Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation

Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convol...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 38; no. 1; pp. 240 - 249
Main Authors Chiang, Tsung-Chen, Huang, Yao-Sian, Chen, Rong-Tai, Huang, Chiun-Sheng, Chang, Ruey-Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2018.2860257

Cover

Abstract Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results.
AbstractList Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results.
Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results.Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices produced by ABUS, however, is time consuming. Therefore, in this paper, a fast and effective computer-aided detection system based on 3-D convolutional neural networks (CNNs) and prioritized candidate aggregation is proposed to accelerate this reviewing. First, an efficient sliding window method is used to extract volumes of interest (VOIs). Then, each VOI is estimated the tumor probability with a 3-D CNN, and VOIs with higher estimated probability are selected as tumor candidates. Since the candidates may overlap each other, a novel scheme is designed to aggregate the overlapped candidates. During the aggregation, candidates are prioritized based on estimated tumor probability to alleviate over-aggregation issue. The relationship between the sizes of VOI and target tumor is optimally exploited to effectively perform each stage of our detection algorithm. On evaluation with a test set of 171 tumors, our method achieved sensitivities of 95% (162/171), 90% (154/171), 85% (145/171), and 80% (137/171) with 14.03, 6.92, 4.91, and 3.62 false positives per patient (with six passes), respectively. In summary, our method is more general and much faster than preliminary works and demonstrates promising results.
Author Chang, Ruey-Feng
Huang, Chiun-Sheng
Chiang, Tsung-Chen
Huang, Yao-Sian
Chen, Rong-Tai
Author_xml – sequence: 1
  givenname: Tsung-Chen
  orcidid: 0000-0003-0238-1380
  surname: Chiang
  fullname: Chiang, Tsung-Chen
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Yao-Sian
  surname: Huang
  fullname: Huang, Yao-Sian
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Rong-Tai
  surname: Chen
  fullname: Chen, Rong-Tai
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: Chiun-Sheng
  surname: Huang
  fullname: Huang, Chiun-Sheng
  email: huangcs@ntu.edu.tw
  organization: Department of Surgery, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 5
  givenname: Ruey-Feng
  orcidid: 0000-0002-2086-0097
  surname: Chang
  fullname: Chang, Ruey-Feng
  email: rfchang@csie.ntu.edu.tw
  organization: Department of Computer Science and Information Engineering, MOST Joint Research Center for AI Technology and All Vista Healthcare, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30059297$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtv2zAUhYkiQeOk3QsUKAh06SLn8k2OjtNHgDTpYAPdBEqiDAaSmJLU0P760rWbIUMmAhffOZf3nHN0MoXJIfSOwJIQMJeb7zdLCkQvqZZAhXqFFkQIXVHBf56gBVClKwBJz9B5Sg8AhAswr9EZAxCGGrVAzWYeQ8TXLrs2-zBhP-HVnMNos-vwVXQ2ZbwdcrQpzFOHt8lPO8yqa7y-u8O2TH5EH6LP_k_h12XguyLFq90uup3dW75Bp70dknt7fC_Q9svnzfpbdXv_9Wa9uq1axlWuWg5KkR4aaBxrSd9KYTU1pO_6TjR8fyBjPZfacsMbw51RjVKKtsqwvliwC_Tp4PsYw6_ZpVyPPrVuGOzkwpxqCho0AyFoQT8-Qx_CHKfyu5oSSaVRQshCfThSczO6rn6MfrTxd_0_vQLAAWhjSCm6_gkhUO8LqktB9b6g-lhQkchnktbnfzGViP3wkvD9Qeidc097NKeESmB_AWckmss
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107666
crossref_primary_10_1007_s00432_023_05337_2
crossref_primary_10_1038_s41598_022_12367_2
crossref_primary_10_1016_j_cmpb_2020_105360
crossref_primary_10_1002_ima_22537
crossref_primary_10_1109_ACCESS_2024_3424569
crossref_primary_10_54287_gujsa_1529857
crossref_primary_10_1016_j_media_2025_103466
crossref_primary_10_1007_s11042_025_20606_7
crossref_primary_10_3390_bioengineering11020109
crossref_primary_10_1016_j_ultrasmedbio_2020_01_001
crossref_primary_10_1177_09544119221095416
crossref_primary_10_1002_ima_22484
crossref_primary_10_1016_j_eswa_2024_123569
crossref_primary_10_1016_j_ejrad_2020_109277
crossref_primary_10_1038_s41598_023_49794_8
crossref_primary_10_1002_ima_22400
crossref_primary_10_1007_s10462_020_09920_8
crossref_primary_10_1007_s00500_023_08332_4
crossref_primary_10_1002_adfm_202107624
crossref_primary_10_1109_JBHI_2019_2950334
crossref_primary_10_1016_j_nantod_2023_101799
crossref_primary_10_1109_JIOT_2023_3235651
crossref_primary_10_1088_1742_6596_2019_1_012077
crossref_primary_10_1136_bmjopen_2023_079969
crossref_primary_10_3390_cancers14215334
crossref_primary_10_1053_j_semnuclmed_2022_02_003
crossref_primary_10_1002_mp_16296
crossref_primary_10_1088_1361_6560_ad092a
crossref_primary_10_1109_TVT_2023_3309707
crossref_primary_10_1007_s10489_023_04785_0
crossref_primary_10_1259_bjr_20210438
crossref_primary_10_1002_ima_22635
crossref_primary_10_1016_j_eswa_2023_120969
crossref_primary_10_1038_s41746_022_00681_y
crossref_primary_10_3390_bioengineering10070807
crossref_primary_10_3390_s24248204
crossref_primary_10_1016_j_ejmp_2024_103433
crossref_primary_10_32604_cmc_2021_013952
crossref_primary_10_1088_1361_6501_ac14f5
crossref_primary_10_1002_ima_22468
crossref_primary_10_2174_1872212117666230222093128
crossref_primary_10_1186_s12938_019_0626_5
crossref_primary_10_3390_s20174931
crossref_primary_10_1007_s10462_023_10511_6
crossref_primary_10_1007_s11036_019_01383_8
crossref_primary_10_1109_TMI_2021_3087857
crossref_primary_10_1007_s00530_022_00911_z
crossref_primary_10_3390_app11104573
crossref_primary_10_2174_1574893618666230815121150
crossref_primary_10_1109_TMI_2021_3097355
crossref_primary_10_1016_j_eswa_2023_123096
crossref_primary_10_3390_app10051830
crossref_primary_10_1002_jum_15365
crossref_primary_10_1016_j_eswa_2020_114410
crossref_primary_10_3390_diagnostics13101728
crossref_primary_10_1002_mp_14569
crossref_primary_10_1109_JPROC_2019_2932116
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1007_s11042_022_12933_w
crossref_primary_10_1007_s00330_022_08836_x
crossref_primary_10_1016_j_knosys_2021_107456
crossref_primary_10_1002_adma_202307923
crossref_primary_10_1007_s12065_020_00403_x
crossref_primary_10_1016_j_compbiomed_2025_109829
crossref_primary_10_4018_IJSIR_2020070101
crossref_primary_10_1016_j_bspc_2021_102677
crossref_primary_10_1615_CritRevOncog_2023048873
crossref_primary_10_1007_s11042_023_18029_3
crossref_primary_10_3390_cancers13225787
crossref_primary_10_1016_j_media_2021_102345
crossref_primary_10_3390_electronics11162583
crossref_primary_10_1002_cbf_4054
crossref_primary_10_1007_s10462_019_09722_7
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_1109_TBME_2020_3046252
crossref_primary_10_1016_j_ultrasmedbio_2020_06_015
crossref_primary_10_1016_j_eswa_2020_113501
crossref_primary_10_1007_s11263_024_02286_2
crossref_primary_10_3390_app12136332
crossref_primary_10_1002_mp_14477
crossref_primary_10_3389_fvets_2024_1374890
crossref_primary_10_1016_j_eswa_2022_117112
crossref_primary_10_3390_diagnostics13030417
crossref_primary_10_1088_1361_6560_ac176d
crossref_primary_10_7717_peerj_cs_1850
crossref_primary_10_1007_s11432_021_3340_y
crossref_primary_10_3390_jimaging8090252
crossref_primary_10_1007_s11831_021_09649_9
crossref_primary_10_1007_s11042_022_12859_3
crossref_primary_10_1016_j_imed_2025_02_001
crossref_primary_10_1109_ACCESS_2024_3442374
crossref_primary_10_3934_mbe_2021475
crossref_primary_10_1109_TMI_2022_3166129
crossref_primary_10_3389_fneur_2024_1444795
crossref_primary_10_1117_1_JEI_29_4_041002
crossref_primary_10_3390_jimaging8050140
crossref_primary_10_1109_ACCESS_2024_3380910
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/5.726791
10.1148/radiology.190.1.8259405
10.1109/CVPR.2015.7298965
10.1148/radiology.151.2.6709920
10.1148/radiol.2251011667
10.1109/CVPR.2005.177
10.3322/caac.21332
10.1145/3065386
10.1118/1.2795825
10.1007/BF01890115
10.1016/j.diii.2017.01.001
10.1016/j.media.2017.07.005
10.1109/TMI.2014.2315206
10.1016/j.ics.2005.03.053
10.1109/TMI.2012.2230403
10.1109/ICCV.2015.169
10.1109/TMI.2013.2263389
10.1118/1.3377775
10.1109/TMI.2017.2673121
10.1118/1.3523617
10.1118/1.596358
10.1109/CVPR.2014.81
10.3322/caac.21262
10.1148/radiology.196.2.7617856
10.1007/s11263-013-0620-5
10.1109/CVPR.2008.4587597
10.1093/comjnl/16.1.30
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2018.2860257
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 249
ExternalDocumentID 30059297
10_1109_TMI_2018_2860257
8421260
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, China
  grantid: MOST 107-2634-F-002-013; MOST 107-2634-F-002-019
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-c40771f0b0be3c1fc65a8291fdfd5b4860233f468a494b94e97b7772c793fc343
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 11:20:17 EDT 2025
Mon Jun 30 04:14:14 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Oct 01 03:55:29 EDT 2025
Wed Aug 27 02:59:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-c40771f0b0be3c1fc65a8291fdfd5b4860233f468a494b94e97b7772c793fc343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0238-1380
0000-0002-2086-0097
PMID 30059297
PQID 2162697556
PQPubID 85460
PageCount 10
ParticipantIDs proquest_journals_2162697556
pubmed_primary_30059297
ieee_primary_8421260
crossref_primary_10_1109_TMI_2018_2860257
proquest_miscellaneous_2080830552
crossref_citationtrail_10_1109_TMI_2018_2860257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref10
kingma (ref29) 2014
ref2
ref1
ref17
ref16
ref19
ref18
ren (ref34) 2015
nair (ref27) 2010
simonyan (ref24) 2014
ref23
ref20
ref22
ref21
srivastava (ref26) 2014; 15
ref8
ref7
huppe (ref32) 0
ref9
ref4
al-rfou (ref31) 2016
ref3
ref6
ref5
he (ref25) 2015
maas (ref28) 2013
References_xml – ident: ref23
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref16
  doi: 10.1109/5.726791
– start-page: 1
  year: 2013
  ident: ref28
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc 30th ICML
– ident: ref6
  doi: 10.1148/radiology.190.1.8259405
– ident: ref37
  doi: 10.1109/CVPR.2015.7298965
– ident: ref4
  doi: 10.1148/radiology.151.2.6709920
– ident: ref3
  doi: 10.1148/radiol.2251011667
– ident: ref14
  doi: 10.1109/CVPR.2005.177
– ident: ref1
  doi: 10.3322/caac.21332
– year: 0
  ident: ref32
  publication-title: Automated breast ultrasound interpretation times A reader performance study
– ident: ref17
  doi: 10.1145/3065386
– ident: ref8
  doi: 10.1118/1.2795825
– ident: ref21
  doi: 10.1007/BF01890115
– ident: ref20
  doi: 10.1016/j.diii.2017.01.001
– ident: ref19
  doi: 10.1016/j.media.2017.07.005
– ident: ref11
  doi: 10.1109/TMI.2014.2315206
– ident: ref7
  doi: 10.1016/j.ics.2005.03.053
– start-page: 807
  year: 2010
  ident: ref27
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref12
  doi: 10.1109/TMI.2012.2230403
– ident: ref33
  doi: 10.1109/ICCV.2015.169
– ident: ref13
  doi: 10.1109/TMI.2013.2263389
– ident: ref10
  doi: 10.1118/1.3377775
– ident: ref18
  doi: 10.1109/TMI.2017.2673121
– ident: ref9
  doi: 10.1118/1.3523617
– ident: ref30
  doi: 10.1118/1.596358
– ident: ref35
  doi: 10.1109/CVPR.2014.81
– ident: ref2
  doi: 10.3322/caac.21262
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref26
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 2014
  ident: ref24
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– year: 2016
  ident: ref31
  publication-title: Theano A Python framework for fast computation of mathematical expressions
– ident: ref5
  doi: 10.1148/radiology.196.2.7617856
– ident: ref36
  doi: 10.1007/s11263-013-0620-5
– year: 2015
  ident: ref25
  publication-title: Deep residual learning for image recognition
– start-page: 91
  year: 2015
  ident: ref34
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1109/CVPR.2008.4587597
– year: 2014
  ident: ref29
  publication-title: Adam A method for stochastic optimization
– ident: ref22
  doi: 10.1093/comjnl/16.1.30
SSID ssj0014509
Score 2.584433
Snippet Automated whole breast ultrasound (ABUS) has been widely used as a screening modality for examination of breast abnormalities. Reviewing hundreds of slices...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 240
SubjectTerms Abnormalities
Agglomeration
Algorithms
Artificial neural networks
Automated whole breast ultrasound
Automation
Breast
Breast - diagnostic imaging
Breast cancer
Breast Neoplasms - diagnostic imaging
Candidates
computer-aided detection
convolutional neural networks
Feature extraction
Female
Humans
Image edge detection
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Lesions
Neural networks
Neural Networks, Computer
Reviewing
Tumors
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
Title Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation
URI https://ieeexplore.ieee.org/document/8421260
https://www.ncbi.nlm.nih.gov/pubmed/30059297
https://www.proquest.com/docview/2162697556
https://www.proquest.com/docview/2080830552
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiQsS2U1ix4mPy5aqIO2Kw67UWxR7J1VFSdA2ufTXM-M8BAgQtyixnUQztufl7wN4qxXmtCvp0MhYkoMSm7DEuAoVSmPT2BrryWBWa32-VZ8v0osDeD-dhUFEX3yGM770ufxd4zoOlc1zTl9qctDvZLnuz2pNGQOV9uUcCSPGRjoZU5KRmW9Wn7iGK58lTLiUMu8eg7STYZD9sht5epW_W5p-xzl7CKvxW_tCk6-zrrUzd_sbjOP__swjeDCYnmLR68pjOMD6CO7_BEh4BHdXQ6r9GOym-9bsxSm2vlirFle1WHRtQxYu7sQHrmVvxfa63Zc3zMwkfO2BkOGpWK7XoqQ7X_ZXDUMm3VL7JZ-e4eCCWFySh3_p9eEJbM8-bpbn4UDIEDqpsjZ05P1lcRXZyKJ0ceV0WuaJiatdtUutp7OSslI6L5VR1ig0mc3IfHe0CFQ0hHwKh3VT43MQpB5IywWNlCO5mKlF5TgOI9Fq6hkFMB8FU7gBrZxJM64L77VEpiCpFizVYpBqAO-mHt97pI5_tD1mgUztBlkEcDLKvhim8k2RxOTzmSxNdQBvpsc0CTmzUtbYdNSG7O6csdOSAJ71OjONParaiz-_8yXcS3iG-KjOCRy2-w5fkZ3T2tdewX8AyzPzeQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEhckspvEdhIfly3VFrorDrtSb1GcnVQVJUHb5NJfz4zzECBA3KLEdhLN2J6Xvw_gbawwpV0p9o0MJTkoofFzDEtfoTRWh9ZYRwazXMWLjfp0rs_34P14FgYRXfEZTvjS5fK3ddFyqGyacvoyJgf9llZK6e601pgzULor6IgYMzaIoyEpGZjpennKVVzpJGLKJc3MewzTTqZB8st-5AhW_m5ruj3n5AEsh6_tSk2-TtrGToqb34Ac__d3HsL93vgUs05bHsEeVgdw7ydIwgO4veyT7Ydg1-23eieOsXHlWpW4rMSsbWqycXErPnA1eyM2V80uv2ZuJuGqD4T0j8V8tRI53fmyu6wZNOmG2s_5_AyHF8Tsgnz8C6cRj2Fz8nE9X_g9JYNfSJU0fkH-XxKWgQ0syiIsi1jnaWTCcltutXWEVlKWKk5zZZQ1Ck1iEzLgC1oGShpCPoH9qq7wGQhSEKQFg0ZKkZxMbVEVHImRaGPqGXgwHQSTFT1eOdNmXGXObwlMRlLNWKpZL1UP3o09vndYHf9oe8gCGdv1svDgaJB91k_m6ywKyeszidaxB2_GxzQNObeSV1i31IYs75TR0yIPnnY6M449qNrzP7_zNdxZrJdn2dnp6vMLuBvxfHExniPYb3YtviSrp7GvnLL_ALK69sY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Detection+in+Automated+Breast+Ultrasound+Using+3-D+CNN+and+Prioritized+Candidate+Aggregation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Chiang%2C+Tsung-Chen&rft.au=Huang%2C+Yao-Sian&rft.au=Chen%2C+Rong-Tai&rft.au=Huang%2C+Chiun-Sheng&rft.date=2019-01-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=38&rft.issue=1&rft.spage=240&rft_id=info:doi/10.1109%2FTMI.2018.2860257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon