3-D Subject-Specific Shape and Density Estimation of the Lumbar Spine From a Single Anteroposterior DXA Image Including Assessment of Cortical and Trabecular Bone
Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 37; no. 12; pp. 2651 - 2662 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2018.2845909 |
Cover
| Abstract | Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination. |
|---|---|
| AbstractList | Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination. Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination.Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination. |
| Author | Steghofer, Martin Gonzalez Ballester, Miguel A. Di Gregorio, Silvana Romera, Jordi Magallon Baro, Alba Lopez Picazo, Mirella Martelli, Yves Del Rio Barquero, Luis M Humbert, Ludovic |
| Author_xml | – sequence: 1 givenname: Mirella orcidid: 0000-0001-7578-6704 surname: Lopez Picazo fullname: Lopez Picazo, Mirella email: mirella.lopez.picazo@gmail.com organization: BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 2 givenname: Alba surname: Magallon Baro fullname: Magallon Baro, Alba organization: Galgo Medical S.L., Barcelona, Spain – sequence: 3 givenname: Luis M surname: Del Rio Barquero fullname: Del Rio Barquero, Luis M organization: CETIR Grup Mèdic, Barcelona, Spain – sequence: 4 givenname: Silvana surname: Di Gregorio fullname: Di Gregorio, Silvana organization: CETIR Grup Mèdic, Barcelona, Spain – sequence: 5 givenname: Yves surname: Martelli fullname: Martelli, Yves organization: Galgo Medical S.L., Barcelona, Spain – sequence: 6 givenname: Jordi surname: Romera fullname: Romera, Jordi organization: Galgo Medical S.L., Barcelona, Spain – sequence: 7 givenname: Martin surname: Steghofer fullname: Steghofer, Martin organization: Galgo Medical S.L., Barcelona, Spain – sequence: 8 givenname: Miguel A. orcidid: 0000-0002-9227-6826 surname: Gonzalez Ballester fullname: Gonzalez Ballester, Miguel A. organization: BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 9 givenname: Ludovic orcidid: 0000-0002-3675-7908 surname: Humbert fullname: Humbert, Ludovic organization: Galgo Medical S.L., Barcelona, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994113$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtv2zAUhYkiReOk3QsUKAh06SKXDz3I0bWT1oCLDnKBbAJFXSU0JFIlqSF_p7-0dOx0yNDpLt85995zrtCFdRYQek_JklIiv-x_bJeMULFkIi8kka_QghaFyFiR312gBWGVyAgp2SW6CuFACM0LIt-gSyalzCnlC_SHZxtcz-0BdMzqCbTpjcb1g5oAK9vhDdhg4iO-CdGMKhpnsetxfAC8m8dWeVxPxgK-9W7ECtfG3g-AVzaCd5MLaRjn8eZuhbejuge8tXqYu0ThVQgQwgg2Hg3Xzkej1fC0c-9VC3oekvvX9O9b9LpXQ4B353mNft3e7Nffs93Pb9v1apdpnlcx06JlmlW01H0nFe9zJZTiuSKMi45LQishy5IDIdCSvNCsLQuoClBSq5J2il-jzyffybvfM4TYjCZoGAZlwc2hYaQUnEtRyoR-eoEe3Oxtuq5hNAXLSpHnifp4puZ2hK6ZfIrQPzbP6SegPAHauxA89I028Snk6JUZGkqaY81Nqrk51tyca05C8kL47P0fyYeTxADAP1zwSvKS879SA7I8 |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1007_s00198_019_04894_y crossref_primary_10_1007_s11657_019_0680_4 crossref_primary_10_1002_rcs_2503 crossref_primary_10_1007_s11914_021_00711_w crossref_primary_10_1186_s41747_023_00357_6 crossref_primary_10_1109_TMI_2022_3209648 crossref_primary_10_1007_s12020_022_03194_6 crossref_primary_10_1016_j_media_2019_04_002 crossref_primary_10_1038_s41597_024_03351_8 crossref_primary_10_1109_TMI_2022_3218568 crossref_primary_10_1136_bmjopen_2021_056691 crossref_primary_10_1155_2023_8925956 |
| Cites_doi | 10.1007/s11657-013-0137-0 10.1016/j.jocd.2006.04.116 10.1016/j.ejrad.2008.04.064 10.1002/jbmr.5650090802 10.1016/S0140-6736(10)62349-5 10.1007/BF02291478 10.1002/jbmr.5650081010 10.1109/TPAMI.2010.46 10.1001/archinte.164.10.1108 10.1109/34.927467 10.1006/cviu.1995.1004 10.1118/1.1521940 10.1016/j.media.2013.02.002 10.1002/jbmr.140 10.1109/TMI.2011.2163074 10.1002/jbmr.5650080915 10.1016/j.media.2008.12.003 10.1097/BOR.0000000000000183 10.1007/11866565_50 10.1359/jbmr.1998.13.12.1915 10.1016/j.media.2011.04.001 10.1109/TMI.2016.2593346 10.1007/978-1-4757-1904-8 10.1118/1.4944501 10.1016/j.media.2015.06.001 10.1016/j.jocd.2015.06.008 10.1359/jbmr.1997.12.1.89 10.1109/34.24792 10.1016/S0895-6111(03)00019-3 10.1002/jbmr.5650070902 10.1001/jama.285.6.785 10.1155/2013/213234 10.1016/j.ejrnm.2015.01.004 10.1016/0002-9343(93)90218-E 10.1109/TBME.2008.2001125 10.1016/j.jocd.2007.12.010 10.5244/C.6.28 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2018.2845909 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2662 |
| ExternalDocumentID | 29994113 10_1109_TMI_2018_2845909 8379363 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: QUAES Foundation–UPF Chair for Computational Tools for Healthcare – fundername: Eurostars grantid: 9 140 funderid: 10.13039/100013297 – fundername: Industrial Doctorates Program (Generalitat de Catalunya) – fundername: Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, MINECO grantid: RTC-2014-27401 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-c8b2c2716cfd9a3f4a8aa34a0238d3901789663e00eb045c2b65e75ea9ca61da3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 12:30:06 EDT 2025 Mon Jun 30 05:31:52 EDT 2025 Wed Feb 19 02:34:58 EST 2025 Wed Oct 01 03:55:29 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Wed Aug 27 05:51:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-c8b2c2716cfd9a3f4a8aa34a0238d3901789663e00eb045c2b65e75ea9ca61da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3675-7908 0000-0001-7578-6704 0000-0002-9227-6826 |
| PMID | 29994113 |
| PQID | 2141126844 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TMI_2018_2845909 ieee_primary_8379363 proquest_journals_2141126844 crossref_primary_10_1109_TMI_2018_2845909 proquest_miscellaneous_2068339869 pubmed_primary_29994113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 harvey (ref3) 2016 ref15 cootes (ref44) 1995; 61 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref18 press (ref46) 1992 jolliffe (ref43) 1986 cootes (ref19) 2000 hangartner (ref30) 2007; 7 top (ref37) 2010; 6533 ref24 ref45 ref23 ref26 top (ref38) 2011; 6893 ref47 ref25 ref20 ref42 ref41 ref22 myronenko (ref39) 2007; 19 ref28 ref27 ref29 kanis (ref7) 2008 (ref8) 2015 ref9 fleute (ref21) 1999; 1679 ref4 ref6 ref5 ref40 |
| References_xml | – ident: ref2 doi: 10.1007/s11657-013-0137-0 – ident: ref47 doi: 10.1016/j.jocd.2006.04.116 – ident: ref14 doi: 10.1016/j.ejrad.2008.04.064 – ident: ref6 doi: 10.1002/jbmr.5650090802 – year: 2015 ident: ref8 publication-title: Official Positions-Adult – ident: ref17 doi: 10.1016/S0140-6736(10)62349-5 – start-page: 223 year: 2000 ident: ref19 article-title: An introduction to active shape models publication-title: Introduction to Image Processing and Analysis – volume: 6533 start-page: 204 year: 2010 ident: ref37 article-title: Spotlight: Automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation publication-title: Proc Med Image Comput Comput -Assist Intervent (MICCAI) – ident: ref41 doi: 10.1007/BF02291478 – ident: ref11 doi: 10.1002/jbmr.5650081010 – ident: ref40 doi: 10.1109/TPAMI.2010.46 – ident: ref12 doi: 10.1001/archinte.164.10.1108 – ident: ref20 doi: 10.1109/34.927467 – volume: 61 start-page: 38 year: 1995 ident: ref44 article-title: Active shape models-their training and application publication-title: Comput Vis Image Understand doi: 10.1006/cviu.1995.1004 – volume: 1679 start-page: 38 year: 1999 ident: ref21 article-title: Nonrigid 3-D/2-D registration of images using statistical models publication-title: Proc Med Image Comput Comput -Assist Intervent (MICCAI) – ident: ref18 doi: 10.1118/1.1521940 – ident: ref35 doi: 10.1016/j.media.2013.02.002 – ident: ref27 doi: 10.1002/jbmr.140 – year: 2008 ident: ref7 article-title: Assessment of osteoporosis at the primary healthcare level – ident: ref28 doi: 10.1109/TMI.2011.2163074 – ident: ref9 doi: 10.1002/jbmr.5650080915 – ident: ref22 doi: 10.1016/j.media.2008.12.003 – ident: ref15 doi: 10.1097/BOR.0000000000000183 – year: 1992 ident: ref46 publication-title: Numerical Recipes 3rd Edition The Art of Scientific Computing – ident: ref26 doi: 10.1007/11866565_50 – ident: ref5 doi: 10.1359/jbmr.1998.13.12.1915 – ident: ref23 doi: 10.1016/j.media.2011.04.001 – volume: 19 start-page: 1009 year: 2007 ident: ref39 article-title: Non-rigid point set registration: Coherent point drift publication-title: Proc Neural Inf Process Syst – ident: ref31 doi: 10.1109/TMI.2016.2593346 – year: 1986 ident: ref43 publication-title: Principal Component Analysis doi: 10.1007/978-1-4757-1904-8 – ident: ref32 doi: 10.1118/1.4944501 – year: 2016 ident: ref3 publication-title: Gaps and Solutions in Bone Health – ident: ref29 doi: 10.1016/j.media.2015.06.001 – volume: 7 start-page: 9 year: 2007 ident: ref30 article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and $\mu$ CT images publication-title: J Musculoskel Neuron Interact – ident: ref13 doi: 10.1016/j.jocd.2015.06.008 – ident: ref34 doi: 10.1359/jbmr.1997.12.1.89 – ident: ref45 doi: 10.1109/34.24792 – ident: ref24 doi: 10.1016/S0895-6111(03)00019-3 – volume: 6893 start-page: 603?10 year: 2011 ident: ref38 article-title: Active learning for interactive 3D image segmentation publication-title: Proc Med Image Comput Comput -Assist Intervent (MICCAI) – ident: ref4 doi: 10.1002/jbmr.5650070902 – ident: ref10 doi: 10.1001/jama.285.6.785 – ident: ref33 doi: 10.1155/2013/213234 – ident: ref36 doi: 10.1016/j.ejrnm.2015.01.004 – ident: ref1 doi: 10.1016/0002-9343(93)90218-E – ident: ref25 doi: 10.1109/TBME.2008.2001125 – ident: ref16 doi: 10.1016/j.jocd.2007.12.010 – ident: ref42 doi: 10.5244/C.6.28 |
| SSID | ssj0014509 |
| Score | 2.3995528 |
| Snippet | Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2651 |
| SubjectTerms | Absorptiometry, Photon - methods Accuracy Adult Aged Algorithms Biocompatibility Biomedical materials Bone density Bone Density - physiology Bone mineral density Bones Cancellous bone Compartments Computed tomography Correlation coefficients Cortical bone cortical thickness Diagnosis Dual energy X-ray absorptiometry DXA Female Fractures Fragility Humans image registration Imaging, Three-Dimensional - methods lumbar spine Lumbar Vertebrae - diagnostic imaging Male Mathematical models Medical imaging Middle Aged Models, Statistical Osteoporosis Osteoporosis - diagnostic imaging Patients Radiation Radiation dosage Risk assessment Shape Solid modeling Spine Spine (lumbar) statistical model Three dimensional models Three-dimensional displays Tomography, X-Ray Computed - methods Training Vertebrae |
| Title | 3-D Subject-Specific Shape and Density Estimation of the Lumbar Spine From a Single Anteroposterior DXA Image Including Assessment of Cortical and Trabecular Bone |
| URI | https://ieeexplore.ieee.org/document/8379363 https://www.ncbi.nlm.nih.gov/pubmed/29994113 https://www.proquest.com/docview/2141126844 https://www.proquest.com/docview/2068339869 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaHhAceLQ8FgoaJC5IZDexnddx6XbVIpbLttLeIsd21IrdZBWSA_wcfikzzkOAAHGLFGeSaMYz33hejL0xPCqCoEAOGO17Ugnt5SoxHloS7UvrK-Eaaa8-RRfX8sMm3Bywd2MtjLXWJZ_ZKV26WL6pdEtHZTN0plIRiUN2GCdRV6s1Rgxk2KVzcOoY60d8CEn66exqdUk5XMkUVXGY-tQoFJVwKoNA_GKN3HiVvyNNZ3GWD9hq-NYu0eTztG3yqf72WxvH__2Zh-x-Dz1h3snKI3Zgy2N276eGhMfszqoPtZ-w78JbAKoVOqfx3JT64lbD-kbtLajSwIIy35uvcI46oit_hKoAhJPwsd3lqob1HunAsq52oGCN5LcW5sTGak-FJfVtVcNiM4fLHao0QD21bcmOwnzsFUoEz6ranba7d6JhzbthvvC-Ku1jdr08vzq78PqBDp4WMm48neRcc_TQdGFSJQqpEoXCoAg3GDp8iRP0voT1fZsj1NQ8j0Ibh1alWkWBUeIJOyqR_DMGJkZgypUpEGFJapiTiwLBkrbofnLFiwmbDYzNdN_tnIZubDPn9fhphlKRkVRkvVRM2NvxiX3X6eMfa0-IoeO6npcTdjrITtargi8ZDySVaSVSTtjr8TZuYorMqNJWLa7xo0SINImQ8tNO5kbag6g-__M7X7C79GVdhs0pO2rq1r5EnNTkr9wG-QGBVwwH |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ti8TjwGOXR2EBI3FBIq1jO2lyLNutWmj30q7UW-TYjljRJlVIDvBz-KWMnYcAAeIWKc4k0YxnvvG8AN5oFma-nyEHtKKekFx5qYy0h5ZEUWGo5K6R9uoynF-JD9tgewTv-loYY4xLPjNDe-li-bpQtT0qG6EzFfOQ34CbgRAiaKq1-piBCJqEDmZ7xtKQdUFJGo82q4XN4oqGqIyDmNpWoaiGY-H7_Bd75Aas_B1rOpszuw-r7mubVJPPw7pKh-rbb40c__d3HsC9FnySSSMtD-HI5Cdw96eWhCdwa9UG20_hO_emBBWLPanx3Jz67FqR9Sd5METmmkxt7nv1lVyglmgKIEmREQSUZFnvU1mS9QHpkFlZ7IkkayS_M2RiGVkcbGlJeV2UZLqdkMUelRpBTbWrrSUlk75bqCV4XpTuvN29E01r2ozzJe-L3DyCq9nF5nzutSMdPMXFuPJUlDLF0EdTmY4lz4SMJIqDtMhB2-OXcYT-FzeUmhTBpmJpGJhxYGSsZOhryR_DcY7knwLRY4SmTOoMMZawLXNSniFcUgYdUCZZNoBRx9hEtf3O7diNXeL8HhonKBWJlYqklYoBvO2fODS9Pv6x9tQytF_X8nIAZ53sJK0y-JIwX9hCrUiIAbzub-M2trEZmZuixjU0jDiPoxApP2lkrqfdieqzP7_zFdyeb1bLZLm4_Pgc7tivbPJtzuC4KmvzAlFTlb50m-UHqWUPVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Subject-Specific+Shape+and+Density+Estimation+of+the+Lumbar+Spine+From+a+Single+Anteroposterior+DXA+Image+Including+Assessment+of+Cortical+and+Trabecular+Bone&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lopez+Picazo%2C+Mirella&rft.au=Magallon+Baro%2C+Alba&rft.au=Del+Rio+Barquero%2C+Luis+M&rft.au=Di+Gregorio%2C+Silvana&rft.date=2018-12-01&rft.eissn=1558-254X&rft.volume=37&rft.issue=12&rft.spage=2651&rft_id=info:doi/10.1109%2FTMI.2018.2845909&rft_id=info%3Apmid%2F29994113&rft.externalDocID=29994113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |