Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT
Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for scr...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 38; no. 9; pp. 2127 - 2138 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2019.2899534 |
Cover
Abstract | Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings. |
---|---|
AbstractList | Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings. Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings.Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings. |
Author | Wolterink, Jelmer M. Leiner, Tim de Vos, Bob D. de Jong, Pim A. Lessmann, Nikolas Isgum, Ivana |
Author_xml | – sequence: 1 givenname: Bob D. orcidid: 0000-0002-8358-6849 surname: de Vos fullname: de Vos, Bob D. email: b.d.devos-2@umcutrecht.nl organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands – sequence: 2 givenname: Jelmer M. orcidid: 0000-0001-5505-475X surname: Wolterink fullname: Wolterink, Jelmer M. organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands – sequence: 3 givenname: Tim orcidid: 0000-0003-1885-5499 surname: Leiner fullname: Leiner, Tim organization: Department of Radiology, University Medical Center Utrecht, Utrecht University, CX, The Netherlands – sequence: 4 givenname: Pim A. surname: de Jong fullname: de Jong, Pim A. organization: Department of Radiology, University Medical Center Utrecht, Utrecht University, CX, The Netherlands – sequence: 5 givenname: Nikolas orcidid: 0000-0001-7935-9611 surname: Lessmann fullname: Lessmann, Nikolas organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands – sequence: 6 givenname: Ivana orcidid: 0000-0003-1869-5034 surname: Isgum fullname: Isgum, Ivana organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30794169$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLJDEURoMoY-vMXhCkYDZuqr15VSXLpmZGBQcX04K7kM5DI1WJpqoW_vuJdOvChasLl_PdxzlC-zFFh9AJhiXGIC_Wf6-XBLBcEiElp2wPLTDnoiac3e-jBZBW1AANOURH4_gEgBkH-Q0dUmglw41coNWvkJ2ZqtU8pUFPwVRdyinq_Fp1ujdhHqp_JuUQH6oQSyvboE2lo626RzdOVbf-jg687kf3Y1eP0d2f3-vuqr65vbzuVje1oaydagagobWcMWHlhlOKwTjnvaXaY4tbJ4y2RjTCS_AbD41kxErReispaOzpMTrfzn3O6WUuu9UQRuP6XkeX5lERLDjnpGnbgv78hD6lOcdynSJEMEJIQ6FQZztq3gzOqucchvK3epdTANgCJqdxzM5_IBjUm39V_Ks3_2rnv0SaTxETpqI1xSnr0H8VPN0Gg3PuY49oGKWM0P98VI-G |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_ejrad_2020_109428 crossref_primary_10_3390_ijerph181910003 crossref_primary_10_3390_jcm11113203 crossref_primary_10_1016_j_ejrad_2023_110855 crossref_primary_10_1007_s11042_023_17776_7 crossref_primary_10_1371_journal_pone_0285593 crossref_primary_10_18203_2320_6012_ijrms20244132 crossref_primary_10_1093_ehjci_jeab119 crossref_primary_10_7759_cureus_74681 crossref_primary_10_1007_s00330_022_09028_3 crossref_primary_10_1007_s00330_019_06447_7 crossref_primary_10_1007_s12350_019_01674_3 crossref_primary_10_1016_j_clinimag_2023_109983 crossref_primary_10_1007_s12350_022_03047_9 crossref_primary_10_1016_j_ejrad_2023_110787 crossref_primary_10_1016_j_heliyon_2022_e10872 crossref_primary_10_1007_s11886_022_01655_y crossref_primary_10_1007_s44230_023_00038_y crossref_primary_10_17816_DD623196 crossref_primary_10_3390_diagnostics11071156 crossref_primary_10_1002_tee_23726 crossref_primary_10_3724_SP_J_1089_2022_19038 crossref_primary_10_1016_j_csbj_2022_03_025 crossref_primary_10_1053_j_semnuclmed_2020_03_004 crossref_primary_10_1002_mp_14912 crossref_primary_10_1038_s41467_021_20966_2 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1016_j_metrad_2025_100134 crossref_primary_10_1038_s44325_024_00020_y crossref_primary_10_1007_s00330_020_06707_x crossref_primary_10_1016_j_ejmp_2023_102555 crossref_primary_10_3390_diagnostics11020215 crossref_primary_10_3390_opt3010002 crossref_primary_10_3389_fcvm_2022_1016032 crossref_primary_10_1038_s41746_021_00460_1 crossref_primary_10_1016_j_compbiomed_2024_109295 crossref_primary_10_1148_radiol_2021211483 crossref_primary_10_1007_s13246_021_01080_5 crossref_primary_10_1016_j_hfc_2021_11_003 crossref_primary_10_1134_S0361768821030038 crossref_primary_10_1148_radiol_2020192224 crossref_primary_10_3233_THC_231273 crossref_primary_10_4070_kcj_2019_0315 crossref_primary_10_1016_j_ijcha_2024_101593 crossref_primary_10_1186_s12880_022_00907_1 crossref_primary_10_1097_RTI_0000000000000491 crossref_primary_10_1016_j_media_2022_102470 crossref_primary_10_3389_fcvm_2022_896366 crossref_primary_10_1117_1_JMI_9_5_052406 crossref_primary_10_1016_j_jcct_2019_05_015 crossref_primary_10_1007_s11547_020_01277_w crossref_primary_10_1016_j_jcmg_2021_07_012 crossref_primary_10_1016_j_inffus_2021_01_009 crossref_primary_10_1177_00033197231225286 crossref_primary_10_1002_ail2_77 crossref_primary_10_1155_2020_6649410 crossref_primary_10_3389_fcvm_2020_00025 crossref_primary_10_1038_s41598_024_78393_4 crossref_primary_10_1002_mp_15870 crossref_primary_10_1016_j_diii_2021_05_004 crossref_primary_10_1002_adfm_202305136 crossref_primary_10_1109_JBHI_2019_2946066 crossref_primary_10_1088_2057_1976_ad2ff2 crossref_primary_10_1148_ryct_2021190219 crossref_primary_10_3348_kjr_2020_1047 crossref_primary_10_1038_s41467_021_23235_4 crossref_primary_10_1109_TMI_2020_2965486 crossref_primary_10_3389_fcvm_2019_00172 crossref_primary_10_3390_app122312281 crossref_primary_10_1016_j_iliver_2024_100082 |
Cites_doi | 10.1007/978-3-319-66179-7_70 10.1097/RTI.0000000000000287 10.1109/ISBI.2016.7493209 10.1016/j.media.2016.11.008 10.1016/j.atherosclerosis.2009.09.031 10.1001/jama.2012.9624 10.1109/TMI.2017.2769839 10.1016/j.ejrad.2010.06.009 10.1118/1.4945696 10.1007/s12350-017-0866-3 10.1007/978-3-319-24553-9_72 10.11613/BM.2012.031 10.1007/978-3-319-10590-1_53 10.1016/j.jcmg.2015.02.006 10.1148/radiol.15142062 10.1056/NEJMoa1102873 10.1007/s00330-002-1394-2 10.1109/TMI.2017.2673121 10.1016/j.media.2017.09.005 10.1007/978-3-319-67558-9_24 10.1016/S0140-6736(16)31012-1 10.1016/j.jacc.2010.05.057 10.3109/15412550903499522 10.1117/12.2216978 10.1148/radiol.10100383 10.1016/0735-1097(90)90282-T 10.1371/journal.pone.0167925 10.4065/74.3.243 10.1109/TMI.2015.2412651 10.1109/TMI.2012.2216889 10.1016/j.acra.2012.07.018 10.1016/j.jcm.2016.02.012 10.1016/j.media.2018.11.010 10.1016/j.media.2016.04.004 10.1016/j.compbiomed.2003.10.003 10.1093/ehjci/jes079 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2019.2899534 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2138 |
ExternalDocumentID | 30794169 10_1109_TMI_2019_2899534 8643342 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Stichting voor de Technische Wetenschappen grantid: 12726 funderid: 10.13039/501100003958 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c347t-400a07d5448d9b53310ceeffd3af1d17e8cadc868f90fbf06942d987fd930a1f3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Fri Jul 11 15:06:19 EDT 2025 Sun Jun 29 16:14:50 EDT 2025 Mon Jul 21 05:49:32 EDT 2025 Tue Jul 01 03:16:02 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 27 02:46:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-400a07d5448d9b53310ceeffd3af1d17e8cadc868f90fbf06942d987fd930a1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7935-9611 0000-0001-5505-475X 0000-0002-8358-6849 0000-0003-1869-5034 0000-0003-1885-5499 |
PMID | 30794169 |
PQID | 2284222630 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_30794169 proquest_journals_2284222630 ieee_primary_8643342 crossref_primary_10_1109_TMI_2019_2899534 crossref_citationtrail_10_1109_TMI_2019_2899534 proquest_miscellaneous_2185552677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ioffe (ref38) 2015 ref35 ref13 ref34 ref12 durlak (ref20) 2017 ref37 ref15 ref36 ref14 kingma (ref44) 2015 clevert (ref39) 2016 ref33 de vos (ref31) 2017 ref32 ref10 xie (ref16) 2017; 10134 ref1 ref17 ref19 ref18 bradski (ref43) 2008; 120 dieleman (ref42) 2015 ref24 de vos (ref30) 2017 aberle (ref11) 2011; 365 ref45 ref48 ref26 ref47 ref25 ref22 ref21 lessmann (ref23) 2016; 9785 team (ref41) 2016 ref28 ref27 ref29 ref8 ref7 (ref2) 0 ref9 ref4 ref3 ref6 ref5 cano-espinosa (ref46) 2018; 10574 ref40 |
References_xml | – ident: ref27 doi: 10.1007/978-3-319-66179-7_70 – ident: ref5 doi: 10.1097/RTI.0000000000000287 – ident: ref15 doi: 10.1109/ISBI.2016.7493209 – ident: ref28 doi: 10.1016/j.media.2016.11.008 – ident: ref9 doi: 10.1016/j.atherosclerosis.2009.09.031 – volume: 120 year: 2008 ident: ref43 article-title: The openCV library publication-title: Dr Dobb's J Softw Tools – ident: ref3 doi: 10.1001/jama.2012.9624 – ident: ref24 doi: 10.1109/TMI.2017.2769839 – ident: ref35 doi: 10.1016/j.ejrad.2010.06.009 – start-page: 1 year: 2016 ident: ref39 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: Proc Int Conf Mach Learn – ident: ref25 doi: 10.1118/1.4945696 – start-page: 1 year: 2015 ident: ref44 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref32 doi: 10.1007/s12350-017-0866-3 – ident: ref21 doi: 10.1007/978-3-319-24553-9_72 – ident: ref45 doi: 10.11613/BM.2012.031 – year: 2017 ident: ref31 publication-title: Direct and real-time cardiovascular risk prediction – ident: ref40 doi: 10.1007/978-3-319-10590-1_53 – ident: ref4 doi: 10.1016/j.jcmg.2015.02.006 – start-page: 27 year: 2017 ident: ref20 publication-title: Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-Specific Coronary Calcium Scoring – ident: ref10 doi: 10.1148/radiol.15142062 – volume: 365 start-page: 395 year: 2011 ident: ref11 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: New England J Med doi: 10.1056/NEJMoa1102873 – ident: ref37 doi: 10.1007/s00330-002-1394-2 – ident: ref26 doi: 10.1109/TMI.2017.2673121 – ident: ref29 doi: 10.1016/j.media.2017.09.005 – ident: ref33 doi: 10.1007/978-3-319-67558-9_24 – year: 0 ident: ref2 article-title: Cardiovascular diseases (CVDs) [fact sheet] – ident: ref1 doi: 10.1016/S0140-6736(16)31012-1 – year: 2017 ident: ref30 publication-title: Direct Coronary Artery Calcium Scoring in Low-Dose Chest CT Using Deep Learning Analysis – start-page: 448 year: 2015 ident: ref38 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref6 doi: 10.1016/j.jacc.2010.05.057 – ident: ref47 doi: 10.3109/15412550903499522 – volume: 9785 start-page: 978511 year: 2016 ident: ref23 article-title: Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT publication-title: Proc SPIE doi: 10.1117/12.2216978 – ident: ref14 doi: 10.1148/radiol.10100383 – ident: ref12 doi: 10.1016/0735-1097(90)90282-T – ident: ref8 doi: 10.1371/journal.pone.0167925 – ident: ref13 doi: 10.4065/74.3.243 – volume: 10134 year: 2017 ident: ref16 article-title: Coronary artery calcification identification and labeling in low-dose chest CT images publication-title: Proc SPIE – volume: 10574 year: 2018 ident: ref46 article-title: Automated agatston score computation in non-ECG gated CT scans using deep learning publication-title: Proc SPIE – year: 2015 ident: ref42 publication-title: Lasagne First Release – year: 2016 ident: ref41 publication-title: Theano A Python framework for fast computation of mathematical expressions – ident: ref19 doi: 10.1109/TMI.2015.2412651 – ident: ref17 doi: 10.1109/TMI.2012.2216889 – ident: ref18 doi: 10.1016/j.acra.2012.07.018 – ident: ref48 doi: 10.1016/j.jcm.2016.02.012 – ident: ref34 doi: 10.1016/j.media.2018.11.010 – ident: ref22 doi: 10.1016/j.media.2016.04.004 – ident: ref36 doi: 10.1016/j.compbiomed.2003.10.003 – ident: ref7 doi: 10.1093/ehjci/jes079 |
SSID | ssj0014509 |
Score | 2.5627275 |
Snippet | Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2127 |
SubjectTerms | Arteries Arteriosclerosis Artificial neural networks atlas-registration Calcification (ectopic) Calcium Calcium scoring cardiac CT Cardiovascular diseases Chest chest CT Clinical decision making Computed tomography convolutional neural network Coronary artery Coronary Artery Disease - diagnostic imaging Coronary Vessels - diagnostic imaging Correlation coefficient Correlation coefficients Decision making Deep Learning Diagnostic Techniques, Cardiovascular Feature extraction Feedback Heart diseases Humans Image Interpretation, Computer-Assisted - methods Lesions Lung Methods Neural networks Radiography, Thoracic regression Risk analysis Risk factors Segmentation Tomography Tomography, X-Ray Computed - methods Vascular Calcification - diagnostic imaging Visual perception |
Title | Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT |
URI | https://ieeexplore.ieee.org/document/8643342 https://www.ncbi.nlm.nih.gov/pubmed/30794169 https://www.proquest.com/docview/2284222630 https://www.proquest.com/docview/2185552677 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHqpyANpCCRRkpF4qkV3Hedg-riKqgrRc2Eq9RX5KFW22KskBfj1j5yGKAHGLEidxPGPPN5nxNwCnnDHHhQ_VyxhPcSaKVCMsTqWQWgpd6MrGLN_P1cVl8emqvNqB9_NeGOdcTD5zi3AYY_l2a_rwq2wp0HzmBS64j1DNhr1ac8SgKId0DhYYY2nFppAklcvN-mPI4ZKL4FyUeSjFg5otEYrIB9Yollf5O9KMFuf8Kaynvg6JJl8XfacX5sdvNI7_-zHP4MkIPclq0JUD2HHtITz-hZDwEPbWY6j9CFbDYkhWfbeNtK6kDmQH6v47qdWNue5vyRcTs_fIdYungqIZolpL6lCCi9Sb53B5_mFTX6RjvYXU5AXv0JWkinJbosdmpUYcmFE0od7bXPnMZtwJo6wRFYqWeu3DlllmpeDeypyqzOcvYLfdtu4lkArl4C0rrCh8wWipKPMiyy2CEcRbOktgOY17Y0Yy8lAT46aJTgmVDQqtCUJrRqElcDbfcTcQcfyj7VEY77ndONQJnEyibcaZ-q1haJ8RI1U5TeDdfBnnWAicqNZte2yDoKYsWcV5AseDSszPnjTp1Z_f-Rr2Q8-GrLQT2O3ue_cGYUyn30b9_Qm5l-fn |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEhcksus4TmwfVxHVFrq9sJV6i-zYlipKFpXkAL-esfMQIEDcosRJHM_Y801m_A3Aa8GYE9KH6mVMpDgTZWoQFqdKKqOk4aa0Mcv3rFyf8_cXxcUevJ33wjjnYvKZW4TDGMu3u6YPv8qWEs1nznHBvYF2n4-7teaYAS-GhA4WOGNpyaagJFXL7eYkZHGpRXAvijwU40HdVghG1C_2KBZY-TvWjDbn-B5spt4OqSafFn1nFs3334gc__dz7sPdEXyS1aAtD2DPtQdw5ydKwgO4uRmD7YewGpZDsuq7XSR2JVWgO9DX30ilr5rL_jP52MT8PXLZ4qmgag3RrSVVKMJFqu1DOD9-t63W6VhxIW1yLjp0Jqmmwhbos1llEAlmFI2o9zbXPrOZcLLRtpElCpd648OmWWaVFN6qnOrM549gv9217gmQEuXgLeNWcs8ZLTRlXma5RTiCiMtkCSynca-bkY48VMW4qqNbQlWNQquD0OpRaAm8me_4MlBx_KPtYRjvud041AkcTaKtx7n6tWZooREllTlN4NV8GWdZCJ3o1u16bIOwpihYKUQCjweVmJ89adLTP7_zJdxabzen9enJ2YdncDv0cshRO4L97rp3zxHUdOZF1OUfA5XrMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Automatic+Coronary+Calcium+Scoring+in+Cardiac+and+Chest+CT&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=de+Vos%2C+Bob+D&rft.au=Wolterink%2C+Jelmer+M&rft.au=Leiner%2C+Tim&rft.au=de+Jong%2C+Pim+A&rft.date=2019-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=9&rft.spage=2127&rft_id=info:doi/10.1109%2FTMI.2019.2899534&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |