On the energetics of a tidally oscillating convective flow
ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinet...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 525; no. 1; pp. 508 - 526 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
09.08.2023
Oxford University Press (OUP): Policy P - Oxford Open Option A |
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/stad2163 |
Cover
Abstract | ABSTRACT
This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor. |
---|---|
AbstractList | ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor. This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor. ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor. |
Author | Terquem, Caroline |
Author_xml | – sequence: 1 givenname: Caroline orcidid: 0000-0001-5034-7721 surname: Terquem fullname: Terquem, Caroline email: caroline.terquem@physics.ox.ac.uk |
BackLink | https://hal.sorbonne-universite.fr/hal-04191372$$DView record in HAL |
BookMark | eNqFkEFPAjEQRhuDiYBePffqYaHT7napN0JUTEi46Lkp3S7UlJa0FcO_dxG4mBhPk0y-b-blDVDPB28QugcyAiLYeOujSuOUVUOBsyvUB8arggrOe6hPCKuKSQ1wgwYpfRBCSkZ5Hz0uPc4bg403cW2y1QmHFiucbaOcO-CQtHVOZevXWAe_NzrbvcGtC1-36LpVLpm78xyi9-ent9m8WCxfXmfTRaFZWeeCgVECWt7ARAlOdCW4EEpPmO6QKqC1bmpmqNGlKWu10oRUIFYrDZSThjaCDdHD6e5GObmLdqviQQZl5Xy6kMcdKUEAq-keumx5yuoYUoqmldrmjj74HJV1Eog8upI_ruTFVVcb_apd_vxZODOFz91_2W_tUn5U |
CitedBy_id | crossref_primary_10_3847_PSJ_acf9f8 crossref_primary_10_1007_s11214_024_01053_6 crossref_primary_10_1007_s11214_024_01055_4 crossref_primary_10_1051_0004_6361_202348279 crossref_primary_10_3847_PSJ_ad0cfb crossref_primary_10_3847_1538_4357_ad1e54 |
Cites_doi | 10.1093/mnras/staa2405 10.1007/s41116-016-0003-4 10.1086/167616 10.1515/9781400879175 10.1086/306348 10.1146/annurev-astro-081913-035941 10.1093/mnras/staa2216 10.1093/mnras/sts362 10.3847/2041-8213/ac5b63 10.1093/mnras/126.3.257 10.1017/CBO9781139013963 10.3847/1538-3881/ac90c9 10.1093/mnras/stt055 10.1086/155043 10.1111/j.1365-2966.2012.20630.x 10.1086/305927 10.1093/mnras/stw609 10.1086/172438 10.1073/pnas.1709125115 10.1007/BF00899817 10.12942/lrsp-2009-2 10.1029/RG002i004p00661 10.1093/mnras/stab224 10.12942/lrsp-2005-1 10.1093/mnras/staa3394 10.1093/mnras/stab2322 10.1086/158809 10.1029/RG002i003p00467 10.1007/lrsp-2015-8 10.1051/eas/1573003 10.1038/nature08108 10.1086/157589 10.1093/mnras/staa2239 10.1016/0019-1035(66)90051-0 10.1038/s41550-020-1120-5 10.1086/169376 10.1051/0004-6361/201834223 10.1051/0004-6361:20079321 10.1088/0004-637X/804/1/67 10.1088/0004-637X/752/1/14 10.7551/mitpress/3014.001.0001 10.3847/1538-4357/ac0fdd 10.1093/mnrasl/slab077 10.1051/0004-6361:20065466 10.1016/0019-1035(77)90163-4 10.1098/rstl.1879.0061 10.1093/mnras/stz2561 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society 2023 Attribution |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society 2023 – notice: Attribution |
DBID | TOX AAYXX CITATION 1XC VOOES |
DOI | 10.1093/mnras/stad2163 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics Physics |
EISSN | 1365-2966 |
EndPage | 526 |
ExternalDocumentID | oai_HAL_hal_04191372v1 10_1093_mnras_stad2163 10.1093/mnras/stad2163 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ 1XC VOOES |
ID | FETCH-LOGICAL-c347t-31ea91f6d18a960c59699ac83c0355127cd73e2ec4e47abc00519bbc1260d2d93 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Sep 12 12:43:06 EDT 2025 Tue Jul 01 03:32:36 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Wed Aug 28 03:17:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | convection binaries: close hydrodynamics Sun: general planets and satellites: dynamical evolution and stability planet–star interactions convection -hydrodynamics -Sun general -planets and satellites dynamical evolution and stability -planet-star interactions -binaries close dynamical evolution and stability -planet-star interactions -binaries close general -planets and satellites convection -hydrodynamics -Sun |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-31ea91f6d18a960c59699ac83c0355127cd73e2ec4e47abc00519bbc1260d2d93 |
ORCID | 0000-0001-5034-7721 |
OpenAccessLink | https://dx.doi.org/10.1093/mnras/stad2163 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_04191372v1 crossref_citationtrail_10_1093_mnras_stad2163 crossref_primary_10_1093_mnras_stad2163 oup_primary_10_1093_mnras_stad2163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-09 |
PublicationDateYYYYMMDD | 2023-08-09 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press Oxford University Press (OUP): Policy P - Oxford Open Option A |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP): Policy P - Oxford Open Option A |
References | Schwarzschild (2023081215024716500_bib47) 1958 Ogilvie (2023081215024716500_bib41) 2013; 429 Lighthill (2023081215024716500_bib35) 1978 Samadi (2023081215024716500_bib46) 2015; 73-74 Terquem (2023081215024716500_bib50) 2021; 503 Terquem (2023081215024716500_bib52) 1998; 502 Weinberg (2023081215024716500_bib55) 2021; 918 Press (2023081215024716500_bib45) 1981; 245 Lainey (2023081215024716500_bib33) 2020; 4 Vidal (2023081215024716500_bib54) 2020; 497 Guillot (2023081215024716500_bib23) 2004 Lainey (2023081215024716500_bib31) 2009; 459 Baraffe (2023081215024716500_bib1) 2008; 482 Feynman (2023081215024716500_bib14) 1964 Bunting (2023081215024716500_bib8) 2019; 490 Darwin (2023081215024716500_bib9) 1879; 170 Kumar (2023081215024716500_bib29) 1989; 342 Lainey (2023081215024716500_bib32) 2012; 752 Goodman (2023081215024716500_bib22) 1998; 507 Ogilvie (2023081215024716500_bib42) 2014; 52 Barker (2023081215024716500_bib2) 2020; 498 Kaula (2023081215024716500_bib27) 1964; 2 Starr (2023081215024716500_bib48) 1968 Goldreich (2023081215024716500_bib21) 1966; 5 Miesch (2023081215024716500_bib37) 2005; 2 Nordlund (2023081215024716500_bib40) 2009; 6 Mignard (2023081215024716500_bib38) 1980; 23 Tennekes (2023081215024716500_bib49) 1972 Lecoanet (2023081215024716500_bib34) 2013; 430 Belkacem (2023081215024716500_bib6) 2019; 625 Barker (2023081215024716500_bib3) 2022; 927 Zahn (2023081215024716500_bib56) 1966; 29 Dziembowski (2023081215024716500_bib12) 1977; 27 Terquem (2023081215024716500_bib51) 2021; 507 Kleppner (2023081215024716500_bib28) 2013 Barker (2023081215024716500_bib4) 2021; 506 Fuller (2023081215024716500_bib15) 2016; 458 Murray (2023081215024716500_bib39) 1999 Basu (2023081215024716500_bib5) 2016; 13 Jacobson (2023081215024716500_bib26) 2022; 164 Glatzmaier (2023081215024716500_bib16) 2018; 115 Duguid (2023081215024716500_bib10) 2020; 497 Durney (2023081215024716500_bib11) 1979; 234 Goldreich (2023081215024716500_bib17) 1963; 126 Houdek (2023081215024716500_bib24) 2015; 12 Lainey (2023081215024716500_bib30) 2007; 465 Bunting (2023081215024716500_bib7) 2021; 500 Goldreich (2023081215024716500_bib18) 1977; 212 Featherstone (2023081215024716500_bib13) 2015; 804 Verbunt (2023081215024716500_bib53) 1995; 296 Ogilvie (2023081215024716500_bib43) 2012; 422 MacDonald (2023081215024716500_bib36) 1964; 2 Zahn (2023081215024716500_bib57) 1977; 57 Goldreich (2023081215024716500_bib19) 1990; 363 Goldreich (2023081215024716500_bib20) 1977; 30 Ioannou (2023081215024716500_bib25) 1993; 406 |
References_xml | – volume: 498 start-page: 2270 year: 2020 ident: 2023081215024716500_bib2 publication-title: MNRAS doi: 10.1093/mnras/staa2405 – volume: 13 start-page: 2 year: 2016 ident: 2023081215024716500_bib5 publication-title: LRSP doi: 10.1007/s41116-016-0003-4 – volume: 342 start-page: 558 year: 1989 ident: 2023081215024716500_bib29 publication-title: ApJ doi: 10.1086/167616 – volume-title: Structure and Evolution of the Stars year: 1958 ident: 2023081215024716500_bib47 doi: 10.1515/9781400879175 – volume: 507 start-page: 938 year: 1998 ident: 2023081215024716500_bib22 publication-title: ApJ doi: 10.1086/306348 – volume: 52 start-page: 171 year: 2014 ident: 2023081215024716500_bib42 publication-title: ARA&A doi: 10.1146/annurev-astro-081913-035941 – volume: 497 start-page: 3400 year: 2020 ident: 2023081215024716500_bib10 publication-title: MNRAS doi: 10.1093/mnras/staa2216 – volume: 429 start-page: 613 year: 2013 ident: 2023081215024716500_bib41 publication-title: MNRAS doi: 10.1093/mnras/sts362 – volume: 57 start-page: 383 year: 1977 ident: 2023081215024716500_bib57 publication-title: A&A – year: 1964 ident: 2023081215024716500_bib14 publication-title: The Feynman Lectures on Physics – Volume 1, Chap. 24 Transients – volume: 927 start-page: L36 year: 2022 ident: 2023081215024716500_bib3 publication-title: ApJ doi: 10.3847/2041-8213/ac5b63 – volume: 126 start-page: 257 year: 1963 ident: 2023081215024716500_bib17 publication-title: MNRAS doi: 10.1093/mnras/126.3.257 – volume-title: An Introduction to Mechanics year: 2013 ident: 2023081215024716500_bib28 doi: 10.1017/CBO9781139013963 – volume: 164 start-page: 199 year: 2022 ident: 2023081215024716500_bib26 publication-title: AJ doi: 10.3847/1538-3881/ac90c9 – volume: 430 start-page: 2363 year: 2013 ident: 2023081215024716500_bib34 publication-title: MNRAS doi: 10.1093/mnras/stt055 – volume: 212 start-page: 243 year: 1977 ident: 2023081215024716500_bib18 publication-title: ApJ doi: 10.1086/155043 – volume: 296 start-page: 709 year: 1995 ident: 2023081215024716500_bib53 publication-title: A&A – volume: 422 start-page: 1975 year: 2012 ident: 2023081215024716500_bib43 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20630.x – volume: 502 start-page: 788 year: 1998 ident: 2023081215024716500_bib52 publication-title: ApJ doi: 10.1086/305927 – volume: 458 start-page: 3867 year: 2016 ident: 2023081215024716500_bib15 publication-title: MNRAS doi: 10.1093/mnras/stw609 – volume: 406 start-page: 266 year: 1993 ident: 2023081215024716500_bib25 publication-title: ApJ doi: 10.1086/172438 – volume: 115 start-page: 6896 year: 2018 ident: 2023081215024716500_bib16 publication-title: PNAS doi: 10.1073/pnas.1709125115 – volume: 23 start-page: 185 year: 1980 ident: 2023081215024716500_bib38 publication-title: M&P doi: 10.1007/BF00899817 – volume: 6 start-page: 2 year: 2009 ident: 2023081215024716500_bib40 publication-title: LRSP doi: 10.12942/lrsp-2009-2 – volume: 2 start-page: 661 year: 1964 ident: 2023081215024716500_bib27 publication-title: RvGSP doi: 10.1029/RG002i004p00661 – volume: 503 start-page: 5789 year: 2021 ident: 2023081215024716500_bib50 publication-title: MNRAS doi: 10.1093/mnras/stab224 – volume: 2 start-page: 1 year: 2005 ident: 2023081215024716500_bib37 publication-title: LRSP doi: 10.12942/lrsp-2005-1 – volume: 500 start-page: 2711 year: 2021 ident: 2023081215024716500_bib7 publication-title: MNRAS doi: 10.1093/mnras/staa3394 – volume: 507 start-page: 4165 year: 2021 ident: 2023081215024716500_bib51 publication-title: MNRAS doi: 10.1093/mnras/stab2322 – volume: 245 start-page: 286 year: 1981 ident: 2023081215024716500_bib45 publication-title: ApJ doi: 10.1086/158809 – volume: 2 start-page: 467 year: 1964 ident: 2023081215024716500_bib36 publication-title: RvGSP doi: 10.1029/RG002i003p00467 – volume-title: Waves in Fluids year: 1978 ident: 2023081215024716500_bib35 – volume: 12 start-page: 8 year: 2015 ident: 2023081215024716500_bib24 publication-title: LRSP doi: 10.1007/lrsp-2015-8 – volume: 73-74 start-page: 111 year: 2015 ident: 2023081215024716500_bib46 publication-title: EAS doi: 10.1051/eas/1573003 – start-page: 35 volume-title: The interior of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere year: 2004 ident: 2023081215024716500_bib23 – volume: 459 start-page: 957 year: 2009 ident: 2023081215024716500_bib31 publication-title: Natur doi: 10.1038/nature08108 – volume: 234 start-page: 1067 year: 1979 ident: 2023081215024716500_bib11 publication-title: ApJ doi: 10.1086/157589 – volume: 497 start-page: 4472 year: 2020 ident: 2023081215024716500_bib54 publication-title: MNRAS doi: 10.1093/mnras/staa2239 – volume: 27 start-page: 203 year: 1977 ident: 2023081215024716500_bib12 publication-title: AcA – volume: 5 start-page: 375 year: 1966 ident: 2023081215024716500_bib21 publication-title: Icarus doi: 10.1016/0019-1035(66)90051-0 – volume: 29 start-page: 489 year: 1966 ident: 2023081215024716500_bib56 publication-title: AnAp – volume: 4 start-page: 1053 year: 2020 ident: 2023081215024716500_bib33 publication-title: Nat. Astron. doi: 10.1038/s41550-020-1120-5 – volume: 363 start-page: 694 year: 1990 ident: 2023081215024716500_bib19 publication-title: ApJ doi: 10.1086/169376 – volume: 625 start-page: A20 year: 2019 ident: 2023081215024716500_bib6 publication-title: A&A doi: 10.1051/0004-6361/201834223 – volume-title: Physics of Negative Viscosity Phenomena year: 1968 ident: 2023081215024716500_bib48 – volume-title: Solar System Dynamics year: 1999 ident: 2023081215024716500_bib39 – volume: 482 start-page: 315 year: 2008 ident: 2023081215024716500_bib1 publication-title: A&A doi: 10.1051/0004-6361:20079321 – volume: 804 start-page: 67 year: 2015 ident: 2023081215024716500_bib13 publication-title: ApJ doi: 10.1088/0004-637X/804/1/67 – volume: 752 start-page: 14 year: 2012 ident: 2023081215024716500_bib32 publication-title: ApJ doi: 10.1088/0004-637X/752/1/14 – volume-title: A First Course in Turbulence year: 1972 ident: 2023081215024716500_bib49 doi: 10.7551/mitpress/3014.001.0001 – volume: 918 start-page: 70 year: 2021 ident: 2023081215024716500_bib55 publication-title: ApJ doi: 10.3847/1538-4357/ac0fdd – volume: 506 start-page: L69 year: 2021 ident: 2023081215024716500_bib4 publication-title: MNRAS doi: 10.1093/mnrasl/slab077 – volume: 465 start-page: 1075 year: 2007 ident: 2023081215024716500_bib30 publication-title: A&A doi: 10.1051/0004-6361:20065466 – volume: 30 start-page: 301 year: 1977 ident: 2023081215024716500_bib20 publication-title: Icarus doi: 10.1016/0019-1035(77)90163-4 – volume: 170 start-page: 1 year: 1879 ident: 2023081215024716500_bib9 publication-title: Phil. Trans. R. Soc. doi: 10.1098/rstl.1879.0061 – volume: 490 start-page: 1784 year: 2019 ident: 2023081215024716500_bib8 publication-title: MNRAS doi: 10.1093/mnras/stz2561 |
SSID | ssj0004326 |
Score | 2.47847 |
Snippet | ABSTRACT
This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective... This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale... ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective... |
SourceID | hal crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 508 |
SubjectTerms | Physics Sciences of the Universe |
Title | On the energetics of a tidally oscillating convective flow |
URI | https://hal.sorbonne-universite.fr/hal-04191372 |
Volume | 525 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0035-8711 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J19Ep7L5MYKIPpWtSZo2vo3hGOIcyAZ7K2ma6qBrZa3K_nsv6TY_UPStH5dCLmnyu8vd7xC6EEnHxKhFjoiJcJhKiCOkGzhUeh0uuKSeMInCw3s-mLDbqTddkUUXPxzhC9qeZwtZtAErxQTAA6y2LkBcmLnj0fQjA5LawmqWgBFMAHdDz_i9-ZftZ_vJBD-axLZPe0p_D-2uwCDuVqO3j7Z0VkeNbmHc0_l8iS-xva68D0UdNYcAcfOF9YTDy146A7xp7w7Q9SjDAOawoZE2qWOqwHmCJS5nsUzTJTaklakJfMsesQ01twsdTtL87RBN-jfj3sBZFUZwFGV-CeumlsJNeOwGEiwQ5QkuhFQBVdB_2MF9FftUE62YZr6MlMVpUaRcMF5iEgt6hGpZnukGwpQngWLwI2pfMwLCgkceD6A96FTypImctb5CtWINN8Ur0rA6vaah1W-41m8TXW3knyu-jF8lz0H9GyFDcz3o3oXmWYeBFUl98uqCEIzOH186_o_QCdoxleJt7J44RbVy8aLPAE-UUQuQ9ANp2Qn1DmURyXs |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+energetics+of+a+tidally+oscillating+convective+flow&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Terquem%2C+Caroline&rft.date=2023-08-09&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=1&rft.spage=508&rft.epage=526&rft_id=info:doi/10.1093%2Fmnras%2Fstad2163&rft.externalDocID=10.1093%2Fmnras%2Fstad2163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |