Feed rate noise modulates autocatalysis and shapes the oscillations of the Belousov-Zhabotinsky reaction in a continuous stirred tank reactor
Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a...
Saved in:
Published in | Reaction chemistry & engineering Vol. 3; no. 2; pp. 216 - 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2058-9883 2058-9883 |
DOI | 10.1039/c7re00196g |
Cover
Abstract | Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response,
i.e.
the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy "metabolism", by applying white Gaussian noise on the feed rates of the [Ru(bpy)
2
]
3+
catalyzed Belousov-Zhabotinsky (B-Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response,
e.g.
the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field-Körös-Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable.
Noise applied to a specific reactant feed rate directs the Belousov-Zhabotinsky reaction into specific pathways and results in noise-controlled oscillation shapes and features. |
---|---|
AbstractList | Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy “metabolism”, by applying white Gaussian noise on the feed rates of the [Ru(bpy)2]3+ catalyzed Belousov–Zhabotinsky (B–Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field–Körös–Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable. Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy "metabolism", by applying white Gaussian noise on the feed rates of the [Ru(bpy) 2 ] 3+ catalyzed Belousov-Zhabotinsky (B-Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field-Körös-Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable. Noise applied to a specific reactant feed rate directs the Belousov-Zhabotinsky reaction into specific pathways and results in noise-controlled oscillation shapes and features. Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the preferential pathways in the complex metabolism reaction network, as well as the thermodynamics of metabolism. Living systems are open and subject to a noisy environment; hence it is natural to question how noisy reactant intake affects the chemical response, i.e. the detailed resulting oscillations, of an open complex chemical oscillatory system. In this paper, we use a chemical analogue of noisy “metabolism”, by applying white Gaussian noise on the feed rates of the [Ru(bpy) 2 ] 3+ catalyzed Belousov–Zhabotinsky (B–Z) reaction running in a continuous stirred tank reactor (CSTR). The noise was applied to the flow rate of a reactant one at a time, in the excitability region (near the Hopf bifurcation), and we observed its effect on the dynamical response, e.g. the features of the noise-induced oscillatory profiles. We show experimentally that noise on a specific reactant tunes the shape of the relaxation oscillations, and we link the observed effects to the most affected subnetworks in the Field–Körös–Noyes (FKN) mechanism. Hence, the autocatalytic loop is most affected by the noise on the acid feed rate and on the bromate feed rate pumping systems. This tuning of the oscillation shape together with the more studied ability to tune the amplitude and period of the noise oscillations by the noise parameters allows achieving distinct oscillations (shape + period + amplitude) not attainable in deterministic operation. Furthermore, noise on a specific reactant feed can thus be used to direct the reaction to a given pathway. Our results can be used to develop methods to force chemical and/or biological systems into desired dynamical regimes not otherwise easily attainable. |
Author | Dueñas-Díez, Marta Srivastava, Rohit Pérez-Mercader, Juan |
AuthorAffiliation | Harvard University Santa Fe Institute Department of Earth and Planetary Sciences and Origins of Life Initiative Repsol Technology Centre |
AuthorAffiliation_xml | – sequence: 0 name: Santa Fe Institute – sequence: 0 name: Harvard University – sequence: 0 name: Department of Earth and Planetary Sciences and Origins of Life Initiative – sequence: 0 name: Repsol Technology Centre |
Author_xml | – sequence: 1 givenname: Rohit surname: Srivastava fullname: Srivastava, Rohit – sequence: 2 givenname: Marta surname: Dueñas-Díez fullname: Dueñas-Díez, Marta – sequence: 3 givenname: Juan surname: Pérez-Mercader fullname: Pérez-Mercader, Juan |
BookMark | eNpt0UFLwzAUAOAgCs65i3ch4E2ovjZtkh51bFMYCKIXLyVNM5etS2aSCvsR_mezTVTEU_JevpdHXk7QobFGIXSWwlUKpLyWzCmAtKSvB6iXQcGTknNy-Gt_jAbeLyAiCkA466GPsVINdiIobKz2Cq9s07Ux9Fh0wUoRRLvxOkamwX4u1vEgzBW2Xuo2Om2Nx3a2y92q1nbevicvc1HboI1fbrBTQm4V1gYLLK2J-S4y7IN2LvYOwiz3yrpTdDQTrVeDr7WPnsejp-FdMn2Y3A9vpokkOQsJk5nkdU5KJmuaibopKCc5lZKXrJlRSEVNmSpzaFKWS9U0AqAogAPwjBQiJX10sb937exbp3yoFrZzJrasMshSWlDKtgr2SjrrvVOzSuqwe3JwQrdVCtV27tWQPY52c5_Ekss_JWunV8Jt_sfne-y8_HY_n0g-AY1xkY4 |
CitedBy_id | crossref_primary_10_1103_PhysRevE_98_062216 crossref_primary_10_1021_acs_langmuir_1c00915 crossref_primary_10_1038_s42004_019_0241_1 crossref_primary_10_1103_PhysRevE_102_062142 crossref_primary_10_3389_fbioe_2020_01018 crossref_primary_10_1039_D0PY00564A crossref_primary_10_1021_acs_jpcb_0c06413 |
Cites_doi | 10.1021/acs.jpca.6b12489 10.1021/j100503a021 10.1103/PhysRevLett.82.3713 10.1103/PhysRevLett.91.238301 10.1098/rsta.2007.2096 10.1103/PhysRevE.49.1734 10.1021/jp0013208 10.1063/1.459541 10.1038/nature09326 10.1039/b804919j 10.1021/ja00780a001 10.1063/1.1681288 10.1021/j100021a031 10.1103/PhysRevE.92.042114 10.1063/1.452141 10.1016/j.physa.2017.04.002 10.1039/C5CS00361J 10.1126/science.283.5400.381 10.1021/jp980189p 10.1103/PhysRevE.95.032106 10.1021/jp952243x 10.1016/0022-247X(83)90099-9 10.1103/PhysRevLett.78.775 10.1021/jp9923466 10.1137/0143037 10.1007/978-3-540-32667-0 10.1021/jp409033j 10.1103/PhysRevE.63.056124 10.1038/35814 10.1016/0009-2509(74)80084-9 10.1007/BF01044713 10.1063/1.1398314 10.1007/BF00934000 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/c7re00196g |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2058-9883 |
EndPage | 226 |
ExternalDocumentID | 10_1039_C7RE00196G c7re00196g |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ AARTK AAXHV ABASK ABDVN ABPDG ABRYZ ACGFS ADMRA AEFDR AENGV AETIL AFOGI AGEGJ AGRSR AGSTE AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT BLAPV C6K EBS ECGLT EJD GGIMP H13 O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX ABIQK ABJNI AFRZK AKMSF CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c347t-7c2c8b4397cb62abd568346cc897df601ab67e940d174cedda005508008235a13 |
ISSN | 2058-9883 |
IngestDate | Mon Jun 30 07:04:30 EDT 2025 Tue Jul 01 02:52:02 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Tue Dec 17 20:58:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c347t-7c2c8b4397cb62abd568346cc897df601ab67e940d174cedda005508008235a13 |
Notes | 10.1039/c7re00196g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7486-2218 0000-0001-6278-9068 |
PQID | 2021656671 |
PQPubID | 2047514 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2021656671 crossref_citationtrail_10_1039_C7RE00196G crossref_primary_10_1039_C7RE00196G rsc_primary_c7re00196g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Reaction chemistry & engineering |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kruel (C7RE00196G-(cit14)/*[position()=1]) 1990; 93 Benzi (C7RE00196G-(cit18)/*[position()=1]) 1983; 43 Orbán (C7RE00196G-(cit36)/*[position()=1]) 1978; 82 Kadar (C7RE00196G-(cit15)/*[position()=1]) 1998; 391 Tyson (C7RE00196G-(cit8)/*[position()=1]) 1985 Pikovsky (C7RE00196G-(cit20)/*[position()=1]) 1997; 78 Gao (C7RE00196G-(cit35)/*[position()=1]) 1995; 99 Beato (C7RE00196G-(cit27)/*[position()=1]) 2008; 366 Lesmes (C7RE00196G-(cit16)/*[position()=1]) 2003; 91 Noszticzius (C7RE00196G-(cit31)/*[position()=1]) 1987; 86 Hempel (C7RE00196G-(cit12)/*[position()=1]) 1999; 82 Kaneko (C7RE00196G-(cit1)/*[position()=1]) 2006 Bhalla (C7RE00196G-(cit3)/*[position()=1]) 1999; 283 Gagnon (C7RE00196G-(cit29)/*[position()=1]) 2017; 95 Li (C7RE00196G-(cit23)/*[position()=1]) 2001; 115 Zhabotinsky (C7RE00196G-(cit9)/*[position()=1]) 1964; 9 Gagnon (C7RE00196G-(cit30)/*[position()=1]) 2017; 480 Blagojevic (C7RE00196G-(cit32)/*[position()=1]) 2008; 10 Sanz-Anchelergues (C7RE00196G-(cit11)/*[position()=1]) 2001; 63 Bellman (C7RE00196G-(cit7)/*[position()=1]) 1983; 91 Guderian (C7RE00196G-(cit21)/*[position()=1]) 1996; 100 Muñuzuri (C7RE00196G-(cit17)/*[position()=1]) 2017; 121 Amemiya (C7RE00196G-(cit22)/*[position()=1]) 1998; 102 Field (C7RE00196G-(cit33)/*[position()=1]) 1972; 94 Leonard (C7RE00196G-(cit19)/*[position()=1]) 1994; 49 Jiang (C7RE00196G-(cit25)/*[position()=1]) 2000; 104 Fjeld (C7RE00196G-(cit5)/*[position()=1]) 1974; 29 Gagnon (C7RE00196G-(cit28)/*[position()=1]) 2015; 92 Bailey (C7RE00196G-(cit6)/*[position()=1]) 1971; 7 Field (C7RE00196G-(cit34)/*[position()=1]) 1974; 60 Eldar (C7RE00196G-(cit4)/*[position()=1]) 2010; 467 Van Roekel (C7RE00196G-(cit2)/*[position()=1]) 2015; 44 Zhong (C7RE00196G-(cit24)/*[position()=1]) 2000; 104 Sigeti (C7RE00196G-(cit13)/*[position()=1]) 1989; 54 Simakov (C7RE00196G-(cit26)/*[position()=1]) 2013; 117 Zhabotinsky (C7RE00196G-(cit10)/*[position()=1]) 2007; vol. 2 |
References_xml | – issn: 2006 publication-title: Life: An Introduction to Complex Systems Biology doi: Kaneko – start-page: (9) issn: 2007 issue: vol. 2 end-page: 1435 publication-title: Scholarpedia doi: Zhabotinsky – issn: 1985 end-page: p 92-144 publication-title: Oscillations and Travelling Waves in Chemical Systems doi: Tyson – volume: 121 start-page: 1855 year: 2017 ident: C7RE00196G-(cit17)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b12489 – volume: 82 start-page: 1672 year: 1978 ident: C7RE00196G-(cit36)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100503a021 – volume: 82 start-page: 3713 year: 1999 ident: C7RE00196G-(cit12)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3713 – volume: 91 start-page: 238301 year: 2003 ident: C7RE00196G-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.238301 – volume: 366 start-page: 381 year: 2008 ident: C7RE00196G-(cit27)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2007.2096 – volume: 49 start-page: 1734 year: 1994 ident: C7RE00196G-(cit19)/*[position()=1] publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. doi: 10.1103/PhysRevE.49.1734 – volume: 104 start-page: 8521 year: 2000 ident: C7RE00196G-(cit25)/*[position()=1] publication-title: J. Phys. Chem. A. doi: 10.1021/jp0013208 – volume: 9 start-page: 306 year: 1964 ident: C7RE00196G-(cit9)/*[position()=1] publication-title: Biofizika – volume: 93 start-page: 416 year: 1990 ident: C7RE00196G-(cit14)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.459541 – volume: 467 start-page: 167 year: 2010 ident: C7RE00196G-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/nature09326 – volume-title: Oscillations and Travelling Waves in Chemical Systems year: 1985 ident: C7RE00196G-(cit8)/*[position()=1] – volume: 10 start-page: 6658 year: 2008 ident: C7RE00196G-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b804919j – volume: 94 start-page: 8649 issue: 25 year: 1972 ident: C7RE00196G-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00780a001 – volume: 60 start-page: 1877 issue: 5 year: 1974 ident: C7RE00196G-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1681288 – volume: 99 start-page: 8638 issue: 21 year: 1995 ident: C7RE00196G-(cit35)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1021/j100021a031 – volume: 92 start-page: 042114 issue: 4 year: 2015 ident: C7RE00196G-(cit28)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.92.042114 – volume: 86 start-page: 1922 year: 1987 ident: C7RE00196G-(cit31)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.452141 – volume: 480 start-page: 51 year: 2017 ident: C7RE00196G-(cit30)/*[position()=1] publication-title: Phys. A doi: 10.1016/j.physa.2017.04.002 – volume: 44 start-page: 7465 year: 2015 ident: C7RE00196G-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00361J – volume: 283 start-page: 381 year: 1999 ident: C7RE00196G-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.283.5400.381 – volume: 102 start-page: 4537 year: 1998 ident: C7RE00196G-(cit22)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp980189p – volume: 95 start-page: 032106 issue: 3 year: 2017 ident: C7RE00196G-(cit29)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.95.032106 – volume: 100 start-page: 4437 year: 1996 ident: C7RE00196G-(cit21)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp952243x – volume: 91 start-page: 152 year: 1983 ident: C7RE00196G-(cit7)/*[position()=1] publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(83)90099-9 – volume: 78 start-page: 775 year: 1997 ident: C7RE00196G-(cit20)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.775 – volume: 104 start-page: 297 year: 2000 ident: C7RE00196G-(cit24)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9923466 – volume: 43 start-page: 565 year: 1983 ident: C7RE00196G-(cit18)/*[position()=1] publication-title: SIAM J. Appl. Math. doi: 10.1137/0143037 – volume-title: Life: An Introduction to Complex Systems Biology year: 2006 ident: C7RE00196G-(cit1)/*[position()=1] doi: 10.1007/978-3-540-32667-0 – volume: 117 start-page: 13999 year: 2013 ident: C7RE00196G-(cit26)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp409033j – volume: 63 start-page: 056124 year: 2001 ident: C7RE00196G-(cit11)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.63.056124 – volume: 391 start-page: 770 year: 1998 ident: C7RE00196G-(cit15)/*[position()=1] publication-title: Nature doi: 10.1038/35814 – volume: 29 start-page: 921 year: 1974 ident: C7RE00196G-(cit5)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(74)80084-9 – volume: vol. 2 start-page: 1435 issue: (9) volume-title: Scholarpedia year: 2007 ident: C7RE00196G-(cit10)/*[position()=1] – volume: 54 start-page: 1217 year: 1989 ident: C7RE00196G-(cit13)/*[position()=1] publication-title: J. Stat. Phys. doi: 10.1007/BF01044713 – volume: 115 start-page: 6590 year: 2001 ident: C7RE00196G-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1398314 – volume: 7 start-page: 378 year: 1971 ident: C7RE00196G-(cit6)/*[position()=1] publication-title: J. Optim. Theory App. doi: 10.1007/BF00934000 |
SSID | ssj0001600387 |
Score | 2.0751226 |
Snippet | Metabolism, just like other functions in living systems, involves chemical oscillators, and the detailed metabolic oscillation profiles reflect the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 216 |
SubjectTerms | Autocatalysis Continuously stirred tank reactors Feed rate Flow velocity Hopf bifurcation Metabolism Noise Oscillations Oscillators Random noise Relaxation oscillations |
Title | Feed rate noise modulates autocatalysis and shapes the oscillations of the Belousov-Zhabotinsky reaction in a continuous stirred tank reactor |
URI | https://www.proquest.com/docview/2021656671 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 2058-9883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001600387 issn: 2058-9883 databaseCode: AETIL dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9MIFgaAiUJAluKBoy669D--xNCkFUYSqVKq4RGuvQyKi3WofkeiJf8CBf8gvYcb7DM2hcFlFlr1SMl9mPo_H3xDyikPU517ILG6L0HJdT1hCL5gVL3wmIs2lMj0jzz_5Z5fuhyvvajDoKwSXhTxSNzvvlfyPVWEM7Iq3ZP_Bsu1LYQA-g33hCRaG551sfAqhZ4xaD-MkXeUa29pgNy6dj6OySE1mxgiOmOT4MrpGOQeABepXrns1cKZGQK_TMk83TfED_7IEeBTY1_r7GIilaooiI1PdvkpKrJ0F_5BhATswzG_VrDTr092LZqFq-soZqOlOBLHN8GSrTQRMdVOR2XS5autxJqXG4_y3TpRbE3OwP6nS3iiB0EaVz9WRf6ZvrHOdYdV_Vt06qeFfZzYc0ctsGAfIbEBOKKpGN0d6x1jtwXkPqGzLG_u9wM6qq_m3YobNUXL1JLiYGrGgd11kbKoB_gqYbRmjOcDn4bxbu0f2WeD7bEj2j6ez9x-7dJ-PZ7B4eb_9Bo1YLg_fdC_YpkfdnmcvaxrSGOIze0Du1zsWelzB7yEZ6OQR-YnQowg9aqBHW-jRLehRgB6toEcBZrQPPZouzFgDvd8_fvVARxvQ0VVCI9qBjtagowg6WoPuMbk8nc5Ozqy6t4eluBsUVqCYEhLZsJI-i2Ts-YK7vlIiDMBP2E4k_UCHrh3DllnpOI5QLQ63N4JxL3L4ARkmaaKfEIqiCLajlcSeW7BMKlfo2JNAPhdaaDkir5ufdK5q4Xvsv7Ke37bfiLxs515Xci87Zx02lpnX7iCfM2DLuDkKnBE5AGu161WQabPu69M7vf0Zudf9Gw7JsMhK_RyYbyFf1Kj6A97isjg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feed+rate+noise+modulates+autocatalysis+and+shapes+the+oscillations+of+the+Belousov%E2%80%93Zhabotinsky+reaction+in+a+continuous+stirred+tank+reactor&rft.jtitle=Reaction+chemistry+%26+engineering&rft.au=Srivastava%2C+Rohit&rft.au=Due%C3%B1as-D%C3%ADez%2C+Marta&rft.au=P%C3%A9rez-Mercader%2C+Juan&rft.date=2018-01-01&rft.issn=2058-9883&rft.eissn=2058-9883&rft.volume=3&rft.issue=2&rft.spage=216&rft.epage=226&rft_id=info:doi/10.1039%2FC7RE00196G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7RE00196G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-9883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-9883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-9883&client=summon |