Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease
Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-bas...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 1; pp. 23 - 34 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2019.2918839 |
Cover
Abstract | Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm. |
---|---|
AbstractList | Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm. Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm. |
Author | Youn, Jinyoung Kim, Mansu Park, Hyunjin Won, Ji Hye |
Author_xml | – sequence: 1 givenname: Mansu orcidid: 0000-0002-0785-4514 surname: Kim fullname: Kim, Mansu email: mansooru.kim@gmail.com organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 2 givenname: Ji Hye surname: Won fullname: Won, Ji Hye email: jihyelo100@gmail.com organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 3 givenname: Jinyoung surname: Youn fullname: Youn, Jinyoung email: genian.youn@gmail.com organization: Samsung Medical Center, School of Medicine, Sungkyunkwan University, South Korea – sequence: 4 givenname: Hyunjin orcidid: 0000-0001-5681-8918 surname: Park fullname: Park, Hyunjin email: hyunjinp@skku.edu organization: Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31144631$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEUx4NU7Lb1LggS8GAvs82vmWSO7dTWlYqCFbwNmeRNSZ1NtklW2Kt_udnu2kMPnvIIn-_78r7fI3TggweE3lAyp5S0Z7dfFnNGaDtnLVWKty_QjNa1qlgtfh6gGWFSVYQ07BAdpXRPCBU1aV-hQ06pEA2nM_Tnc3A-V13wHkx2v13eVBc6gcXfVzomwJ0uns7oCXchRph0dsHjc6-nTXIJhxEvlvrO-Tt8DR6yMwmPIeJLyNt95fvChaWOvyA-wt_K6HwK_kPCly5BsTpBL0c9JXi9f4_Rj6uPt92n6ubr9aI7v6kMFzJXApiw0gxW2lHLlkjK7GhVY422gxqHZhCKUT2WXBixilAtmKgHQVRTW0VrfoxOd3tXMTysIeV-6ZKBadIewjr1jHEmZC1aUtD3z9D7sI7l5kJxzmvBZMML9W5PrYcl2H4VXbl00_9LtwBkB5gYUoowPiGU9NsC-1Jgvy2w3xdYJM0ziXH5MfMctZv-J3y7EzoAePJRklFJG_4XVPSoHA |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_ymeth_2025_01_017 crossref_primary_10_1016_j_media_2022_102419 crossref_primary_10_1007_s11517_021_02439_2 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1109_TCBB_2023_3335369 crossref_primary_10_1109_TCYB_2022_3155875 crossref_primary_10_1371_journal_pone_0237511 crossref_primary_10_1002_hbm_26581 crossref_primary_10_3389_fnagi_2021_817520 crossref_primary_10_1016_j_compbiomed_2024_107959 crossref_primary_10_1007_s12031_021_01915_6 crossref_primary_10_1016_j_bspc_2021_102962 crossref_primary_10_3934_era_2023044 crossref_primary_10_1109_JBHI_2022_3196689 crossref_primary_10_1109_TNSRE_2022_3188560 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_1007_s12031_022_02031_9 crossref_primary_10_1007_s12031_021_01888_6 crossref_primary_10_1109_TNSRE_2023_3310340 crossref_primary_10_3389_fgene_2022_967363 crossref_primary_10_3390_biom13050728 crossref_primary_10_1016_j_media_2021_102297 crossref_primary_10_1109_ACCESS_2021_3059520 crossref_primary_10_3390_brainsci10030181 crossref_primary_10_1109_TCSVT_2023_3263853 crossref_primary_10_3389_fnagi_2023_1052783 crossref_primary_10_1093_jrsssc_qlad022 crossref_primary_10_3934_mbe_2023435 crossref_primary_10_1007_s12652_021_02994_4 crossref_primary_10_1109_TCBB_2024_3386406 crossref_primary_10_32604_cmc_2022_023057 crossref_primary_10_1109_TKDE_2022_3185399 crossref_primary_10_1016_j_media_2021_102189 crossref_primary_10_1016_j_media_2023_102842 crossref_primary_10_1016_j_molmed_2022_11_002 crossref_primary_10_1016_j_media_2021_102026 crossref_primary_10_1109_TCSII_2020_2988054 |
Cites_doi | 10.1007/s00186-007-0161-1 10.1007/978-3-7091-6842-4_2 10.1016/j.media.2013.10.010 10.1016/j.neurobiolaging.2012.06.007 10.1038/ng.485 10.1016/j.bcp.2017.05.017 10.1212/WNL.46.1.231 10.1198/jcgs.2010.09208 10.1371/journal.pone.0161567 10.1097/MIB.0b013e318281f454 10.1016/j.neuroimage.2011.05.055 10.1038/ng.2250 10.1002/mds.22062 10.1186/1471-2121-10-54 10.1016/j.neuropharm.2018.06.028 10.1371/journal.pgen.1002548 10.1016/j.pneurobio.2011.09.005 10.1186/s13040-016-0082-8 10.1038/ng.3043 10.1093/biostatistics/kxp008 10.1109/TBDATA.2017.2735991 10.2202/1544-6115.1406 10.1093/bioinformatics/btw033 10.3389/fnagi.2019.00013 10.1016/j.neulet.2009.05.046 10.3389/fgene.2015.00276 10.1093/bioinformatics/btu465 10.1016/j.neurobiolaging.2018.10.030 10.1109/TCBB.2017.2748944 10.1007/978-1-4939-7027-8_10 10.1186/s12863-017-0495-5 10.1136/jnnp.62.2.133 10.1023/A:1017501703105 10.1093/bioinformatics/btr649 10.1371/journal.pbio.0060159 10.1212/01.WNL.0000095205.33940.99 10.1016/j.neuroimage.2009.10.003 10.1038/nn.3636 10.1016/S1474-4422(09)70293-5 10.1111/j.1467-9868.2005.00490.x 10.1097/RLU.0000000000000794 10.1093/biostatistics/kxs038 10.1006/nimg.2001.0978 10.1097/RLU.0b013e318251e1b3 10.1038/srep44272 10.1016/j.neuroimage.2004.07.051 10.1093/bioinformatics/btx594 10.1016/S0896-6273(03)00568-3 10.1002/mds.26251 10.1007/s00702-011-0653-2 10.3389/fnins.2015.00101 10.2174/1566524015666150303104159 10.1002/mds.25255 10.1093/bioinformatics/btx344 10.1002/hbm.20508 10.1111/rssb.12033 10.1002/hbm.1058 10.1093/bmb/65.1.259 10.1371/journal.pone.0008856 10.1093/bioinformatics/btw485 10.18637/jss.v033.i01 10.1053/j.gastro.2011.02.046 10.1016/j.bbadis.2014.05.016 10.2202/1544-6115.1470 10.1093/emboj/20.16.4467 10.1016/j.neuroimage.2012.12.062 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2019.2918839 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 34 |
ExternalDocumentID | 31144631 10_1109_TMI_2019_2918839 8721716 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Institute for Basic Science grantid: IBS-R015-D1 funderid: 10.13039/501100010446 – fundername: Korean government through the AI Graduate School Support Program grantid: 2019-0-00421 – fundername: National Research Foundation of Korea grantid: NRF-2016R1A2B4008545; NRF-2017H1A2A1043075 funderid: 10.13039/501100003725 – fundername: Ministry of Science and ICT of Korea through the ITRC program grantid: IITP-2019-2018-0-01798 – fundername: IITP grant |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-4e24d7cbd7dfa790712dfd86dcadb8fb6b4821af10920d801a4245b40865d8153 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 16:26:01 EDT 2025 Sun Jun 29 15:56:25 EDT 2025 Wed Feb 19 02:31:29 EST 2025 Tue Jul 01 03:16:02 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Wed Aug 27 06:30:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-4e24d7cbd7dfa790712dfd86dcadb8fb6b4821af10920d801a4245b40865d8153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0785-4514 0000-0001-5681-8918 |
PMID | 31144631 |
PQID | 2333542763 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TMI_2019_2918839 proquest_miscellaneous_2232475490 proquest_journals_2333542763 ieee_primary_8721716 pubmed_primary_31144631 crossref_citationtrail_10_1109_TMI_2019_2918839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 belkin (ref36) 2002 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 friedman (ref39) 2010; 33 ref49 ref8 ref7 ref9 ref3 ref6 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 muñoz (ref4) 2007; 48 hao (ref26) 2017; 7 ref2 ref1 ref38 kim (ref5) 2017; 7 ref68 ref24 ref67 ref23 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref34 doi: 10.1007/s00186-007-0161-1 – ident: ref52 doi: 10.1007/978-3-7091-6842-4_2 – ident: ref24 doi: 10.1016/j.media.2013.10.010 – ident: ref65 doi: 10.1016/j.neurobiolaging.2012.06.007 – ident: ref61 doi: 10.1038/ng.485 – ident: ref64 doi: 10.1016/j.bcp.2017.05.017 – ident: ref48 doi: 10.1212/WNL.46.1.231 – ident: ref29 doi: 10.1198/jcgs.2010.09208 – ident: ref68 doi: 10.1371/journal.pone.0161567 – ident: ref57 doi: 10.1097/MIB.0b013e318281f454 – ident: ref17 doi: 10.1016/j.neuroimage.2011.05.055 – ident: ref6 doi: 10.1038/ng.2250 – ident: ref9 doi: 10.1002/mds.22062 – ident: ref62 doi: 10.1186/1471-2121-10-54 – ident: ref63 doi: 10.1016/j.neuropharm.2018.06.028 – ident: ref46 doi: 10.1371/journal.pgen.1002548 – ident: ref40 doi: 10.1016/j.pneurobio.2011.09.005 – ident: ref7 doi: 10.1186/s13040-016-0082-8 – ident: ref47 doi: 10.1038/ng.3043 – ident: ref21 doi: 10.1093/biostatistics/kxp008 – ident: ref18 doi: 10.1109/TBDATA.2017.2735991 – ident: ref28 doi: 10.2202/1544-6115.1406 – ident: ref33 doi: 10.1093/bioinformatics/btw033 – ident: ref55 doi: 10.3389/fnagi.2019.00013 – ident: ref13 doi: 10.1016/j.neulet.2009.05.046 – ident: ref27 doi: 10.3389/fgene.2015.00276 – ident: ref25 doi: 10.1093/bioinformatics/btu465 – ident: ref54 doi: 10.1016/j.neurobiolaging.2018.10.030 – ident: ref8 doi: 10.1109/TCBB.2017.2748944 – ident: ref31 doi: 10.1007/978-1-4939-7027-8_10 – ident: ref50 doi: 10.1186/s12863-017-0495-5 – volume: 7 year: 2017 ident: ref5 article-title: Imaging genetics approach to Parkinson's disease and its correlation with clinical score publication-title: Sci Rep – ident: ref53 doi: 10.1136/jnnp.62.2.133 – ident: ref35 doi: 10.1023/A:1017501703105 – ident: ref20 doi: 10.1093/bioinformatics/btr649 – ident: ref32 doi: 10.1371/journal.pbio.0060159 – ident: ref66 doi: 10.1212/01.WNL.0000095205.33940.99 – ident: ref30 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref59 doi: 10.1038/nn.3636 – ident: ref11 doi: 10.1016/S1474-4422(09)70293-5 – ident: ref37 doi: 10.1111/j.1467-9868.2005.00490.x – ident: ref43 doi: 10.1097/RLU.0000000000000794 – ident: ref3 doi: 10.1093/biostatistics/kxs038 – ident: ref42 doi: 10.1006/nimg.2001.0978 – ident: ref44 doi: 10.1097/RLU.0b013e318251e1b3 – volume: 7 year: 2017 ident: ref26 article-title: Mining outcome-relevant brain imaging genetic associations via three-way sparse canonical correlation analysis in Alzheimer's disease publication-title: Sci Rep doi: 10.1038/srep44272 – ident: ref41 doi: 10.1016/j.neuroimage.2004.07.051 – ident: ref51 doi: 10.1093/bioinformatics/btx594 – volume: 48 start-page: 356 year: 2007 ident: ref4 article-title: Imaging genetics publication-title: Journal of the American Academy of Child & Adolescent Psychiatry – ident: ref10 doi: 10.1016/S0896-6273(03)00568-3 – ident: ref14 doi: 10.1002/mds.26251 – ident: ref56 doi: 10.1007/s00702-011-0653-2 – ident: ref49 doi: 10.3389/fnins.2015.00101 – ident: ref2 doi: 10.2174/1566524015666150303104159 – ident: ref12 doi: 10.1002/mds.25255 – ident: ref19 doi: 10.1093/bioinformatics/btx344 – ident: ref16 doi: 10.1002/hbm.20508 – ident: ref38 doi: 10.1111/rssb.12033 – ident: ref45 doi: 10.1002/hbm.1058 – ident: ref1 doi: 10.1093/bmb/65.1.259 – ident: ref58 doi: 10.1371/journal.pone.0008856 – start-page: 585 year: 2002 ident: ref36 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1093/bioinformatics/btw485 – volume: 33 start-page: 1 year: 2010 ident: ref39 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – ident: ref69 doi: 10.1053/j.gastro.2011.02.046 – ident: ref60 doi: 10.1016/j.bbadis.2014.05.016 – ident: ref22 doi: 10.2202/1544-6115.1470 – ident: ref67 doi: 10.1093/emboj/20.16.4467 – ident: ref23 doi: 10.1016/j.neuroimage.2012.12.062 |
SSID | ssj0014509 |
Score | 2.5133793 |
Snippet | Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | Algorithms Biomarkers Brain brain connectivity Computer simulation Connectivity Correlation Correlation analysis Datasets Diseases Genetics Imaging genetics Magnetic resonance imaging magnetic resonance imaging (MRI) Medical imaging Movement disorders Neural networks Neurodegenerative diseases Neuroimaging Neurological diseases Nucleotides Parkinson's disease Parkinson’s disease (PD) Performance evaluation prior information single nucleotide polymorphism (SNP) Single-nucleotide polymorphism sparse canonical correlation analysis (SCCA) Sparse matrices |
Title | Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease |
URI | https://ieeexplore.ieee.org/document/8721716 https://www.ncbi.nlm.nih.gov/pubmed/31144631 https://www.proquest.com/docview/2333542763 https://www.proquest.com/docview/2232475490 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGh5pBRkJCSERHYdx4mdI91StZWWC63UW-RXpAq6qdrshSO_nBnnoQpR1FuUOC_N2DOfv3kAfHC546VWPjWlbVJiltLKKp4WRghlK-20iQGy38rjc3l6UVxswOcpFyaEEIPPwowOI5fvW7emrbK5RriC_v0mbKKa9blaE2Mgiz6cQ1DFWF6KkZLk1fxseUIxXNVMVJnW1Bb8jgmKPVXudy-jmTnahuX4gX10yY_ZurMz9-uv2o0P_YNn8HTwN9mXXkGew0ZY7cCTO1UId-DRcuDXd-H3aXu56tIY_eL6vhLpAdo5z75fIwIObGFWbcykZAtq69EH0rGxsglrG3ZyFfseMapnTSWgGXrF7DAQV0GnDy7bK4oIuomDKec6pp99vGWHPVX0As6Pvp4tjtOhS0Pqcqm6VAYhvXLWK98YhVg7E77xuvTOeKsbW1qpRWYalITgHg2iIbLVSsRShde44L6ELfz08BqYLrwo8E4u80ZWildayLJB3MwrZdHUJjAfBVe7oYQ5ddL4WUcow6saRV2TqOtB1Al8mu647st3_GfsLglsGjfIKoH9UTfqYX7f1iLP80IKXJwTeD9dxplJdItZhXaNY8hZVYi_eQKvep2anp1nhMPzbO_f73wDjwXh-rjVsw9b3c06vEXnp7Pvotb_Aemr_vw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYCQkhkV3HcWLnSLdUu6XbC1uptyh-RKqgm6rNXjjyy5lxHqoQIG5RYieOxvbM528eAO9sanmulYur3NQxMUtxYRSPs0oIZQptdRUcZE_y-ak8OsvOtuDjGAvjvQ_OZ35Cl4HLd43d0FHZVCNcQfv-FtzOEFXoLlpr5Axk1jl0CMoZy3MxkJK8mK6WC_LiKiaiSLSmwuA3lFCoqvJ3AzMomsOHsByG2PmXfJtsWjOxP37L3vi___AIHvQWJ_vUTZHHsOXXO3D_Rh7CHbiz7Bn2Xfh51Jyv2zj4v9iuskS8j5rOsa-XiIE9m1XrJsRSshkV9uhc6diQ24Q1NVtchMpHjDJaUxJohnYxO_DEVtDt_fPmgnyCrkJjiroOAWjvr9lBRxY9gdPDz6vZPO7rNMQ2laqNpRfSKWuccnWlEG0nwtVO585Wzuja5EZqkVQ1SkJwhyqxIrrVSERTmdO45T6FbRy6fw5MZ05k2JPLtJaF4oUWMq8ROfNCGVS2EUwHwZW2T2JOtTS-lwHM8KJEUZck6rIXdQQfxh6XXQKPf7TdJYGN7XpZRbA3zI2yX-HXpUjTNJMCt-cI3o6PcW0S4VKtfbPBNmSuKkTgPIJn3Zwa350mhMTT5MWfv_kG7s5Xy-PyeHHy5SXcE4Tyw8HPHmy3Vxv_Ck2h1rwOK-AXd2wCXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint-Connectivity-Based+Sparse+Canonical+Correlation+Analysis+of+Imaging+Genetics+for+Detecting+Biomarkers+of+Parkinson%27s+Disease&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kim%2C+Mansu&rft.au=Won%2C+Ji+Hye&rft.au=Youn%2C+Jinyoung&rft.au=Park%2C+Hyunjin&rft.date=2020-01-01&rft.eissn=1558-254X&rft.volume=39&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1109%2FTMI.2019.2918839&rft_id=info%3Apmid%2F31144631&rft.externalDocID=31144631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |