Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics

Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 22; no. 4; p. 153
Main Authors Minatovicz, Bruna, Bogner, Robin, Chaudhuri, Bodhisattwa
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 12.05.2021
Subjects
Online AccessGet full text
ISSN1530-9932
1530-9932
DOI10.1208/s12249-021-02034-6

Cover

Abstract Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from −20 to −80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of −80°C (2.2% higher tetramer retention compared to −20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.
AbstractList Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.
Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.
Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from −20 to −80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of −80°C (2.2% higher tetramer retention compared to −20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.
ArticleNumber 153
Author Chaudhuri, Bodhisattwa
Bogner, Robin
Minatovicz, Bruna
Author_xml – sequence: 1
  givenname: Bruna
  surname: Minatovicz
  fullname: Minatovicz, Bruna
  organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut
– sequence: 2
  givenname: Robin
  surname: Bogner
  fullname: Bogner, Robin
  organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut
– sequence: 3
  givenname: Bodhisattwa
  orcidid: 0000-0002-1286-0871
  surname: Chaudhuri
  fullname: Chaudhuri, Bodhisattwa
  email: Bodhi.chaudhuri@uconn.edu
  organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Department of Chemical & Biomolecular Engineering, University of Connecticut
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33982230$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PwzAMhiME4mPwBzigHOFQSOKytkfYxoc0aUiwc-QGdwR1TUk6Afv1ZGxIiAMHyz487yvb7wHbblxDjB1LcS6VyC-CVCotEqFkLAFp0t9i-_ISRFIUoLZ_zXvsIIRXIRTIAnbZHkCRKwVin1XTQNxVHPmQgp01q3n00ZK3c2q6wE-HbnTGr9rWOzQvvHN80nZ2bpfEx-hnlDwarInfeKIlJU8v-M4fvDMUwsrp2rrazawJh2ynwjrQ0ab32PRm9DS4S8aT2_vB1TgxkGZdggqQDJAoMCsNSMhFhQZKgKwo4zFFipDmeVmVUlZgyKQ5IOSQYSoMZgZ67HTtG_d9W1Do9NwGQ3WNDblF0OpS9UH0s1RG9GSDLso5Pes2noz-U__8JgL5GjDeheCp0sZ22FnXdB5traXQqxj0OgYdY9DfMeh-lKo_0h_3f0WwFoUINzPy-tUtfBPf9Z_qC2M3mGA
CitedBy_id crossref_primary_10_1007_s11095_022_03358_z
crossref_primary_10_1080_16843703_2024_2404343
crossref_primary_10_3390_mps7050068
crossref_primary_10_1021_acs_molpharmaceut_1c00666
crossref_primary_10_1016_j_ijpharm_2022_121715
crossref_primary_10_1016_j_xphs_2023_11_004
crossref_primary_10_1016_j_xphs_2022_09_020
Cites_doi 10.1126/science.243.4895.1150
10.1016/j.jddst.2020.101703
10.1016/j.biologicals.2016.07.004
10.1021/cg005534q
10.1080/10837450701481157
10.1016/j.xphs.2017.10.020
10.1006/abbi.1996.0337
10.1021/jz900164q
10.1038/nbt0109-26
10.1002/btpr.377
10.1002/jps.22383
10.1038/35065704
10.1002/jps.23642
10.1002/bab.14
10.1023/A:1011082911917
10.1248/cpb.42.5
10.1002/jps.23814
10.1006/abbi.2000.2088
10.1016/0003-2697(76)90527-3
10.1002/jps.21017
10.1006/abbi.2001.2351
10.1002/jps.22357
10.1002/jps.20345
10.1002/biot.201400766
10.1002/jps.23173
10.1002/9780470595886.ch27
10.1002/9780470595886.ch9
10.1016/j.xphs.2021.01.002
10.3390/polym11010010
10.1002/btpr.1771
ContentType Journal Article
Copyright American Association of Pharmaceutical Scientists 2021
Copyright_xml – notice: American Association of Pharmaceutical Scientists 2021
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1208/s12249-021-02034-6
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
ExternalDocumentID 33982230
10_1208_s12249_021_02034_6
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAWUL
BGNMA
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HH5
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OK1
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
-Y2
2VQ
4.4
AANXM
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACBXY
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AOIJS
ATHPR
AYFIA
BDATZ
BSONS
C1A
CAG
CITATION
COF
EJD
EN4
FINBP
FSGXE
GX1
H13
HYE
HZ~
LGEZI
LOTEE
NADUK
NXXTH
O9-
OVD
S1Z
TEORI
NPM
7X8
ID FETCH-LOGICAL-c347t-a23aec3e09a7bc31380fac3b3379b53094a3488bfb11f3cec483a3837a40ca7c3
IEDL.DBID U2A
ISSN 1530-9932
IngestDate Fri Sep 05 13:05:36 EDT 2025
Wed Feb 19 02:27:38 EST 2025
Wed Oct 01 02:38:06 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Fri Feb 21 02:48:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords biotechnology
physical characterization
proteins
protein aggregation
processing
quality by design (QBD)
multivariate analysis
stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a23aec3e09a7bc31380fac3b3379b53094a3488bfb11f3cec483a3837a40ca7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1286-0871
PMID 33982230
PQID 2526306741
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2526306741
pubmed_primary_33982230
crossref_citationtrail_10_1208_s12249_021_02034_6
crossref_primary_10_1208_s12249_021_02034_6
springer_journals_10_1208_s12249_021_02034_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Webb, Webb, Hughes, Sesin, Kincaid (CR14) 2002; 15
Bhatnagar, Bogner, Pikal (CR33) 2007; 12
Butler (CR26) 2001; 1
Izutsu, Yoshioka, Terao (CR40) 1994; 42
Langer (CR24) 1989; 243
Roessl, Humi, Leitgeb, Nidetzky (CR29) 2015; 10
Pikal-Cleland, Rodríguez-Hornedo, Amidon, Carpenter (CR42) 2000; 384
CR16
CR15
Desai, Aaron Pruett, Martin, Colandene, Nesta (CR3) 2017; 30
CR36
CR35
CR34
Kantor, Tchessalov, Warne (CR6) 2011; 14
Roessl, Jajcevic, Leitgeb, Khinast, Nidetzky (CR11) 2014; 103
CR32
Bhatnagar, Nehm, Pikal, Bogner (CR19) 2005; 94
CR30
Anchordoquy, Carpenter (CR20) 1996; 332
Singh, Kolhe, Wang, Nema (CR27) 2009; 1
Debenedetti, Stillinger (CR31) 2001; 410
Finkler, Krummen (CR28) 2016; 44
CR4
Anchordoquy, Izutsu, Randolph, Carpenter (CR18) 2001; 390
Sundaramurthi, Shalaev, Suryanarayanan (CR39) 2010; 1
CR5
CR8
Radmanovic, Serno, Joerg, Germershaus (CR10) 2013; 102
Little (CR21) 2017; 30
CR9
Kolhe, Holding, Lary, Chico, Singh (CR2) 2010; 23
Bhatnagar, Pikal, Bogner (CR41) 2008; 97
Bradford (CR13) 1976; 72
CR22
Gomez, Pikal, Rodriguez-Hornedo (CR38) 2001; 18
Kantor, MacMillan, Ho, Tchessalov, Warne (CR7) 2011; 14
Shamlou, Breen, Bell, Pollo, Thomas (CR1) 2007; 46
Minatovicz, Sun, Foran, Chaudhuri, Xiaolin, Shameem (CR23) 2020; 58
Rathore, Winkle (CR17) 2009; 27
Kolhe, Amend, Singh (CR43) 2010; 26
Fang, Tanaka, Mudhivarthi, Bogner, Pikal (CR12) 2017; 107
Padilla, Chou, Luthra, Pikal (CR37) 2011; 100
Rodrigues, Miller, Glass, Singh, Johnston (CR25) 2011; 100
P Kolhe (2034_CR43) 2010; 26
2034_CR22
U Roessl (2034_CR29) 2015; 10
A Kantor (2034_CR7) 2011; 14
N Radmanovic (2034_CR10) 2013; 102
TJ Anchordoquy (2034_CR18) 2001; 390
PG Debenedetti (2034_CR31) 2001; 410
MA Rodrigues (2034_CR25) 2011; 100
SK Singh (2034_CR27) 2009; 1
TJ Anchordoquy (2034_CR20) 1996; 332
MF Butler (2034_CR26) 2001; 1
A Kantor (2034_CR6) 2011; 14
B Minatovicz (2034_CR23) 2020; 58
KA Pikal-Cleland (2034_CR42) 2000; 384
PA Shamlou (2034_CR1) 2007; 46
JS Langer (2034_CR24) 1989; 243
MM Bradford (2034_CR13) 1976; 72
R Fang (2034_CR12) 2017; 107
G Gomez (2034_CR38) 2001; 18
BS Bhatnagar (2034_CR33) 2007; 12
AM Padilla (2034_CR37) 2011; 100
KG Desai (2034_CR3) 2017; 30
2034_CR32
2034_CR30
P Kolhe (2034_CR2) 2010; 23
P Sundaramurthi (2034_CR39) 2010; 1
BS Bhatnagar (2034_CR41) 2008; 97
2034_CR5
C Finkler (2034_CR28) 2016; 44
2034_CR4
AS Rathore (2034_CR17) 2009; 27
TA Little (2034_CR21) 2017; 30
U Roessl (2034_CR11) 2014; 103
2034_CR36
2034_CR15
2034_CR34
2034_CR35
2034_CR9
BS Bhatnagar (2034_CR19) 2005; 94
KI Izutsu (2034_CR40) 1994; 42
SD Webb (2034_CR14) 2002; 15
2034_CR16
2034_CR8
References_xml – ident: CR22
– volume: 243
  start-page: 1150
  issue: 4895
  year: 1989
  end-page: 1156
  ident: CR24
  article-title: Dendrites, viscous fingers, and the theory of pattern formation
  publication-title: Science.
  doi: 10.1126/science.243.4895.1150
– volume: 58
  start-page: 101703
  issue: August
  year: 2020
  ident: CR23
  article-title: Freeze- concentration of solutes during bulk freezing and its impact on protein stability
  publication-title: J Drug Deliv Sci Technol
  doi: 10.1016/j.jddst.2020.101703
– ident: CR4
– volume: 44
  start-page: 282
  issue: 5
  year: 2016
  end-page: 290
  ident: CR28
  article-title: Introduction to the application of QbD principles for the development of monoclonal antibodies
  publication-title: Biologicals.
  doi: 10.1016/j.biologicals.2016.07.004
– ident: CR16
– volume: 1
  start-page: 213
  issue: 3
  year: 2001
  end-page: 223
  ident: CR26
  article-title: Instability formation and directional dendritic growth of ice studied by optical interferometry
  publication-title: Cryst Growth Des
  doi: 10.1021/cg005534q
– volume: 12
  start-page: 505
  issue: 5
  year: 2007
  end-page: 523
  ident: CR33
  article-title: Protein stability during freezing: separation of stresses and mechanisms of protein stabilization
  publication-title: Pharm Dev Technol
  doi: 10.1080/10837450701481157
– volume: 14
  start-page: 65
  issue: 4
  year: 2011
  end-page: 72
  ident: CR6
  article-title: Quality-by-design for freeze-thaw of biologics: concepts and application to bottles of drug substance
  publication-title: Am Pharm Rev
– volume: 30
  start-page: 30
  issue: 2
  year: 2017
  end-page: 36
  ident: CR3
  article-title: Impact of manufacturing-scale freeze-thaw conditions on a mAb solution
  publication-title: BioPharm Int
– volume: 107
  start-page: 824
  issue: 3
  year: 2017
  end-page: 830
  ident: CR12
  article-title: Effect of controlled ice nucleation on stability of lactate dehydrogenase during freeze-drying
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2017.10.020
– ident: CR30
– volume: 332
  start-page: 231
  issue: 2
  year: 1996
  end-page: 238
  ident: CR20
  article-title: Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.1996.0337
– volume: 1
  start-page: 265
  issue: 1
  year: 2010
  end-page: 268
  ident: CR39
  article-title: pH swing in frozen solutions-consequence of sequential crystallization of buffer components
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz900164q
– volume: 27
  start-page: 26
  issue: 1
  year: 2009
  end-page: 34
  ident: CR17
  article-title: Quality by design for biopharmaceuticals
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0109-26
– ident: CR35
– volume: 26
  start-page: 727
  issue: 3
  year: 2010
  end-page: 733
  ident: CR43
  article-title: Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.377
– ident: CR8
– volume: 15
  start-page: 22
  issue: May
  year: 2002
  end-page: 34
  ident: CR14
  article-title: Freezing biopharmaceuticals using common techniques — and the magnitude of bulk-scale freeze-concentration
  publication-title: BioPharm Int
– volume: 100
  start-page: 1316
  issue: 4
  year: 2011
  end-page: 1329
  ident: CR25
  article-title: Effect of freezing rate and dendritic ice formation on concentration profiles of proteins frozen in cylindrical vessels
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22383
– volume: 410
  start-page: 259
  issue: March
  year: 2001
  end-page: 267
  ident: CR31
  article-title: Review article Supercooled liquids and the glass transition
  publication-title: Nature.
  doi: 10.1038/35065704
– volume: 30
  start-page: 46
  issue: 3
  year: 2017
  end-page: 52
  ident: CR21
  article-title: Process characterization essentials: process understanding and health authorities guidance
  publication-title: BioPharm Int
– volume: 23
  start-page: 53
  issue: 6
  year: 2010
  end-page: 60
  ident: CR2
  article-title: Large scale freezing of biologics : understanding protein and solute concentration changes in a cryovessel—part I
  publication-title: BioPharm Int
– volume: 102
  start-page: 2495
  issue: 8
  year: 2013
  end-page: 2507
  ident: CR10
  article-title: Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23642
– volume: 46
  start-page: 1
  issue: 1
  year: 2007
  end-page: 13
  ident: CR1
  article-title: A new scaleable freeze–thaw technology for bulk protein solutions
  publication-title: Biotechnol Appl Biochem
  doi: 10.1002/bab.14
– volume: 18
  start-page: 90
  issue: 1
  year: 2001
  end-page: 97
  ident: CR38
  article-title: Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions
  publication-title: Pharm Res
  doi: 10.1023/A:1011082911917
– ident: CR15
– volume: 42
  start-page: 5
  issue: 1
  year: 1994
  end-page: 8
  ident: CR40
  article-title: Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying
  publication-title: Chem Pharm Bull
  doi: 10.1248/cpb.42.5
– volume: 103
  start-page: 417
  issue: 2
  year: 2014
  end-page: 426
  ident: CR11
  article-title: Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23814
– volume: 384
  start-page: 398
  issue: 2
  year: 2000
  end-page: 406
  ident: CR42
  article-title: Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2000.2088
– ident: CR9
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: CR13
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– ident: CR32
– volume: 97
  start-page: 798
  issue: 2
  year: 2008
  end-page: 814
  ident: CR41
  article-title: Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing
  publication-title: J Pharm Sci
  doi: 10.1002/jps.21017
– volume: 14
  start-page: 59
  issue: 5
  year: 2011
  end-page: 67
  ident: CR7
  article-title: Quality-by-design for freeze-thaw of biologics: concepts and application during controlled freeze and thaw
  publication-title: Am Pharm Rev
– ident: CR34
– ident: CR36
– ident: CR5
– volume: 390
  start-page: 35
  issue: 1
  year: 2001
  end-page: 41
  ident: CR18
  article-title: Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2001.2351
– volume: 100
  start-page: 1362
  issue: 4
  year: 2011
  end-page: 1376
  ident: CR37
  article-title: The study of amorphous phase separation in a model polymer phase-separating system using Raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22357
– volume: 94
  start-page: 1382
  issue: 6
  year: 2005
  end-page: 1388
  ident: CR19
  article-title: Post-thaw aging affects activity of lactate dehydrogenase
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20345
– volume: 10
  start-page: 1390
  issue: 9
  year: 2015
  end-page: 1399
  ident: CR29
  article-title: Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400766
– volume: 1
  start-page: 34
  issue: October
  year: 2009
  end-page: 42
  ident: CR27
  article-title: Large-scale freezing of biologics
  publication-title: Bioprocess Int
– volume: 44
  start-page: 282
  issue: 5
  year: 2016
  ident: 2034_CR28
  publication-title: Biologicals.
  doi: 10.1016/j.biologicals.2016.07.004
– volume: 26
  start-page: 727
  issue: 3
  year: 2010
  ident: 2034_CR43
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.377
– ident: 2034_CR15
– volume: 100
  start-page: 1362
  issue: 4
  year: 2011
  ident: 2034_CR37
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22357
– ident: 2034_CR32
  doi: 10.1002/jps.23173
– ident: 2034_CR30
– volume: 103
  start-page: 417
  issue: 2
  year: 2014
  ident: 2034_CR11
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23814
– volume: 27
  start-page: 26
  issue: 1
  year: 2009
  ident: 2034_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0109-26
– volume: 30
  start-page: 30
  issue: 2
  year: 2017
  ident: 2034_CR3
  publication-title: BioPharm Int
– volume: 15
  start-page: 22
  issue: May
  year: 2002
  ident: 2034_CR14
  publication-title: BioPharm Int
– volume: 1
  start-page: 213
  issue: 3
  year: 2001
  ident: 2034_CR26
  publication-title: Cryst Growth Des
  doi: 10.1021/cg005534q
– volume: 1
  start-page: 34
  issue: October
  year: 2009
  ident: 2034_CR27
  publication-title: Bioprocess Int
– ident: 2034_CR4
  doi: 10.1002/9780470595886.ch27
– volume: 14
  start-page: 59
  issue: 5
  year: 2011
  ident: 2034_CR7
  publication-title: Am Pharm Rev
– volume: 332
  start-page: 231
  issue: 2
  year: 1996
  ident: 2034_CR20
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.1996.0337
– volume: 94
  start-page: 1382
  issue: 6
  year: 2005
  ident: 2034_CR19
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20345
– ident: 2034_CR34
  doi: 10.1002/9780470595886.ch9
– volume: 18
  start-page: 90
  issue: 1
  year: 2001
  ident: 2034_CR38
  publication-title: Pharm Res
  doi: 10.1023/A:1011082911917
– volume: 107
  start-page: 824
  issue: 3
  year: 2017
  ident: 2034_CR12
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2017.10.020
– ident: 2034_CR35
  doi: 10.1016/j.xphs.2021.01.002
– volume: 46
  start-page: 1
  issue: 1
  year: 2007
  ident: 2034_CR1
  publication-title: Biotechnol Appl Biochem
  doi: 10.1002/bab.14
– ident: 2034_CR9
– volume: 97
  start-page: 798
  issue: 2
  year: 2008
  ident: 2034_CR41
  publication-title: J Pharm Sci
  doi: 10.1002/jps.21017
– volume: 390
  start-page: 35
  issue: 1
  year: 2001
  ident: 2034_CR18
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2001.2351
– volume: 58
  start-page: 101703
  issue: August
  year: 2020
  ident: 2034_CR23
  publication-title: J Drug Deliv Sci Technol
  doi: 10.1016/j.jddst.2020.101703
– volume: 100
  start-page: 1316
  issue: 4
  year: 2011
  ident: 2034_CR25
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22383
– volume: 102
  start-page: 2495
  issue: 8
  year: 2013
  ident: 2034_CR10
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23642
– volume: 30
  start-page: 46
  issue: 3
  year: 2017
  ident: 2034_CR21
  publication-title: BioPharm Int
– volume: 410
  start-page: 259
  issue: March
  year: 2001
  ident: 2034_CR31
  publication-title: Nature.
  doi: 10.1038/35065704
– volume: 42
  start-page: 5
  issue: 1
  year: 1994
  ident: 2034_CR40
  publication-title: Chem Pharm Bull
  doi: 10.1248/cpb.42.5
– ident: 2034_CR16
– ident: 2034_CR36
  doi: 10.3390/polym11010010
– volume: 384
  start-page: 398
  issue: 2
  year: 2000
  ident: 2034_CR42
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2000.2088
– volume: 243
  start-page: 1150
  issue: 4895
  year: 1989
  ident: 2034_CR24
  publication-title: Science.
  doi: 10.1126/science.243.4895.1150
– ident: 2034_CR22
– volume: 23
  start-page: 53
  issue: 6
  year: 2010
  ident: 2034_CR2
  publication-title: BioPharm Int
– volume: 14
  start-page: 65
  issue: 4
  year: 2011
  ident: 2034_CR6
  publication-title: Am Pharm Rev
– volume: 10
  start-page: 1390
  issue: 9
  year: 2015
  ident: 2034_CR29
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400766
– volume: 72
  start-page: 248
  year: 1976
  ident: 2034_CR13
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– ident: 2034_CR8
– ident: 2034_CR5
  doi: 10.1002/btpr.1771
– volume: 1
  start-page: 265
  issue: 1
  year: 2010
  ident: 2034_CR39
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz900164q
– volume: 12
  start-page: 505
  issue: 5
  year: 2007
  ident: 2034_CR33
  publication-title: Pharm Dev Technol
  doi: 10.1080/10837450701481157
SSID ssj0023193
Score 2.3278573
Snippet Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Pharmacology/Toxicology
Pharmacy
Research Article
Title Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics
URI https://link.springer.com/article/10.1208/s12249-021-02034-6
https://www.ncbi.nlm.nih.gov/pubmed/33982230
https://www.proquest.com/docview/2526306741
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: AFBBN
  dateStart: 20000901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: U2A
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA66vvgitV66tUoKIko3dDInmcvjorsVWy_QXdCnkMSEFnRHnF2K_npP5rJSFEHmZR5yGeY7J8nHOecLIbtR4lOZuoxlxgsmuLlGl5JIXDPpcHtPeW5DgfPpWXI8FieX8rIpCivbbPc2JFmt1JUCQpR9L0MMKGchpSBEzwRLFsmSDHJeaMXjuD-nWWhU0JTHvN7v_y3oxbnyRUy02mqGH8hKc0ak_RrUVbLgJh_J3kUtMv3Qo6PnmqmyR_foxbP89MMa8ePS0cJTTY-q7IzwPpjr-Jd0_6gYHNB-oyVOpwU9x2Xj9u-jo79CWjj7jbA5Orx37tGx0R_9jzbVBGGk-u5KnHidjIeD0eExa25TYBZEOmU6Bu0suCjXqbHAIYu8tmAA0txIQJqnAb3ZeMO5B-usyEAH_qpFZHVqYYN0JsXEfSLURF5YHyOv5tdC6FzHPrLcS4cPErKoS3j7g5VtpMbDjRc3KlAOBEXVoCgERVWgqKRLvs373NVCG2-2_triptAfQpBDT1wxK1Us4yTQIMG7ZLMGdD4eQFArBPy-Xouwaly2fGOyz-9rvkWW48raJOPxF9KZ3s_cNp5cpmaHLPV_XP0c7FQG-wSrt-TN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoAL70coDyOhCkRc1mvv6xjRhEDTUolEKifLdm2BaLNVdyPU_HrGu95UUFSp2sse1o8dj8f-NDPfALyJUpclmc1prp2ggukj3FIJAtc8sXi8Z6wwPsF5bz-dzMWXw-QwJIVVXbR755JsLHXDgBDlHyrvAyqoDynw3jNB05uwIRCgxD3YGH76vjtaAy1UKx4SZP7f8u9D6NLN8pJXtDlsxndh3k2zjTH5tb2s9bZZ_cPgeN3_uAd3wu2TDFt1uQ837OIBbB209NXnAzK7yMaqBmSLHFwQW58_BDevLCkdUWSnifvw76N1hYCKvN0pR-_IMLCUk7okX9EgnfxcWTL1Aef0GyqEJeMza1eWzn6o3yTkKfie2qqYOPAjmI9Hs48TGuo0UMNFVlMVc2UNt1GhMm0443nklOGa86zQCUcAqTjaCe00Y44ba0TOlUfGSkRGZYY_ht6iXNinQHTkhHExInZ2JIQqVOwiw1xi8UGoF_WBdQsnTSAx97U0jqUHMyhe2YpXonhlI16Z9uH9us1pS-Fx5devO32QuNO8-0QtbLmsZJzEqQdYgvXhSaso6_449zyIHOc36BZdBmNQXTHYs-t9_gpuTWZ7Uzn9vL-7CbfjRocSyuLn0KvPlvYF3o9q_TJshz_KXAMj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBZdCmMvZWu3Nu22qjDKRiNi-ci3x7Ak9LYusAT6JiRFooPVLrXDaH_9jmwn3egoFL_4QRej7xxLH-ecT4R8CmKXRIlNWaqdYILrObpUhMQ1jSxu7wnPjC9w_nYRH8_E6WV0-VcVf53tvgxJNjUNXqUpr_o3c9eoIQRpv_TxoIz59AIfSRMsfkHWhRdKQIuehYMV5UIDg7ZU5v_9_t2OHp0xH8VH621n_JpstOdFOmgAfkPWbL5JDieN4PRdj04f6qfKHj2kkwcp6rst4malpYWjig7rTA3_Plpp-pf087AYfaGDVlecVgX9jr-Q65_3lp77FHH2AyG0dHxr7b1l0yv1m7aVBX6k5h5LnPgtmY1H06_HrL1ZgRkQScVUCMoasEGmEm2AQxo4ZUADJJmOACmfAvRs7TTnDow1IgXluawSgVGJgXekkxe53SFUB04YFyLH5nMhVKZCFxjuIosPkrOgS_hygaVpZcf97Re_pKcfCIpsQJEIiqxBkXGXHK363DSiG0-2PljiJtE3fMBD5bZYlDKMwthTIsG7ZLsBdDUegFcuBPy-3hJh2bpv-cRku89rvk9eToZjeX5ycbZHXoW14UWMh-9Jp7pd2A94oKn0x9pm_wC4oeph
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+Design+of+Experiments+%28DoE%29+Approach+to+Optimize+Large-Scale+Freeze-Thaw+Process+of+Biologics&rft.jtitle=AAPS+PharmSciTech&rft.au=Minatovicz%2C+Bruna&rft.au=Bogner%2C+Robin&rft.au=Chaudhuri%2C+Bodhisattwa&rft.date=2021-05-12&rft.eissn=1530-9932&rft.volume=22&rft.issue=4&rft.spage=153&rft_id=info:doi/10.1208%2Fs12249-021-02034-6&rft_id=info%3Apmid%2F33982230&rft.externalDocID=33982230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon