Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound
Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolu...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 39; no. 4; pp. 1051 - 1063 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2019.2941271 |
Cover
| Abstract | Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast. |
|---|---|
| AbstractList | Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast. Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast. |
| Author | Eldar, Yonina C. Luo, Jianwen Cohen, Regev He, Qiong Zhang, Yi Solomon, Oren van Sloun, Ruud J. G. Yang, Yi |
| Author_xml | – sequence: 1 givenname: Oren orcidid: 0000-0003-0240-0852 surname: Solomon fullname: Solomon, Oren email: orensol@campus.technion.ac.il organization: Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel – sequence: 2 givenname: Regev orcidid: 0000-0002-2833-8965 surname: Cohen fullname: Cohen, Regev email: regev.cohen@campus.technion.ac.il organization: Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi email: yizhang.ch.2015@gmail.com organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Yi orcidid: 0000-0003-2817-3686 surname: Yang fullname: Yang, Yi organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Qiong orcidid: 0000-0003-4398-7127 surname: He fullname: He, Qiong organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 6 givenname: Jianwen surname: Luo fullname: Luo, Jianwen organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 7 givenname: Ruud J. G. orcidid: 0000-0003-2845-0495 surname: van Sloun fullname: van Sloun, Ruud J. G. email: r.j.g.v.sloun@tue.nl organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands – sequence: 8 givenname: Yonina C. orcidid: 0000-0003-4358-5304 surname: Eldar fullname: Eldar, Yonina C. email: yonina.eldar@weizmann.ac.il organization: Faculty of Math and Computer Science, Weizmann Institute of Science, Rehovot, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31535987$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVISSZp9oVAEHTTjad6WLK0HKavQPqgzZDuhCVfEwWP5Ujyov--ms6kiyyyunD5zuXcc87Q8RhGQOgNJUtKiX5_-_V6yQjVS6Zryhp6hBZUCFUxUf8-RgvCGlURItkpOkvpgRBaC6JP0CmnggutmgX69gFgwpuxD0MHHf4Z7Jwy_rFe4Tuf7_Fqmgbv2uzDiHPA62HOGSL-NU9ThJR2az_izZBjm8I8dq_Rq74dElwc5jnafPp4u_5S3Xz_fL1e3VSO102uWtH3kivglmvR1y1hlitne6klaWoCjQNLqbBQ_LqWghJOEWuZ6jqlGe34OXq3vzvF8DhDymbrk4NhaEcIczKMaa6lbrgq6Ntn6EOY41jcGcaVJIIqUhfq6kDNdgudmaLftvGPeUqqAHIPuBhSitAb5_O_YMrvfjCUmF0lplRidpWYQyVFSJ4Jn26_ILncSzwA_MeV4lIWO38BJrmU0A |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_media_2021_102018 crossref_primary_10_1109_TPAMI_2024_3429498 crossref_primary_10_1109_TMI_2020_3033541 crossref_primary_10_1109_TPAMI_2021_3087485 crossref_primary_10_1109_TIP_2022_3201708 crossref_primary_10_1016_j_sigpro_2024_109796 crossref_primary_10_1109_TUFFC_2022_3152225 crossref_primary_10_1109_TSP_2020_3022319 crossref_primary_10_1016_j_media_2022_102651 crossref_primary_10_3390_make6010019 crossref_primary_10_37015_AUDT_2022_210033 crossref_primary_10_1109_TIT_2022_3198725 crossref_primary_10_1109_TMI_2021_3096218 crossref_primary_10_1109_TMI_2022_3177626 crossref_primary_10_1109_TIP_2023_3336176 crossref_primary_10_1088_1361_6560_ad8292 crossref_primary_10_1002_ima_23218 crossref_primary_10_1016_j_ultras_2024_107307 crossref_primary_10_1109_TMI_2020_2986781 crossref_primary_10_1109_TWC_2023_3323207 crossref_primary_10_1109_TSP_2021_3076900 crossref_primary_10_1109_TWC_2021_3071480 crossref_primary_10_3390_s23218760 crossref_primary_10_1142_S0218126624501925 crossref_primary_10_3390_s22083065 crossref_primary_10_1016_j_epsr_2022_108226 crossref_primary_10_1109_TSP_2022_3179807 crossref_primary_10_1109_TMI_2020_3006445 crossref_primary_10_1109_TVT_2023_3320360 crossref_primary_10_1109_OJSP_2023_3339376 crossref_primary_10_1109_TMI_2023_3286859 crossref_primary_10_1109_TSP_2023_3241851 crossref_primary_10_1137_20M1337168 crossref_primary_10_1016_j_bspc_2024_106712 crossref_primary_10_1109_ACCESS_2022_3218802 crossref_primary_10_1109_TNNLS_2021_3134717 crossref_primary_10_1111_cgf_14958 crossref_primary_10_1016_j_media_2021_102190 crossref_primary_10_1109_TBME_2024_3368105 crossref_primary_10_1109_TUFFC_2023_3297571 crossref_primary_10_1109_TIP_2022_3172851 crossref_primary_10_1016_j_artmed_2023_102664 crossref_primary_10_1109_TCI_2020_2964202 crossref_primary_10_1109_JSTQE_2024_3350971 crossref_primary_10_1109_TPAMI_2024_3524538 crossref_primary_10_1016_j_ultras_2021_106576 crossref_primary_10_1109_TNSM_2021_3106577 crossref_primary_10_1109_TVT_2024_3496119 crossref_primary_10_3389_frai_2023_974295 crossref_primary_10_1109_MSP_2021_3129995 crossref_primary_10_1109_TNNLS_2022_3144580 crossref_primary_10_1016_j_dsp_2020_102956 crossref_primary_10_1016_j_ultras_2024_107379 crossref_primary_10_14366_usg_20102 crossref_primary_10_1155_2021_8844741 crossref_primary_10_1007_s10489_021_02686_8 crossref_primary_10_1016_j_knosys_2021_107429 crossref_primary_10_1007_s11425_023_2293_3 crossref_primary_10_1109_TCI_2021_3111580 crossref_primary_10_1109_TMI_2024_3363460 crossref_primary_10_1109_TMI_2021_3115547 crossref_primary_10_1109_JSAIT_2023_3241123 crossref_primary_10_1109_JSTARS_2023_3242053 crossref_primary_10_1109_JSTSP_2024_3417356 crossref_primary_10_1109_TAES_2024_3443020 crossref_primary_10_1137_23M1625846 crossref_primary_10_1109_TUFFC_2022_3180053 crossref_primary_10_1109_TUFFC_2024_3362967 crossref_primary_10_1097_MPA_0000000000001762 crossref_primary_10_1109_TSP_2021_3087905 crossref_primary_10_1109_TCCN_2022_3212438 crossref_primary_10_1016_j_yofte_2021_102612 crossref_primary_10_1016_j_sigpro_2020_107729 crossref_primary_10_1109_JPROC_2023_3247480 crossref_primary_10_1016_j_optcom_2020_126567 crossref_primary_10_1016_j_cviu_2024_103939 crossref_primary_10_1109_TGRS_2021_3126485 crossref_primary_10_1016_j_patcog_2024_110676 crossref_primary_10_1155_2022_1199210 crossref_primary_10_1088_1361_6560_ad0a5a crossref_primary_10_1016_j_techfore_2021_120895 crossref_primary_10_1088_1361_6560_abeb31 crossref_primary_10_1109_MSP_2020_3016905 crossref_primary_10_1109_TUFFC_2024_3424549 crossref_primary_10_1109_TGRS_2024_3370549 crossref_primary_10_1007_s40477_024_00935_3 crossref_primary_10_3390_life13081759 crossref_primary_10_1016_j_ultrasmedbio_2022_11_003 crossref_primary_10_1109_LGRS_2023_3332035 crossref_primary_10_1109_LSP_2022_3211189 crossref_primary_10_1109_TSP_2023_3290355 crossref_primary_10_1109_TUFFC_2024_3462299 crossref_primary_10_1109_MBITS_2021_3103144 crossref_primary_10_1088_1361_6560_ac62fd crossref_primary_10_1109_LGRS_2022_3223409 crossref_primary_10_1109_MGRS_2024_3494754 crossref_primary_10_1109_TSP_2024_3412981 crossref_primary_10_1109_TMI_2021_3084821 crossref_primary_10_1587_transfun_2022EAP1098 crossref_primary_10_3390_rs14071578 |
| Cites_doi | 10.1109/TUFFC.2006.1678188 10.1038/nature16066 10.1038/nmeth.3482 10.1177/016173469701900101 10.1109/TMI.2015.2491302 10.1109/TMI.2014.2359650 10.1073/pnas.0709640104 10.1109/TUFFC.2014.006573 10.1016/0041-624X(91)90030-C 10.1109/TUFFC.2018.2873380 10.1109/58.985705 10.1109/CVPR.2016.90 10.1109/TMI.2018.2789499 10.1109/TSP.2014.2304932 10.1038/s41467-018-03973-8 10.1109/TUFFC.2010.1521 10.1109/SPAWC.2017.8227772 10.1109/TUFFC.2010.1710 10.1002/mrm.25240 10.1145/1970392.1970395 10.1007/s10208-009-9045-5 10.1201/b18467 10.1109/TSP.2019.2899805 10.1038/nature14539 10.1109/ICASSP.2018.8462136 10.1016/j.ultrasmedbio.2003.07.002 10.1109/ICASSP.2018.8462313 10.1137/080738970 10.1137/15M1026080 10.1109/TMI.2016.2605819 10.1109/ICASSP.2018.8461638 10.1109/TSP.2018.2791945 10.1109/TUFFC.2017.2784183 10.1017/CBO9780511794308 10.1016/j.neuroimage.2015.09.037 10.1214/aos/1176345632 10.1109/TUFFC.2002.1041080 10.1137/090771806 10.1109/TSP.2008.2008212 10.1109/ULTSYM.2017.8092945 10.1109/TUFFC.2017.2665342 10.24033/bsmf.1625 10.1109/TMI.2016.2600372 10.1016/S0301-5629(00)00229-5 10.1016/j.ejrad.2015.05.013 10.1109/TPAMI.2015.2392779 10.1007/s10406-007-0233-6 10.1109/TMI.2011.2160075 10.1109/ULTSYM.1994.401918 10.1137/080716542 10.1109/TMI.2015.2428634 10.1109/TMI.2017.2743099 10.1016/S0301-5629(03)01014-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2019.2941271 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1063 |
| ExternalDocumentID | 31535987 10_1109_TMI_2019_2941271 8836615 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Union’s Horizon 2020 Research and Innovation Program grantid: 646804-ERC-COG-BNYQ |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-a5ff638e3b395f4a02b38cbf6960740e7ceb115be450ca1e85c80bb28dd8921d3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 06:12:59 EDT 2025 Sun Jun 29 16:46:47 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Wed Oct 01 03:55:30 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Aug 27 02:36:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-a5ff638e3b395f4a02b38cbf6960740e7ceb115be450ca1e85c80bb28dd8921d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4358-5304 0000-0003-2817-3686 0000-0003-2845-0495 0000-0003-0240-0852 0000-0003-4398-7127 0000-0002-2833-8965 |
| PMID | 31535987 |
| PQID | 2386051804 |
| PQPubID | 85460 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2293969738 crossref_primary_10_1109_TMI_2019_2941271 proquest_journals_2386051804 pubmed_primary_31535987 crossref_citationtrail_10_1109_TMI_2019_2941271 ieee_primary_8836615 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref53 ref55 ref54 ref10 ref17 ref16 lucas (ref52) 1981 ref19 ref18 palomar (ref47) 2010 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 gregor (ref36) 2010 ref43 solomon (ref12) 0 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref31 ref30 ref33 ref32 lecun (ref35) 2015; 521 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 furlow (ref2) 2009; 80 van sloun (ref11) 2018 |
| References_xml | – ident: ref24 doi: 10.1109/TUFFC.2006.1678188 – ident: ref13 doi: 10.1038/nature16066 – ident: ref29 doi: 10.1038/nmeth.3482 – ident: ref19 doi: 10.1177/016173469701900101 – ident: ref8 doi: 10.1109/TMI.2015.2491302 – ident: ref14 doi: 10.1109/TMI.2014.2359650 – ident: ref57 doi: 10.1073/pnas.0709640104 – ident: ref7 doi: 10.1109/TUFFC.2014.006573 – ident: ref4 doi: 10.1016/0041-624X(91)90030-C – ident: ref9 doi: 10.1109/TUFFC.2018.2873380 – ident: ref15 doi: 10.1109/58.985705 – year: 0 ident: ref12 article-title: Exploiting flow dynamics for super-resolution in contrast-enhanced ultrasound publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – ident: ref42 doi: 10.1109/CVPR.2016.90 – ident: ref31 doi: 10.1109/TMI.2018.2789499 – ident: ref49 doi: 10.1109/TSP.2014.2304932 – year: 2010 ident: ref47 publication-title: Convex Optimization in Signal Processing and Communications – ident: ref3 doi: 10.1038/s41467-018-03973-8 – ident: ref20 doi: 10.1109/TUFFC.2010.1521 – ident: ref43 doi: 10.1109/SPAWC.2017.8227772 – ident: ref21 doi: 10.1109/TUFFC.2010.1710 – ident: ref32 doi: 10.1002/mrm.25240 – ident: ref34 doi: 10.1145/1970392.1970395 – ident: ref45 doi: 10.1007/s10208-009-9045-5 – ident: ref1 doi: 10.1201/b18467 – ident: ref41 doi: 10.1109/TSP.2019.2899805 – volume: 521 start-page: 436 year: 2015 ident: ref35 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref40 doi: 10.1109/ICASSP.2018.8462136 – ident: ref23 doi: 10.1016/j.ultrasmedbio.2003.07.002 – ident: ref38 doi: 10.1109/ICASSP.2018.8462313 – ident: ref50 doi: 10.1137/080738970 – ident: ref59 doi: 10.1137/15M1026080 – ident: ref27 doi: 10.1109/TMI.2016.2605819 – ident: ref33 doi: 10.1109/ICASSP.2018.8461638 – start-page: 399 year: 2010 ident: ref36 article-title: Learning fast approximations of sparse coding publication-title: Proc 27th Int Conf Mach Learn – ident: ref39 doi: 10.1109/TSP.2018.2791945 – start-page: 674 year: 1981 ident: ref52 article-title: An iterative image registration technique with an application to stereo vision publication-title: Proc 7th Int Joint Conf Artif Intell – ident: ref28 doi: 10.1109/TUFFC.2017.2784183 – ident: ref46 doi: 10.1017/CBO9780511794308 – ident: ref30 doi: 10.1016/j.neuroimage.2015.09.037 – ident: ref55 doi: 10.1214/aos/1176345632 – ident: ref25 doi: 10.1109/TUFFC.2002.1041080 – ident: ref58 doi: 10.1137/090771806 – ident: ref54 doi: 10.1109/TSP.2008.2008212 – ident: ref10 doi: 10.1109/ULTSYM.2017.8092945 – ident: ref56 doi: 10.1109/TUFFC.2017.2665342 – ident: ref48 doi: 10.24033/bsmf.1625 – ident: ref44 doi: 10.1109/TMI.2016.2600372 – ident: ref18 doi: 10.1016/S0301-5629(00)00229-5 – ident: ref6 doi: 10.1016/j.ejrad.2015.05.013 – ident: ref37 doi: 10.1109/TPAMI.2015.2392779 – year: 2018 ident: ref11 article-title: Super-resolution ultrasound localization microscopy through deep learning publication-title: arXiv 1804 07661 – ident: ref5 doi: 10.1007/s10406-007-0233-6 – ident: ref22 doi: 10.1109/TMI.2011.2160075 – ident: ref16 doi: 10.1109/ULTSYM.1994.401918 – ident: ref51 doi: 10.1137/080716542 – volume: 80 start-page: 547s year: 2009 ident: ref2 article-title: Contrast-enhanced ultrasound publication-title: Radiol Technol – ident: ref26 doi: 10.1109/TMI.2015.2428634 – ident: ref53 doi: 10.1109/TMI.2017.2743099 – ident: ref17 doi: 10.1016/S0301-5629(03)01014-7 |
| SSID | ssj0014509 |
| Score | 2.6684484 |
| Snippet | Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1051 |
| SubjectTerms | Algorithms Animals Blood Brain - blood supply Brain - diagnostic imaging Clutter Computer simulation Contrast Media Deep unfolding Doppler effect Image contrast Image Processing, Computer-Assisted - methods Image quality Imaging inverse problems Iterative algorithms Iterative methods Machine learning Magnetic resonance imaging Microbubbles neural network Neuroimaging Principal component analysis Principal Component Analysis - methods Principal components analysis Radiation Rats robust PCA Robustness Sparse matrices Spatial discrimination Spatial resolution Tissues Ultrasonic imaging Ultrasonography - methods Ultrasound ultrasound imaging |
| Title | Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound |
| URI | https://ieeexplore.ieee.org/document/8836615 https://www.ncbi.nlm.nih.gov/pubmed/31535987 https://www.proquest.com/docview/2386051804 https://www.proquest.com/docview/2293969738 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH5qe0BwYGlZUgoyEhckMhM7jpfjaKAqSFMh1BG9RV5FxSipOsmFX1_byYRFgLhFirO9Je89v-UDeG2oVYoZkVuuWR6bH_PgHPk8BFsRfwp7njq8V-fsbE0_XlaXe_B26oVxzqXiMzeLhymXb1vTx62yuRBlMCfVPuxzwYZerSljQKuhnIPEibEFI7uUZCHnF6sPsYZLzoikmHD8iwlKmCp_dy-TmTl9AKvdCw7VJd9mfadn5vtvsxv_9wsewv3R30SLQUAewZ5rDuHeT1MID-HOasyvH8H5O-eu0ToI3cY6iz63ut926NNygb5cdV_R4ke2G3UtWm4SyjWKyKBDOW2Drhq03nQ3ahvhmh7D-vT9xfIsHxEXclNS3uWq8j4opCt1KStPVUF0KYz2LMQ5nBaOm_Brx5V2gdpGYScqIwqtibBWSIJt-QQOmrZxzwARqYlnVhjvFSVKaMWCunuFVZAKg4sM5jsm1GYcRx5RMTZ1CksKWQe21ZFt9ci2DN5MV1wPozj-sfYoEn9aN9I9g5Mdn-tRV7d1cFpCTIdFQTN4NZ0OWhZTJ6pxbR_WBK9IMslLkcHTQT6me5fBaFRS8OM_P_M53CUxRk_VPidw0N307kVwZDr9MknwLT1Q7dA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4qRWI5sLRQAgWMxAWJzMSOndjH0UA1hWaE0IzoLfIqqo6SqpNc-PXYSSYsAsQtUpztLXnv-S0fwGtNjZSZ5rHJVRaH5sfYO0cu9sFWwJ_CLu86vItltljTD-fsfA_ejr0w1tqu-MxOwmGXyze1bsNW2ZTz1JsTdgNuMkop67u1xpwBZX1BBwkzY5OM7JKSiZiuitNQxSUmRFBMcvyLEepQVf7uYHaG5uQ-FLtX7OtLLidtoyb622_TG__3Gx7AvcHjRLNeRB7Cnq0O4O5PcwgP4FYxZNgPYfnO2iu09mK3Mdagz7Vqtw36NJ-hLxfNVzT7ke9GTY3mmw7nGgVs0L6gtkIXFVpvmmu5DYBNj2B98n41X8QD5kKsU5o3sWTOeZW0qUoFc1QmRKVcK5f5SCenic21_7ljpqyntpbYcqZ5ohThxnBBsEkfw35VV_YJICIUcZnh2jlJieRKZl7hncTSy4XGSQTTHRNKPQwkD7gYm7ILTBJReraVgW3lwLYI3oxXXPXDOP6x9jAQf1w30D2C4x2fy0Fbt6V3W3xUh3lCI3g1nvZ6FpInsrJ169d4v0hkIk95BEe9fIz3Tr3ZYILnT__8zJdwe7Eqzsqz0-XHZ3CHhIi9q_05hv3murXPvVvTqBedNH8H1t3xHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Unfolded+Robust+PCA+With+Application+to+Clutter+Suppression+in+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Solomon%2C+Oren&rft.au=Cohen%2C+Regev&rft.au=Zhang%2C+Yi&rft.au=Yang%2C+Yi&rft.date=2020-04-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=39&rft.issue=4&rft.spage=1051&rft_id=info:doi/10.1109%2FTMI.2019.2941271&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |