Feed rate noise modulates autocatalysis and shapes the oscillations of the Belousov-Zhabotinsky reaction in a continuous stirred tank reactor

Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a...

Full description

Saved in:
Bibliographic Details
Published inReaction chemistry & engineering Vol. 3; no. 2; pp. 216 - 226
Main Authors Srivastava, Rohit, Dueñas-Díez, Marta, Pérez-Mercader, Juan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text
ISSN2058-9883
2058-9883
DOI10.1039/c7re00196g

Cover

Abstract Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy "metabolism", by applying white Gaussian noise on the feed rates of the [Ru(bpy) 2 ] 3+ catalyzed Belousov-Zhabotinsky (B-Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field-Körös-Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable. Noise applied to a specific reactant feed rate directs the Belousov-Zhabotinsky reaction into specific pathways and results in noise-controlled oscillation shapes and features.
AbstractList Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy “metabolism”, by applying white Gaussian noise on the feed rates of the [Ru(bpy)2]3+ catalyzed Belousov–Zhabotinsky (B–Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field–Körös–Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable.
Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy "metabolism", by applying white Gaussian noise on the feed rates of the [Ru(bpy) 2 ] 3+ catalyzed Belousov-Zhabotinsky (B-Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field-Körös-Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable. Noise applied to a specific reactant feed rate directs the Belousov-Zhabotinsky reaction into specific pathways and results in noise-controlled oscillation shapes and features.
Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy “metabolism”, by applying white Gaussian noise on the feed rates of the [Ru(bpy) 2 ] 3+ catalyzed Belousov–Zhabotinsky (B–Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field–Körös–Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable.
Author Dueñas-Díez, Marta
Srivastava, Rohit
Pérez-Mercader, Juan
AuthorAffiliation Harvard University
Santa Fe Institute
Department of Earth and Planetary Sciences and Origins of Life Initiative
Repsol Technology Centre
AuthorAffiliation_xml – sequence: 0
  name: Santa Fe Institute
– sequence: 0
  name: Harvard University
– sequence: 0
  name: Department of Earth and Planetary Sciences and Origins of Life Initiative
– sequence: 0
  name: Repsol Technology Centre
Author_xml – sequence: 1
  givenname: Rohit
  surname: Srivastava
  fullname: Srivastava, Rohit
– sequence: 2
  givenname: Marta
  surname: Dueñas-Díez
  fullname: Dueñas-Díez, Marta
– sequence: 3
  givenname: Juan
  surname: Pérez-Mercader
  fullname: Pérez-Mercader, Juan
BookMark eNpt0UFLwzAUAOAgCs65i3ch4E2ovjZtkh51bFMYCKIXLyVNM5etS2aSCvsR_mezTVTEU_JevpdHXk7QobFGIXSWwlUKpLyWzCmAtKSvB6iXQcGTknNy-Gt_jAbeLyAiCkA466GPsVINdiIobKz2Cq9s07Ux9Fh0wUoRRLvxOkamwX4u1vEgzBW2Xuo2Om2Nx3a2y92q1nbevicvc1HboI1fbrBTQm4V1gYLLK2J-S4y7IN2LvYOwiz3yrpTdDQTrVeDr7WPnsejp-FdMn2Y3A9vpokkOQsJk5nkdU5KJmuaibopKCc5lZKXrJlRSEVNmSpzaFKWS9U0AqAogAPwjBQiJX10sb937exbp3yoFrZzJrasMshSWlDKtgr2SjrrvVOzSuqwe3JwQrdVCtV27tWQPY52c5_Ekss_JWunV8Jt_sfne-y8_HY_n0g-AY1xkY4
CitedBy_id crossref_primary_10_1103_PhysRevE_98_062216
crossref_primary_10_1021_acs_langmuir_1c00915
crossref_primary_10_1038_s42004_019_0241_1
crossref_primary_10_1103_PhysRevE_102_062142
crossref_primary_10_3389_fbioe_2020_01018
crossref_primary_10_1039_D0PY00564A
crossref_primary_10_1021_acs_jpcb_0c06413
Cites_doi 10.1021/acs.jpca.6b12489
10.1021/j100503a021
10.1103/PhysRevLett.82.3713
10.1103/PhysRevLett.91.238301
10.1098/rsta.2007.2096
10.1103/PhysRevE.49.1734
10.1021/jp0013208
10.1063/1.459541
10.1038/nature09326
10.1039/b804919j
10.1021/ja00780a001
10.1063/1.1681288
10.1021/j100021a031
10.1103/PhysRevE.92.042114
10.1063/1.452141
10.1016/j.physa.2017.04.002
10.1039/C5CS00361J
10.1126/science.283.5400.381
10.1021/jp980189p
10.1103/PhysRevE.95.032106
10.1021/jp952243x
10.1016/0022-247X(83)90099-9
10.1103/PhysRevLett.78.775
10.1021/jp9923466
10.1137/0143037
10.1007/978-3-540-32667-0
10.1021/jp409033j
10.1103/PhysRevE.63.056124
10.1038/35814
10.1016/0009-2509(74)80084-9
10.1007/BF01044713
10.1063/1.1398314
10.1007/BF00934000
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/c7re00196g
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2058-9883
EndPage 226
ExternalDocumentID 10_1039_C7RE00196G
c7re00196g
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAXHV
ABASK
ABDVN
ABPDG
ABRYZ
ACGFS
ADMRA
AEFDR
AENGV
AETIL
AFOGI
AGEGJ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
BLAPV
C6K
EBS
ECGLT
EJD
GGIMP
H13
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
ABIQK
ABJNI
AFRZK
AKMSF
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c347t-7c2c8b4397cb62abd568346cc897df601ab67e940d174cedda005508008235a13
ISSN 2058-9883
IngestDate Mon Jun 30 07:04:30 EDT 2025
Tue Jul 01 02:52:02 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Tue Dec 17 20:58:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-7c2c8b4397cb62abd568346cc897df601ab67e940d174cedda005508008235a13
Notes 10.1039/c7re00196g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7486-2218
0000-0001-6278-9068
PQID 2021656671
PQPubID 2047514
PageCount 11
ParticipantIDs proquest_journals_2021656671
crossref_citationtrail_10_1039_C7RE00196G
crossref_primary_10_1039_C7RE00196G
rsc_primary_c7re00196g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Reaction chemistry & engineering
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kruel (C7RE00196G-(cit14)/*[position()=1]) 1990; 93
Benzi (C7RE00196G-(cit18)/*[position()=1]) 1983; 43
Orbán (C7RE00196G-(cit36)/*[position()=1]) 1978; 82
Kadar (C7RE00196G-(cit15)/*[position()=1]) 1998; 391
Tyson (C7RE00196G-(cit8)/*[position()=1]) 1985
Pikovsky (C7RE00196G-(cit20)/*[position()=1]) 1997; 78
Gao (C7RE00196G-(cit35)/*[position()=1]) 1995; 99
Beato (C7RE00196G-(cit27)/*[position()=1]) 2008; 366
Lesmes (C7RE00196G-(cit16)/*[position()=1]) 2003; 91
Noszticzius (C7RE00196G-(cit31)/*[position()=1]) 1987; 86
Hempel (C7RE00196G-(cit12)/*[position()=1]) 1999; 82
Kaneko (C7RE00196G-(cit1)/*[position()=1]) 2006
Bhalla (C7RE00196G-(cit3)/*[position()=1]) 1999; 283
Gagnon (C7RE00196G-(cit29)/*[position()=1]) 2017; 95
Li (C7RE00196G-(cit23)/*[position()=1]) 2001; 115
Zhabotinsky (C7RE00196G-(cit9)/*[position()=1]) 1964; 9
Gagnon (C7RE00196G-(cit30)/*[position()=1]) 2017; 480
Blagojevic (C7RE00196G-(cit32)/*[position()=1]) 2008; 10
Sanz-Anchelergues (C7RE00196G-(cit11)/*[position()=1]) 2001; 63
Bellman (C7RE00196G-(cit7)/*[position()=1]) 1983; 91
Guderian (C7RE00196G-(cit21)/*[position()=1]) 1996; 100
Muñuzuri (C7RE00196G-(cit17)/*[position()=1]) 2017; 121
Amemiya (C7RE00196G-(cit22)/*[position()=1]) 1998; 102
Field (C7RE00196G-(cit33)/*[position()=1]) 1972; 94
Leonard (C7RE00196G-(cit19)/*[position()=1]) 1994; 49
Jiang (C7RE00196G-(cit25)/*[position()=1]) 2000; 104
Fjeld (C7RE00196G-(cit5)/*[position()=1]) 1974; 29
Gagnon (C7RE00196G-(cit28)/*[position()=1]) 2015; 92
Bailey (C7RE00196G-(cit6)/*[position()=1]) 1971; 7
Field (C7RE00196G-(cit34)/*[position()=1]) 1974; 60
Eldar (C7RE00196G-(cit4)/*[position()=1]) 2010; 467
Van Roekel (C7RE00196G-(cit2)/*[position()=1]) 2015; 44
Zhong (C7RE00196G-(cit24)/*[position()=1]) 2000; 104
Sigeti (C7RE00196G-(cit13)/*[position()=1]) 1989; 54
Simakov (C7RE00196G-(cit26)/*[position()=1]) 2013; 117
Zhabotinsky (C7RE00196G-(cit10)/*[position()=1]) 2007; vol. 2
References_xml – issn: 2006
  publication-title: Life: An Introduction to Complex Systems Biology
  doi: Kaneko
– start-page: (9)
  issn: 2007
  issue: vol. 2
  end-page: 1435
  publication-title: Scholarpedia
  doi: Zhabotinsky
– issn: 1985
  end-page: p 92-144
  publication-title: Oscillations and Travelling Waves in Chemical Systems
  doi: Tyson
– volume: 121
  start-page: 1855
  year: 2017
  ident: C7RE00196G-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b12489
– volume: 82
  start-page: 1672
  year: 1978
  ident: C7RE00196G-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100503a021
– volume: 82
  start-page: 3713
  year: 1999
  ident: C7RE00196G-(cit12)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3713
– volume: 91
  start-page: 238301
  year: 2003
  ident: C7RE00196G-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.238301
– volume: 366
  start-page: 381
  year: 2008
  ident: C7RE00196G-(cit27)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2007.2096
– volume: 49
  start-page: 1734
  year: 1994
  ident: C7RE00196G-(cit19)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.49.1734
– volume: 104
  start-page: 8521
  year: 2000
  ident: C7RE00196G-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. A.
  doi: 10.1021/jp0013208
– volume: 9
  start-page: 306
  year: 1964
  ident: C7RE00196G-(cit9)/*[position()=1]
  publication-title: Biofizika
– volume: 93
  start-page: 416
  year: 1990
  ident: C7RE00196G-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459541
– volume: 467
  start-page: 167
  year: 2010
  ident: C7RE00196G-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09326
– volume-title: Oscillations and Travelling Waves in Chemical Systems
  year: 1985
  ident: C7RE00196G-(cit8)/*[position()=1]
– volume: 10
  start-page: 6658
  year: 2008
  ident: C7RE00196G-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b804919j
– volume: 94
  start-page: 8649
  issue: 25
  year: 1972
  ident: C7RE00196G-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00780a001
– volume: 60
  start-page: 1877
  issue: 5
  year: 1974
  ident: C7RE00196G-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681288
– volume: 99
  start-page: 8638
  issue: 21
  year: 1995
  ident: C7RE00196G-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1021/j100021a031
– volume: 92
  start-page: 042114
  issue: 4
  year: 2015
  ident: C7RE00196G-(cit28)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.92.042114
– volume: 86
  start-page: 1922
  year: 1987
  ident: C7RE00196G-(cit31)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452141
– volume: 480
  start-page: 51
  year: 2017
  ident: C7RE00196G-(cit30)/*[position()=1]
  publication-title: Phys. A
  doi: 10.1016/j.physa.2017.04.002
– volume: 44
  start-page: 7465
  year: 2015
  ident: C7RE00196G-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00361J
– volume: 283
  start-page: 381
  year: 1999
  ident: C7RE00196G-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.283.5400.381
– volume: 102
  start-page: 4537
  year: 1998
  ident: C7RE00196G-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980189p
– volume: 95
  start-page: 032106
  issue: 3
  year: 2017
  ident: C7RE00196G-(cit29)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.95.032106
– volume: 100
  start-page: 4437
  year: 1996
  ident: C7RE00196G-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952243x
– volume: 91
  start-page: 152
  year: 1983
  ident: C7RE00196G-(cit7)/*[position()=1]
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(83)90099-9
– volume: 78
  start-page: 775
  year: 1997
  ident: C7RE00196G-(cit20)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.775
– volume: 104
  start-page: 297
  year: 2000
  ident: C7RE00196G-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9923466
– volume: 43
  start-page: 565
  year: 1983
  ident: C7RE00196G-(cit18)/*[position()=1]
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0143037
– volume-title: Life: An Introduction to Complex Systems Biology
  year: 2006
  ident: C7RE00196G-(cit1)/*[position()=1]
  doi: 10.1007/978-3-540-32667-0
– volume: 117
  start-page: 13999
  year: 2013
  ident: C7RE00196G-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp409033j
– volume: 63
  start-page: 056124
  year: 2001
  ident: C7RE00196G-(cit11)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.63.056124
– volume: 391
  start-page: 770
  year: 1998
  ident: C7RE00196G-(cit15)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35814
– volume: 29
  start-page: 921
  year: 1974
  ident: C7RE00196G-(cit5)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(74)80084-9
– volume: vol. 2
  start-page: 1435
  issue: (9)
  volume-title: Scholarpedia
  year: 2007
  ident: C7RE00196G-(cit10)/*[position()=1]
– volume: 54
  start-page: 1217
  year: 1989
  ident: C7RE00196G-(cit13)/*[position()=1]
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01044713
– volume: 115
  start-page: 6590
  year: 2001
  ident: C7RE00196G-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1398314
– volume: 7
  start-page: 378
  year: 1971
  ident: C7RE00196G-(cit6)/*[position()=1]
  publication-title: J. Optim. Theory App.
  doi: 10.1007/BF00934000
SSID ssj0001600387
Score 2.0751226
Snippet Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
SubjectTerms Autocatalysis
Continuously stirred tank reactors
Feed rate
Flow velocity
Hopf bifurcation
Metabolism
Noise
Oscillations
Oscillators
Random noise
Relaxation oscillations
Title Feed rate noise modulates autocatalysis and shapes the oscillations of the Belousov-Zhabotinsky reaction in a continuous stirred tank reactor
URI https://www.proquest.com/docview/2021656671
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2058-9883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001600387
  issn: 2058-9883
  databaseCode: AETIL
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9MIFgaAiUJAluKBoy669D--xNCkFUYSqVKq4RGuvQyKi3WofkeiJf8CBf8gvYcb7DM2hcFlFlr1SMl9mPo_H3xDyikPU517ILG6L0HJdT1hCL5gVL3wmIs2lMj0jzz_5Z5fuhyvvajDoKwSXhTxSNzvvlfyPVWEM7Iq3ZP_Bsu1LYQA-g33hCRaG551sfAqhZ4xaD-MkXeUa29pgNy6dj6OySE1mxgiOmOT4MrpGOQeABepXrns1cKZGQK_TMk83TfED_7IEeBTY1_r7GIilaooiI1PdvkpKrJ0F_5BhATswzG_VrDTr092LZqFq-soZqOlOBLHN8GSrTQRMdVOR2XS5autxJqXG4_y3TpRbE3OwP6nS3iiB0EaVz9WRf6ZvrHOdYdV_Vt06qeFfZzYc0ctsGAfIbEBOKKpGN0d6x1jtwXkPqGzLG_u9wM6qq_m3YobNUXL1JLiYGrGgd11kbKoB_gqYbRmjOcDn4bxbu0f2WeD7bEj2j6ez9x-7dJ-PZ7B4eb_9Bo1YLg_fdC_YpkfdnmcvaxrSGOIze0Du1zsWelzB7yEZ6OQR-YnQowg9aqBHW-jRLehRgB6toEcBZrQPPZouzFgDvd8_fvVARxvQ0VVCI9qBjtagowg6WoPuMbk8nc5Ozqy6t4eluBsUVqCYEhLZsJI-i2Ts-YK7vlIiDMBP2E4k_UCHrh3DllnpOI5QLQ63N4JxL3L4ARkmaaKfEIqiCLajlcSeW7BMKlfo2JNAPhdaaDkir5ufdK5q4Xvsv7Ke37bfiLxs515Xci87Zx02lpnX7iCfM2DLuDkKnBE5AGu161WQabPu69M7vf0Zudf9Gw7JsMhK_RyYbyFf1Kj6A97isjg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feed+rate+noise+modulates+autocatalysis+and+shapes+the+oscillations+of+the+Belousov%E2%80%93Zhabotinsky+reaction+in+a+continuous+stirred+tank+reactor&rft.jtitle=Reaction+chemistry+%26+engineering&rft.au=Srivastava%2C+Rohit&rft.au=Due%C3%B1as-D%C3%ADez%2C+Marta&rft.au=P%C3%A9rez-Mercader%2C+Juan&rft.date=2018-01-01&rft.issn=2058-9883&rft.eissn=2058-9883&rft.volume=3&rft.issue=2&rft.spage=216&rft.epage=226&rft_id=info:doi/10.1039%2FC7RE00196G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7RE00196G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9883&client=summon