Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT

Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for scr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 38; no. 9; pp. 2127 - 2138
Main Authors de Vos, Bob D., Wolterink, Jelmer M., Leiner, Tim, de Jong, Pim A., Lessmann, Nikolas, Isgum, Ivana
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2899534

Cover

Abstract Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings.
AbstractList Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings.
Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings.Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet the demands of the increasing interest in quantification of CAC, i.e., coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed. The current automatic calcium scoring methods are relatively computationally expensive and only provide scores for one type of CT. To address this, we propose a computationally efficient method that employs two convolutional neural networks: the first performs registration to align the fields of view of input CTs and the second performs direct regression of the calcium score, thereby circumventing time-consuming intermediate CAC segmentation. Optional decision feedback provides insight into the regions that are contributed to the calcium score. Experiments were performed using 903 cardiac CT and 1687 chest CT scans. The method predicted calcium scores in less than 0.3 s. The intra-class correlation coefficient between predicted and manual calcium scores was 0.98 for both cardiac and chest CT. The method showed almost perfect agreement between automatic and manual CVD risk categorization in both the datasets, with a linearly weighted Cohen's kappa of 0.95 in cardiac CT and 0.93 in chest CT. Performance is similar to that of the state-of-the-art methods, but the proposed method is hundreds of times faster. By providing visual feedback, insight is given in the decision process, making it readily implementable in clinical and research settings.
Author Wolterink, Jelmer M.
Leiner, Tim
de Vos, Bob D.
de Jong, Pim A.
Lessmann, Nikolas
Isgum, Ivana
Author_xml – sequence: 1
  givenname: Bob D.
  orcidid: 0000-0002-8358-6849
  surname: de Vos
  fullname: de Vos, Bob D.
  email: b.d.devos-2@umcutrecht.nl
  organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands
– sequence: 2
  givenname: Jelmer M.
  orcidid: 0000-0001-5505-475X
  surname: Wolterink
  fullname: Wolterink, Jelmer M.
  organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands
– sequence: 3
  givenname: Tim
  orcidid: 0000-0003-1885-5499
  surname: Leiner
  fullname: Leiner, Tim
  organization: Department of Radiology, University Medical Center Utrecht, Utrecht University, CX, The Netherlands
– sequence: 4
  givenname: Pim A.
  surname: de Jong
  fullname: de Jong, Pim A.
  organization: Department of Radiology, University Medical Center Utrecht, Utrecht University, CX, The Netherlands
– sequence: 5
  givenname: Nikolas
  orcidid: 0000-0001-7935-9611
  surname: Lessmann
  fullname: Lessmann, Nikolas
  organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands
– sequence: 6
  givenname: Ivana
  orcidid: 0000-0003-1869-5034
  surname: Isgum
  fullname: Isgum, Ivana
  organization: University Medical Center Utrecht, Image Sciences Institute, Utrecht University, Utrecht, CX, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30794169$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLJDEURoMoY-vMXhCkYDZuqr15VSXLpmZGBQcX04K7kM5DI1WJpqoW_vuJdOvChasLl_PdxzlC-zFFh9AJhiXGIC_Wf6-XBLBcEiElp2wPLTDnoiac3e-jBZBW1AANOURH4_gEgBkH-Q0dUmglw41coNWvkJ2ZqtU8pUFPwVRdyinq_Fp1ujdhHqp_JuUQH6oQSyvboE2lo626RzdOVbf-jg687kf3Y1eP0d2f3-vuqr65vbzuVje1oaydagagobWcMWHlhlOKwTjnvaXaY4tbJ4y2RjTCS_AbD41kxErReispaOzpMTrfzn3O6WUuu9UQRuP6XkeX5lERLDjnpGnbgv78hD6lOcdynSJEMEJIQ6FQZztq3gzOqucchvK3epdTANgCJqdxzM5_IBjUm39V_Ks3_2rnv0SaTxETpqI1xSnr0H8VPN0Gg3PuY49oGKWM0P98VI-G
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_ejrad_2020_109428
crossref_primary_10_3390_ijerph181910003
crossref_primary_10_3390_jcm11113203
crossref_primary_10_1016_j_ejrad_2023_110855
crossref_primary_10_1007_s11042_023_17776_7
crossref_primary_10_1371_journal_pone_0285593
crossref_primary_10_18203_2320_6012_ijrms20244132
crossref_primary_10_1093_ehjci_jeab119
crossref_primary_10_7759_cureus_74681
crossref_primary_10_1007_s00330_022_09028_3
crossref_primary_10_1007_s00330_019_06447_7
crossref_primary_10_1007_s12350_019_01674_3
crossref_primary_10_1016_j_clinimag_2023_109983
crossref_primary_10_1007_s12350_022_03047_9
crossref_primary_10_1016_j_ejrad_2023_110787
crossref_primary_10_1016_j_heliyon_2022_e10872
crossref_primary_10_1007_s11886_022_01655_y
crossref_primary_10_1007_s44230_023_00038_y
crossref_primary_10_17816_DD623196
crossref_primary_10_3390_diagnostics11071156
crossref_primary_10_1002_tee_23726
crossref_primary_10_3724_SP_J_1089_2022_19038
crossref_primary_10_1016_j_csbj_2022_03_025
crossref_primary_10_1053_j_semnuclmed_2020_03_004
crossref_primary_10_1002_mp_14912
crossref_primary_10_1038_s41467_021_20966_2
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1016_j_metrad_2025_100134
crossref_primary_10_1038_s44325_024_00020_y
crossref_primary_10_1007_s00330_020_06707_x
crossref_primary_10_1016_j_ejmp_2023_102555
crossref_primary_10_3390_diagnostics11020215
crossref_primary_10_3390_opt3010002
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1038_s41746_021_00460_1
crossref_primary_10_1016_j_compbiomed_2024_109295
crossref_primary_10_1148_radiol_2021211483
crossref_primary_10_1007_s13246_021_01080_5
crossref_primary_10_1016_j_hfc_2021_11_003
crossref_primary_10_1134_S0361768821030038
crossref_primary_10_1148_radiol_2020192224
crossref_primary_10_3233_THC_231273
crossref_primary_10_4070_kcj_2019_0315
crossref_primary_10_1016_j_ijcha_2024_101593
crossref_primary_10_1186_s12880_022_00907_1
crossref_primary_10_1097_RTI_0000000000000491
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_3389_fcvm_2022_896366
crossref_primary_10_1117_1_JMI_9_5_052406
crossref_primary_10_1016_j_jcct_2019_05_015
crossref_primary_10_1007_s11547_020_01277_w
crossref_primary_10_1016_j_jcmg_2021_07_012
crossref_primary_10_1016_j_inffus_2021_01_009
crossref_primary_10_1177_00033197231225286
crossref_primary_10_1002_ail2_77
crossref_primary_10_1155_2020_6649410
crossref_primary_10_3389_fcvm_2020_00025
crossref_primary_10_1038_s41598_024_78393_4
crossref_primary_10_1002_mp_15870
crossref_primary_10_1016_j_diii_2021_05_004
crossref_primary_10_1002_adfm_202305136
crossref_primary_10_1109_JBHI_2019_2946066
crossref_primary_10_1088_2057_1976_ad2ff2
crossref_primary_10_1148_ryct_2021190219
crossref_primary_10_3348_kjr_2020_1047
crossref_primary_10_1038_s41467_021_23235_4
crossref_primary_10_1109_TMI_2020_2965486
crossref_primary_10_3389_fcvm_2019_00172
crossref_primary_10_3390_app122312281
crossref_primary_10_1016_j_iliver_2024_100082
Cites_doi 10.1007/978-3-319-66179-7_70
10.1097/RTI.0000000000000287
10.1109/ISBI.2016.7493209
10.1016/j.media.2016.11.008
10.1016/j.atherosclerosis.2009.09.031
10.1001/jama.2012.9624
10.1109/TMI.2017.2769839
10.1016/j.ejrad.2010.06.009
10.1118/1.4945696
10.1007/s12350-017-0866-3
10.1007/978-3-319-24553-9_72
10.11613/BM.2012.031
10.1007/978-3-319-10590-1_53
10.1016/j.jcmg.2015.02.006
10.1148/radiol.15142062
10.1056/NEJMoa1102873
10.1007/s00330-002-1394-2
10.1109/TMI.2017.2673121
10.1016/j.media.2017.09.005
10.1007/978-3-319-67558-9_24
10.1016/S0140-6736(16)31012-1
10.1016/j.jacc.2010.05.057
10.3109/15412550903499522
10.1117/12.2216978
10.1148/radiol.10100383
10.1016/0735-1097(90)90282-T
10.1371/journal.pone.0167925
10.4065/74.3.243
10.1109/TMI.2015.2412651
10.1109/TMI.2012.2216889
10.1016/j.acra.2012.07.018
10.1016/j.jcm.2016.02.012
10.1016/j.media.2018.11.010
10.1016/j.media.2016.04.004
10.1016/j.compbiomed.2003.10.003
10.1093/ehjci/jes079
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2899534
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2138
ExternalDocumentID 30794169
10_1109_TMI_2019_2899534
8643342
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Stichting voor de Technische Wetenschappen
  grantid: 12726
  funderid: 10.13039/501100003958
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-400a07d5448d9b53310ceeffd3af1d17e8cadc868f90fbf06942d987fd930a1f3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 15:06:19 EDT 2025
Sun Jun 29 16:14:50 EDT 2025
Mon Jul 21 05:49:32 EDT 2025
Tue Jul 01 03:16:02 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 27 02:46:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-400a07d5448d9b53310ceeffd3af1d17e8cadc868f90fbf06942d987fd930a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7935-9611
0000-0001-5505-475X
0000-0002-8358-6849
0000-0003-1869-5034
0000-0003-1885-5499
PMID 30794169
PQID 2284222630
PQPubID 85460
PageCount 12
ParticipantIDs pubmed_primary_30794169
proquest_journals_2284222630
ieee_primary_8643342
crossref_primary_10_1109_TMI_2019_2899534
crossref_citationtrail_10_1109_TMI_2019_2899534
proquest_miscellaneous_2185552677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ioffe (ref38) 2015
ref35
ref13
ref34
ref12
durlak (ref20) 2017
ref37
ref15
ref36
ref14
kingma (ref44) 2015
clevert (ref39) 2016
ref33
de vos (ref31) 2017
ref32
ref10
xie (ref16) 2017; 10134
ref1
ref17
ref19
ref18
bradski (ref43) 2008; 120
dieleman (ref42) 2015
ref24
de vos (ref30) 2017
aberle (ref11) 2011; 365
ref45
ref48
ref26
ref47
ref25
ref22
ref21
lessmann (ref23) 2016; 9785
team (ref41) 2016
ref28
ref27
ref29
ref8
ref7
(ref2) 0
ref9
ref4
ref3
ref6
ref5
cano-espinosa (ref46) 2018; 10574
ref40
References_xml – ident: ref27
  doi: 10.1007/978-3-319-66179-7_70
– ident: ref5
  doi: 10.1097/RTI.0000000000000287
– ident: ref15
  doi: 10.1109/ISBI.2016.7493209
– ident: ref28
  doi: 10.1016/j.media.2016.11.008
– ident: ref9
  doi: 10.1016/j.atherosclerosis.2009.09.031
– volume: 120
  year: 2008
  ident: ref43
  article-title: The openCV library
  publication-title: Dr Dobb's J Softw Tools
– ident: ref3
  doi: 10.1001/jama.2012.9624
– ident: ref24
  doi: 10.1109/TMI.2017.2769839
– ident: ref35
  doi: 10.1016/j.ejrad.2010.06.009
– start-page: 1
  year: 2016
  ident: ref39
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: Proc Int Conf Mach Learn
– ident: ref25
  doi: 10.1118/1.4945696
– start-page: 1
  year: 2015
  ident: ref44
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref32
  doi: 10.1007/s12350-017-0866-3
– ident: ref21
  doi: 10.1007/978-3-319-24553-9_72
– ident: ref45
  doi: 10.11613/BM.2012.031
– year: 2017
  ident: ref31
  publication-title: Direct and real-time cardiovascular risk prediction
– ident: ref40
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref4
  doi: 10.1016/j.jcmg.2015.02.006
– start-page: 27
  year: 2017
  ident: ref20
  publication-title: Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-Specific Coronary Calcium Scoring
– ident: ref10
  doi: 10.1148/radiol.15142062
– volume: 365
  start-page: 395
  year: 2011
  ident: ref11
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: New England J Med
  doi: 10.1056/NEJMoa1102873
– ident: ref37
  doi: 10.1007/s00330-002-1394-2
– ident: ref26
  doi: 10.1109/TMI.2017.2673121
– ident: ref29
  doi: 10.1016/j.media.2017.09.005
– ident: ref33
  doi: 10.1007/978-3-319-67558-9_24
– year: 0
  ident: ref2
  article-title: Cardiovascular diseases (CVDs) [fact sheet]
– ident: ref1
  doi: 10.1016/S0140-6736(16)31012-1
– year: 2017
  ident: ref30
  publication-title: Direct Coronary Artery Calcium Scoring in Low-Dose Chest CT Using Deep Learning Analysis
– start-page: 448
  year: 2015
  ident: ref38
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref6
  doi: 10.1016/j.jacc.2010.05.057
– ident: ref47
  doi: 10.3109/15412550903499522
– volume: 9785
  start-page: 978511
  year: 2016
  ident: ref23
  article-title: Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT
  publication-title: Proc SPIE
  doi: 10.1117/12.2216978
– ident: ref14
  doi: 10.1148/radiol.10100383
– ident: ref12
  doi: 10.1016/0735-1097(90)90282-T
– ident: ref8
  doi: 10.1371/journal.pone.0167925
– ident: ref13
  doi: 10.4065/74.3.243
– volume: 10134
  year: 2017
  ident: ref16
  article-title: Coronary artery calcification identification and labeling in low-dose chest CT images
  publication-title: Proc SPIE
– volume: 10574
  year: 2018
  ident: ref46
  article-title: Automated agatston score computation in non-ECG gated CT scans using deep learning
  publication-title: Proc SPIE
– year: 2015
  ident: ref42
  publication-title: Lasagne First Release
– year: 2016
  ident: ref41
  publication-title: Theano A Python framework for fast computation of mathematical expressions
– ident: ref19
  doi: 10.1109/TMI.2015.2412651
– ident: ref17
  doi: 10.1109/TMI.2012.2216889
– ident: ref18
  doi: 10.1016/j.acra.2012.07.018
– ident: ref48
  doi: 10.1016/j.jcm.2016.02.012
– ident: ref34
  doi: 10.1016/j.media.2018.11.010
– ident: ref22
  doi: 10.1016/j.media.2016.04.004
– ident: ref36
  doi: 10.1016/j.compbiomed.2003.10.003
– ident: ref7
  doi: 10.1093/ehjci/jes079
SSID ssj0014509
Score 2.5627275
Snippet Cardiovascular disease (CVD) is the global leading cause of death. A strong risk factor for CVD events is the amount of coronary artery calcium (CAC). To meet...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2127
SubjectTerms Arteries
Arteriosclerosis
Artificial neural networks
atlas-registration
Calcification (ectopic)
Calcium
Calcium scoring
cardiac CT
Cardiovascular diseases
Chest
chest CT
Clinical decision making
Computed tomography
convolutional neural network
Coronary artery
Coronary Artery Disease - diagnostic imaging
Coronary Vessels - diagnostic imaging
Correlation coefficient
Correlation coefficients
Decision making
Deep Learning
Diagnostic Techniques, Cardiovascular
Feature extraction
Feedback
Heart diseases
Humans
Image Interpretation, Computer-Assisted - methods
Lesions
Lung
Methods
Neural networks
Radiography, Thoracic
regression
Risk analysis
Risk factors
Segmentation
Tomography
Tomography, X-Ray Computed - methods
Vascular Calcification - diagnostic imaging
Visual perception
Title Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT
URI https://ieeexplore.ieee.org/document/8643342
https://www.ncbi.nlm.nih.gov/pubmed/30794169
https://www.proquest.com/docview/2284222630
https://www.proquest.com/docview/2185552677
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHqpyANpCCRRkpF4qkV3Hedg-riKqgrRc2Eq9RX5KFW22KskBfj1j5yGKAHGLEidxPGPPN5nxNwCnnDHHhQ_VyxhPcSaKVCMsTqWQWgpd6MrGLN_P1cVl8emqvNqB9_NeGOdcTD5zi3AYY_l2a_rwq2wp0HzmBS64j1DNhr1ac8SgKId0DhYYY2nFppAklcvN-mPI4ZKL4FyUeSjFg5otEYrIB9Yollf5O9KMFuf8Kaynvg6JJl8XfacX5sdvNI7_-zHP4MkIPclq0JUD2HHtITz-hZDwEPbWY6j9CFbDYkhWfbeNtK6kDmQH6v47qdWNue5vyRcTs_fIdYungqIZolpL6lCCi9Sb53B5_mFTX6RjvYXU5AXv0JWkinJbosdmpUYcmFE0od7bXPnMZtwJo6wRFYqWeu3DlllmpeDeypyqzOcvYLfdtu4lkArl4C0rrCh8wWipKPMiyy2CEcRbOktgOY17Y0Yy8lAT46aJTgmVDQqtCUJrRqElcDbfcTcQcfyj7VEY77ndONQJnEyibcaZ-q1haJ8RI1U5TeDdfBnnWAicqNZte2yDoKYsWcV5AseDSszPnjTp1Z_f-Rr2Q8-GrLQT2O3ue_cGYUyn30b9_Qm5l-fn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEhcksus4TmwfVxHVFrq9sJV6i-zYlipKFpXkAL-esfMQIEDcosRJHM_Y801m_A3Aa8GYE9KH6mVMpDgTZWoQFqdKKqOk4aa0Mcv3rFyf8_cXxcUevJ33wjjnYvKZW4TDGMu3u6YPv8qWEs1nznHBvYF2n4-7teaYAS-GhA4WOGNpyaagJFXL7eYkZHGpRXAvijwU40HdVghG1C_2KBZY-TvWjDbn-B5spt4OqSafFn1nFs3334gc__dz7sPdEXyS1aAtD2DPtQdw5ydKwgO4uRmD7YewGpZDsuq7XSR2JVWgO9DX30ilr5rL_jP52MT8PXLZ4qmgag3RrSVVKMJFqu1DOD9-t63W6VhxIW1yLjp0Jqmmwhbos1llEAlmFI2o9zbXPrOZcLLRtpElCpd648OmWWaVFN6qnOrM549gv9217gmQEuXgLeNWcs8ZLTRlXma5RTiCiMtkCSynca-bkY48VMW4qqNbQlWNQquD0OpRaAm8me_4MlBx_KPtYRjvud041AkcTaKtx7n6tWZooREllTlN4NV8GWdZCJ3o1u16bIOwpihYKUQCjweVmJ89adLTP7_zJdxabzen9enJ2YdncDv0cshRO4L97rp3zxHUdOZF1OUfA5XrMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Automatic+Coronary+Calcium+Scoring+in+Cardiac+and+Chest+CT&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=de+Vos%2C+Bob+D&rft.au=Wolterink%2C+Jelmer+M&rft.au=Leiner%2C+Tim&rft.au=de+Jong%2C+Pim+A&rft.date=2019-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=9&rft.spage=2127&rft_id=info:doi/10.1109%2FTMI.2019.2899534&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon