start-page: 722 issue: 3 year: 2009 ident: 932_CR4 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/tgrs.2008.2010457 – volume: 271 year: 2022 ident: 932_CR13 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.107770 – ident: 932_CR18 – volume: 13 issue: 2 year: 2018 ident: 932_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192037 – volume: 72 start-page: 223 issue: 3 year: 2005 ident: 932_CR43 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2004.09.020 – volume: 20 start-page: 723 issue: 4 year: 2018 ident: 932_CR12 publication-title: Precision Agric doi: 10.1007/s11119-018-9607-0 – volume: 9 start-page: 961 year: 2017 ident: 932_CR16 publication-title: Remote Sens doi: 10.3390/rs9090961 – volume: 10 start-page: 5461 year: 2020 ident: 932_CR5 publication-title: Appl Sci doi: 10.3390/app10165461 – volume: 156 start-page: 51 year: 2015 ident: 932_CR11 publication-title: Agric Water Mgmt doi: 10.1016/j.agwat.2015.03.023 – volume: 79 start-page: 538 issue: 4 year: 2004 ident: 932_CR10 publication-title: J Hortic Sci Biotechnol doi: 10.1080/14620316.2004.11511802 – volume: 27 start-page: 294 issue: 4 year: 2006 ident: 932_CR20 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.08.011 – volume: 792 start-page: 467 issue: 792 year: 2008 ident: 932_CR36 publication-title: Acta Hort doi: 10.17660/ActaHortic.2008.792.54 – volume: 19 start-page: 18 issue: 1 year: 2019 ident: 932_CR48 publication-title: BMC Ecol doi: 10.1186/s12898-019-0233-0 – volume: vol. 35 start-page: 123 issue: issue 1–2 year: 1997 ident: 932_CR2 publication-title: Agric Water Manag doi: 10.1016/S0378-3774(97)00018-8 – volume: 17 start-page: 1133 issue: 4 year: 1981 ident: 932_CR27 publication-title: Water Resour Res doi: 10.1029/wr017i004p01133  | 
    
| SSID | ssj0017684 | 
    
| Score | 2.4255795 | 
    
| Snippet | Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 105 | 
    
| SubjectTerms | Accuracy Agriculture algorithms almonds Aquatic Pollution Artificial neural networks Biomedical and Life Sciences California canopy Climate Change Crops data collection Decompression chambers Drought Environment Environmental regulations Evapotranspiration Groundwater Irrigation Irrigation efficiency Learning algorithms Life Sciences Machine learning Moisture content multispectral imagery Neural networks Orchards Original Paper prediction Pressure chambers Reflectance Root-mean-square errors Soil moisture soil water Spatial variations Spectral reflectance Stems Sustainable Development Waste Water Technology Water Water Industry/Water Technologies Water Management Water Pollution Control Water potential Water use Water use efficiency Workflow  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDoaDv40YNDXxJiXd2v06EiMhJhIPkOBpabdCjDjI2ELwr_d1lKHEGDzvrdteX9fvy3v9HkJ3iksvcmVEfKlioiXNScB9RVjkCF9Erg0ETldb9NzugD8NnaGRydFnYbby91rs0_aA8NqcaPINq3cfVV0HcHcFVQe9l_ZrkSbgABOtoskk7P82sSCwzAmZ3wf5uQttoGWZDa2hgzyZieVCTCbfNpzO0apz0bzQKdR1Ju-tPJOt6HNLxXG3bzlGhwZ34vYqUE7QnkpOUa09To32hjpD_WehxRrGWEwgNmOsJZ7xArBoimfTTFcVwQC6Tn6MP4oSTIVNzwm4BeyL2sTi5GYKhm8fWh1jeY4Gncf-Q5eYpgskYtzLSOxTX_EYPKh8YUn4AXDJGAPgYwe2pQBtAYRxAj6SNNJZSmEHVAKHVMAMlScddoEqyTRRlwhTpuUFgTBxR4G98GnMJFURULSRG8S0ju7XkxDOVtoaYamiXPgqBF-Fha9Cv44a63kKzTqbhwzgJOXAqqw6ui0vwwrRaQ-RqGkONrr-DnAvgwc21_O7GeKvJzbLGNjhBa_-Z95AlSzN1TVgmkzemGD-Amxo6cc priority: 102 providerName: Unpaywall  | 
    
| Title | Mapping almond stem water potential using machine learning and multispectral imagery | 
    
| URI | https://link.springer.com/article/10.1007/s00271-024-00932-8 https://www.proquest.com/docview/3163041741 https://www.proquest.com/docview/3200315030 https://doi.org/10.1007/s00271-024-00932-8  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 43 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017684 issn: 1432-1319 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017684 issn: 1432-1319 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1319 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017684 issn: 1432-1319 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20PWgP4ifWLyJ400CS3SSbY5RWUSweWqinsJtsi9CmpaaI_96ZbZqqiOglgWQyCbO77Ju82bcAF5qrMA1UagulM5skze2IC22z1JdCpoGHCRxVW3SCux6_7_v9UiaH1sJ84-9J7NMLMeH1uE3JN47edajjJBUYYja4qRgDIpQMY8ARMbpClAtkfvbxdRJaIcuKDG3Axjyfyvc3ORp9mm_a27BVAkUrXrTsDqzpfBca8XBWimXoPeg-SlJXGFpyhJ0ps0iT2XpD8DizppOCyoDQARW2D62xqZnUVrlJBD6C9qaY0Cy1nKHhy5jkLN73oddudW_u7HKXBDtlPCzsTDhC88xlrhbSVThiuWKMIVLxIs_VCI8Qc_gRHygnJVpRepGjMOnTmMrpUPnsAGr5JNeHYDmM9AAxw-G-RnspnIwpR6eYUw2CKHOacLkMWzJdiGEkleyxCXKCQU5MkBPRhJNlZJNyYLwmDPGfwzENcptwXt3GLk08hcz1ZI42VDCHQJXhC6-WLbJy8dsbr6pW-8MHHv3P-zFserT5r_n_cgK1YjbXp4hICnUG9bh9fd2h8-3zQ-vMdE089rwYr_U6T_HzB1vu2Sk | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5ReEAevBtR1Jn4JiPb2kH3SAyIcnmCBJ-WdivECIPACMFf7-nY5iXGyPO6tmtP2-_bOecrwJ2koupVhKczIX1dSZrrDmVSJ57NGfcqFhI4FW3RrTT79HlgD-KksEUS7Z64JKOdOk12UwwKqa9FdUXDcR3vQpYiQbEykK09vrTqqfdAOZci7wFF9GgyFifL_F7L9wPpE2WmjtE85JbBjK9XfDz-cvY0DqCf9HoTcvJWXoai7L3_EHTc9rMOYT8Go1ptYz1HsCODY8jXRvNYkEOeQK_DlYLDSONjNFhfU7rP2goB6lybTUMVaoQVqOD5kTaJ4jKlFl9Ega9g-ShgMUrnnGPB14mSzFifQr9R7z009fgmBt0jtBrqPjOYpL5JTMm4KXBXoIIQgmjIcixTIgRDXGM7dCgMT7kuueUYAomlRLooq8ImZ5AJpoE8B80gSnMQWRS1JZbnzPCJMKSHvG1YcXyjAPfJdLizjeCGm0orR2Pl4li50Vi5rADFZMbcePEtXIIY06BItcwC3KaPcdkoXwgP5HSJZVRQHoJhgg2Wkon5rOKvFkupNfyjgxfb1X4DuWav03bbT93WJexZ6rLh6H9PETLhfCmvEAGF4jo2-A9Ocvd- | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60go-D-MT6XMGbDU2ym3RzLNXis3io4C3sJtsitGmpKcV_78w2jQoies5kk8zOst-XmfkW4MII3UhCnThSm9QhSXMnEtI4PAmUVEnoI4GjaotOePMs7l6Cly9d_LbafZGSnPc0kEpTltfHaa9eNr4Rm0Ia7AuHKDmu6WVYEbi70RkGrbBV5hEozWTzCAJxpCdl0Tbz8xjft6ZPvFmmSDdgbZqN1ftMDQZfdqH2FmwW8JE15_O9DUsm24GNZn9SSGiYXeg-KtJc6DM1wBBLGSk1sxlCygkbj-gbMeIYlbv32dBWUhpWHB2Bt6C9LTG0DZgTNHwdksjF-x48t6-7rRunODvBSbho5E4qXWlE6nHPSOVpXMdCc84Rv_iR7xkETYhEgkj0tJtQslH5kauRChokeKahA74PlWyUmQNgLieVQOQ9IjBor6Sbcu2aBJlWL4xStwqXC7fF47lERlyKIVsnx-jk2Do5llU4Xng2LpbLW8wRFboCyZFXhfPyMgY6ZS9UZkZTtKEyOoSvHB9YW8zI5xC_PbFWztofXvDwf6OfwerTVTt-uO3cH8G6T6cD2x80x1DJJ1NzgpAl16c2Kj8AN5Hetg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDoaDv40YNDXxJiXd2v06EiMhJhIPkOBpabdCjDjI2ELwr_d1lKHEGDzvrdteX9fvy3v9HkJ3iksvcmVEfKlioiXNScB9RVjkCF9Erg0ETldb9NzugD8NnaGRydFnYbby91rs0_aA8NqcaPINq3cfVV0HcHcFVQe9l_ZrkSbgABOtoskk7P82sSCwzAmZ3wf5uQttoGWZDa2hgzyZieVCTCbfNpzO0apz0bzQKdR1Ju-tPJOt6HNLxXG3bzlGhwZ34vYqUE7QnkpOUa09To32hjpD_WehxRrGWEwgNmOsJZ7xArBoimfTTFcVwQC6Tn6MP4oSTIVNzwm4BeyL2sTi5GYKhm8fWh1jeY4Gncf-Q5eYpgskYtzLSOxTX_EYPKh8YUn4AXDJGAPgYwe2pQBtAYRxAj6SNNJZSmEHVAKHVMAMlScddoEqyTRRlwhTpuUFgTBxR4G98GnMJFURULSRG8S0ju7XkxDOVtoaYamiXPgqBF-Fha9Cv44a63kKzTqbhwzgJOXAqqw6ui0vwwrRaQ-RqGkONrr-DnAvgwc21_O7GeKvJzbLGNjhBa_-Z95AlSzN1TVgmkzemGD-Amxo6cc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+almond+stem+water+potential+using+machine+learning+and+multispectral+imagery&rft.jtitle=Irrigation+science&rft.au=Savchik%2C+Peter&rft.au=Nocco%2C+Mallika&rft.au=Kisekka%2C+Isaya&rft.date=2025-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0342-7188&rft.eissn=1432-1319&rft.volume=43&rft.issue=1&rft.spage=105&rft.epage=120&rft_id=info:doi/10.1007%2Fs00271-024-00932-8&rft.externalDocID=10_1007_s00271_024_00932_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-7188&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-7188&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-7188&client=summon |