Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relatio...
Saved in:
Published in | Acta mechanica Sinica Vol. 27; no. 2; pp. 285 - 296 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
01.04.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0567-7718 1614-3116 |
DOI | 10.1007/s10409-011-0424-1 |
Cover
Abstract | Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation. |
---|---|
AbstractList | Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation. Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation. |
Author | Wan-Yong Wang Li-Jun Pei |
AuthorAffiliation | School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, China Department of Mathematics, Zhengzhou University, 450001 Zhengzhou, China |
Author_xml | – sequence: 1 givenname: Wan-Yong surname: Wang fullname: Wang, Wan-Yong organization: School of Aerospace Engineering and Applied Mechanics, Tongji University – sequence: 2 givenname: Li-Jun surname: Pei fullname: Pei, Li-Jun email: peilijun@zzu.edu.cn organization: Department of Mathematics, Zhengzhou University |
BookMark | eNp9kLFu3DAMhoUgBXq59gG6CV06qREt2TqPRdAmBQKkQNNZoGw6UeqTHEk3-O2j62XqkInkD34k8F2w8xADMfYJ5FeQ0lxmkFr2QgIIqRst4IxtoAMtFEB3zjay7YwwBnbv2UXOT1KqDgxs2K_fBZ2ffVk5hpHfxGXizk-HNGDxMfA4ceQjzbjSyNMxEyMtFEYKhS-JRiwxidqsPK-50P4DezfhnOnja92yPz--31_diNu7659X327FoLQponcGaTe0GnE0umsnNKhpwjoONWkaY5zrsW8kORqlImg7hdS7UZqddKi27Mvp7pLi84FysXufB5pnDBQP2fagu6ZrK7VlcNocUsw50WSX5PeYVgvSHuXZkzxb5dmjPAuVMf8xgy__jJSEfn6TbE5krl_CAyX7FA8pVBVvQp9f3z3G8PBcOetw-Dv5mawyWvVm16oXO_CSjA |
CitedBy_id | crossref_primary_10_1016_j_amc_2015_06_108 crossref_primary_10_1016_0031_9422_94_00474_8 crossref_primary_10_1186_s13662_015_0713_2 crossref_primary_10_3934_mbe_2021156 crossref_primary_10_1016_j_amc_2014_01_025 crossref_primary_10_1007_s10409_014_0064_3 crossref_primary_10_1155_2013_679602 crossref_primary_10_1016_j_ecocom_2014_02_001 crossref_primary_10_1142_S0218127421502126 crossref_primary_10_1186_s13662_017_1292_1 crossref_primary_10_1039_b604174d crossref_primary_10_1016_j_chaos_2018_04_010 |
Cites_doi | 10.1016/j.cam.2008.11.009 10.1016/j.chaos.2004.05.048 10.1016/0169-5347(91)90052-Y 10.1016/j.chaos.2004.03.026 10.2307/3544994 10.1016/j.chaos.2007.06.122 10.1007/BF02487763 10.1007/s002850100121 10.1007/s10409-008-0170-1 10.1016/S0022-5193(89)80211-5 10.1007/s002850100079 10.1016/j.chaos.2005.10.020 10.1007/BF02489381 |
ContentType | Journal Article |
Copyright | The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH 2011 |
Copyright_xml | – notice: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH 2011 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s10409-011-0424-1 |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
DocumentTitleAlternate | Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system |
EISSN | 1614-3116 |
EndPage | 296 |
ExternalDocumentID | 10_1007_s10409_011_0424_1 37439785 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 6XO 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABULA ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AMYQR ARCEE ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG CCEZO CCVFK CDYEO CHBEP COF CQIGP CS3 CSCUP CW9 DL5 DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IPNFZ IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NQJWS NU0 O9- O93 O9J P9P PF0 PT4 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCL SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 ~WA -SA -S~ 5XA 5XB AACDK AAEWM AAJBT AASML AATNV AAXDM AAYZH ABAKF ABJNI ABQSL ABTKH ABWNU ACAOD ACDTI ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AFBBN AGQEE AGRTI AIGIU AMXSW AOCGG BSONS CAJEA DDRTE DPUIP IKXTQ IWAJR NPVJJ Q-- SNPRN SOHCF U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c347t-9b7ae8c54aad7465fa7a4efaaadcad72277bb9a920ebed03e1563ae9bd0780ba3 |
IEDL.DBID | AGYKE |
ISSN | 0567-7718 |
IngestDate | Fri Sep 05 00:41:59 EDT 2025 Wed Oct 01 02:41:10 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Fri Feb 21 02:44:50 EST 2025 Thu Nov 24 20:35:16 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Time delays Stability Center manifold Hopf bifurcation Normal form |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-9b7ae8c54aad7465fa7a4efaaadcad72277bb9a920ebed03e1563ae9bd0780ba3 |
Notes | O322 Time delays · Stability · Hopf bifurcation · Normal form · Center manifold TP183 11-2063/O3 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 914626556 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_914626556 crossref_primary_10_1007_s10409_011_0424_1 crossref_citationtrail_10_1007_s10409_011_0424_1 springer_journals_10_1007_s10409_011_0424_1 chongqing_backfile_37439785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Acta mechanica Sinica |
PublicationTitleAbbrev | Acta Mech Sin |
PublicationTitleAlternate | Acta Mechanica Sinica |
PublicationYear | 2011 |
Publisher | The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences |
Publisher_xml | – name: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences |
References | ArditiR.GinzburgL.R.Coupling in predator-prey dynamics: ratio-dependenceJ. Theor. Biol.198913931132610.1016/S0022-5193(89)80211-5 HanskiI.The functional response of predator: worries about scaleTrends. Ecol. Evol.1991614114210.1016/0169-5347(91)90052-Y LiaoX.F.Hopf and resonant codimension two bifurcation in Van de Pol equation with two time delaysChaos, Solitons and Fractals2005238578711076.3408710.1016/j.chaos.2004.05.0482093774 SongY.HanM.PengY.Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delaysChaos, Solitons and Fractals2004225113911481067.3407510.1016/j.chaos.2004.03.0262078839 FreedmanH.I.Deterministic Mathematical Model in Population Ecology1980New YorkMarcel Dekker WangZ.H.HuH.H.A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillatorActa Mechanica Sinica200824444945410.1007/s10409-008-0170-12425571 WangZ.H.HuH.H.Stability of linear time variant dynamic systems with multiple time delaysActa Mechanica Sinica199814327428210.1007/BF02487763 TangS.ChenL.Density-dependent birth rate, birth pulses and their population dynamic consequencesJ. Math. Biol.200244218519910.1007/s0028501001211889910 HsuS.B.HwangT.W.KuangY.Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey systemJ. Math. Biol.20014264895060984.9203510.1007/s0028501000791845589 WangH.L.WangZ.H.Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedbackActa Mechanica Sinica200420442643410.1007/BF02489381 GanQ.T.XuR.YangP.H.Bifurcation and chaos in a ratio-dependent predator-prey system with time delayChaos, Solitons and Fractals2009394188318951197.3702810.1016/j.chaos.2007.06.1222514575 XuR.GanQ.T.MaZ.E.Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delayJ. Comput. Appl. Math.200923011872031186.3412210.1016/j.cam.2008.11.0092532302 KuangY.Delay Differential Equation with Applications in Population Dynamics1993New YorkAcademic Press MayR.M.Stability and Complexity in Model Ecosystems1974Princeton, N. J.Princeton Univ. Press HassardB.KazarinoD.WanY.Theory and Applications of Hopf Bifurcation1981CambridgeCambridge University Press0474.34002 ArditiR.PerrinN.SaiahH.Functional response and heterogeneities: an experiment test with cladoceransOikos1991601697510.2307/3544994 ChenY.YuJ.SunC.Stability and Hopf bifurcation analysis in a three-level food chain system with delayChaos, Solitons and Fractals20073136836941146.3405110.1016/j.chaos.2005.10.0202262303 Y. Song (424_CR10) 2004; 22 Z.H. Wang (424_CR15) 1998; 14 X.F. Liao (424_CR16) 2005; 23 Y. Kuang (424_CR1) 1993 H.I. Freedman (424_CR5) 1980 R. Arditi (424_CR2) 1989; 139 Y. Chen (424_CR9) 2007; 31 S. Tang (424_CR11) 2002; 44 R.M. May (424_CR6) 1974 H.L. Wang (424_CR14) 2004; 20 B. Hassard (424_CR17) 1981 R. Xu (424_CR8) 2009; 230 Z.H. Wang (424_CR13) 2008; 24 I. Hanski (424_CR4) 1991; 6 S.B. Hsu (424_CR7) 2001; 42 Q.T. Gan (424_CR12) 2009; 39 R. Arditi (424_CR3) 1991; 60 |
References_xml | – reference: ChenY.YuJ.SunC.Stability and Hopf bifurcation analysis in a three-level food chain system with delayChaos, Solitons and Fractals20073136836941146.3405110.1016/j.chaos.2005.10.0202262303 – reference: SongY.HanM.PengY.Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delaysChaos, Solitons and Fractals2004225113911481067.3407510.1016/j.chaos.2004.03.0262078839 – reference: ArditiR.GinzburgL.R.Coupling in predator-prey dynamics: ratio-dependenceJ. Theor. Biol.198913931132610.1016/S0022-5193(89)80211-5 – reference: LiaoX.F.Hopf and resonant codimension two bifurcation in Van de Pol equation with two time delaysChaos, Solitons and Fractals2005238578711076.3408710.1016/j.chaos.2004.05.0482093774 – reference: WangH.L.WangZ.H.Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedbackActa Mechanica Sinica200420442643410.1007/BF02489381 – reference: WangZ.H.HuH.H.A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillatorActa Mechanica Sinica200824444945410.1007/s10409-008-0170-12425571 – reference: XuR.GanQ.T.MaZ.E.Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delayJ. Comput. Appl. Math.200923011872031186.3412210.1016/j.cam.2008.11.0092532302 – reference: HsuS.B.HwangT.W.KuangY.Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey systemJ. Math. Biol.20014264895060984.9203510.1007/s0028501000791845589 – reference: MayR.M.Stability and Complexity in Model Ecosystems1974Princeton, N. J.Princeton Univ. Press – reference: HanskiI.The functional response of predator: worries about scaleTrends. Ecol. Evol.1991614114210.1016/0169-5347(91)90052-Y – reference: ArditiR.PerrinN.SaiahH.Functional response and heterogeneities: an experiment test with cladoceransOikos1991601697510.2307/3544994 – reference: FreedmanH.I.Deterministic Mathematical Model in Population Ecology1980New YorkMarcel Dekker – reference: WangZ.H.HuH.H.Stability of linear time variant dynamic systems with multiple time delaysActa Mechanica Sinica199814327428210.1007/BF02487763 – reference: GanQ.T.XuR.YangP.H.Bifurcation and chaos in a ratio-dependent predator-prey system with time delayChaos, Solitons and Fractals2009394188318951197.3702810.1016/j.chaos.2007.06.1222514575 – reference: KuangY.Delay Differential Equation with Applications in Population Dynamics1993New YorkAcademic Press – reference: HassardB.KazarinoD.WanY.Theory and Applications of Hopf Bifurcation1981CambridgeCambridge University Press0474.34002 – reference: TangS.ChenL.Density-dependent birth rate, birth pulses and their population dynamic consequencesJ. Math. Biol.200244218519910.1007/s0028501001211889910 – volume: 230 start-page: 187 issue: 1 year: 2009 ident: 424_CR8 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.11.009 – volume-title: Theory and Applications of Hopf Bifurcation year: 1981 ident: 424_CR17 – volume-title: Delay Differential Equation with Applications in Population Dynamics year: 1993 ident: 424_CR1 – volume-title: Stability and Complexity in Model Ecosystems year: 1974 ident: 424_CR6 – volume: 23 start-page: 857 year: 2005 ident: 424_CR16 publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2004.05.048 – volume: 6 start-page: 141 year: 1991 ident: 424_CR4 publication-title: Trends. Ecol. Evol. doi: 10.1016/0169-5347(91)90052-Y – volume: 22 start-page: 1139 issue: 5 year: 2004 ident: 424_CR10 publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2004.03.026 – volume: 60 start-page: 69 issue: 1 year: 1991 ident: 424_CR3 publication-title: Oikos doi: 10.2307/3544994 – volume: 39 start-page: 1883 issue: 4 year: 2009 ident: 424_CR12 publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2007.06.122 – volume: 14 start-page: 274 issue: 3 year: 1998 ident: 424_CR15 publication-title: Acta Mechanica Sinica doi: 10.1007/BF02487763 – volume: 44 start-page: 185 issue: 2 year: 2002 ident: 424_CR11 publication-title: J. Math. Biol. doi: 10.1007/s002850100121 – volume: 24 start-page: 449 issue: 4 year: 2008 ident: 424_CR13 publication-title: Acta Mechanica Sinica doi: 10.1007/s10409-008-0170-1 – volume: 139 start-page: 311 year: 1989 ident: 424_CR2 publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(89)80211-5 – volume: 42 start-page: 489 issue: 6 year: 2001 ident: 424_CR7 publication-title: J. Math. Biol. doi: 10.1007/s002850100079 – volume-title: Deterministic Mathematical Model in Population Ecology year: 1980 ident: 424_CR5 – volume: 31 start-page: 683 issue: 3 year: 2007 ident: 424_CR9 publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2005.10.020 – volume: 20 start-page: 426 issue: 4 year: 2004 ident: 424_CR14 publication-title: Acta Mechanica Sinica doi: 10.1007/BF02489381 |
SSID | ssj0036171 |
Score | 1.9271564 |
Snippet | Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 285 |
SubjectTerms | Classical and Continuum Physics Computational Intelligence Criteria Delay Engineering Engineering Fluid Dynamics Gestation Hopf bifurcation Hopf分岔 Mathematical models Predators Research Paper Stability Theoretical and Applied Mechanics Time delay 动力学关系 局部稳定性 捕食模型 捕食系统 时间延迟 正平衡点 比率依赖 |
Title | Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system |
URI | http://lib.cqvip.com/qk/86601X/20112/37439785.html https://link.springer.com/article/10.1007/s10409-011-0424-1 https://www.proquest.com/docview/914626556 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036171 issn: 0567-7718 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036171 issn: 0567-7718 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-3116 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036171 issn: 0567-7718 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61cKGH0gIVCy3ygRNVUIjtODmuEHQFasWBleBk-QkVKNnuZg_Lr2ecxEARIHFLosRJ7Hl99vgbgF0h_IH3qUq01QhQLLeoc8Yk2mTW56giut1f8ftPPhqzkwt-0e_jnsVs97gk2VrqJ5vdWJvbg_CXZSxByLPMEZ-gNi4Pf12eHkUDTNEpt4XyONoAgbY3Lma-1EigVLiuq6t_-ML_XdNjvPlsibT1PMercB6_uUs4udmfN3rf3D2jc3znT32Bz30kSoad6HyFD65ag9U-KiW9zs_W4NMTysJ1OMPotM2nXRBVWTKqJ57ov34-7ab-SO2JIoF5coGNtNKVxDq7DZlMnQ0gP8GDBelIpDdgfHx0fjhK-qoMiaFMNEmphXKF4UwpK1jOvRKKOa_w1OCVLBNC61KVWYryYVPqECFS5UptMRpJtaLfYKmqK7cJBJGwp54ZEQoGFwUtCqZLNAu2pN7wIhvA9sPgoFc3N4GrStKAoUTBB5DG4ZKmJzQPdTVu5SMVc-hdib0rQ-_KgwHsPTwy6dg83rqZRBmQqHNhIUVVrp7PZInuJcs5zwfwMw6r7HV_9nqDW--6extWuvnrkCX0HZaa6dz9wACo0Tu9wO_Ax3E2vAfT6vxH |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QE4UCigLuXhAydQqmxsx86xQm0X-hCHrVROlp9QFSXLbvaw_HrGSdyWqiD1lkSO49jz9Iy_AXgvRJiEkOvMOIMOiuMOec7azNjChRJZxHTnK05Oy-kZ-3LOz4dz3MuU7Z5Ckp2kvnHYjXW5Pej-soJl6PJssImUfAQbe4ffjvaTAKaolLtCeRxlgEDZm4KZd3USIRV-NPX3X_jBv1XTtb15K0TaaZ6DTZilMfcJJ5e7q9bs2t-34Bzv-VNP4clgiZK9nnSewQNfb8HmYJWSgeeXW_D4BmThc_iK1mmXT7smunZk2swDMRdhtei3_kgTiCYReXKNnXTUlaU6uy2ZL7yLTn6GF2vSg0i_gLOD_dmnaTZUZcgsZaLNKiO0l5YzrZ1gJQ9aaOaDxluLT4pCCGMqXRU50ofLqUcPkWpfGYfWSG40fQmjuqn9NhD0hAMNzIpYMFhKKiUzFYoFV9FguSzGsHO1OKjV7WXEqlI0-lBC8jHkabmUHQDNY12Nn-oaijnOrsLZVXF21WQMH65emfdoHv9rTBINKOS5GEjRtW9WS1WheilKzssxfEzLqgbeX_67w1f3av0OHk5nJ8fq-PPp0Q486veyY8bQaxi1i5V_g8ZQa94OxP8H6yT-Tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5VrVTBgdIAaghQHziBVtms7fXusQKi0EeUA5Fys_ykVavdkGwO-feM99EEBEjcdle2V_J4PPN5xt8AvBfCj7yPVaStRoBiuUWdMybSJrE-RRXR9f2Km2k6mbPLBV-0dU7XXbZ7F5Js7jQElqaiGi6tH-5dfGN1ng9CYZawCOHPEUNTHXK65slFtxVTNM91yTyOu4HAXbgLa_5piECucFsW33_gr381UjvP87dgaW2Dxs_hWes8kotG2qdw4IoenLSOJGnVdN2Dp3ssgy9ghg5lnQK7JaqwZFIuPdF3frNqTutI6YkigSxyi4PUCyLqSuNWZLlyNuDyCB-2pOF9fgnz8ZdvnyZRW0ghMpSJKsq1UC4znCllBUu5V0Ix5xW-GvySJEJonas8iVGkNqYOQR1VLtcWHYhYK_oKDouycGdAELx66pkRocZvltEsYzpHTbY59YZnSR8Gj7OIhtjcB3opSQPsERnvQ9zNqzQtB3kohfEgd-zJQSwSxSKDWOSoDx8euywbAo5_NSadsCSqSYh9qMKVm7XM0SIkKedpHz52QpStuq7_PuDr_2p9Dsezz2N5_XV6NYAnzelzyPF5A4fVauPeovtS6Xf1Ev0JhOvl2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Hopf+bifurcation+of+a+delayed+ratio-dependent+predator-prey+system&rft.jtitle=Acta+mechanica+Sinica&rft.au=Wang%2C+Wan-Yong&rft.au=Pei%2C+Li-Jun&rft.date=2011-04-01&rft.issn=0567-7718&rft.volume=27&rft.issue=2&rft.spage=285&rft.epage=296&rft_id=info:doi/10.1007%2Fs10409-011-0424-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86601X%2F86601X.jpg |