Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound

Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 4; pp. 1051 - 1063
Main Authors Solomon, Oren, Cohen, Regev, Zhang, Yi, Yang, Yi, He, Qiong, Luo, Jianwen, van Sloun, Ruud J. G., Eldar, Yonina C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2941271

Cover

Abstract Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.
AbstractList Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.
Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.
Author Eldar, Yonina C.
Luo, Jianwen
Cohen, Regev
He, Qiong
Zhang, Yi
Solomon, Oren
van Sloun, Ruud J. G.
Yang, Yi
Author_xml – sequence: 1
  givenname: Oren
  orcidid: 0000-0003-0240-0852
  surname: Solomon
  fullname: Solomon, Oren
  email: orensol@campus.technion.ac.il
  organization: Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
– sequence: 2
  givenname: Regev
  orcidid: 0000-0002-2833-8965
  surname: Cohen
  fullname: Cohen, Regev
  email: regev.cohen@campus.technion.ac.il
  organization: Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
– sequence: 3
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  email: yizhang.ch.2015@gmail.com
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0003-2817-3686
  surname: Yang
  fullname: Yang, Yi
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Qiong
  orcidid: 0000-0003-4398-7127
  surname: He
  fullname: He, Qiong
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Jianwen
  surname: Luo
  fullname: Luo, Jianwen
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Ruud J. G.
  orcidid: 0000-0003-2845-0495
  surname: van Sloun
  fullname: van Sloun, Ruud J. G.
  email: r.j.g.v.sloun@tue.nl
  organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
– sequence: 8
  givenname: Yonina C.
  orcidid: 0000-0003-4358-5304
  surname: Eldar
  fullname: Eldar, Yonina C.
  email: yonina.eldar@weizmann.ac.il
  organization: Faculty of Math and Computer Science, Weizmann Institute of Science, Rehovot, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31535987$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVISSZp9oVAEHTTjad6WLK0HKavQPqgzZDuhCVfEwWP5Ujyov--ms6kiyyyunD5zuXcc87Q8RhGQOgNJUtKiX5_-_V6yQjVS6Zryhp6hBZUCFUxUf8-RgvCGlURItkpOkvpgRBaC6JP0CmnggutmgX69gFgwpuxD0MHHf4Z7Jwy_rFe4Tuf7_Fqmgbv2uzDiHPA62HOGSL-NU9ThJR2az_izZBjm8I8dq_Rq74dElwc5jnafPp4u_5S3Xz_fL1e3VSO102uWtH3kivglmvR1y1hlitne6klaWoCjQNLqbBQ_LqWghJOEWuZ6jqlGe34OXq3vzvF8DhDymbrk4NhaEcIczKMaa6lbrgq6Ntn6EOY41jcGcaVJIIqUhfq6kDNdgudmaLftvGPeUqqAHIPuBhSitAb5_O_YMrvfjCUmF0lplRidpWYQyVFSJ4Jn26_ILncSzwA_MeV4lIWO38BJrmU0A
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_media_2021_102018
crossref_primary_10_1109_TPAMI_2024_3429498
crossref_primary_10_1109_TMI_2020_3033541
crossref_primary_10_1109_TPAMI_2021_3087485
crossref_primary_10_1109_TIP_2022_3201708
crossref_primary_10_1016_j_sigpro_2024_109796
crossref_primary_10_1109_TUFFC_2022_3152225
crossref_primary_10_1109_TSP_2020_3022319
crossref_primary_10_1016_j_media_2022_102651
crossref_primary_10_3390_make6010019
crossref_primary_10_37015_AUDT_2022_210033
crossref_primary_10_1109_TIT_2022_3198725
crossref_primary_10_1109_TMI_2021_3096218
crossref_primary_10_1109_TMI_2022_3177626
crossref_primary_10_1109_TIP_2023_3336176
crossref_primary_10_1088_1361_6560_ad8292
crossref_primary_10_1002_ima_23218
crossref_primary_10_1016_j_ultras_2024_107307
crossref_primary_10_1109_TMI_2020_2986781
crossref_primary_10_1109_TWC_2023_3323207
crossref_primary_10_1109_TSP_2021_3076900
crossref_primary_10_1109_TWC_2021_3071480
crossref_primary_10_3390_s23218760
crossref_primary_10_1142_S0218126624501925
crossref_primary_10_3390_s22083065
crossref_primary_10_1016_j_epsr_2022_108226
crossref_primary_10_1109_TSP_2022_3179807
crossref_primary_10_1109_TMI_2020_3006445
crossref_primary_10_1109_TVT_2023_3320360
crossref_primary_10_1109_OJSP_2023_3339376
crossref_primary_10_1109_TMI_2023_3286859
crossref_primary_10_1109_TSP_2023_3241851
crossref_primary_10_1137_20M1337168
crossref_primary_10_1016_j_bspc_2024_106712
crossref_primary_10_1109_ACCESS_2022_3218802
crossref_primary_10_1109_TNNLS_2021_3134717
crossref_primary_10_1111_cgf_14958
crossref_primary_10_1016_j_media_2021_102190
crossref_primary_10_1109_TBME_2024_3368105
crossref_primary_10_1109_TUFFC_2023_3297571
crossref_primary_10_1109_TIP_2022_3172851
crossref_primary_10_1016_j_artmed_2023_102664
crossref_primary_10_1109_TCI_2020_2964202
crossref_primary_10_1109_JSTQE_2024_3350971
crossref_primary_10_1109_TPAMI_2024_3524538
crossref_primary_10_1016_j_ultras_2021_106576
crossref_primary_10_1109_TNSM_2021_3106577
crossref_primary_10_1109_TVT_2024_3496119
crossref_primary_10_3389_frai_2023_974295
crossref_primary_10_1109_MSP_2021_3129995
crossref_primary_10_1109_TNNLS_2022_3144580
crossref_primary_10_1016_j_dsp_2020_102956
crossref_primary_10_1016_j_ultras_2024_107379
crossref_primary_10_14366_usg_20102
crossref_primary_10_1155_2021_8844741
crossref_primary_10_1007_s10489_021_02686_8
crossref_primary_10_1016_j_knosys_2021_107429
crossref_primary_10_1007_s11425_023_2293_3
crossref_primary_10_1109_TCI_2021_3111580
crossref_primary_10_1109_TMI_2024_3363460
crossref_primary_10_1109_TMI_2021_3115547
crossref_primary_10_1109_JSAIT_2023_3241123
crossref_primary_10_1109_JSTARS_2023_3242053
crossref_primary_10_1109_JSTSP_2024_3417356
crossref_primary_10_1109_TAES_2024_3443020
crossref_primary_10_1137_23M1625846
crossref_primary_10_1109_TUFFC_2022_3180053
crossref_primary_10_1109_TUFFC_2024_3362967
crossref_primary_10_1097_MPA_0000000000001762
crossref_primary_10_1109_TSP_2021_3087905
crossref_primary_10_1109_TCCN_2022_3212438
crossref_primary_10_1016_j_yofte_2021_102612
crossref_primary_10_1016_j_sigpro_2020_107729
crossref_primary_10_1109_JPROC_2023_3247480
crossref_primary_10_1016_j_optcom_2020_126567
crossref_primary_10_1016_j_cviu_2024_103939
crossref_primary_10_1109_TGRS_2021_3126485
crossref_primary_10_1016_j_patcog_2024_110676
crossref_primary_10_1155_2022_1199210
crossref_primary_10_1088_1361_6560_ad0a5a
crossref_primary_10_1016_j_techfore_2021_120895
crossref_primary_10_1088_1361_6560_abeb31
crossref_primary_10_1109_MSP_2020_3016905
crossref_primary_10_1109_TUFFC_2024_3424549
crossref_primary_10_1109_TGRS_2024_3370549
crossref_primary_10_1007_s40477_024_00935_3
crossref_primary_10_3390_life13081759
crossref_primary_10_1016_j_ultrasmedbio_2022_11_003
crossref_primary_10_1109_LGRS_2023_3332035
crossref_primary_10_1109_LSP_2022_3211189
crossref_primary_10_1109_TSP_2023_3290355
crossref_primary_10_1109_TUFFC_2024_3462299
crossref_primary_10_1109_MBITS_2021_3103144
crossref_primary_10_1088_1361_6560_ac62fd
crossref_primary_10_1109_LGRS_2022_3223409
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1109_TSP_2024_3412981
crossref_primary_10_1109_TMI_2021_3084821
crossref_primary_10_1587_transfun_2022EAP1098
crossref_primary_10_3390_rs14071578
Cites_doi 10.1109/TUFFC.2006.1678188
10.1038/nature16066
10.1038/nmeth.3482
10.1177/016173469701900101
10.1109/TMI.2015.2491302
10.1109/TMI.2014.2359650
10.1073/pnas.0709640104
10.1109/TUFFC.2014.006573
10.1016/0041-624X(91)90030-C
10.1109/TUFFC.2018.2873380
10.1109/58.985705
10.1109/CVPR.2016.90
10.1109/TMI.2018.2789499
10.1109/TSP.2014.2304932
10.1038/s41467-018-03973-8
10.1109/TUFFC.2010.1521
10.1109/SPAWC.2017.8227772
10.1109/TUFFC.2010.1710
10.1002/mrm.25240
10.1145/1970392.1970395
10.1007/s10208-009-9045-5
10.1201/b18467
10.1109/TSP.2019.2899805
10.1038/nature14539
10.1109/ICASSP.2018.8462136
10.1016/j.ultrasmedbio.2003.07.002
10.1109/ICASSP.2018.8462313
10.1137/080738970
10.1137/15M1026080
10.1109/TMI.2016.2605819
10.1109/ICASSP.2018.8461638
10.1109/TSP.2018.2791945
10.1109/TUFFC.2017.2784183
10.1017/CBO9780511794308
10.1016/j.neuroimage.2015.09.037
10.1214/aos/1176345632
10.1109/TUFFC.2002.1041080
10.1137/090771806
10.1109/TSP.2008.2008212
10.1109/ULTSYM.2017.8092945
10.1109/TUFFC.2017.2665342
10.24033/bsmf.1625
10.1109/TMI.2016.2600372
10.1016/S0301-5629(00)00229-5
10.1016/j.ejrad.2015.05.013
10.1109/TPAMI.2015.2392779
10.1007/s10406-007-0233-6
10.1109/TMI.2011.2160075
10.1109/ULTSYM.1994.401918
10.1137/080716542
10.1109/TMI.2015.2428634
10.1109/TMI.2017.2743099
10.1016/S0301-5629(03)01014-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2941271
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1063
ExternalDocumentID 31535987
10_1109_TMI_2019_2941271
8836615
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union’s Horizon 2020 Research and Innovation Program
  grantid: 646804-ERC-COG-BNYQ
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-a5ff638e3b395f4a02b38cbf6960740e7ceb115be450ca1e85c80bb28dd8921d3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 06:12:59 EDT 2025
Sun Jun 29 16:46:47 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Wed Oct 01 03:55:30 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 27 02:36:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a5ff638e3b395f4a02b38cbf6960740e7ceb115be450ca1e85c80bb28dd8921d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4358-5304
0000-0003-2817-3686
0000-0003-2845-0495
0000-0003-0240-0852
0000-0003-4398-7127
0000-0002-2833-8965
PMID 31535987
PQID 2386051804
PQPubID 85460
PageCount 13
ParticipantIDs proquest_miscellaneous_2293969738
crossref_primary_10_1109_TMI_2019_2941271
proquest_journals_2386051804
pubmed_primary_31535987
crossref_citationtrail_10_1109_TMI_2019_2941271
ieee_primary_8836615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref53
ref55
ref54
ref10
ref17
ref16
lucas (ref52) 1981
ref19
ref18
palomar (ref47) 2010
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
gregor (ref36) 2010
ref43
solomon (ref12) 0
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref31
ref30
ref33
ref32
lecun (ref35) 2015; 521
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
furlow (ref2) 2009; 80
van sloun (ref11) 2018
References_xml – ident: ref24
  doi: 10.1109/TUFFC.2006.1678188
– ident: ref13
  doi: 10.1038/nature16066
– ident: ref29
  doi: 10.1038/nmeth.3482
– ident: ref19
  doi: 10.1177/016173469701900101
– ident: ref8
  doi: 10.1109/TMI.2015.2491302
– ident: ref14
  doi: 10.1109/TMI.2014.2359650
– ident: ref57
  doi: 10.1073/pnas.0709640104
– ident: ref7
  doi: 10.1109/TUFFC.2014.006573
– ident: ref4
  doi: 10.1016/0041-624X(91)90030-C
– ident: ref9
  doi: 10.1109/TUFFC.2018.2873380
– ident: ref15
  doi: 10.1109/58.985705
– year: 0
  ident: ref12
  article-title: Exploiting flow dynamics for super-resolution in contrast-enhanced ultrasound
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– ident: ref31
  doi: 10.1109/TMI.2018.2789499
– ident: ref49
  doi: 10.1109/TSP.2014.2304932
– year: 2010
  ident: ref47
  publication-title: Convex Optimization in Signal Processing and Communications
– ident: ref3
  doi: 10.1038/s41467-018-03973-8
– ident: ref20
  doi: 10.1109/TUFFC.2010.1521
– ident: ref43
  doi: 10.1109/SPAWC.2017.8227772
– ident: ref21
  doi: 10.1109/TUFFC.2010.1710
– ident: ref32
  doi: 10.1002/mrm.25240
– ident: ref34
  doi: 10.1145/1970392.1970395
– ident: ref45
  doi: 10.1007/s10208-009-9045-5
– ident: ref1
  doi: 10.1201/b18467
– ident: ref41
  doi: 10.1109/TSP.2019.2899805
– volume: 521
  start-page: 436
  year: 2015
  ident: ref35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref40
  doi: 10.1109/ICASSP.2018.8462136
– ident: ref23
  doi: 10.1016/j.ultrasmedbio.2003.07.002
– ident: ref38
  doi: 10.1109/ICASSP.2018.8462313
– ident: ref50
  doi: 10.1137/080738970
– ident: ref59
  doi: 10.1137/15M1026080
– ident: ref27
  doi: 10.1109/TMI.2016.2605819
– ident: ref33
  doi: 10.1109/ICASSP.2018.8461638
– start-page: 399
  year: 2010
  ident: ref36
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref39
  doi: 10.1109/TSP.2018.2791945
– start-page: 674
  year: 1981
  ident: ref52
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: Proc 7th Int Joint Conf Artif Intell
– ident: ref28
  doi: 10.1109/TUFFC.2017.2784183
– ident: ref46
  doi: 10.1017/CBO9780511794308
– ident: ref30
  doi: 10.1016/j.neuroimage.2015.09.037
– ident: ref55
  doi: 10.1214/aos/1176345632
– ident: ref25
  doi: 10.1109/TUFFC.2002.1041080
– ident: ref58
  doi: 10.1137/090771806
– ident: ref54
  doi: 10.1109/TSP.2008.2008212
– ident: ref10
  doi: 10.1109/ULTSYM.2017.8092945
– ident: ref56
  doi: 10.1109/TUFFC.2017.2665342
– ident: ref48
  doi: 10.24033/bsmf.1625
– ident: ref44
  doi: 10.1109/TMI.2016.2600372
– ident: ref18
  doi: 10.1016/S0301-5629(00)00229-5
– ident: ref6
  doi: 10.1016/j.ejrad.2015.05.013
– ident: ref37
  doi: 10.1109/TPAMI.2015.2392779
– year: 2018
  ident: ref11
  article-title: Super-resolution ultrasound localization microscopy through deep learning
  publication-title: arXiv 1804 07661
– ident: ref5
  doi: 10.1007/s10406-007-0233-6
– ident: ref22
  doi: 10.1109/TMI.2011.2160075
– ident: ref16
  doi: 10.1109/ULTSYM.1994.401918
– ident: ref51
  doi: 10.1137/080716542
– volume: 80
  start-page: 547s
  year: 2009
  ident: ref2
  article-title: Contrast-enhanced ultrasound
  publication-title: Radiol Technol
– ident: ref26
  doi: 10.1109/TMI.2015.2428634
– ident: ref53
  doi: 10.1109/TMI.2017.2743099
– ident: ref17
  doi: 10.1016/S0301-5629(03)01014-7
SSID ssj0014509
Score 2.6684484
Snippet Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1051
SubjectTerms Algorithms
Animals
Blood
Brain - blood supply
Brain - diagnostic imaging
Clutter
Computer simulation
Contrast Media
Deep unfolding
Doppler effect
Image contrast
Image Processing, Computer-Assisted - methods
Image quality
Imaging
inverse problems
Iterative algorithms
Iterative methods
Machine learning
Magnetic resonance imaging
Microbubbles
neural network
Neuroimaging
Principal component analysis
Principal Component Analysis - methods
Principal components analysis
Radiation
Rats
robust PCA
Robustness
Sparse matrices
Spatial discrimination
Spatial resolution
Tissues
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
ultrasound imaging
Title Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound
URI https://ieeexplore.ieee.org/document/8836615
https://www.ncbi.nlm.nih.gov/pubmed/31535987
https://www.proquest.com/docview/2386051804
https://www.proquest.com/docview/2293969738
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH5qe0BwYGlZUgoyEhckMhM7jpfjaKAqSFMh1BG9RV5FxSipOsmFX1_byYRFgLhFirO9Je89v-UDeG2oVYoZkVuuWR6bH_PgHPk8BFsRfwp7njq8V-fsbE0_XlaXe_B26oVxzqXiMzeLhymXb1vTx62yuRBlMCfVPuxzwYZerSljQKuhnIPEibEFI7uUZCHnF6sPsYZLzoikmHD8iwlKmCp_dy-TmTl9AKvdCw7VJd9mfadn5vtvsxv_9wsewv3R30SLQUAewZ5rDuHeT1MID-HOasyvH8H5O-eu0ToI3cY6iz63ut926NNygb5cdV_R4ke2G3UtWm4SyjWKyKBDOW2Drhq03nQ3ahvhmh7D-vT9xfIsHxEXclNS3uWq8j4opCt1KStPVUF0KYz2LMQ5nBaOm_Brx5V2gdpGYScqIwqtibBWSIJt-QQOmrZxzwARqYlnVhjvFSVKaMWCunuFVZAKg4sM5jsm1GYcRx5RMTZ1CksKWQe21ZFt9ci2DN5MV1wPozj-sfYoEn9aN9I9g5Mdn-tRV7d1cFpCTIdFQTN4NZ0OWhZTJ6pxbR_WBK9IMslLkcHTQT6me5fBaFRS8OM_P_M53CUxRk_VPidw0N307kVwZDr9MknwLT1Q7dA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4qRWI5sLRQAgWMxAWJzMSOndjH0UA1hWaE0IzoLfIqqo6SqpNc-PXYSSYsAsQtUpztLXnv-S0fwGtNjZSZ5rHJVRaH5sfYO0cu9sFWwJ_CLu86vItltljTD-fsfA_ejr0w1tqu-MxOwmGXyze1bsNW2ZTz1JsTdgNuMkop67u1xpwBZX1BBwkzY5OM7JKSiZiuitNQxSUmRFBMcvyLEepQVf7uYHaG5uQ-FLtX7OtLLidtoyb622_TG__3Gx7AvcHjRLNeRB7Cnq0O4O5PcwgP4FYxZNgPYfnO2iu09mK3Mdagz7Vqtw36NJ-hLxfNVzT7ke9GTY3mmw7nGgVs0L6gtkIXFVpvmmu5DYBNj2B98n41X8QD5kKsU5o3sWTOeZW0qUoFc1QmRKVcK5f5SCenic21_7ljpqyntpbYcqZ5ohThxnBBsEkfw35VV_YJICIUcZnh2jlJieRKZl7hncTSy4XGSQTTHRNKPQwkD7gYm7ILTBJReraVgW3lwLYI3oxXXPXDOP6x9jAQf1w30D2C4x2fy0Fbt6V3W3xUh3lCI3g1nvZ6FpInsrJ169d4v0hkIk95BEe9fIz3Tr3ZYILnT__8zJdwe7Eqzsqz0-XHZ3CHhIi9q_05hv3murXPvVvTqBedNH8H1t3xHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Unfolded+Robust+PCA+With+Application+to+Clutter+Suppression+in+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Solomon%2C+Oren&rft.au=Cohen%2C+Regev&rft.au=Zhang%2C+Yi&rft.au=Yang%2C+Yi&rft.date=2020-04-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=39&rft.issue=4&rft.spage=1051&rft_id=info:doi/10.1109%2FTMI.2019.2941271&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon