Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation
Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convol...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 38; no. 1; pp. 240 - 249 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2018.2860257 |
Cover
| Abstract | Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results. |
|---|---|
| AbstractList | Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results. Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results.Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results. |
| Author | Chang, Ruey-Feng Huang, Chiun-Sheng Chiang, Tsung-Chen Huang, Yao-Sian Chen, Rong-Tai |
| Author_xml | – sequence: 1 givenname: Tsung-Chen orcidid: 0000-0003-0238-1380 surname: Chiang fullname: Chiang, Tsung-Chen organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Yao-Sian surname: Huang fullname: Huang, Yao-Sian organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Rong-Tai surname: Chen fullname: Chen, Rong-Tai organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan – sequence: 4 givenname: Chiun-Sheng surname: Huang fullname: Huang, Chiun-Sheng email: huangcs@ntu.edu.tw organization: Department of Surgery, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 5 givenname: Ruey-Feng orcidid: 0000-0002-2086-0097 surname: Chang fullname: Chang, Ruey-Feng email: rfchang@csie.ntu.edu.tw organization: Department of Computer Science and Information Engineering, MOST Joint Research Center for AI Technology and All Vista Healthcare, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30059297$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtv2zAUhYkiQeOk3QsUKAh06SLn8k2OjtNHgDTpYAPdBEqiDAaSmJLU0P760rWbIUMmAhffOZf3nHN0MoXJIfSOwJIQMJeb7zdLCkQvqZZAhXqFFkQIXVHBf56gBVClKwBJz9B5Sg8AhAswr9EZAxCGGrVAzWYeQ8TXLrs2-zBhP-HVnMNos-vwVXQ2ZbwdcrQpzFOHt8lPO8yqa7y-u8O2TH5EH6LP_k_h12XguyLFq90uup3dW75Bp70dknt7fC_Q9svnzfpbdXv_9Wa9uq1axlWuWg5KkR4aaBxrSd9KYTU1pO_6TjR8fyBjPZfacsMbw51RjVKKtsqwvliwC_Tp4PsYw6_ZpVyPPrVuGOzkwpxqCho0AyFoQT8-Qx_CHKfyu5oSSaVRQshCfThSczO6rn6MfrTxd_0_vQLAAWhjSCm6_gkhUO8LqktB9b6g-lhQkchnktbnfzGViP3wkvD9Qeidc097NKeESmB_AWckmss |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107666 crossref_primary_10_1007_s00432_023_05337_2 crossref_primary_10_1038_s41598_022_12367_2 crossref_primary_10_1016_j_cmpb_2020_105360 crossref_primary_10_1002_ima_22537 crossref_primary_10_1109_ACCESS_2024_3424569 crossref_primary_10_54287_gujsa_1529857 crossref_primary_10_1016_j_media_2025_103466 crossref_primary_10_1007_s11042_025_20606_7 crossref_primary_10_3390_bioengineering11020109 crossref_primary_10_1016_j_ultrasmedbio_2020_01_001 crossref_primary_10_1177_09544119221095416 crossref_primary_10_1002_ima_22484 crossref_primary_10_1016_j_eswa_2024_123569 crossref_primary_10_1016_j_ejrad_2020_109277 crossref_primary_10_1038_s41598_023_49794_8 crossref_primary_10_1002_ima_22400 crossref_primary_10_1007_s10462_020_09920_8 crossref_primary_10_1007_s00500_023_08332_4 crossref_primary_10_1002_adfm_202107624 crossref_primary_10_1109_JBHI_2019_2950334 crossref_primary_10_1016_j_nantod_2023_101799 crossref_primary_10_1109_JIOT_2023_3235651 crossref_primary_10_1088_1742_6596_2019_1_012077 crossref_primary_10_1136_bmjopen_2023_079969 crossref_primary_10_3390_cancers14215334 crossref_primary_10_1053_j_semnuclmed_2022_02_003 crossref_primary_10_1002_mp_16296 crossref_primary_10_1088_1361_6560_ad092a crossref_primary_10_1109_TVT_2023_3309707 crossref_primary_10_1007_s10489_023_04785_0 crossref_primary_10_1259_bjr_20210438 crossref_primary_10_1002_ima_22635 crossref_primary_10_1016_j_eswa_2023_120969 crossref_primary_10_1038_s41746_022_00681_y crossref_primary_10_3390_bioengineering10070807 crossref_primary_10_3390_s24248204 crossref_primary_10_1016_j_ejmp_2024_103433 crossref_primary_10_32604_cmc_2021_013952 crossref_primary_10_1088_1361_6501_ac14f5 crossref_primary_10_1002_ima_22468 crossref_primary_10_2174_1872212117666230222093128 crossref_primary_10_1186_s12938_019_0626_5 crossref_primary_10_3390_s20174931 crossref_primary_10_1007_s10462_023_10511_6 crossref_primary_10_1007_s11036_019_01383_8 crossref_primary_10_1109_TMI_2021_3087857 crossref_primary_10_1007_s00530_022_00911_z crossref_primary_10_3390_app11104573 crossref_primary_10_2174_1574893618666230815121150 crossref_primary_10_1109_TMI_2021_3097355 crossref_primary_10_1016_j_eswa_2023_123096 crossref_primary_10_3390_app10051830 crossref_primary_10_1002_jum_15365 crossref_primary_10_1016_j_eswa_2020_114410 crossref_primary_10_3390_diagnostics13101728 crossref_primary_10_1002_mp_14569 crossref_primary_10_1109_JPROC_2019_2932116 crossref_primary_10_1109_ACCESS_2019_2929365 crossref_primary_10_1007_s11042_022_12933_w crossref_primary_10_1007_s00330_022_08836_x crossref_primary_10_1016_j_knosys_2021_107456 crossref_primary_10_1002_adma_202307923 crossref_primary_10_1007_s12065_020_00403_x crossref_primary_10_1016_j_compbiomed_2025_109829 crossref_primary_10_4018_IJSIR_2020070101 crossref_primary_10_1016_j_bspc_2021_102677 crossref_primary_10_1615_CritRevOncog_2023048873 crossref_primary_10_1007_s11042_023_18029_3 crossref_primary_10_3390_cancers13225787 crossref_primary_10_1016_j_media_2021_102345 crossref_primary_10_3390_electronics11162583 crossref_primary_10_1002_cbf_4054 crossref_primary_10_1007_s10462_019_09722_7 crossref_primary_10_1109_RBME_2024_3357877 crossref_primary_10_1109_TBME_2020_3046252 crossref_primary_10_1016_j_ultrasmedbio_2020_06_015 crossref_primary_10_1016_j_eswa_2020_113501 crossref_primary_10_1007_s11263_024_02286_2 crossref_primary_10_3390_app12136332 crossref_primary_10_1002_mp_14477 crossref_primary_10_3389_fvets_2024_1374890 crossref_primary_10_1016_j_eswa_2022_117112 crossref_primary_10_3390_diagnostics13030417 crossref_primary_10_1088_1361_6560_ac176d crossref_primary_10_7717_peerj_cs_1850 crossref_primary_10_1007_s11432_021_3340_y crossref_primary_10_3390_jimaging8090252 crossref_primary_10_1007_s11831_021_09649_9 crossref_primary_10_1007_s11042_022_12859_3 crossref_primary_10_1016_j_imed_2025_02_001 crossref_primary_10_1109_ACCESS_2024_3442374 crossref_primary_10_3934_mbe_2021475 crossref_primary_10_1109_TMI_2022_3166129 crossref_primary_10_3389_fneur_2024_1444795 crossref_primary_10_1117_1_JEI_29_4_041002 crossref_primary_10_3390_jimaging8050140 crossref_primary_10_1109_ACCESS_2024_3380910 |
| Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/5.726791 10.1148/radiology.190.1.8259405 10.1109/CVPR.2015.7298965 10.1148/radiology.151.2.6709920 10.1148/radiol.2251011667 10.1109/CVPR.2005.177 10.3322/caac.21332 10.1145/3065386 10.1118/1.2795825 10.1007/BF01890115 10.1016/j.diii.2017.01.001 10.1016/j.media.2017.07.005 10.1109/TMI.2014.2315206 10.1016/j.ics.2005.03.053 10.1109/TMI.2012.2230403 10.1109/ICCV.2015.169 10.1109/TMI.2013.2263389 10.1118/1.3377775 10.1109/TMI.2017.2673121 10.1118/1.3523617 10.1118/1.596358 10.1109/CVPR.2014.81 10.3322/caac.21262 10.1148/radiology.196.2.7617856 10.1007/s11263-013-0620-5 10.1109/CVPR.2008.4587597 10.1093/comjnl/16.1.30 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2018.2860257 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 249 |
| ExternalDocumentID | 30059297 10_1109_TMI_2018_2860257 8421260 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, China grantid: MOST 107-2634-F-002-013; MOST 107-2634-F-002-019 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-c40771f0b0be3c1fc65a8291fdfd5b4860233f468a494b94e97b7772c793fc343 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 11:20:17 EDT 2025 Mon Jun 30 04:14:14 EDT 2025 Thu Apr 03 07:07:07 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Oct 01 03:55:29 EDT 2025 Wed Aug 27 02:59:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-c40771f0b0be3c1fc65a8291fdfd5b4860233f468a494b94e97b7772c793fc343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0238-1380 0000-0002-2086-0097 |
| PMID | 30059297 |
| PQID | 2162697556 |
| PQPubID | 85460 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2162697556 pubmed_primary_30059297 ieee_primary_8421260 crossref_primary_10_1109_TMI_2018_2860257 proquest_miscellaneous_2080830552 crossref_citationtrail_10_1109_TMI_2018_2860257 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jan. 2019-1-00 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref10 kingma (ref29) 2014 ref2 ref1 ref17 ref16 ref19 ref18 ren (ref34) 2015 nair (ref27) 2010 simonyan (ref24) 2014 ref23 ref20 ref22 ref21 srivastava (ref26) 2014; 15 ref8 ref7 huppe (ref32) 0 ref9 ref4 al-rfou (ref31) 2016 ref3 ref6 ref5 he (ref25) 2015 maas (ref28) 2013 |
| References_xml | – ident: ref23 doi: 10.1162/neco.1997.9.8.1735 – ident: ref16 doi: 10.1109/5.726791 – start-page: 1 year: 2013 ident: ref28 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc 30th ICML – ident: ref6 doi: 10.1148/radiology.190.1.8259405 – ident: ref37 doi: 10.1109/CVPR.2015.7298965 – ident: ref4 doi: 10.1148/radiology.151.2.6709920 – ident: ref3 doi: 10.1148/radiol.2251011667 – ident: ref14 doi: 10.1109/CVPR.2005.177 – ident: ref1 doi: 10.3322/caac.21332 – year: 0 ident: ref32 publication-title: Automated breast ultrasound interpretation times A reader performance study – ident: ref17 doi: 10.1145/3065386 – ident: ref8 doi: 10.1118/1.2795825 – ident: ref21 doi: 10.1007/BF01890115 – ident: ref20 doi: 10.1016/j.diii.2017.01.001 – ident: ref19 doi: 10.1016/j.media.2017.07.005 – ident: ref11 doi: 10.1109/TMI.2014.2315206 – ident: ref7 doi: 10.1016/j.ics.2005.03.053 – start-page: 807 year: 2010 ident: ref27 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn (ICML) – ident: ref12 doi: 10.1109/TMI.2012.2230403 – ident: ref33 doi: 10.1109/ICCV.2015.169 – ident: ref13 doi: 10.1109/TMI.2013.2263389 – ident: ref10 doi: 10.1118/1.3377775 – ident: ref18 doi: 10.1109/TMI.2017.2673121 – ident: ref9 doi: 10.1118/1.3523617 – ident: ref30 doi: 10.1118/1.596358 – ident: ref35 doi: 10.1109/CVPR.2014.81 – ident: ref2 doi: 10.3322/caac.21262 – volume: 15 start-page: 1929 year: 2014 ident: ref26 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2014 ident: ref24 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – year: 2016 ident: ref31 publication-title: Theano A Python framework for fast computation of mathematical expressions – ident: ref5 doi: 10.1148/radiology.196.2.7617856 – ident: ref36 doi: 10.1007/s11263-013-0620-5 – year: 2015 ident: ref25 publication-title: Deep residual learning for image recognition – start-page: 91 year: 2015 ident: ref34 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1109/CVPR.2008.4587597 – year: 2014 ident: ref29 publication-title: Adam A method for stochastic optimization – ident: ref22 doi: 10.1093/comjnl/16.1.30 |
| SSID | ssj0014509 |
| Score | 2.584433 |
| Snippet | Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 240 |
| SubjectTerms | Abnormalities Agglomeration Algorithms Artificial neural networks Automated whole breast ultrasound Automation Breast Breast - diagnostic imaging Breast cancer Breast Neoplasms - diagnostic imaging Candidates computer-aided detection convolutional neural networks Feature extraction Female Humans Image edge detection Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Lesions Neural networks Neural Networks, Computer Reviewing Tumors Ultrasonic imaging Ultrasonography, Mammary - methods Ultrasound |
| Title | Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation |
| URI | https://ieeexplore.ieee.org/document/8421260 https://www.ncbi.nlm.nih.gov/pubmed/30059297 https://www.proquest.com/docview/2162697556 https://www.proquest.com/docview/2080830552 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiQsS2U1ix4mPy5aqIO2Kw67UWxR7J1VFSdA2ufTXM-M8BAgQtyixnUQztufl7wN4qxXmtCvp0MhYkoMSm7DEuAoVSmPT2BrryWBWa32-VZ8v0osDeD-dhUFEX3yGM770ufxd4zoOlc1zTl9qctDvZLnuz2pNGQOV9uUcCSPGRjoZU5KRmW9Wn7iGK58lTLiUMu8eg7STYZD9sht5epW_W5p-xzl7CKvxW_tCk6-zrrUzd_sbjOP__swjeDCYnmLR68pjOMD6CO7_BEh4BHdXQ6r9GOym-9bsxSm2vlirFle1WHRtQxYu7sQHrmVvxfa63Zc3zMwkfO2BkOGpWK7XoqQ7X_ZXDUMm3VL7JZ-e4eCCWFySh3_p9eEJbM8-bpbn4UDIEDqpsjZ05P1lcRXZyKJ0ceV0WuaJiatdtUutp7OSslI6L5VR1ig0mc3IfHe0CFQ0hHwKh3VT43MQpB5IywWNlCO5mKlF5TgOI9Fq6hkFMB8FU7gBrZxJM64L77VEpiCpFizVYpBqAO-mHt97pI5_tD1mgUztBlkEcDLKvhim8k2RxOTzmSxNdQBvpsc0CTmzUtbYdNSG7O6csdOSAJ71OjONParaiz-_8yXcS3iG-KjOCRy2-w5fkZ3T2tdewX8AyzPzeQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEhckspvEdhIfly3VFrorDrtSb1GcnVQVJUHb5NJfz4zzECBA3KLEdhLN2J6Xvw_gbawwpV0p9o0MJTkoofFzDEtfoTRWh9ZYRwazXMWLjfp0rs_34P14FgYRXfEZTvjS5fK3ddFyqGyacvoyJgf9llZK6e601pgzULor6IgYMzaIoyEpGZjpennKVVzpJGLKJc3MewzTTqZB8st-5AhW_m5ruj3n5AEsh6_tSk2-TtrGToqb34Ac__d3HsL93vgUs05bHsEeVgdw7ydIwgO4veyT7Ydg1-23eieOsXHlWpW4rMSsbWqycXErPnA1eyM2V80uv2ZuJuGqD4T0j8V8tRI53fmyu6wZNOmG2s_5_AyHF8Tsgnz8C6cRj2Fz8nE9X_g9JYNfSJU0fkH-XxKWgQ0syiIsi1jnaWTCcltutXWEVlKWKk5zZZQ1Ck1iEzLgC1oGShpCPoH9qq7wGQhSEKQFg0ZKkZxMbVEVHImRaGPqGXgwHQSTFT1eOdNmXGXObwlMRlLNWKpZL1UP3o09vndYHf9oe8gCGdv1svDgaJB91k_m6ywKyeszidaxB2_GxzQNObeSV1i31IYs75TR0yIPnnY6M449qNrzP7_zNdxZrJdn2dnp6vMLuBvxfHExniPYb3YtviSrp7GvnLL_ALK69sY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Detection+in+Automated+Breast+Ultrasound+Using+3-D+CNN+and+Prioritized+Candidate+Aggregation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chiang%2C+Tsung-Chen&rft.au=Huang%2C+Yao-Sian&rft.au=Chen%2C+Rong-Tai&rft.au=Huang%2C+Chiun-Sheng&rft.date=2019-01-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=38&rft.issue=1&rft.spage=240&rft_id=info:doi/10.1109%2FTMI.2018.2860257&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |