Mapping almond stem water potential using machine learning and multispectral imagery

Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and acc...

Full description

Saved in:
Bibliographic Details
Published inIrrigation science Vol. 43; no. 1; pp. 105 - 120
Main Authors Savchik, Peter, Nocco, Mallika, Kisekka, Isaya
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0342-7188
1432-1319
1432-1319
DOI10.1007/s00271-024-00932-8

Cover

Abstract Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R 2  = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R 2  = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R 2  = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements.
AbstractList Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R² = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R² = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R² = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements.
Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R 2  = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R 2  = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R 2  = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements.
Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant challenges to growers. Irrigation regimes based on observed crop water status can help to optimize water use efficiency, but consistent and accurate measurement of water status can prove challenging. In almonds, crop water status is best represented by midday stem water potential measured using a pressure chamber, which despite its accuracy is impractical for growers to measure on a regular basis. This study aimed to use machine learning (ML) models to predict stem water potential in an almond orchard based on canopy spectral reflectance, soil moisture, and daily evapotranspiration. Both artificial neural network and random forest models were trained and used to produce high-resolution spatial maps of stem water potential covering the entire orchard. Also, for each ML model type, one model was trained to predict raw stem water potential values, while another was trained to predict baseline-adjusted values. Together, all models resulted in an average coefficient of correlation of R2 = 0.73 and an average root mean squared error (RMSE) of 2.5 bars. Prediction accuracy decreased significantly when models were expanded to spatial maps (R2 = 0.33, RMSE = 3.31 [avg]). These results indicate that both artificial neural networks and random forest frameworks can be used to predict stem water potential, but both approaches were unable to fully account for the spatial variability observed throughout the orchard. Overall, the most accurate maps were produced by the random forest model (raw stem water potential R2 = 0.47, RMSE = 2.71). The ability to predict stem water potential spatially can aid in the implementation of variable rate irrigation. Future studies should attempt to train similar models with larger datasets and develop a simpler faster workflow for producing stress predictions from field measurements.
Author Savchik, Peter
Nocco, Mallika
Kisekka, Isaya
Author_xml – sequence: 1
  givenname: Peter
  surname: Savchik
  fullname: Savchik, Peter
  organization: Department of Biological and Agricultural Engineering, UC Davis
– sequence: 2
  givenname: Mallika
  surname: Nocco
  fullname: Nocco, Mallika
  organization: Department of Land, Air, and Water Resources, UC Davis, Biological Systems Engineering, University of Wisconsin Madison
– sequence: 3
  givenname: Isaya
  surname: Kisekka
  fullname: Kisekka, Isaya
  email: ikisekka@ucdavis.edu
  organization: Department of Biological and Agricultural Engineering, UC Davis, Department of Land, Air, and Water Resources, UC Davis
BookMark eNqNkE1LAzEQhoMoWKt_wNOCFy-rM0naZI9S_IKKl3oO2e20bslm12QX6b83tgXBg3gYMofnHd48Z-zYt54Yu0S4QQB1GwG4why4zAEKwXN9xEYo04ICi2M2AiF5rlDrU3YW4wYA1VTLEVu82K6r_Tqzrmn9Mos9Ndmn7SlkXduT72vrsiF-E42t3mtPmSMb_C6S-GZwfR07qvqQwLqxawrbc3aysi7SxeEds7eH-8XsKZ-_Pj7P7uZ5JaTq86UGTXKZGpK2WCoBshRCTHHCC440RZCimBRyVUIFXBeWF1AiKJJpVDkRYyb2dwff2e2ndc50IXUIW4NgvsWYvRiTxJidGKNT6nqf6kL7MVDsTVPHipyzntohGsEBBE5AQEKvfqGbdgg-_ckInKa-qCQmiu-pKrQxBlr9r8Whe0ywT9Z-Tv-R-gJG8ZCr
Cites_doi 10.3390/rs10020202
10.3390/s17112488
10.3390/rs12111748
10.1016/j.agwat.2022.107652
10.1016/S0168-1923(99)00030-1
10.1029/95WR01955
10.1016/j.isprsjprs.2016.01.011
10.1093/jxb/erl115
10.1016/j.isprsjprs.2014.02.013
10.1016/j.compag.2012.12.001
10.21273/HORTTECH.11.4.609
10.1126/science.196.4285.19
10.13031/trans.12970
10.1016/j.agwat.2013.05.014
10.1016/0002-1571(81)90032-7
10.1002/j.1537-2197.1991.tb14495.x
10.1016/j.jag.2017.02.013
10.3390/agronomy11112244
10.1016/j.compag.2018.02.013
10.1016/j.agwat.2015.12.009
10.1016/j.agwat.2019.02.003
10.1016/j.agwat.2019.04.020
10.1007/s11119-020-09711-9
10.5194/adgeo-5-89-2005
10.1109/tgrs.2008.2010457
10.1016/j.agwat.2022.107770
10.1371/journal.pone.0192037
10.1016/j.agwat.2004.09.020
10.1007/s11119-018-9607-0
10.3390/rs9090961
10.3390/app10165461
10.1016/j.agwat.2015.03.023
10.1080/14620316.2004.11511802
10.1016/j.patrec.2005.08.011
10.17660/ActaHortic.2008.792.54
10.1186/s12898-019-0233-0
10.1016/S0378-3774(97)00018-8
10.1029/wr017i004p01133
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Jan 2025
DBID C6C
AAYXX
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1007/s00271-024-00932-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1432-1319
EndPage 120
ExternalDocumentID 10.1007/s00271-024-00932-8
10_1007_s00271_024_00932_8
GeographicLocations California
GeographicLocations_xml – name: California
GrantInformation_xml – fundername: Almond Board of California
  grantid: HORT69 Kisekka; HORT69 Kisekka; HORT69 Kisekka
  funderid: http://dx.doi.org/10.13039/100007822
– fundername: National Institute of Food and Agriculture
  grantid: 2021-68012-35914; 2021-68012-35914
  funderid: http://dx.doi.org/10.13039/100005825
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7Y
Z8O
Z8S
ZMTXR
ZOVNA
~02
~8M
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c347t-d808e4d131e8a1b7304b3336152921e610439594fb0c0289a290b107e407e7b53
IEDL.DBID C6C
ISSN 0342-7188
1432-1319
IngestDate Sun Sep 07 11:15:15 EDT 2025
Fri Jul 11 18:24:10 EDT 2025
Fri Jul 25 19:12:19 EDT 2025
Wed Oct 01 04:33:42 EDT 2025
Fri Feb 21 02:38:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-d808e4d131e8a1b7304b3336152921e610439594fb0c0289a290b107e407e7b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s00271-024-00932-8
PQID 3163041741
PQPubID 54025
PageCount 16
ParticipantIDs unpaywall_primary_10_1007_s00271_024_00932_8
proquest_miscellaneous_3200315030
proquest_journals_3163041741
crossref_primary_10_1007_s00271_024_00932_8
springer_journals_10_1007_s00271_024_00932_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Irrigation science
PublicationTitleAbbrev Irrig Sci
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References K Drechsler (932_CR13) 2022; 271
A Fulton (932_CR17) 2001; 11
M Belgiu (932_CR3) 2016; 114
GA Carter (932_CR8) 1991; 78
K Drechsler (932_CR14) 2019; 216
GS Campbell (932_CR7) 1982
M Romero (932_CR41) 2018; 147
932_CR1
P Krause (932_CR30) 2005; 5
S Idso (932_CR26) 1981; 24
B King (932_CR29) 2016; 167
RD Jackson (932_CR27) 1981; 17
David Goldhamer & Robert Beede (932_CR10) 2004; 79
A Durigon (932_CR15) 2013; 127
D Vanella (932_CR45) 2022; 269
A Naor (932_CR36) 2008; 792
P Martí (932_CR32) 2013; 91
F Zhang (932_CR48) 2019; 19
R Dhillon (932_CR12) 2018; 20
932_CR23
HG Jones (932_CR28) 1999; 95
M Möller (932_CR35) 2007; 58
TA Parker (932_CR38) 2020; 12
932_CR44
S Gutierrez (932_CR22) 2018; 13
J Andreu (932_CR2) 1997; vol. 35
GC Starr (932_CR43) 2005; 72
PJ Blaya-Ros (932_CR5) 2020; 10
I Colomina (932_CR9) 2014; 92
S Virnodkar (932_CR46) 2020; 21
J Berni (932_CR4) 2009; 47
M Yang (932_CR47) 2021; 11
932_CR18
K Loggenberg (932_CR31) 2018; 10
KL Hsu (932_CR24) 1995; 31
SB Idso (932_CR25) 1977; 196
932_CR19
LG Santesteban (932_CR42) 2019; 221
JN Meyers (932_CR33) 2019; 62
932_CR6
CZ Espinoza (932_CR16) 2017; 9
932_CR37
KC DeJonge (932_CR11) 2015; 156
PO Gislason (932_CR20) 2006; 27
932_CR34
T Poblete (932_CR39) 2017; 17
I Pôças (932_CR40) 2017; 58
DA Goldhamer (932_CR21) 2005
References_xml – volume: 10
  start-page: 202
  issue: 2
  year: 2018
  ident: 932_CR31
  publication-title: Remote Sensing
  doi: 10.3390/rs10020202
– volume: 17
  start-page: 2488
  issue: 11
  year: 2017
  ident: 932_CR39
  publication-title: Sensors
  doi: 10.3390/s17112488
– volume: 12
  start-page: 1748
  issue: 11
  year: 2020
  ident: 932_CR38
  publication-title: Remote Sensing
  doi: 10.3390/rs12111748
– volume: 269
  year: 2022
  ident: 932_CR45
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.107652
– ident: 932_CR6
– start-page: 25
  volume-title: Advances in Irrigation
  year: 1982
  ident: 932_CR7
– volume: 95
  start-page: 139
  issue: 3
  year: 1999
  ident: 932_CR28
  publication-title: Agric for Meteorol
  doi: 10.1016/S0168-1923(99)00030-1
– volume: 31
  start-page: 2517
  year: 1995
  ident: 932_CR24
  publication-title: Water Resour Res
  doi: 10.1029/95WR01955
– volume: 114
  start-page: 24
  year: 2016
  ident: 932_CR3
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 58
  start-page: 827
  year: 2007
  ident: 932_CR35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl115
– volume: 92
  start-page: 79
  year: 2014
  ident: 932_CR9
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2014.02.013
– volume: 91
  start-page: 75
  year: 2013
  ident: 932_CR32
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2012.12.001
– volume: 11
  start-page: 609
  issue: 4
  year: 2001
  ident: 932_CR17
  publication-title: HortTechnology Horttech
  doi: 10.21273/HORTTECH.11.4.609
– ident: 932_CR19
– volume: 196
  start-page: 19
  year: 1977
  ident: 932_CR25
  publication-title: Science
  doi: 10.1126/science.196.4285.19
– volume: 62
  start-page: 19
  issue: 1
  year: 2019
  ident: 932_CR33
  publication-title: Trans ASABE
  doi: 10.13031/trans.12970
– ident: 932_CR37
– volume: 127
  start-page: 1
  year: 2013
  ident: 932_CR15
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2013.05.014
– volume: 24
  start-page: 45
  year: 1981
  ident: 932_CR26
  publication-title: Agric Meteorol
  doi: 10.1016/0002-1571(81)90032-7
– volume: 78
  start-page: 916
  issue: 7
  year: 1991
  ident: 932_CR8
  publication-title: Am J Bot
  doi: 10.1002/j.1537-2197.1991.tb14495.x
– ident: 932_CR23
– volume: 58
  start-page: 177
  year: 2017
  ident: 932_CR40
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2017.02.013
– volume: 11
  start-page: 2244
  issue: 11
  year: 2021
  ident: 932_CR47
  publication-title: Agronomy
  doi: 10.3390/agronomy11112244
– ident: 932_CR44
– ident: 932_CR1
– volume: 147
  start-page: 109
  year: 2018
  ident: 932_CR41
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.02.013
– volume: 167
  start-page: 38
  year: 2016
  ident: 932_CR29
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2015.12.009
– volume: 216
  start-page: 214
  year: 2019
  ident: 932_CR14
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2019.02.003
– volume: 221
  start-page: 202
  year: 2019
  ident: 932_CR42
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2019.04.020
– volume: 21
  start-page: 1121
  year: 2020
  ident: 932_CR46
  publication-title: Precision Agric
  doi: 10.1007/s11119-020-09711-9
– start-page: 103
  volume-title: Pistachio production manual
  year: 2005
  ident: 932_CR21
– volume: 5
  start-page: 89
  year: 2005
  ident: 932_CR30
  publication-title: Adv Geosci
  doi: 10.5194/adgeo-5-89-2005
– ident: 932_CR34
– volume: 47
  start-page: 722
  issue: 3
  year: 2009
  ident: 932_CR4
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/tgrs.2008.2010457
– volume: 271
  year: 2022
  ident: 932_CR13
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.107770
– ident: 932_CR18
– volume: 13
  issue: 2
  year: 2018
  ident: 932_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192037
– volume: 72
  start-page: 223
  issue: 3
  year: 2005
  ident: 932_CR43
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2004.09.020
– volume: 20
  start-page: 723
  issue: 4
  year: 2018
  ident: 932_CR12
  publication-title: Precision Agric
  doi: 10.1007/s11119-018-9607-0
– volume: 9
  start-page: 961
  year: 2017
  ident: 932_CR16
  publication-title: Remote Sens
  doi: 10.3390/rs9090961
– volume: 10
  start-page: 5461
  year: 2020
  ident: 932_CR5
  publication-title: Appl Sci
  doi: 10.3390/app10165461
– volume: 156
  start-page: 51
  year: 2015
  ident: 932_CR11
  publication-title: Agric Water Mgmt
  doi: 10.1016/j.agwat.2015.03.023
– volume: 79
  start-page: 538
  issue: 4
  year: 2004
  ident: 932_CR10
  publication-title: J Hortic Sci Biotechnol
  doi: 10.1080/14620316.2004.11511802
– volume: 27
  start-page: 294
  issue: 4
  year: 2006
  ident: 932_CR20
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.08.011
– volume: 792
  start-page: 467
  issue: 792
  year: 2008
  ident: 932_CR36
  publication-title: Acta Hort
  doi: 10.17660/ActaHortic.2008.792.54
– volume: 19
  start-page: 18
  issue: 1
  year: 2019
  ident: 932_CR48
  publication-title: BMC Ecol
  doi: 10.1186/s12898-019-0233-0
– volume: vol. 35
  start-page: 123
  issue: issue 1–2
  year: 1997
  ident: 932_CR2
  publication-title: Agric Water Manag
  doi: 10.1016/S0378-3774(97)00018-8
– volume: 17
  start-page: 1133
  issue: 4
  year: 1981
  ident: 932_CR27
  publication-title: Water Resour Res
  doi: 10.1029/wr017i004p01133
SSID ssj0017684
Score 2.4255795
Snippet Almonds are a major crop in California which produces 80% of all the world’s almonds. Widespread drought and strict groundwater regulations pose significant...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 105
SubjectTerms Accuracy
Agriculture
algorithms
almonds
Aquatic Pollution
Artificial neural networks
Biomedical and Life Sciences
California
canopy
Climate Change
Crops
data collection
Decompression chambers
Drought
Environment
Environmental regulations
Evapotranspiration
Groundwater
Irrigation
Irrigation efficiency
Learning algorithms
Life Sciences
Machine learning
Moisture content
multispectral imagery
Neural networks
Orchards
Original Paper
prediction
Pressure chambers
Reflectance
Root-mean-square errors
Soil moisture
soil water
Spatial variations
Spectral reflectance
Stems
Sustainable Development
Waste Water Technology
Water
Water Industry/Water Technologies
Water Management
Water Pollution Control
Water potential
Water use
Water use efficiency
Workflow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDoaDv40YNDXxJiXd2v06EiMhJhIPkOBpabdCjDjI2ELwr_d1lKHEGDzvrdteX9fvy3v9HkJ3iksvcmVEfKlioiXNScB9RVjkCF9Erg0ETldb9NzugD8NnaGRydFnYbby91rs0_aA8NqcaPINq3cfVV0HcHcFVQe9l_ZrkSbgABOtoskk7P82sSCwzAmZ3wf5uQttoGWZDa2hgzyZieVCTCbfNpzO0apz0bzQKdR1Ju-tPJOt6HNLxXG3bzlGhwZ34vYqUE7QnkpOUa09To32hjpD_WehxRrGWEwgNmOsJZ7xArBoimfTTFcVwQC6Tn6MP4oSTIVNzwm4BeyL2sTi5GYKhm8fWh1jeY4Gncf-Q5eYpgskYtzLSOxTX_EYPKh8YUn4AXDJGAPgYwe2pQBtAYRxAj6SNNJZSmEHVAKHVMAMlScddoEqyTRRlwhTpuUFgTBxR4G98GnMJFURULSRG8S0ju7XkxDOVtoaYamiXPgqBF-Fha9Cv44a63kKzTqbhwzgJOXAqqw6ui0vwwrRaQ-RqGkONrr-DnAvgwc21_O7GeKvJzbLGNjhBa_-Z95AlSzN1TVgmkzemGD-Amxo6cc
  priority: 102
  providerName: Unpaywall
Title Mapping almond stem water potential using machine learning and multispectral imagery
URI https://link.springer.com/article/10.1007/s00271-024-00932-8
https://www.proquest.com/docview/3163041741
https://www.proquest.com/docview/3200315030
https://doi.org/10.1007/s00271-024-00932-8
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017684
  issn: 1432-1319
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017684
  issn: 1432-1319
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1319
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017684
  issn: 1432-1319
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20PWgP4ifWLyJ400CS3SSbY5RWUSweWqinsJtsi9CmpaaI_96ZbZqqiOglgWQyCbO77Ju82bcAF5qrMA1UagulM5skze2IC22z1JdCpoGHCRxVW3SCux6_7_v9UiaH1sJ84-9J7NMLMeH1uE3JN47edajjJBUYYja4qRgDIpQMY8ARMbpClAtkfvbxdRJaIcuKDG3Axjyfyvc3ORp9mm_a27BVAkUrXrTsDqzpfBca8XBWimXoPeg-SlJXGFpyhJ0ps0iT2XpD8DizppOCyoDQARW2D62xqZnUVrlJBD6C9qaY0Cy1nKHhy5jkLN73oddudW_u7HKXBDtlPCzsTDhC88xlrhbSVThiuWKMIVLxIs_VCI8Qc_gRHygnJVpRepGjMOnTmMrpUPnsAGr5JNeHYDmM9AAxw-G-RnspnIwpR6eYUw2CKHOacLkMWzJdiGEkleyxCXKCQU5MkBPRhJNlZJNyYLwmDPGfwzENcptwXt3GLk08hcz1ZI42VDCHQJXhC6-WLbJy8dsbr6pW-8MHHv3P-zFserT5r_n_cgK1YjbXp4hICnUG9bh9fd2h8-3zQ-vMdE089rwYr_U6T_HzB1vu2Sk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5ReEAevBtR1Jn4JiPb2kH3SAyIcnmCBJ-WdivECIPACMFf7-nY5iXGyPO6tmtP2-_bOecrwJ2koupVhKczIX1dSZrrDmVSJ57NGfcqFhI4FW3RrTT79HlgD-KksEUS7Z64JKOdOk12UwwKqa9FdUXDcR3vQpYiQbEykK09vrTqqfdAOZci7wFF9GgyFifL_F7L9wPpE2WmjtE85JbBjK9XfDz-cvY0DqCf9HoTcvJWXoai7L3_EHTc9rMOYT8Go1ptYz1HsCODY8jXRvNYkEOeQK_DlYLDSONjNFhfU7rP2goB6lybTUMVaoQVqOD5kTaJ4jKlFl9Ega9g-ShgMUrnnGPB14mSzFifQr9R7z009fgmBt0jtBrqPjOYpL5JTMm4KXBXoIIQgmjIcixTIgRDXGM7dCgMT7kuueUYAomlRLooq8ImZ5AJpoE8B80gSnMQWRS1JZbnzPCJMKSHvG1YcXyjAPfJdLizjeCGm0orR2Pl4li50Vi5rADFZMbcePEtXIIY06BItcwC3KaPcdkoXwgP5HSJZVRQHoJhgg2Wkon5rOKvFkupNfyjgxfb1X4DuWav03bbT93WJexZ6rLh6H9PETLhfCmvEAGF4jo2-A9Ocvd-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60go-D-MT6XMGbDU2ym3RzLNXis3io4C3sJtsitGmpKcV_78w2jQoies5kk8zOst-XmfkW4MII3UhCnThSm9QhSXMnEtI4PAmUVEnoI4GjaotOePMs7l6Cly9d_LbafZGSnPc0kEpTltfHaa9eNr4Rm0Ia7AuHKDmu6WVYEbi70RkGrbBV5hEozWTzCAJxpCdl0Tbz8xjft6ZPvFmmSDdgbZqN1ftMDQZfdqH2FmwW8JE15_O9DUsm24GNZn9SSGiYXeg-KtJc6DM1wBBLGSk1sxlCygkbj-gbMeIYlbv32dBWUhpWHB2Bt6C9LTG0DZgTNHwdksjF-x48t6-7rRunODvBSbho5E4qXWlE6nHPSOVpXMdCc84Rv_iR7xkETYhEgkj0tJtQslH5kauRChokeKahA74PlWyUmQNgLieVQOQ9IjBor6Sbcu2aBJlWL4xStwqXC7fF47lERlyKIVsnx-jk2Do5llU4Xng2LpbLW8wRFboCyZFXhfPyMgY6ZS9UZkZTtKEyOoSvHB9YW8zI5xC_PbFWztofXvDwf6OfwerTVTt-uO3cH8G6T6cD2x80x1DJJ1NzgpAl16c2Kj8AN5Hetg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDoaDv40YNDXxJiXd2v06EiMhJhIPkOBpabdCjDjI2ELwr_d1lKHEGDzvrdteX9fvy3v9HkJ3iksvcmVEfKlioiXNScB9RVjkCF9Erg0ETldb9NzugD8NnaGRydFnYbby91rs0_aA8NqcaPINq3cfVV0HcHcFVQe9l_ZrkSbgABOtoskk7P82sSCwzAmZ3wf5uQttoGWZDa2hgzyZieVCTCbfNpzO0apz0bzQKdR1Ju-tPJOt6HNLxXG3bzlGhwZ34vYqUE7QnkpOUa09To32hjpD_WehxRrGWEwgNmOsJZ7xArBoimfTTFcVwQC6Tn6MP4oSTIVNzwm4BeyL2sTi5GYKhm8fWh1jeY4Gncf-Q5eYpgskYtzLSOxTX_EYPKh8YUn4AXDJGAPgYwe2pQBtAYRxAj6SNNJZSmEHVAKHVMAMlScddoEqyTRRlwhTpuUFgTBxR4G98GnMJFURULSRG8S0ju7XkxDOVtoaYamiXPgqBF-Fha9Cv44a63kKzTqbhwzgJOXAqqw6ui0vwwrRaQ-RqGkONrr-DnAvgwc21_O7GeKvJzbLGNjhBa_-Z95AlSzN1TVgmkzemGD-Amxo6cc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+almond+stem+water+potential+using+machine+learning+and+multispectral+imagery&rft.jtitle=Irrigation+science&rft.au=Savchik%2C+Peter&rft.au=Nocco%2C+Mallika&rft.au=Kisekka%2C+Isaya&rft.date=2025-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0342-7188&rft.eissn=1432-1319&rft.volume=43&rft.issue=1&rft.spage=105&rft.epage=120&rft_id=info:doi/10.1007%2Fs00271-024-00932-8&rft.externalDocID=10_1007_s00271_024_00932_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0342-7188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0342-7188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0342-7188&client=summon