Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics
Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model...
        Saved in:
      
    
          | Published in | AAPS PharmSciTech Vol. 22; no. 4; p. 153 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        12.05.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-9932 1530-9932  | 
| DOI | 10.1208/s12249-021-02034-6 | 
Cover
| Abstract | Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from −20 to −80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of −80°C (2.2% higher tetramer retention compared to −20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T. | 
    
|---|---|
| AbstractList | Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T. Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from -20 to -80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of -80°C (2.2% higher tetramer retention compared to -20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T. Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design space to perform large-scale freeze-thaw (F/T) processes of biotherapeutics without inducing protein destabilization. A response surface model was designed to evaluate the following main factors and interactions: fill volume of the protein solution in 1-L containers, distance among nine containers during both F/T, freezer set temperature, and a novel forced air flow methodology during thawing. The analysis from 46 experimental runs indicated over 4-fold increase in the freezing rate by lowering the freezing temperature from −20 to −80°C, and the forced air flow at 98 fpm doubled the thawing rate. Furthermore, multivariate linear regression modeling revealed the significant impact of all main factors investigated on lactate dehydrogenase (LDH) quality attributes. The factor that most strongly affected the retention of LDH activity was the loading distance: ≥ 5 cm among containers positively affected the LDH activity response in 50.6%. The factor that most strongly retained the LDH tetramers was the set freezer temperature towards the lower range of −80°C (2.2% higher tetramer retention compared to −20°C freezing, due to faster freezing rate). In summary, this DoE-based systematic analysis increased F/T process understanding at large scale, identified critical F/T process parameters, and confirmed the feasibility of applying faster freezing and forced air thawing procedures to maintain the stability of LDH solutions subject to large-scale F/T.  | 
    
| ArticleNumber | 153 | 
    
| Author | Chaudhuri, Bodhisattwa Bogner, Robin Minatovicz, Bruna  | 
    
| Author_xml | – sequence: 1 givenname: Bruna surname: Minatovicz fullname: Minatovicz, Bruna organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut – sequence: 2 givenname: Robin surname: Bogner fullname: Bogner, Robin organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut – sequence: 3 givenname: Bodhisattwa orcidid: 0000-0002-1286-0871 surname: Chaudhuri fullname: Chaudhuri, Bodhisattwa email: Bodhi.chaudhuri@uconn.edu organization: Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Department of Chemical & Biomolecular Engineering, University of Connecticut  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33982230$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU1PwzAMhiME4mPwBzigHOFQSOKytkfYxoc0aUiwc-QGdwR1TUk6Afv1ZGxIiAMHyz487yvb7wHbblxDjB1LcS6VyC-CVCotEqFkLAFp0t9i-_ISRFIUoLZ_zXvsIIRXIRTIAnbZHkCRKwVin1XTQNxVHPmQgp01q3n00ZK3c2q6wE-HbnTGr9rWOzQvvHN80nZ2bpfEx-hnlDwarInfeKIlJU8v-M4fvDMUwsrp2rrazawJh2ynwjrQ0ab32PRm9DS4S8aT2_vB1TgxkGZdggqQDJAoMCsNSMhFhQZKgKwo4zFFipDmeVmVUlZgyKQ5IOSQYSoMZgZ67HTtG_d9W1Do9NwGQ3WNDblF0OpS9UH0s1RG9GSDLso5Pes2noz-U__8JgL5GjDeheCp0sZ22FnXdB5traXQqxj0OgYdY9DfMeh-lKo_0h_3f0WwFoUINzPy-tUtfBPf9Z_qC2M3mGA | 
    
| CitedBy_id | crossref_primary_10_1007_s11095_022_03358_z crossref_primary_10_1080_16843703_2024_2404343 crossref_primary_10_3390_mps7050068 crossref_primary_10_1021_acs_molpharmaceut_1c00666 crossref_primary_10_1016_j_ijpharm_2022_121715 crossref_primary_10_1016_j_xphs_2023_11_004 crossref_primary_10_1016_j_xphs_2022_09_020  | 
    
| Cites_doi | 10.1126/science.243.4895.1150 10.1016/j.jddst.2020.101703 10.1016/j.biologicals.2016.07.004 10.1021/cg005534q 10.1080/10837450701481157 10.1016/j.xphs.2017.10.020 10.1006/abbi.1996.0337 10.1021/jz900164q 10.1038/nbt0109-26 10.1002/btpr.377 10.1002/jps.22383 10.1038/35065704 10.1002/jps.23642 10.1002/bab.14 10.1023/A:1011082911917 10.1248/cpb.42.5 10.1002/jps.23814 10.1006/abbi.2000.2088 10.1016/0003-2697(76)90527-3 10.1002/jps.21017 10.1006/abbi.2001.2351 10.1002/jps.22357 10.1002/jps.20345 10.1002/biot.201400766 10.1002/jps.23173 10.1002/9780470595886.ch27 10.1002/9780470595886.ch9 10.1016/j.xphs.2021.01.002 10.3390/polym11010010 10.1002/btpr.1771  | 
    
| ContentType | Journal Article | 
    
| Copyright | American Association of Pharmaceutical Scientists 2021 | 
    
| Copyright_xml | – notice: American Association of Pharmaceutical Scientists 2021 | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1208/s12249-021-02034-6 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| EISSN | 1530-9932 | 
    
| ExternalDocumentID | 33982230 10_1208_s12249_021_02034_6  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -56 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BGNMA CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HG6 HH5 HMJXF HRMNR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9I O9J OK1 P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 -Y2 2VQ 4.4 AANXM AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABRTQ ABULA ACBXY ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW AOIJS ATHPR AYFIA BDATZ BSONS C1A CAG CITATION COF EJD EN4 FINBP FSGXE GX1 H13 HYE HZ~ LGEZI LOTEE NADUK NXXTH O9- OVD S1Z TEORI NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c347t-a23aec3e09a7bc31380fac3b3379b53094a3488bfb11f3cec483a3837a40ca7c3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1530-9932 | 
    
| IngestDate | Fri Sep 05 13:05:36 EDT 2025 Wed Feb 19 02:27:38 EST 2025 Wed Oct 01 02:38:06 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Fri Feb 21 02:48:06 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | biotechnology physical characterization proteins protein aggregation processing quality by design (QBD) multivariate analysis stability  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c347t-a23aec3e09a7bc31380fac3b3379b53094a3488bfb11f3cec483a3837a40ca7c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-1286-0871 | 
    
| PMID | 33982230 | 
    
| PQID | 2526306741 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2526306741 pubmed_primary_33982230 crossref_citationtrail_10_1208_s12249_021_02034_6 crossref_primary_10_1208_s12249_021_02034_6 springer_journals_10_1208_s12249_021_02034_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-12 | 
    
| PublicationDateYYYYMMDD | 2021-05-12 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: United States  | 
    
| PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists | 
    
| PublicationTitle | AAPS PharmSciTech | 
    
| PublicationTitleAbbrev | AAPS PharmSciTech | 
    
| PublicationTitleAlternate | AAPS PharmSciTech | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| References | Webb, Webb, Hughes, Sesin, Kincaid (CR14) 2002; 15 Bhatnagar, Bogner, Pikal (CR33) 2007; 12 Butler (CR26) 2001; 1 Izutsu, Yoshioka, Terao (CR40) 1994; 42 Langer (CR24) 1989; 243 Roessl, Humi, Leitgeb, Nidetzky (CR29) 2015; 10 Pikal-Cleland, Rodríguez-Hornedo, Amidon, Carpenter (CR42) 2000; 384 CR16 CR15 Desai, Aaron Pruett, Martin, Colandene, Nesta (CR3) 2017; 30 CR36 CR35 CR34 Kantor, Tchessalov, Warne (CR6) 2011; 14 Roessl, Jajcevic, Leitgeb, Khinast, Nidetzky (CR11) 2014; 103 CR32 Bhatnagar, Nehm, Pikal, Bogner (CR19) 2005; 94 CR30 Anchordoquy, Carpenter (CR20) 1996; 332 Singh, Kolhe, Wang, Nema (CR27) 2009; 1 Debenedetti, Stillinger (CR31) 2001; 410 Finkler, Krummen (CR28) 2016; 44 CR4 Anchordoquy, Izutsu, Randolph, Carpenter (CR18) 2001; 390 Sundaramurthi, Shalaev, Suryanarayanan (CR39) 2010; 1 CR5 CR8 Radmanovic, Serno, Joerg, Germershaus (CR10) 2013; 102 Little (CR21) 2017; 30 CR9 Kolhe, Holding, Lary, Chico, Singh (CR2) 2010; 23 Bhatnagar, Pikal, Bogner (CR41) 2008; 97 Bradford (CR13) 1976; 72 CR22 Gomez, Pikal, Rodriguez-Hornedo (CR38) 2001; 18 Kantor, MacMillan, Ho, Tchessalov, Warne (CR7) 2011; 14 Shamlou, Breen, Bell, Pollo, Thomas (CR1) 2007; 46 Minatovicz, Sun, Foran, Chaudhuri, Xiaolin, Shameem (CR23) 2020; 58 Rathore, Winkle (CR17) 2009; 27 Kolhe, Amend, Singh (CR43) 2010; 26 Fang, Tanaka, Mudhivarthi, Bogner, Pikal (CR12) 2017; 107 Padilla, Chou, Luthra, Pikal (CR37) 2011; 100 Rodrigues, Miller, Glass, Singh, Johnston (CR25) 2011; 100 P Kolhe (2034_CR43) 2010; 26 2034_CR22 U Roessl (2034_CR29) 2015; 10 A Kantor (2034_CR7) 2011; 14 N Radmanovic (2034_CR10) 2013; 102 TJ Anchordoquy (2034_CR18) 2001; 390 PG Debenedetti (2034_CR31) 2001; 410 MA Rodrigues (2034_CR25) 2011; 100 SK Singh (2034_CR27) 2009; 1 TJ Anchordoquy (2034_CR20) 1996; 332 MF Butler (2034_CR26) 2001; 1 A Kantor (2034_CR6) 2011; 14 B Minatovicz (2034_CR23) 2020; 58 KA Pikal-Cleland (2034_CR42) 2000; 384 PA Shamlou (2034_CR1) 2007; 46 JS Langer (2034_CR24) 1989; 243 MM Bradford (2034_CR13) 1976; 72 R Fang (2034_CR12) 2017; 107 G Gomez (2034_CR38) 2001; 18 BS Bhatnagar (2034_CR33) 2007; 12 AM Padilla (2034_CR37) 2011; 100 KG Desai (2034_CR3) 2017; 30 2034_CR32 2034_CR30 P Kolhe (2034_CR2) 2010; 23 P Sundaramurthi (2034_CR39) 2010; 1 BS Bhatnagar (2034_CR41) 2008; 97 2034_CR5 C Finkler (2034_CR28) 2016; 44 2034_CR4 AS Rathore (2034_CR17) 2009; 27 TA Little (2034_CR21) 2017; 30 U Roessl (2034_CR11) 2014; 103 2034_CR36 2034_CR15 2034_CR34 2034_CR35 2034_CR9 BS Bhatnagar (2034_CR19) 2005; 94 KI Izutsu (2034_CR40) 1994; 42 SD Webb (2034_CR14) 2002; 15 2034_CR16 2034_CR8  | 
    
| References_xml | – ident: CR22 – volume: 243 start-page: 1150 issue: 4895 year: 1989 end-page: 1156 ident: CR24 article-title: Dendrites, viscous fingers, and the theory of pattern formation publication-title: Science. doi: 10.1126/science.243.4895.1150 – volume: 58 start-page: 101703 issue: August year: 2020 ident: CR23 article-title: Freeze- concentration of solutes during bulk freezing and its impact on protein stability publication-title: J Drug Deliv Sci Technol doi: 10.1016/j.jddst.2020.101703 – ident: CR4 – volume: 44 start-page: 282 issue: 5 year: 2016 end-page: 290 ident: CR28 article-title: Introduction to the application of QbD principles for the development of monoclonal antibodies publication-title: Biologicals. doi: 10.1016/j.biologicals.2016.07.004 – ident: CR16 – volume: 1 start-page: 213 issue: 3 year: 2001 end-page: 223 ident: CR26 article-title: Instability formation and directional dendritic growth of ice studied by optical interferometry publication-title: Cryst Growth Des doi: 10.1021/cg005534q – volume: 12 start-page: 505 issue: 5 year: 2007 end-page: 523 ident: CR33 article-title: Protein stability during freezing: separation of stresses and mechanisms of protein stabilization publication-title: Pharm Dev Technol doi: 10.1080/10837450701481157 – volume: 14 start-page: 65 issue: 4 year: 2011 end-page: 72 ident: CR6 article-title: Quality-by-design for freeze-thaw of biologics: concepts and application to bottles of drug substance publication-title: Am Pharm Rev – volume: 30 start-page: 30 issue: 2 year: 2017 end-page: 36 ident: CR3 article-title: Impact of manufacturing-scale freeze-thaw conditions on a mAb solution publication-title: BioPharm Int – volume: 107 start-page: 824 issue: 3 year: 2017 end-page: 830 ident: CR12 article-title: Effect of controlled ice nucleation on stability of lactate dehydrogenase during freeze-drying publication-title: J Pharm Sci doi: 10.1016/j.xphs.2017.10.020 – ident: CR30 – volume: 332 start-page: 231 issue: 2 year: 1996 end-page: 238 ident: CR20 article-title: Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state publication-title: Arch Biochem Biophys doi: 10.1006/abbi.1996.0337 – volume: 1 start-page: 265 issue: 1 year: 2010 end-page: 268 ident: CR39 article-title: pH swing in frozen solutions-consequence of sequential crystallization of buffer components publication-title: J Phys Chem Lett doi: 10.1021/jz900164q – volume: 27 start-page: 26 issue: 1 year: 2009 end-page: 34 ident: CR17 article-title: Quality by design for biopharmaceuticals publication-title: Nat Biotechnol doi: 10.1038/nbt0109-26 – ident: CR35 – volume: 26 start-page: 727 issue: 3 year: 2010 end-page: 733 ident: CR43 article-title: Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation publication-title: Biotechnol Prog doi: 10.1002/btpr.377 – ident: CR8 – volume: 15 start-page: 22 issue: May year: 2002 end-page: 34 ident: CR14 article-title: Freezing biopharmaceuticals using common techniques — and the magnitude of bulk-scale freeze-concentration publication-title: BioPharm Int – volume: 100 start-page: 1316 issue: 4 year: 2011 end-page: 1329 ident: CR25 article-title: Effect of freezing rate and dendritic ice formation on concentration profiles of proteins frozen in cylindrical vessels publication-title: J Pharm Sci doi: 10.1002/jps.22383 – volume: 410 start-page: 259 issue: March year: 2001 end-page: 267 ident: CR31 article-title: Review article Supercooled liquids and the glass transition publication-title: Nature. doi: 10.1038/35065704 – volume: 30 start-page: 46 issue: 3 year: 2017 end-page: 52 ident: CR21 article-title: Process characterization essentials: process understanding and health authorities guidance publication-title: BioPharm Int – volume: 23 start-page: 53 issue: 6 year: 2010 end-page: 60 ident: CR2 article-title: Large scale freezing of biologics : understanding protein and solute concentration changes in a cryovessel—part I publication-title: BioPharm Int – volume: 102 start-page: 2495 issue: 8 year: 2013 end-page: 2507 ident: CR10 article-title: Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality publication-title: J Pharm Sci doi: 10.1002/jps.23642 – volume: 46 start-page: 1 issue: 1 year: 2007 end-page: 13 ident: CR1 article-title: A new scaleable freeze–thaw technology for bulk protein solutions publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.14 – volume: 18 start-page: 90 issue: 1 year: 2001 end-page: 97 ident: CR38 article-title: Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions publication-title: Pharm Res doi: 10.1023/A:1011082911917 – ident: CR15 – volume: 42 start-page: 5 issue: 1 year: 1994 end-page: 8 ident: CR40 article-title: Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying publication-title: Chem Pharm Bull doi: 10.1248/cpb.42.5 – volume: 103 start-page: 417 issue: 2 year: 2014 end-page: 426 ident: CR11 article-title: Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation publication-title: J Pharm Sci doi: 10.1002/jps.23814 – volume: 384 start-page: 398 issue: 2 year: 2000 end-page: 406 ident: CR42 article-title: Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase publication-title: Arch Biochem Biophys doi: 10.1006/abbi.2000.2088 – ident: CR9 – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: CR13 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – ident: CR32 – volume: 97 start-page: 798 issue: 2 year: 2008 end-page: 814 ident: CR41 article-title: Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing publication-title: J Pharm Sci doi: 10.1002/jps.21017 – volume: 14 start-page: 59 issue: 5 year: 2011 end-page: 67 ident: CR7 article-title: Quality-by-design for freeze-thaw of biologics: concepts and application during controlled freeze and thaw publication-title: Am Pharm Rev – ident: CR34 – ident: CR36 – ident: CR5 – volume: 390 start-page: 35 issue: 1 year: 2001 end-page: 41 ident: CR18 article-title: Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying publication-title: Arch Biochem Biophys doi: 10.1006/abbi.2001.2351 – volume: 100 start-page: 1362 issue: 4 year: 2011 end-page: 1376 ident: CR37 article-title: The study of amorphous phase separation in a model polymer phase-separating system using Raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature publication-title: J Pharm Sci doi: 10.1002/jps.22357 – volume: 94 start-page: 1382 issue: 6 year: 2005 end-page: 1388 ident: CR19 article-title: Post-thaw aging affects activity of lactate dehydrogenase publication-title: J Pharm Sci doi: 10.1002/jps.20345 – volume: 10 start-page: 1390 issue: 9 year: 2015 end-page: 1399 ident: CR29 article-title: Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase publication-title: Biotechnol J doi: 10.1002/biot.201400766 – volume: 1 start-page: 34 issue: October year: 2009 end-page: 42 ident: CR27 article-title: Large-scale freezing of biologics publication-title: Bioprocess Int – volume: 44 start-page: 282 issue: 5 year: 2016 ident: 2034_CR28 publication-title: Biologicals. doi: 10.1016/j.biologicals.2016.07.004 – volume: 26 start-page: 727 issue: 3 year: 2010 ident: 2034_CR43 publication-title: Biotechnol Prog doi: 10.1002/btpr.377 – ident: 2034_CR15 – volume: 100 start-page: 1362 issue: 4 year: 2011 ident: 2034_CR37 publication-title: J Pharm Sci doi: 10.1002/jps.22357 – ident: 2034_CR32 doi: 10.1002/jps.23173 – ident: 2034_CR30 – volume: 103 start-page: 417 issue: 2 year: 2014 ident: 2034_CR11 publication-title: J Pharm Sci doi: 10.1002/jps.23814 – volume: 27 start-page: 26 issue: 1 year: 2009 ident: 2034_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt0109-26 – volume: 30 start-page: 30 issue: 2 year: 2017 ident: 2034_CR3 publication-title: BioPharm Int – volume: 15 start-page: 22 issue: May year: 2002 ident: 2034_CR14 publication-title: BioPharm Int – volume: 1 start-page: 213 issue: 3 year: 2001 ident: 2034_CR26 publication-title: Cryst Growth Des doi: 10.1021/cg005534q – volume: 1 start-page: 34 issue: October year: 2009 ident: 2034_CR27 publication-title: Bioprocess Int – ident: 2034_CR4 doi: 10.1002/9780470595886.ch27 – volume: 14 start-page: 59 issue: 5 year: 2011 ident: 2034_CR7 publication-title: Am Pharm Rev – volume: 332 start-page: 231 issue: 2 year: 1996 ident: 2034_CR20 publication-title: Arch Biochem Biophys doi: 10.1006/abbi.1996.0337 – volume: 94 start-page: 1382 issue: 6 year: 2005 ident: 2034_CR19 publication-title: J Pharm Sci doi: 10.1002/jps.20345 – ident: 2034_CR34 doi: 10.1002/9780470595886.ch9 – volume: 18 start-page: 90 issue: 1 year: 2001 ident: 2034_CR38 publication-title: Pharm Res doi: 10.1023/A:1011082911917 – volume: 107 start-page: 824 issue: 3 year: 2017 ident: 2034_CR12 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2017.10.020 – ident: 2034_CR35 doi: 10.1016/j.xphs.2021.01.002 – volume: 46 start-page: 1 issue: 1 year: 2007 ident: 2034_CR1 publication-title: Biotechnol Appl Biochem doi: 10.1002/bab.14 – ident: 2034_CR9 – volume: 97 start-page: 798 issue: 2 year: 2008 ident: 2034_CR41 publication-title: J Pharm Sci doi: 10.1002/jps.21017 – volume: 390 start-page: 35 issue: 1 year: 2001 ident: 2034_CR18 publication-title: Arch Biochem Biophys doi: 10.1006/abbi.2001.2351 – volume: 58 start-page: 101703 issue: August year: 2020 ident: 2034_CR23 publication-title: J Drug Deliv Sci Technol doi: 10.1016/j.jddst.2020.101703 – volume: 100 start-page: 1316 issue: 4 year: 2011 ident: 2034_CR25 publication-title: J Pharm Sci doi: 10.1002/jps.22383 – volume: 102 start-page: 2495 issue: 8 year: 2013 ident: 2034_CR10 publication-title: J Pharm Sci doi: 10.1002/jps.23642 – volume: 30 start-page: 46 issue: 3 year: 2017 ident: 2034_CR21 publication-title: BioPharm Int – volume: 410 start-page: 259 issue: March year: 2001 ident: 2034_CR31 publication-title: Nature. doi: 10.1038/35065704 – volume: 42 start-page: 5 issue: 1 year: 1994 ident: 2034_CR40 publication-title: Chem Pharm Bull doi: 10.1248/cpb.42.5 – ident: 2034_CR16 – ident: 2034_CR36 doi: 10.3390/polym11010010 – volume: 384 start-page: 398 issue: 2 year: 2000 ident: 2034_CR42 publication-title: Arch Biochem Biophys doi: 10.1006/abbi.2000.2088 – volume: 243 start-page: 1150 issue: 4895 year: 1989 ident: 2034_CR24 publication-title: Science. doi: 10.1126/science.243.4895.1150 – ident: 2034_CR22 – volume: 23 start-page: 53 issue: 6 year: 2010 ident: 2034_CR2 publication-title: BioPharm Int – volume: 14 start-page: 65 issue: 4 year: 2011 ident: 2034_CR6 publication-title: Am Pharm Rev – volume: 10 start-page: 1390 issue: 9 year: 2015 ident: 2034_CR29 publication-title: Biotechnol J doi: 10.1002/biot.201400766 – volume: 72 start-page: 248 year: 1976 ident: 2034_CR13 publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – ident: 2034_CR8 – ident: 2034_CR5 doi: 10.1002/btpr.1771 – volume: 1 start-page: 265 issue: 1 year: 2010 ident: 2034_CR39 publication-title: J Phys Chem Lett doi: 10.1021/jz900164q – volume: 12 start-page: 505 issue: 5 year: 2007 ident: 2034_CR33 publication-title: Pharm Dev Technol doi: 10.1080/10837450701481157  | 
    
| SSID | ssj0023193 | 
    
| Score | 2.3278573 | 
    
| Snippet | Large volumes of protein solutions are commonly stored in a frozen state before further drug product fill and finish. This study aimed to establish a design... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 153 | 
    
| SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Pharmacology/Toxicology Pharmacy Research Article  | 
    
| Title | Use of a Design of Experiments (DoE) Approach to Optimize Large-Scale Freeze-Thaw Process of Biologics | 
    
| URI | https://link.springer.com/article/10.1208/s12249-021-02034-6 https://www.ncbi.nlm.nih.gov/pubmed/33982230 https://www.proquest.com/docview/2526306741  | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1530-9932 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: AFBBN dateStart: 20000901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1530-9932 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1530-9932 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: U2A dateStart: 20000301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA66vvgitV66tUoKIko3dDInmcvjorsVWy_QXdCnkMSEFnRHnF2K_npP5rJSFEHmZR5yGeY7J8nHOecLIbtR4lOZuoxlxgsmuLlGl5JIXDPpcHtPeW5DgfPpWXI8FieX8rIpCivbbPc2JFmt1JUCQpR9L0MMKGchpSBEzwRLFsmSDHJeaMXjuD-nWWhU0JTHvN7v_y3oxbnyRUy02mqGH8hKc0ak_RrUVbLgJh_J3kUtMv3Qo6PnmqmyR_foxbP89MMa8ePS0cJTTY-q7IzwPpjr-Jd0_6gYHNB-oyVOpwU9x2Xj9u-jo79CWjj7jbA5Orx37tGx0R_9jzbVBGGk-u5KnHidjIeD0eExa25TYBZEOmU6Bu0suCjXqbHAIYu8tmAA0txIQJqnAb3ZeMO5B-usyEAH_qpFZHVqYYN0JsXEfSLURF5YHyOv5tdC6FzHPrLcS4cPErKoS3j7g5VtpMbDjRc3KlAOBEXVoCgERVWgqKRLvs373NVCG2-2_triptAfQpBDT1wxK1Us4yTQIMG7ZLMGdD4eQFArBPy-Xouwaly2fGOyz-9rvkWW48raJOPxF9KZ3s_cNp5cpmaHLPV_XP0c7FQG-wSrt-TN | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeoAL70coDyOhCkRc1mvv6xjRhEDTUolEKifLdm2BaLNVdyPU_HrGu95UUFSp2sse1o8dj8f-NDPfALyJUpclmc1prp2ggukj3FIJAtc8sXi8Z6wwPsF5bz-dzMWXw-QwJIVVXbR755JsLHXDgBDlHyrvAyqoDynw3jNB05uwIRCgxD3YGH76vjtaAy1UKx4SZP7f8u9D6NLN8pJXtDlsxndh3k2zjTH5tb2s9bZZ_cPgeN3_uAd3wu2TDFt1uQ837OIBbB209NXnAzK7yMaqBmSLHFwQW58_BDevLCkdUWSnifvw76N1hYCKvN0pR-_IMLCUk7okX9EgnfxcWTL1Aef0GyqEJeMza1eWzn6o3yTkKfie2qqYOPAjmI9Hs48TGuo0UMNFVlMVc2UNt1GhMm0443nklOGa86zQCUcAqTjaCe00Y44ba0TOlUfGSkRGZYY_ht6iXNinQHTkhHExInZ2JIQqVOwiw1xi8UGoF_WBdQsnTSAx97U0jqUHMyhe2YpXonhlI16Z9uH9us1pS-Fx5devO32QuNO8-0QtbLmsZJzEqQdYgvXhSaso6_449zyIHOc36BZdBmNQXTHYs-t9_gpuTWZ7Uzn9vL-7CbfjRocSyuLn0KvPlvYF3o9q_TJshz_KXAMj | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBZdCmMvZWu3Nu22qjDKRiNi-ci3x7Ak9LYusAT6JiRFooPVLrXDaH_9jmwn3egoFL_4QRej7xxLH-ecT4R8CmKXRIlNWaqdYILrObpUhMQ1jSxu7wnPjC9w_nYRH8_E6WV0-VcVf53tvgxJNjUNXqUpr_o3c9eoIQRpv_TxoIz59AIfSRMsfkHWhRdKQIuehYMV5UIDg7ZU5v_9_t2OHp0xH8VH621n_JpstOdFOmgAfkPWbL5JDieN4PRdj04f6qfKHj2kkwcp6rst4malpYWjig7rTA3_Plpp-pf087AYfaGDVlecVgX9jr-Q65_3lp77FHH2AyG0dHxr7b1l0yv1m7aVBX6k5h5LnPgtmY1H06_HrL1ZgRkQScVUCMoasEGmEm2AQxo4ZUADJJmOACmfAvRs7TTnDow1IgXluawSgVGJgXekkxe53SFUB04YFyLH5nMhVKZCFxjuIosPkrOgS_hygaVpZcf97Re_pKcfCIpsQJEIiqxBkXGXHK363DSiG0-2PljiJtE3fMBD5bZYlDKMwthTIsG7ZLsBdDUegFcuBPy-3hJh2bpv-cRku89rvk9eToZjeX5ycbZHXoW14UWMh-9Jp7pd2A94oKn0x9pm_wC4oeph | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+Design+of+Experiments+%28DoE%29+Approach+to+Optimize+Large-Scale+Freeze-Thaw+Process+of+Biologics&rft.jtitle=AAPS+PharmSciTech&rft.au=Minatovicz%2C+Bruna&rft.au=Bogner%2C+Robin&rft.au=Chaudhuri%2C+Bodhisattwa&rft.date=2021-05-12&rft.eissn=1530-9932&rft.volume=22&rft.issue=4&rft.spage=153&rft_id=info:doi/10.1208%2Fs12249-021-02034-6&rft_id=info%3Apmid%2F33982230&rft.externalDocID=33982230 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |