Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease

Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 1; pp. 23 - 34
Main Authors Kim, Mansu, Won, Ji Hye, Youn, Jinyoung, Park, Hyunjin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2918839

Cover

Abstract Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.
AbstractList Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.
Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.
Author Youn, Jinyoung
Kim, Mansu
Park, Hyunjin
Won, Ji Hye
Author_xml – sequence: 1
  givenname: Mansu
  orcidid: 0000-0002-0785-4514
  surname: Kim
  fullname: Kim, Mansu
  email: mansooru.kim@gmail.com
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 2
  givenname: Ji Hye
  surname: Won
  fullname: Won, Ji Hye
  email: jihyelo100@gmail.com
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 3
  givenname: Jinyoung
  surname: Youn
  fullname: Youn, Jinyoung
  email: genian.youn@gmail.com
  organization: Samsung Medical Center, School of Medicine, Sungkyunkwan University, South Korea
– sequence: 4
  givenname: Hyunjin
  orcidid: 0000-0001-5681-8918
  surname: Park
  fullname: Park, Hyunjin
  email: hyunjinp@skku.edu
  organization: Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31144631$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4NU7Lb1LggS8GAvs82vmWSO7dTWlYqCFbwNmeRNSZ1NtklW2Kt_udnu2kMPnvIIn-_78r7fI3TggweE3lAyp5S0Z7dfFnNGaDtnLVWKty_QjNa1qlgtfh6gGWFSVYQ07BAdpXRPCBU1aV-hQ06pEA2nM_Tnc3A-V13wHkx2v13eVBc6gcXfVzomwJ0uns7oCXchRph0dsHjc6-nTXIJhxEvlvrO-Tt8DR6yMwmPIeJLyNt95fvChaWOvyA-wt_K6HwK_kPCly5BsTpBL0c9JXi9f4_Rj6uPt92n6ubr9aI7v6kMFzJXApiw0gxW2lHLlkjK7GhVY422gxqHZhCKUT2WXBixilAtmKgHQVRTW0VrfoxOd3tXMTysIeV-6ZKBadIewjr1jHEmZC1aUtD3z9D7sI7l5kJxzmvBZMML9W5PrYcl2H4VXbl00_9LtwBkB5gYUoowPiGU9NsC-1Jgvy2w3xdYJM0ziXH5MfMctZv-J3y7EzoAePJRklFJG_4XVPSoHA
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_ymeth_2025_01_017
crossref_primary_10_1016_j_media_2022_102419
crossref_primary_10_1007_s11517_021_02439_2
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1109_TCBB_2023_3335369
crossref_primary_10_1109_TCYB_2022_3155875
crossref_primary_10_1371_journal_pone_0237511
crossref_primary_10_1002_hbm_26581
crossref_primary_10_3389_fnagi_2021_817520
crossref_primary_10_1016_j_compbiomed_2024_107959
crossref_primary_10_1007_s12031_021_01915_6
crossref_primary_10_1016_j_bspc_2021_102962
crossref_primary_10_3934_era_2023044
crossref_primary_10_1109_JBHI_2022_3196689
crossref_primary_10_1109_TNSRE_2022_3188560
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1007_s12031_022_02031_9
crossref_primary_10_1007_s12031_021_01888_6
crossref_primary_10_1109_TNSRE_2023_3310340
crossref_primary_10_3389_fgene_2022_967363
crossref_primary_10_3390_biom13050728
crossref_primary_10_1016_j_media_2021_102297
crossref_primary_10_1109_ACCESS_2021_3059520
crossref_primary_10_3390_brainsci10030181
crossref_primary_10_1109_TCSVT_2023_3263853
crossref_primary_10_3389_fnagi_2023_1052783
crossref_primary_10_1093_jrsssc_qlad022
crossref_primary_10_3934_mbe_2023435
crossref_primary_10_1007_s12652_021_02994_4
crossref_primary_10_1109_TCBB_2024_3386406
crossref_primary_10_32604_cmc_2022_023057
crossref_primary_10_1109_TKDE_2022_3185399
crossref_primary_10_1016_j_media_2021_102189
crossref_primary_10_1016_j_media_2023_102842
crossref_primary_10_1016_j_molmed_2022_11_002
crossref_primary_10_1016_j_media_2021_102026
crossref_primary_10_1109_TCSII_2020_2988054
Cites_doi 10.1007/s00186-007-0161-1
10.1007/978-3-7091-6842-4_2
10.1016/j.media.2013.10.010
10.1016/j.neurobiolaging.2012.06.007
10.1038/ng.485
10.1016/j.bcp.2017.05.017
10.1212/WNL.46.1.231
10.1198/jcgs.2010.09208
10.1371/journal.pone.0161567
10.1097/MIB.0b013e318281f454
10.1016/j.neuroimage.2011.05.055
10.1038/ng.2250
10.1002/mds.22062
10.1186/1471-2121-10-54
10.1016/j.neuropharm.2018.06.028
10.1371/journal.pgen.1002548
10.1016/j.pneurobio.2011.09.005
10.1186/s13040-016-0082-8
10.1038/ng.3043
10.1093/biostatistics/kxp008
10.1109/TBDATA.2017.2735991
10.2202/1544-6115.1406
10.1093/bioinformatics/btw033
10.3389/fnagi.2019.00013
10.1016/j.neulet.2009.05.046
10.3389/fgene.2015.00276
10.1093/bioinformatics/btu465
10.1016/j.neurobiolaging.2018.10.030
10.1109/TCBB.2017.2748944
10.1007/978-1-4939-7027-8_10
10.1186/s12863-017-0495-5
10.1136/jnnp.62.2.133
10.1023/A:1017501703105
10.1093/bioinformatics/btr649
10.1371/journal.pbio.0060159
10.1212/01.WNL.0000095205.33940.99
10.1016/j.neuroimage.2009.10.003
10.1038/nn.3636
10.1016/S1474-4422(09)70293-5
10.1111/j.1467-9868.2005.00490.x
10.1097/RLU.0000000000000794
10.1093/biostatistics/kxs038
10.1006/nimg.2001.0978
10.1097/RLU.0b013e318251e1b3
10.1038/srep44272
10.1016/j.neuroimage.2004.07.051
10.1093/bioinformatics/btx594
10.1016/S0896-6273(03)00568-3
10.1002/mds.26251
10.1007/s00702-011-0653-2
10.3389/fnins.2015.00101
10.2174/1566524015666150303104159
10.1002/mds.25255
10.1093/bioinformatics/btx344
10.1002/hbm.20508
10.1111/rssb.12033
10.1002/hbm.1058
10.1093/bmb/65.1.259
10.1371/journal.pone.0008856
10.1093/bioinformatics/btw485
10.18637/jss.v033.i01
10.1053/j.gastro.2011.02.046
10.1016/j.bbadis.2014.05.016
10.2202/1544-6115.1470
10.1093/emboj/20.16.4467
10.1016/j.neuroimage.2012.12.062
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2918839
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 34
ExternalDocumentID 31144631
10_1109_TMI_2019_2918839
8721716
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institute for Basic Science
  grantid: IBS-R015-D1
  funderid: 10.13039/501100010446
– fundername: Korean government through the AI Graduate School Support Program
  grantid: 2019-0-00421
– fundername: National Research Foundation of Korea
  grantid: NRF-2016R1A2B4008545; NRF-2017H1A2A1043075
  funderid: 10.13039/501100003725
– fundername: Ministry of Science and ICT of Korea through the ITRC program
  grantid: IITP-2019-2018-0-01798
– fundername: IITP grant
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-4e24d7cbd7dfa790712dfd86dcadb8fb6b4821af10920d801a4245b40865d8153
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 16:26:01 EDT 2025
Sun Jun 29 15:56:25 EDT 2025
Wed Feb 19 02:31:29 EST 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Wed Aug 27 06:30:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-4e24d7cbd7dfa790712dfd86dcadb8fb6b4821af10920d801a4245b40865d8153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0785-4514
0000-0001-5681-8918
PMID 31144631
PQID 2333542763
PQPubID 85460
PageCount 12
ParticipantIDs crossref_primary_10_1109_TMI_2019_2918839
proquest_miscellaneous_2232475490
proquest_journals_2333542763
ieee_primary_8721716
pubmed_primary_31144631
crossref_citationtrail_10_1109_TMI_2019_2918839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
belkin (ref36) 2002
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
friedman (ref39) 2010; 33
ref49
ref8
ref7
ref9
ref3
ref6
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
muñoz (ref4) 2007; 48
hao (ref26) 2017; 7
ref2
ref1
ref38
kim (ref5) 2017; 7
ref68
ref24
ref67
ref23
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1007/s00186-007-0161-1
– ident: ref52
  doi: 10.1007/978-3-7091-6842-4_2
– ident: ref24
  doi: 10.1016/j.media.2013.10.010
– ident: ref65
  doi: 10.1016/j.neurobiolaging.2012.06.007
– ident: ref61
  doi: 10.1038/ng.485
– ident: ref64
  doi: 10.1016/j.bcp.2017.05.017
– ident: ref48
  doi: 10.1212/WNL.46.1.231
– ident: ref29
  doi: 10.1198/jcgs.2010.09208
– ident: ref68
  doi: 10.1371/journal.pone.0161567
– ident: ref57
  doi: 10.1097/MIB.0b013e318281f454
– ident: ref17
  doi: 10.1016/j.neuroimage.2011.05.055
– ident: ref6
  doi: 10.1038/ng.2250
– ident: ref9
  doi: 10.1002/mds.22062
– ident: ref62
  doi: 10.1186/1471-2121-10-54
– ident: ref63
  doi: 10.1016/j.neuropharm.2018.06.028
– ident: ref46
  doi: 10.1371/journal.pgen.1002548
– ident: ref40
  doi: 10.1016/j.pneurobio.2011.09.005
– ident: ref7
  doi: 10.1186/s13040-016-0082-8
– ident: ref47
  doi: 10.1038/ng.3043
– ident: ref21
  doi: 10.1093/biostatistics/kxp008
– ident: ref18
  doi: 10.1109/TBDATA.2017.2735991
– ident: ref28
  doi: 10.2202/1544-6115.1406
– ident: ref33
  doi: 10.1093/bioinformatics/btw033
– ident: ref55
  doi: 10.3389/fnagi.2019.00013
– ident: ref13
  doi: 10.1016/j.neulet.2009.05.046
– ident: ref27
  doi: 10.3389/fgene.2015.00276
– ident: ref25
  doi: 10.1093/bioinformatics/btu465
– ident: ref54
  doi: 10.1016/j.neurobiolaging.2018.10.030
– ident: ref8
  doi: 10.1109/TCBB.2017.2748944
– ident: ref31
  doi: 10.1007/978-1-4939-7027-8_10
– ident: ref50
  doi: 10.1186/s12863-017-0495-5
– volume: 7
  year: 2017
  ident: ref5
  article-title: Imaging genetics approach to Parkinson's disease and its correlation with clinical score
  publication-title: Sci Rep
– ident: ref53
  doi: 10.1136/jnnp.62.2.133
– ident: ref35
  doi: 10.1023/A:1017501703105
– ident: ref20
  doi: 10.1093/bioinformatics/btr649
– ident: ref32
  doi: 10.1371/journal.pbio.0060159
– ident: ref66
  doi: 10.1212/01.WNL.0000095205.33940.99
– ident: ref30
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref59
  doi: 10.1038/nn.3636
– ident: ref11
  doi: 10.1016/S1474-4422(09)70293-5
– ident: ref37
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: ref43
  doi: 10.1097/RLU.0000000000000794
– ident: ref3
  doi: 10.1093/biostatistics/kxs038
– ident: ref42
  doi: 10.1006/nimg.2001.0978
– ident: ref44
  doi: 10.1097/RLU.0b013e318251e1b3
– volume: 7
  year: 2017
  ident: ref26
  article-title: Mining outcome-relevant brain imaging genetic associations via three-way sparse canonical correlation analysis in Alzheimer's disease
  publication-title: Sci Rep
  doi: 10.1038/srep44272
– ident: ref41
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: ref51
  doi: 10.1093/bioinformatics/btx594
– volume: 48
  start-page: 356
  year: 2007
  ident: ref4
  article-title: Imaging genetics
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
– ident: ref10
  doi: 10.1016/S0896-6273(03)00568-3
– ident: ref14
  doi: 10.1002/mds.26251
– ident: ref56
  doi: 10.1007/s00702-011-0653-2
– ident: ref49
  doi: 10.3389/fnins.2015.00101
– ident: ref2
  doi: 10.2174/1566524015666150303104159
– ident: ref12
  doi: 10.1002/mds.25255
– ident: ref19
  doi: 10.1093/bioinformatics/btx344
– ident: ref16
  doi: 10.1002/hbm.20508
– ident: ref38
  doi: 10.1111/rssb.12033
– ident: ref45
  doi: 10.1002/hbm.1058
– ident: ref1
  doi: 10.1093/bmb/65.1.259
– ident: ref58
  doi: 10.1371/journal.pone.0008856
– start-page: 585
  year: 2002
  ident: ref36
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1093/bioinformatics/btw485
– volume: 33
  start-page: 1
  year: 2010
  ident: ref39
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– ident: ref69
  doi: 10.1053/j.gastro.2011.02.046
– ident: ref60
  doi: 10.1016/j.bbadis.2014.05.016
– ident: ref22
  doi: 10.2202/1544-6115.1470
– ident: ref67
  doi: 10.1093/emboj/20.16.4467
– ident: ref23
  doi: 10.1016/j.neuroimage.2012.12.062
SSID ssj0014509
Score 2.5133793
Snippet Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Algorithms
Biomarkers
Brain
brain connectivity
Computer simulation
Connectivity
Correlation
Correlation analysis
Datasets
Diseases
Genetics
Imaging genetics
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical imaging
Movement disorders
Neural networks
Neurodegenerative diseases
Neuroimaging
Neurological diseases
Nucleotides
Parkinson's disease
Parkinson’s disease (PD)
Performance evaluation
prior information
single nucleotide polymorphism (SNP)
Single-nucleotide polymorphism
sparse canonical correlation analysis (SCCA)
Sparse matrices
Title Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease
URI https://ieeexplore.ieee.org/document/8721716
https://www.ncbi.nlm.nih.gov/pubmed/31144631
https://www.proquest.com/docview/2333542763
https://www.proquest.com/docview/2232475490
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGh5pBRkJCSERHYdx4mdI91StZWWC63UW-RXpAq6qdrshSO_nBnnoQpR1FuUOC_N2DOfv3kAfHC546VWPjWlbVJiltLKKp4WRghlK-20iQGy38rjc3l6UVxswOcpFyaEEIPPwowOI5fvW7emrbK5RriC_v0mbKKa9blaE2Mgiz6cQ1DFWF6KkZLk1fxseUIxXNVMVJnW1Bb8jgmKPVXudy-jmTnahuX4gX10yY_ZurMz9-uv2o0P_YNn8HTwN9mXXkGew0ZY7cCTO1UId-DRcuDXd-H3aXu56tIY_eL6vhLpAdo5z75fIwIObGFWbcykZAtq69EH0rGxsglrG3ZyFfseMapnTSWgGXrF7DAQV0GnDy7bK4oIuomDKec6pp99vGWHPVX0As6Pvp4tjtOhS0Pqcqm6VAYhvXLWK98YhVg7E77xuvTOeKsbW1qpRWYalITgHg2iIbLVSsRShde44L6ELfz08BqYLrwo8E4u80ZWildayLJB3MwrZdHUJjAfBVe7oYQ5ddL4WUcow6saRV2TqOtB1Al8mu647st3_GfsLglsGjfIKoH9UTfqYX7f1iLP80IKXJwTeD9dxplJdItZhXaNY8hZVYi_eQKvep2anp1nhMPzbO_f73wDjwXh-rjVsw9b3c06vEXnp7Pvotb_Aemr_vw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYCQkhkV3HcWLnSLdUu6XbC1uptyh-RKqgm6rNXjjyy5lxHqoQIG5RYieOxvbM528eAO9sanmulYur3NQxMUtxYRSPs0oIZQptdRUcZE_y-ak8OsvOtuDjGAvjvQ_OZ35Cl4HLd43d0FHZVCNcQfv-FtzOEFXoLlpr5Axk1jl0CMoZy3MxkJK8mK6WC_LiKiaiSLSmwuA3lFCoqvJ3AzMomsOHsByG2PmXfJtsWjOxP37L3vi___AIHvQWJ_vUTZHHsOXXO3D_Rh7CHbiz7Bn2Xfh51Jyv2zj4v9iuskS8j5rOsa-XiIE9m1XrJsRSshkV9uhc6diQ24Q1NVtchMpHjDJaUxJohnYxO_DEVtDt_fPmgnyCrkJjiroOAWjvr9lBRxY9gdPDz6vZPO7rNMQ2laqNpRfSKWuccnWlEG0nwtVO585Wzuja5EZqkVQ1SkJwhyqxIrrVSERTmdO45T6FbRy6fw5MZ05k2JPLtJaF4oUWMq8ROfNCGVS2EUwHwZW2T2JOtTS-lwHM8KJEUZck6rIXdQQfxh6XXQKPf7TdJYGN7XpZRbA3zI2yX-HXpUjTNJMCt-cI3o6PcW0S4VKtfbPBNmSuKkTgPIJn3Zwa350mhMTT5MWfv_kG7s5Xy-PyeHHy5SXcE4Tyw8HPHmy3Vxv_Ck2h1rwOK-AXd2wCXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint-Connectivity-Based+Sparse+Canonical+Correlation+Analysis+of+Imaging+Genetics+for+Detecting+Biomarkers+of+Parkinson%27s+Disease&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kim%2C+Mansu&rft.au=Won%2C+Ji+Hye&rft.au=Youn%2C+Jinyoung&rft.au=Park%2C+Hyunjin&rft.date=2020-01-01&rft.eissn=1558-254X&rft.volume=39&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1109%2FTMI.2019.2918839&rft_id=info%3Apmid%2F31144631&rft.externalDocID=31144631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon