Augmented Likelihood Image Reconstruction

The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically concl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 1; pp. 158 - 173
Main Authors Stille, Maik, Kleine, Matthias, Hagele, Julian, Barkhausen, Jorg, Buzug, Thorsten M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2015.2459764

Cover

Abstract The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.
AbstractList The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.
The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.
Author Buzug, Thorsten M.
Barkhausen, Jorg
Kleine, Matthias
Hagele, Julian
Stille, Maik
Author_xml – sequence: 1
  givenname: Maik
  surname: Stille
  fullname: Stille, Maik
  email: stille@imt.uni-luebeck.de
  organization: Inst. of Med. Eng., Univ. of Luebeck, Luebeck, Germany
– sequence: 2
  givenname: Matthias
  surname: Kleine
  fullname: Kleine, Matthias
  organization: Inst. of Med. Eng., Univ. of Luebeck, Luebeck, Germany
– sequence: 3
  givenname: Julian
  surname: Hagele
  fullname: Hagele, Julian
  organization: Clinic of Radiol. & Nucl. Med., Univ. Med. Center Luebeck, Luebeck, Germany
– sequence: 4
  givenname: Jorg
  surname: Barkhausen
  fullname: Barkhausen, Jorg
  organization: Clinic of Radiol. & Nucl. Med., Univ. Med. Center Luebeck, Luebeck, Germany
– sequence: 5
  givenname: Thorsten M.
  surname: Buzug
  fullname: Buzug, Thorsten M.
  organization: Inst. of Med. Eng., Univ. of Luebeck, Luebeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26208310$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhep2A-9C4IUvOghdfYrmxxL8aNQEaSCt2WbTGpqkq27ycF_b0JbDz14msM878vMMyS9ylZIyCWFCaUQ3y9f5hMGVE6YkLEKxQkZUCmjgEnx0SMDYCoKAELWJ0PvNwBUSIjPSJ-FDCJOYUDups26xKrGdLzIv7DIP61Nx_PSrHH8homtfO2apM5tdU5OM1N4vNjPEXl_fFjOnoPF69N8Nl0ECReqDowwcWiMMiilMjzkiJFMVwZNBIZzFa1AIqMKYgUJhlRmJsWMSpoqyDgXfERud71bZ78b9LUuc59gUZgKbeM1VVJIJmKuWvTmCN3YxlXtdR3FOUiqusLrPdWsSkz11uWlcT_6IKEFwh2QOOu9w0wneW26n2tn8kJT0J1t3drWnW29t90G4Sh46P4ncrWL5Ij4hyvarhjwX18th24
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2021_3127074
crossref_primary_10_1007_s11042_022_12194_7
crossref_primary_10_1016_j_radi_2024_10_009
crossref_primary_10_2174_1574893613666180502111320
crossref_primary_10_1002_acm2_12002
crossref_primary_10_1118_1_4950722
crossref_primary_10_1109_TNS_2016_2577045
crossref_primary_10_1002_acm2_12325
crossref_primary_10_3103_S0735272718090030
crossref_primary_10_1002_acm2_13255
crossref_primary_10_20535_S0021347018090030
crossref_primary_10_1134_S1061830923600636
crossref_primary_10_3233_XST_190523
crossref_primary_10_1155_2021_9590266
crossref_primary_10_1088_1361_6560_ab5b70
Cites_doi 10.1118/1.4762289
10.1016/j.brachy.2004.11.001
10.1109/42.959297
10.1109/83.465106
10.1109/ISBI.2004.1398646
10.1109/ISBI.2004.1398691
10.1137/0728030
10.1117/12.2007945
10.1137/0916069
10.1109/TMI.2011.2175233
10.1109/TIP.2010.2076294
10.1109/TMI.2012.2199763
10.1109/NSSMIC.2011.6152524
10.1117/12.911057
10.1145/2049662.2049669
10.3233/XST-130372
10.1117/12.2006810
10.1109/TMI.2013.2265136
10.1088/0266-5611/4/3/019
10.1160/ME9041
10.1118/1.1509443
10.1117/12.911202
10.1118/1.3533711
10.1016/j.brachy.2003.08.001
10.1007/BF01396611
10.1088/0031-9155/44/11/311
10.1117/12.910941
10.1118/1.3511507
10.1109/TMI.2006.880673
10.1109/ISBI.2012.6235728
10.1118/1.2955743
10.1109/ICIP.2010.5652149
10.1109/42.959298
10.1118/1.3603198
10.1148/radiology.164.2.3602406
10.1007/s00330-004-2263-y
10.1118/1.3484090
10.1109/42.870666
10.1109/NSSMIC.1998.774361
10.1088/0031-9155/40/7/006
10.1145/279232.279236
10.1109/NSSMIC.2011.6153697
10.1117/12.650137
10.1109/TMI.2004.838324
10.1109/TMI.2010.2093536
10.1109/TMI.2006.875429
10.1137/0145039
10.1109/TMI.2008.929103
10.1137/S1052623493251463
10.1137/0524069
10.1137/S1052623402419789
10.1118/1.1915015
10.1088/0266-5611/24/3/034008
10.1109/ICCV.1998.710815
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2015.2459764
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 173
ExternalDocumentID 3911993141
26208310
10_1109_TMI_2015_2459764
7164320
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-a4a96aa7ae557a363ee85dbaea80a3378b05e2170970ce615fadef151d70f3343
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 00:00:54 EDT 2025
Sun Jun 29 12:29:01 EDT 2025
Mon Jul 21 05:59:42 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Oct 01 03:55:25 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a4a96aa7ae557a363ee85dbaea80a3378b05e2170970ce615fadef151d70f3343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26208310
PQID 1753305174
PQPubID 85460
PageCount 16
ParticipantIDs crossref_primary_10_1109_TMI_2015_2459764
proquest_miscellaneous_1754524937
ieee_primary_7164320
pubmed_primary_26208310
crossref_citationtrail_10_1109_TMI_2015_2459764
proquest_journals_1753305174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref58
ref14
otsu (ref50) 1975; 11
ref53
ref55
ref54
ref10
ref16
ref19
ref18
fischer (ref69) 2008; 24
stayman (ref63) 2014; 2014
ref51
oehler (ref29) 2007; 46
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
de man (ref4) 2001
gu (ref20) 2006; 14
ref49
ref7
ref9
ref6
ref5
ref40
watzke (ref8) 2004; 14
ref35
conn (ref64) 2010
ref37
ref36
oehler (ref13) 2008; 7076
ref31
ramani (ref34) 2011
ref30
faridani (ref11) 2003; 47
ref33
ref32
ref2
ref39
ref38
nocedal (ref52) 2006
mouton (ref24) 2013; 21
kleine (ref15) 2012
kak (ref1) 1988
modersitzki (ref68) 2004
buzug (ref3) 2008
duan (ref17) 2008
blocket (ref27) 1999; 40
ref67
ref23
ref26
ref25
ref66
ref65
ref21
ref28
lemmens (ref22) 2009; 28
ref60
ref62
ref61
References_xml – ident: ref10
  doi: 10.1118/1.4762289
– ident: ref7
  doi: 10.1016/j.brachy.2004.11.001
– ident: ref26
  doi: 10.1109/42.959297
– ident: ref38
  doi: 10.1109/83.465106
– ident: ref37
  doi: 10.1109/ISBI.2004.1398646
– ident: ref12
  doi: 10.1109/ISBI.2004.1398691
– ident: ref65
  doi: 10.1137/0728030
– ident: ref62
  doi: 10.1117/12.2007945
– ident: ref53
  doi: 10.1137/0916069
– ident: ref31
  doi: 10.1109/TMI.2011.2175233
– ident: ref33
  doi: 10.1109/TIP.2010.2076294
– ident: ref44
  doi: 10.1109/TMI.2012.2199763
– ident: ref18
  doi: 10.1109/NSSMIC.2011.6152524
– ident: ref35
  doi: 10.1117/12.911057
– ident: ref55
  doi: 10.1145/2049662.2049669
– year: 2004
  ident: ref68
  publication-title: Numerical Methods for Image Registration
– start-page: 302
  year: 2011
  ident: ref34
  article-title: Convergent iterative CT reconstruction with sparsity-based regularization
  publication-title: Proc Int Meeting Fully 3D Image Recon Rad Nucl Med
– volume: 21
  start-page: 193
  year: 2013
  ident: ref24
  article-title: An experimental survey of metal artefact reduction in computed tomography
  publication-title: J X-Ray Sci Technol
  doi: 10.3233/XST-130372
– ident: ref51
  doi: 10.1117/12.2006810
– ident: ref19
  doi: 10.1109/TMI.2013.2265136
– ident: ref60
  doi: 10.1088/0266-5611/4/3/019
– year: 1988
  ident: ref1
  publication-title: Principles of Computerized Tomographic Imaging
– volume: 46
  start-page: 261
  year: 2007
  ident: ref29
  article-title: Statistical image reconstruction for inconsistent CT projection data
  publication-title: Methods Inf Med
  doi: 10.1160/ME9041
– ident: ref47
  doi: 10.1118/1.1509443
– ident: ref43
  doi: 10.1117/12.911202
– volume: 2014
  start-page: 111
  year: 2014
  ident: ref63
  article-title: Integration of component knowledge in penalized-likelihood reconstruction with morphological and spectral uncertainties
  publication-title: Conf Proc Int Conf Image Format X-Ray Comput Tomogr Int Conf Image Format X-Ray Comput Tomogr
– ident: ref32
  doi: 10.1118/1.3533711
– ident: ref6
  doi: 10.1016/j.brachy.2003.08.001
– ident: ref61
  doi: 10.1007/BF01396611
– ident: ref25
  doi: 10.1088/0031-9155/44/11/311
– ident: ref48
  doi: 10.1117/12.910941
– year: 2006
  ident: ref52
  publication-title: Numerical Optimization
– ident: ref9
  doi: 10.1118/1.3511507
– volume: 40
  start-page: 1978
  year: 1999
  ident: ref27
  article-title: Maximum-likelihood reconstruction with ordered subsets in bone SPECT
  publication-title: J Nucl Med
– ident: ref45
  doi: 10.1109/TMI.2006.880673
– ident: ref30
  doi: 10.1109/ISBI.2012.6235728
– ident: ref57
  doi: 10.1118/1.2955743
– ident: ref16
  doi: 10.1109/ICIP.2010.5652149
– year: 2001
  ident: ref4
  publication-title: Iterative Reconstruction for Reduction of Metal Artifacts in Computed Tomography
– ident: ref46
  doi: 10.1109/42.959298
– ident: ref58
  doi: 10.1118/1.3603198
– start-page: 4175
  year: 2008
  ident: ref17
  article-title: Metal artifact reduction in CT images by sinogram TV inpainting
  publication-title: IEEE Nucl Sci Symp Conf Rec
– ident: ref5
  doi: 10.1148/radiology.164.2.3602406
– start-page: 242
  year: 2012
  ident: ref15
  article-title: Curvelet-based inpainting for metal artifact reduction in computed tomography
  publication-title: Proc 2nd Int Conf Image Format X-Ray Comput Tomogr
– volume: 14
  start-page: 849
  year: 2004
  ident: ref8
  article-title: A pragmatic approach to metal artifact reduction in CT: Merging of metal artifact reduced images
  publication-title: Eur Radiol Physics
  doi: 10.1007/s00330-004-2263-y
– volume: 11
  start-page: 23
  year: 1975
  ident: ref50
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– year: 2010
  ident: ref64
  publication-title: LANCELOT A Fortran Package for Large-Scale Nonlinear Optimization (Release A)
– ident: ref23
  doi: 10.1118/1.3484090
– ident: ref42
  doi: 10.1109/42.870666
– ident: ref36
  doi: 10.1109/NSSMIC.1998.774361
– year: 2008
  ident: ref3
  publication-title: Computed Tomography From Photon Statistics to Modern Cone-Beam CT
– ident: ref28
  doi: 10.1088/0031-9155/40/7/006
– volume: 14
  start-page: 73
  year: 2006
  ident: ref20
  article-title: X-Ray CT metal artifacts reduction through curvature based sinogram inpainting
  publication-title: J X-Ray Sci Technol
– ident: ref54
  doi: 10.1145/279232.279236
– ident: ref14
  doi: 10.1109/NSSMIC.2011.6153697
– ident: ref21
  doi: 10.1117/12.650137
– ident: ref41
  doi: 10.1109/TMI.2004.838324
– ident: ref49
  doi: 10.1109/TMI.2010.2093536
– ident: ref39
  doi: 10.1109/TMI.2006.875429
– ident: ref2
  doi: 10.1137/0145039
– volume: 47
  start-page: 1
  year: 2003
  ident: ref11
  article-title: Introduction to the mathematics of computed tomography
  publication-title: Inside Out Inverse Problems and Applications
– volume: 28
  start-page: 250
  year: 2009
  ident: ref22
  article-title: Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2008.929103
– volume: 7076
  start-page: 707 607-1
  year: 2008
  ident: ref13
  article-title: Evaluation of surrogate data quality in sinogram-based CT metal-artefact reduction
  publication-title: Proc SPIE Symp Opt Eng Image Reconstruct Incomplete Data Conf
– ident: ref66
  doi: 10.1137/S1052623493251463
– ident: ref59
  doi: 10.1137/0524069
– ident: ref67
  doi: 10.1137/S1052623402419789
– ident: ref40
  doi: 10.1118/1.1915015
– volume: 24
  start-page: 1
  year: 2008
  ident: ref69
  article-title: Ill-posed medicine?An introduction to image registration
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/24/3/034008
– ident: ref56
  doi: 10.1109/ICCV.1998.710815
SSID ssj0014509
Score 2.2701445
Snippet The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Algorithms
Attenuation
Computed tomography
Dental Restoration, Permanent
Humans
Image enhancement/restoration
Image Processing, Computer-Assisted - methods
Image reconstruction
image reconstruction-iterative methods
Implants
Jaw - diagnostic imaging
Knee - diagnostic imaging
Knee Prosthesis
metal artifact reduction (MAR)
Metals
Optimization
Phantoms, Imaging
Shape
streaking artifacts
Tomography, X-Ray Computed
X-ray computed tomography (CT)
Title Augmented Likelihood Image Reconstruction
URI https://ieeexplore.ieee.org/document/7164320
https://www.ncbi.nlm.nih.gov/pubmed/26208310
https://www.proquest.com/docview/1753305174
https://www.proquest.com/docview/1754524937
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGBwQHHuM1XioSFyS6ZUvStEeEQIAYJ5C4VWnqIbSxIbFd-PXY6YOHAHGr1LRJ7aT-HDufAY7IikgV5y7U6CQ5KK4b2jjCUJFt7w50lOSCDwr3b6PLe3X9oB8acFKfhUFEn3yGbb70sfx84ma8VdZhbC975KDPmTgqzmrVEQOli3SOHjPGiqhXhSRF0rnrX3EOl273FMHniEvxMA07l9j6Yo18eZXfkaa3OBcr0K_GWiSaDNuzadZ2b99oHP_7MauwXELP4LSYK2vQwHETlj4REjZhoV-G2tfh-HT26Ak78-DmaYijJ-Y_Dq6e6f8TsM_6wTy7AfcX53dnl2FZVyF0UplpaJVNImuNRa2NlZFEjHWeWbSxsFKaOBMayVURiREOCfIMbI4Dgga5EQMpldyE-fFkjNsQJDZWkilsssypTFpCPy42iVPOUge5aUGnkm_qStJxrn0xSr3zIZKUlJOyctJSOS04rp94KQg3_mi7znKt25UibcFepcK0XJGvKTOSSs_L3YLD-jatJQ6Q2DFOZr6N0uSPShr3VqH6-t3VjNn5uc9dWKSRlZszezBPKsB9givT7MDP03eO_uEF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLYQSBwP3Mc4i8QLEt3CkvR4RAi0wcrTkHir0tRDCNiQ2F749djpwSFAvFVq2qR2Un-Onc8AR2RFpIpy62u0khwUe-qbKEBfkW0_HeggzgUfFE5ugs6turrTd1NwUp-FQUSXfIZNvnSx_HxkJ7xV1mJsL9vkoM9opZQuTmvVMQOli4SONnPGiqBdBSVF3OonXc7i0s22IgAdcDEeJmLnIltf7JErsPI71nQ253IJkmq0RarJY3Myzpr27RuR438_ZxkWS_DpnRWzZQWmcLgKC58oCVdhNimD7WtwfDa5d5Sdudd7eMSnB2ZA9rrP9Afy2Gv94J5dh9vLi_55xy8rK_hWqnDsG2XiwJjQoNahkYFEjHSeGTSRMFKGUSY0krMi4lBYJNAzMDkOCBzkoRhIqeQGTA9HQ9wCLzaRkkxik2VWZdIQ_rFRGFtlDXWQhw1oVfJNbUk7ztUvnlLnfog4JeWkrJy0VE4DjusnXgrKjT_arrFc63alSBuwW6kwLdfka8qcpNIxczfgsL5Nq4lDJGaIo4lrozR5pJLGvVmovn53NWO2f-7zAOY6_aSX9ro31zswT6Mst2p2YZrUgXsEXsbZvpuz74PF5FI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+Likelihood+Image+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Stille%2C+Maik&rft.au=Kleine%2C+Matthias&rft.au=H%C3%A4gele%2C+Julian&rft.au=Barkhausen%2C+J%C3%B6rg&rft.date=2016-01-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=35&rft.issue=1&rft.spage=158&rft_id=info:doi/10.1109%2FTMI.2015.2459764&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon