Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system

Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relatio...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Sinica Vol. 27; no. 2; pp. 285 - 296
Main Authors Wang, Wan-Yong, Pei, Li-Jun
Format Journal Article
LanguageEnglish
Published Heidelberg The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences 01.04.2011
Subjects
Online AccessGet full text
ISSN0567-7718
1614-3116
DOI10.1007/s10409-011-0424-1

Cover

Abstract Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.
AbstractList Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.
Author Wan-Yong Wang Li-Jun Pei
AuthorAffiliation School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, China Department of Mathematics, Zhengzhou University, 450001 Zhengzhou, China
Author_xml – sequence: 1
  givenname: Wan-Yong
  surname: Wang
  fullname: Wang, Wan-Yong
  organization: School of Aerospace Engineering and Applied Mechanics, Tongji University
– sequence: 2
  givenname: Li-Jun
  surname: Pei
  fullname: Pei, Li-Jun
  email: peilijun@zzu.edu.cn
  organization: Department of Mathematics, Zhengzhou University
BookMark eNp9kLFu3DAMhoUgBXq59gG6CV06qREt2TqPRdAmBQKkQNNZoGw6UeqTHEk3-O2j62XqkInkD34k8F2w8xADMfYJ5FeQ0lxmkFr2QgIIqRst4IxtoAMtFEB3zjay7YwwBnbv2UXOT1KqDgxs2K_fBZ2ffVk5hpHfxGXizk-HNGDxMfA4ceQjzbjSyNMxEyMtFEYKhS-JRiwxidqsPK-50P4DezfhnOnja92yPz--31_diNu7659X327FoLQponcGaTe0GnE0umsnNKhpwjoONWkaY5zrsW8kORqlImg7hdS7UZqddKi27Mvp7pLi84FysXufB5pnDBQP2fagu6ZrK7VlcNocUsw50WSX5PeYVgvSHuXZkzxb5dmjPAuVMf8xgy__jJSEfn6TbE5krl_CAyX7FA8pVBVvQp9f3z3G8PBcOetw-Dv5mawyWvVm16oXO_CSjA
CitedBy_id crossref_primary_10_1016_j_amc_2015_06_108
crossref_primary_10_1016_0031_9422_94_00474_8
crossref_primary_10_1186_s13662_015_0713_2
crossref_primary_10_3934_mbe_2021156
crossref_primary_10_1016_j_amc_2014_01_025
crossref_primary_10_1007_s10409_014_0064_3
crossref_primary_10_1155_2013_679602
crossref_primary_10_1016_j_ecocom_2014_02_001
crossref_primary_10_1142_S0218127421502126
crossref_primary_10_1186_s13662_017_1292_1
crossref_primary_10_1039_b604174d
crossref_primary_10_1016_j_chaos_2018_04_010
Cites_doi 10.1016/j.cam.2008.11.009
10.1016/j.chaos.2004.05.048
10.1016/0169-5347(91)90052-Y
10.1016/j.chaos.2004.03.026
10.2307/3544994
10.1016/j.chaos.2007.06.122
10.1007/BF02487763
10.1007/s002850100121
10.1007/s10409-008-0170-1
10.1016/S0022-5193(89)80211-5
10.1007/s002850100079
10.1016/j.chaos.2005.10.020
10.1007/BF02489381
ContentType Journal Article
Copyright The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH 2011
Copyright_xml – notice: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH 2011
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s10409-011-0424-1
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
DocumentTitleAlternate Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
EISSN 1614-3116
EndPage 296
ExternalDocumentID 10_1007_s10409_011_0424_1
37439785
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
6XO
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABULA
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CDYEO
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DL5
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IPNFZ
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NQJWS
NU0
O9-
O93
O9J
P9P
PF0
PT4
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SCLPG
SCV
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~WA
-SA
-S~
5XA
5XB
AACDK
AAEWM
AAJBT
AASML
AATNV
AAXDM
AAYZH
ABAKF
ABJNI
ABQSL
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AGQEE
AGRTI
AIGIU
AMXSW
AOCGG
BSONS
CAJEA
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
Q--
SNPRN
SOHCF
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c347t-9b7ae8c54aad7465fa7a4efaaadcad72277bb9a920ebed03e1563ae9bd0780ba3
IEDL.DBID AGYKE
ISSN 0567-7718
IngestDate Fri Sep 05 00:41:59 EDT 2025
Wed Oct 01 02:41:10 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Fri Feb 21 02:44:50 EST 2025
Thu Nov 24 20:35:16 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Time delays
Stability
Center manifold
Hopf bifurcation
Normal form
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-9b7ae8c54aad7465fa7a4efaaadcad72277bb9a920ebed03e1563ae9bd0780ba3
Notes O322
Time delays · Stability · Hopf bifurcation · Normal form · Center manifold
TP183
11-2063/O3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 914626556
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_914626556
crossref_primary_10_1007_s10409_011_0424_1
crossref_citationtrail_10_1007_s10409_011_0424_1
springer_journals_10_1007_s10409_011_0424_1
chongqing_backfile_37439785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Acta mechanica Sinica
PublicationTitleAbbrev Acta Mech Sin
PublicationTitleAlternate Acta Mechanica Sinica
PublicationYear 2011
Publisher The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Publisher_xml – name: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
References ArditiR.GinzburgL.R.Coupling in predator-prey dynamics: ratio-dependenceJ. Theor. Biol.198913931132610.1016/S0022-5193(89)80211-5
HanskiI.The functional response of predator: worries about scaleTrends. Ecol. Evol.1991614114210.1016/0169-5347(91)90052-Y
LiaoX.F.Hopf and resonant codimension two bifurcation in Van de Pol equation with two time delaysChaos, Solitons and Fractals2005238578711076.3408710.1016/j.chaos.2004.05.0482093774
SongY.HanM.PengY.Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delaysChaos, Solitons and Fractals2004225113911481067.3407510.1016/j.chaos.2004.03.0262078839
FreedmanH.I.Deterministic Mathematical Model in Population Ecology1980New YorkMarcel Dekker
WangZ.H.HuH.H.A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillatorActa Mechanica Sinica200824444945410.1007/s10409-008-0170-12425571
WangZ.H.HuH.H.Stability of linear time variant dynamic systems with multiple time delaysActa Mechanica Sinica199814327428210.1007/BF02487763
TangS.ChenL.Density-dependent birth rate, birth pulses and their population dynamic consequencesJ. Math. Biol.200244218519910.1007/s0028501001211889910
HsuS.B.HwangT.W.KuangY.Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey systemJ. Math. Biol.20014264895060984.9203510.1007/s0028501000791845589
WangH.L.WangZ.H.Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedbackActa Mechanica Sinica200420442643410.1007/BF02489381
GanQ.T.XuR.YangP.H.Bifurcation and chaos in a ratio-dependent predator-prey system with time delayChaos, Solitons and Fractals2009394188318951197.3702810.1016/j.chaos.2007.06.1222514575
XuR.GanQ.T.MaZ.E.Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delayJ. Comput. Appl. Math.200923011872031186.3412210.1016/j.cam.2008.11.0092532302
KuangY.Delay Differential Equation with Applications in Population Dynamics1993New YorkAcademic Press
MayR.M.Stability and Complexity in Model Ecosystems1974Princeton, N. J.Princeton Univ. Press
HassardB.KazarinoD.WanY.Theory and Applications of Hopf Bifurcation1981CambridgeCambridge University Press0474.34002
ArditiR.PerrinN.SaiahH.Functional response and heterogeneities: an experiment test with cladoceransOikos1991601697510.2307/3544994
ChenY.YuJ.SunC.Stability and Hopf bifurcation analysis in a three-level food chain system with delayChaos, Solitons and Fractals20073136836941146.3405110.1016/j.chaos.2005.10.0202262303
Y. Song (424_CR10) 2004; 22
Z.H. Wang (424_CR15) 1998; 14
X.F. Liao (424_CR16) 2005; 23
Y. Kuang (424_CR1) 1993
H.I. Freedman (424_CR5) 1980
R. Arditi (424_CR2) 1989; 139
Y. Chen (424_CR9) 2007; 31
S. Tang (424_CR11) 2002; 44
R.M. May (424_CR6) 1974
H.L. Wang (424_CR14) 2004; 20
B. Hassard (424_CR17) 1981
R. Xu (424_CR8) 2009; 230
Z.H. Wang (424_CR13) 2008; 24
I. Hanski (424_CR4) 1991; 6
S.B. Hsu (424_CR7) 2001; 42
Q.T. Gan (424_CR12) 2009; 39
R. Arditi (424_CR3) 1991; 60
References_xml – reference: ChenY.YuJ.SunC.Stability and Hopf bifurcation analysis in a three-level food chain system with delayChaos, Solitons and Fractals20073136836941146.3405110.1016/j.chaos.2005.10.0202262303
– reference: SongY.HanM.PengY.Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delaysChaos, Solitons and Fractals2004225113911481067.3407510.1016/j.chaos.2004.03.0262078839
– reference: ArditiR.GinzburgL.R.Coupling in predator-prey dynamics: ratio-dependenceJ. Theor. Biol.198913931132610.1016/S0022-5193(89)80211-5
– reference: LiaoX.F.Hopf and resonant codimension two bifurcation in Van de Pol equation with two time delaysChaos, Solitons and Fractals2005238578711076.3408710.1016/j.chaos.2004.05.0482093774
– reference: WangH.L.WangZ.H.Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedbackActa Mechanica Sinica200420442643410.1007/BF02489381
– reference: WangZ.H.HuH.H.A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillatorActa Mechanica Sinica200824444945410.1007/s10409-008-0170-12425571
– reference: XuR.GanQ.T.MaZ.E.Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delayJ. Comput. Appl. Math.200923011872031186.3412210.1016/j.cam.2008.11.0092532302
– reference: HsuS.B.HwangT.W.KuangY.Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey systemJ. Math. Biol.20014264895060984.9203510.1007/s0028501000791845589
– reference: MayR.M.Stability and Complexity in Model Ecosystems1974Princeton, N. J.Princeton Univ. Press
– reference: HanskiI.The functional response of predator: worries about scaleTrends. Ecol. Evol.1991614114210.1016/0169-5347(91)90052-Y
– reference: ArditiR.PerrinN.SaiahH.Functional response and heterogeneities: an experiment test with cladoceransOikos1991601697510.2307/3544994
– reference: FreedmanH.I.Deterministic Mathematical Model in Population Ecology1980New YorkMarcel Dekker
– reference: WangZ.H.HuH.H.Stability of linear time variant dynamic systems with multiple time delaysActa Mechanica Sinica199814327428210.1007/BF02487763
– reference: GanQ.T.XuR.YangP.H.Bifurcation and chaos in a ratio-dependent predator-prey system with time delayChaos, Solitons and Fractals2009394188318951197.3702810.1016/j.chaos.2007.06.1222514575
– reference: KuangY.Delay Differential Equation with Applications in Population Dynamics1993New YorkAcademic Press
– reference: HassardB.KazarinoD.WanY.Theory and Applications of Hopf Bifurcation1981CambridgeCambridge University Press0474.34002
– reference: TangS.ChenL.Density-dependent birth rate, birth pulses and their population dynamic consequencesJ. Math. Biol.200244218519910.1007/s0028501001211889910
– volume: 230
  start-page: 187
  issue: 1
  year: 2009
  ident: 424_CR8
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.11.009
– volume-title: Theory and Applications of Hopf Bifurcation
  year: 1981
  ident: 424_CR17
– volume-title: Delay Differential Equation with Applications in Population Dynamics
  year: 1993
  ident: 424_CR1
– volume-title: Stability and Complexity in Model Ecosystems
  year: 1974
  ident: 424_CR6
– volume: 23
  start-page: 857
  year: 2005
  ident: 424_CR16
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2004.05.048
– volume: 6
  start-page: 141
  year: 1991
  ident: 424_CR4
  publication-title: Trends. Ecol. Evol.
  doi: 10.1016/0169-5347(91)90052-Y
– volume: 22
  start-page: 1139
  issue: 5
  year: 2004
  ident: 424_CR10
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2004.03.026
– volume: 60
  start-page: 69
  issue: 1
  year: 1991
  ident: 424_CR3
  publication-title: Oikos
  doi: 10.2307/3544994
– volume: 39
  start-page: 1883
  issue: 4
  year: 2009
  ident: 424_CR12
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2007.06.122
– volume: 14
  start-page: 274
  issue: 3
  year: 1998
  ident: 424_CR15
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/BF02487763
– volume: 44
  start-page: 185
  issue: 2
  year: 2002
  ident: 424_CR11
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100121
– volume: 24
  start-page: 449
  issue: 4
  year: 2008
  ident: 424_CR13
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/s10409-008-0170-1
– volume: 139
  start-page: 311
  year: 1989
  ident: 424_CR2
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– volume: 42
  start-page: 489
  issue: 6
  year: 2001
  ident: 424_CR7
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100079
– volume-title: Deterministic Mathematical Model in Population Ecology
  year: 1980
  ident: 424_CR5
– volume: 31
  start-page: 683
  issue: 3
  year: 2007
  ident: 424_CR9
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2005.10.020
– volume: 20
  start-page: 426
  issue: 4
  year: 2004
  ident: 424_CR14
  publication-title: Acta Mechanica Sinica
  doi: 10.1007/BF02489381
SSID ssj0036171
Score 1.9271564
Snippet Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 285
SubjectTerms Classical and Continuum Physics
Computational Intelligence
Criteria
Delay
Engineering
Engineering Fluid Dynamics
Gestation
Hopf bifurcation
Hopf分岔
Mathematical models
Predators
Research Paper
Stability
Theoretical and Applied Mechanics
Time delay
动力学关系
局部稳定性
捕食模型
捕食系统
时间延迟
正平衡点
比率依赖
Title Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
URI http://lib.cqvip.com/qk/86601X/20112/37439785.html
https://link.springer.com/article/10.1007/s10409-011-0424-1
https://www.proquest.com/docview/914626556
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036171
  issn: 0567-7718
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036171
  issn: 0567-7718
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-3116
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036171
  issn: 0567-7718
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61cKGH0gIVCy3ygRNVUIjtODmuEHQFasWBleBk-QkVKNnuZg_Lr2ecxEARIHFLosRJ7Hl99vgbgF0h_IH3qUq01QhQLLeoc8Yk2mTW56giut1f8ftPPhqzkwt-0e_jnsVs97gk2VrqJ5vdWJvbg_CXZSxByLPMEZ-gNi4Pf12eHkUDTNEpt4XyONoAgbY3Lma-1EigVLiuq6t_-ML_XdNjvPlsibT1PMercB6_uUs4udmfN3rf3D2jc3znT32Bz30kSoad6HyFD65ag9U-KiW9zs_W4NMTysJ1OMPotM2nXRBVWTKqJ57ov34-7ab-SO2JIoF5coGNtNKVxDq7DZlMnQ0gP8GDBelIpDdgfHx0fjhK-qoMiaFMNEmphXKF4UwpK1jOvRKKOa_w1OCVLBNC61KVWYryYVPqECFS5UptMRpJtaLfYKmqK7cJBJGwp54ZEQoGFwUtCqZLNAu2pN7wIhvA9sPgoFc3N4GrStKAoUTBB5DG4ZKmJzQPdTVu5SMVc-hdib0rQ-_KgwHsPTwy6dg83rqZRBmQqHNhIUVVrp7PZInuJcs5zwfwMw6r7HV_9nqDW--6extWuvnrkCX0HZaa6dz9wACo0Tu9wO_Ax3E2vAfT6vxH
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6h7QE4UCigLuXhAydQqmxsx86xQm0X-hCHrVROlp9QFSXLbvaw_HrGSdyWqiD1lkSO49jz9Iy_AXgvRJiEkOvMOIMOiuMOec7azNjChRJZxHTnK05Oy-kZ-3LOz4dz3MuU7Z5Ckp2kvnHYjXW5Pej-soJl6PJssImUfAQbe4ffjvaTAKaolLtCeRxlgEDZm4KZd3USIRV-NPX3X_jBv1XTtb15K0TaaZ6DTZilMfcJJ5e7q9bs2t-34Bzv-VNP4clgiZK9nnSewQNfb8HmYJWSgeeXW_D4BmThc_iK1mmXT7smunZk2swDMRdhtei3_kgTiCYReXKNnXTUlaU6uy2ZL7yLTn6GF2vSg0i_gLOD_dmnaTZUZcgsZaLNKiO0l5YzrZ1gJQ9aaOaDxluLT4pCCGMqXRU50ofLqUcPkWpfGYfWSG40fQmjuqn9NhD0hAMNzIpYMFhKKiUzFYoFV9FguSzGsHO1OKjV7WXEqlI0-lBC8jHkabmUHQDNY12Nn-oaijnOrsLZVXF21WQMH65emfdoHv9rTBINKOS5GEjRtW9WS1WheilKzssxfEzLqgbeX_67w1f3av0OHk5nJ8fq-PPp0Q486veyY8bQaxi1i5V_g8ZQa94OxP8H6yT-Tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5VrVTBgdIAaghQHziBVtms7fXusQKi0EeUA5Fys_ykVavdkGwO-feM99EEBEjcdle2V_J4PPN5xt8AvBfCj7yPVaStRoBiuUWdMybSJrE-RRXR9f2Km2k6mbPLBV-0dU7XXbZ7F5Js7jQElqaiGi6tH-5dfGN1ng9CYZawCOHPEUNTHXK65slFtxVTNM91yTyOu4HAXbgLa_5piECucFsW33_gr381UjvP87dgaW2Dxs_hWes8kotG2qdw4IoenLSOJGnVdN2Dp3ssgy9ghg5lnQK7JaqwZFIuPdF3frNqTutI6YkigSxyi4PUCyLqSuNWZLlyNuDyCB-2pOF9fgnz8ZdvnyZRW0ghMpSJKsq1UC4znCllBUu5V0Ix5xW-GvySJEJonas8iVGkNqYOQR1VLtcWHYhYK_oKDouycGdAELx66pkRocZvltEsYzpHTbY59YZnSR8Gj7OIhtjcB3opSQPsERnvQ9zNqzQtB3kohfEgd-zJQSwSxSKDWOSoDx8euywbAo5_NSadsCSqSYh9qMKVm7XM0SIkKedpHz52QpStuq7_PuDr_2p9Dsezz2N5_XV6NYAnzelzyPF5A4fVauPeovtS6Xf1Ev0JhOvl2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Hopf+bifurcation+of+a+delayed+ratio-dependent+predator-prey+system&rft.jtitle=Acta+mechanica+Sinica&rft.au=Wang%2C+Wan-Yong&rft.au=Pei%2C+Li-Jun&rft.date=2011-04-01&rft.issn=0567-7718&rft.volume=27&rft.issue=2&rft.spage=285&rft.epage=296&rft_id=info:doi/10.1007%2Fs10409-011-0424-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86601X%2F86601X.jpg