On the energetics of a tidally oscillating convective flow

ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinet...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 525; no. 1; pp. 508 - 526
Main Author Terquem, Caroline
Format Journal Article
LanguageEnglish
Published Oxford University Press 09.08.2023
Oxford University Press (OUP): Policy P - Oxford Open Option A
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stad2163

Cover

Abstract ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.
AbstractList ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.
This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.
ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.
Author Terquem, Caroline
Author_xml – sequence: 1
  givenname: Caroline
  orcidid: 0000-0001-5034-7721
  surname: Terquem
  fullname: Terquem, Caroline
  email: caroline.terquem@physics.ox.ac.uk
BackLink https://hal.sorbonne-universite.fr/hal-04191372$$DView record in HAL
BookMark eNqFkEFPAjEQRhuDiYBePffqYaHT7napN0JUTEi46Lkp3S7UlJa0FcO_dxG4mBhPk0y-b-blDVDPB28QugcyAiLYeOujSuOUVUOBsyvUB8arggrOe6hPCKuKSQ1wgwYpfRBCSkZ5Hz0uPc4bg403cW2y1QmHFiucbaOcO-CQtHVOZevXWAe_NzrbvcGtC1-36LpVLpm78xyi9-ent9m8WCxfXmfTRaFZWeeCgVECWt7ARAlOdCW4EEpPmO6QKqC1bmpmqNGlKWu10oRUIFYrDZSThjaCDdHD6e5GObmLdqviQQZl5Xy6kMcdKUEAq-keumx5yuoYUoqmldrmjj74HJV1Eog8upI_ruTFVVcb_apd_vxZODOFz91_2W_tUn5U
CitedBy_id crossref_primary_10_3847_PSJ_acf9f8
crossref_primary_10_1007_s11214_024_01053_6
crossref_primary_10_1007_s11214_024_01055_4
crossref_primary_10_1051_0004_6361_202348279
crossref_primary_10_3847_PSJ_ad0cfb
crossref_primary_10_3847_1538_4357_ad1e54
Cites_doi 10.1093/mnras/staa2405
10.1007/s41116-016-0003-4
10.1086/167616
10.1515/9781400879175
10.1086/306348
10.1146/annurev-astro-081913-035941
10.1093/mnras/staa2216
10.1093/mnras/sts362
10.3847/2041-8213/ac5b63
10.1093/mnras/126.3.257
10.1017/CBO9781139013963
10.3847/1538-3881/ac90c9
10.1093/mnras/stt055
10.1086/155043
10.1111/j.1365-2966.2012.20630.x
10.1086/305927
10.1093/mnras/stw609
10.1086/172438
10.1073/pnas.1709125115
10.1007/BF00899817
10.12942/lrsp-2009-2
10.1029/RG002i004p00661
10.1093/mnras/stab224
10.12942/lrsp-2005-1
10.1093/mnras/staa3394
10.1093/mnras/stab2322
10.1086/158809
10.1029/RG002i003p00467
10.1007/lrsp-2015-8
10.1051/eas/1573003
10.1038/nature08108
10.1086/157589
10.1093/mnras/staa2239
10.1016/0019-1035(66)90051-0
10.1038/s41550-020-1120-5
10.1086/169376
10.1051/0004-6361/201834223
10.1051/0004-6361:20079321
10.1088/0004-637X/804/1/67
10.1088/0004-637X/752/1/14
10.7551/mitpress/3014.001.0001
10.3847/1538-4357/ac0fdd
10.1093/mnrasl/slab077
10.1051/0004-6361:20065466
10.1016/0019-1035(77)90163-4
10.1098/rstl.1879.0061
10.1093/mnras/stz2561
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Attribution
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society 2023
– notice: Attribution
DBID TOX
AAYXX
CITATION
1XC
VOOES
DOI 10.1093/mnras/stad2163
DatabaseName Oxford Journals Open Access Collection
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
Physics
EISSN 1365-2966
EndPage 526
ExternalDocumentID oai_HAL_hal_04191372v1
10_1093_mnras_stad2163
10.1093/mnras/stad2163
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
1XC
VOOES
ID FETCH-LOGICAL-c347t-31ea91f6d18a960c59699ac83c0355127cd73e2ec4e47abc00519bbc1260d2d93
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Sep 12 12:43:06 EDT 2025
Tue Jul 01 03:32:36 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Wed Aug 28 03:17:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords convection
binaries: close
hydrodynamics
Sun: general
planets and satellites: dynamical evolution and stability
planet–star interactions
convection -hydrodynamics -Sun general -planets and satellites dynamical evolution and stability -planet-star interactions -binaries close
dynamical evolution and stability -planet-star interactions -binaries
close
general -planets and satellites
convection -hydrodynamics -Sun
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-31ea91f6d18a960c59699ac83c0355127cd73e2ec4e47abc00519bbc1260d2d93
ORCID 0000-0001-5034-7721
OpenAccessLink https://dx.doi.org/10.1093/mnras/stad2163
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_04191372v1
crossref_citationtrail_10_1093_mnras_stad2163
crossref_primary_10_1093_mnras_stad2163
oup_primary_10_1093_mnras_stad2163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-09
PublicationDateYYYYMMDD 2023-08-09
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-09
  day: 09
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Oxford University Press (OUP): Policy P - Oxford Open Option A
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP): Policy P - Oxford Open Option A
References Schwarzschild (2023081215024716500_bib47) 1958
Ogilvie (2023081215024716500_bib41) 2013; 429
Lighthill (2023081215024716500_bib35) 1978
Samadi (2023081215024716500_bib46) 2015; 73-74
Terquem (2023081215024716500_bib50) 2021; 503
Terquem (2023081215024716500_bib52) 1998; 502
Weinberg (2023081215024716500_bib55) 2021; 918
Press (2023081215024716500_bib45) 1981; 245
Lainey (2023081215024716500_bib33) 2020; 4
Vidal (2023081215024716500_bib54) 2020; 497
Guillot (2023081215024716500_bib23) 2004
Lainey (2023081215024716500_bib31) 2009; 459
Baraffe (2023081215024716500_bib1) 2008; 482
Feynman (2023081215024716500_bib14) 1964
Bunting (2023081215024716500_bib8) 2019; 490
Darwin (2023081215024716500_bib9) 1879; 170
Kumar (2023081215024716500_bib29) 1989; 342
Lainey (2023081215024716500_bib32) 2012; 752
Goodman (2023081215024716500_bib22) 1998; 507
Ogilvie (2023081215024716500_bib42) 2014; 52
Barker (2023081215024716500_bib2) 2020; 498
Kaula (2023081215024716500_bib27) 1964; 2
Starr (2023081215024716500_bib48) 1968
Goldreich (2023081215024716500_bib21) 1966; 5
Miesch (2023081215024716500_bib37) 2005; 2
Nordlund (2023081215024716500_bib40) 2009; 6
Mignard (2023081215024716500_bib38) 1980; 23
Tennekes (2023081215024716500_bib49) 1972
Lecoanet (2023081215024716500_bib34) 2013; 430
Belkacem (2023081215024716500_bib6) 2019; 625
Barker (2023081215024716500_bib3) 2022; 927
Zahn (2023081215024716500_bib56) 1966; 29
Dziembowski (2023081215024716500_bib12) 1977; 27
Terquem (2023081215024716500_bib51) 2021; 507
Kleppner (2023081215024716500_bib28) 2013
Barker (2023081215024716500_bib4) 2021; 506
Fuller (2023081215024716500_bib15) 2016; 458
Murray (2023081215024716500_bib39) 1999
Basu (2023081215024716500_bib5) 2016; 13
Jacobson (2023081215024716500_bib26) 2022; 164
Glatzmaier (2023081215024716500_bib16) 2018; 115
Duguid (2023081215024716500_bib10) 2020; 497
Durney (2023081215024716500_bib11) 1979; 234
Goldreich (2023081215024716500_bib17) 1963; 126
Houdek (2023081215024716500_bib24) 2015; 12
Lainey (2023081215024716500_bib30) 2007; 465
Bunting (2023081215024716500_bib7) 2021; 500
Goldreich (2023081215024716500_bib18) 1977; 212
Featherstone (2023081215024716500_bib13) 2015; 804
Verbunt (2023081215024716500_bib53) 1995; 296
Ogilvie (2023081215024716500_bib43) 2012; 422
MacDonald (2023081215024716500_bib36) 1964; 2
Zahn (2023081215024716500_bib57) 1977; 57
Goldreich (2023081215024716500_bib19) 1990; 363
Goldreich (2023081215024716500_bib20) 1977; 30
Ioannou (2023081215024716500_bib25) 1993; 406
References_xml – volume: 498
  start-page: 2270
  year: 2020
  ident: 2023081215024716500_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2405
– volume: 13
  start-page: 2
  year: 2016
  ident: 2023081215024716500_bib5
  publication-title: LRSP
  doi: 10.1007/s41116-016-0003-4
– volume: 342
  start-page: 558
  year: 1989
  ident: 2023081215024716500_bib29
  publication-title: ApJ
  doi: 10.1086/167616
– volume-title: Structure and Evolution of the Stars
  year: 1958
  ident: 2023081215024716500_bib47
  doi: 10.1515/9781400879175
– volume: 507
  start-page: 938
  year: 1998
  ident: 2023081215024716500_bib22
  publication-title: ApJ
  doi: 10.1086/306348
– volume: 52
  start-page: 171
  year: 2014
  ident: 2023081215024716500_bib42
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081913-035941
– volume: 497
  start-page: 3400
  year: 2020
  ident: 2023081215024716500_bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2216
– volume: 429
  start-page: 613
  year: 2013
  ident: 2023081215024716500_bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/sts362
– volume: 57
  start-page: 383
  year: 1977
  ident: 2023081215024716500_bib57
  publication-title: A&A
– year: 1964
  ident: 2023081215024716500_bib14
  publication-title: The Feynman Lectures on Physics – Volume 1, Chap. 24 Transients
– volume: 927
  start-page: L36
  year: 2022
  ident: 2023081215024716500_bib3
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac5b63
– volume: 126
  start-page: 257
  year: 1963
  ident: 2023081215024716500_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/126.3.257
– volume-title: An Introduction to Mechanics
  year: 2013
  ident: 2023081215024716500_bib28
  doi: 10.1017/CBO9781139013963
– volume: 164
  start-page: 199
  year: 2022
  ident: 2023081215024716500_bib26
  publication-title: AJ
  doi: 10.3847/1538-3881/ac90c9
– volume: 430
  start-page: 2363
  year: 2013
  ident: 2023081215024716500_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stt055
– volume: 212
  start-page: 243
  year: 1977
  ident: 2023081215024716500_bib18
  publication-title: ApJ
  doi: 10.1086/155043
– volume: 296
  start-page: 709
  year: 1995
  ident: 2023081215024716500_bib53
  publication-title: A&A
– volume: 422
  start-page: 1975
  year: 2012
  ident: 2023081215024716500_bib43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20630.x
– volume: 502
  start-page: 788
  year: 1998
  ident: 2023081215024716500_bib52
  publication-title: ApJ
  doi: 10.1086/305927
– volume: 458
  start-page: 3867
  year: 2016
  ident: 2023081215024716500_bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stw609
– volume: 406
  start-page: 266
  year: 1993
  ident: 2023081215024716500_bib25
  publication-title: ApJ
  doi: 10.1086/172438
– volume: 115
  start-page: 6896
  year: 2018
  ident: 2023081215024716500_bib16
  publication-title: PNAS
  doi: 10.1073/pnas.1709125115
– volume: 23
  start-page: 185
  year: 1980
  ident: 2023081215024716500_bib38
  publication-title: M&P
  doi: 10.1007/BF00899817
– volume: 6
  start-page: 2
  year: 2009
  ident: 2023081215024716500_bib40
  publication-title: LRSP
  doi: 10.12942/lrsp-2009-2
– volume: 2
  start-page: 661
  year: 1964
  ident: 2023081215024716500_bib27
  publication-title: RvGSP
  doi: 10.1029/RG002i004p00661
– volume: 503
  start-page: 5789
  year: 2021
  ident: 2023081215024716500_bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/stab224
– volume: 2
  start-page: 1
  year: 2005
  ident: 2023081215024716500_bib37
  publication-title: LRSP
  doi: 10.12942/lrsp-2005-1
– volume: 500
  start-page: 2711
  year: 2021
  ident: 2023081215024716500_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3394
– volume: 507
  start-page: 4165
  year: 2021
  ident: 2023081215024716500_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2322
– volume: 245
  start-page: 286
  year: 1981
  ident: 2023081215024716500_bib45
  publication-title: ApJ
  doi: 10.1086/158809
– volume: 2
  start-page: 467
  year: 1964
  ident: 2023081215024716500_bib36
  publication-title: RvGSP
  doi: 10.1029/RG002i003p00467
– volume-title: Waves in Fluids
  year: 1978
  ident: 2023081215024716500_bib35
– volume: 12
  start-page: 8
  year: 2015
  ident: 2023081215024716500_bib24
  publication-title: LRSP
  doi: 10.1007/lrsp-2015-8
– volume: 73-74
  start-page: 111
  year: 2015
  ident: 2023081215024716500_bib46
  publication-title: EAS
  doi: 10.1051/eas/1573003
– start-page: 35
  volume-title: The interior of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere
  year: 2004
  ident: 2023081215024716500_bib23
– volume: 459
  start-page: 957
  year: 2009
  ident: 2023081215024716500_bib31
  publication-title: Natur
  doi: 10.1038/nature08108
– volume: 234
  start-page: 1067
  year: 1979
  ident: 2023081215024716500_bib11
  publication-title: ApJ
  doi: 10.1086/157589
– volume: 497
  start-page: 4472
  year: 2020
  ident: 2023081215024716500_bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2239
– volume: 27
  start-page: 203
  year: 1977
  ident: 2023081215024716500_bib12
  publication-title: AcA
– volume: 5
  start-page: 375
  year: 1966
  ident: 2023081215024716500_bib21
  publication-title: Icarus
  doi: 10.1016/0019-1035(66)90051-0
– volume: 29
  start-page: 489
  year: 1966
  ident: 2023081215024716500_bib56
  publication-title: AnAp
– volume: 4
  start-page: 1053
  year: 2020
  ident: 2023081215024716500_bib33
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-020-1120-5
– volume: 363
  start-page: 694
  year: 1990
  ident: 2023081215024716500_bib19
  publication-title: ApJ
  doi: 10.1086/169376
– volume: 625
  start-page: A20
  year: 2019
  ident: 2023081215024716500_bib6
  publication-title: A&A
  doi: 10.1051/0004-6361/201834223
– volume-title: Physics of Negative Viscosity Phenomena
  year: 1968
  ident: 2023081215024716500_bib48
– volume-title: Solar System Dynamics
  year: 1999
  ident: 2023081215024716500_bib39
– volume: 482
  start-page: 315
  year: 2008
  ident: 2023081215024716500_bib1
  publication-title: A&A
  doi: 10.1051/0004-6361:20079321
– volume: 804
  start-page: 67
  year: 2015
  ident: 2023081215024716500_bib13
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/1/67
– volume: 752
  start-page: 14
  year: 2012
  ident: 2023081215024716500_bib32
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/1/14
– volume-title: A First Course in Turbulence
  year: 1972
  ident: 2023081215024716500_bib49
  doi: 10.7551/mitpress/3014.001.0001
– volume: 918
  start-page: 70
  year: 2021
  ident: 2023081215024716500_bib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0fdd
– volume: 506
  start-page: L69
  year: 2021
  ident: 2023081215024716500_bib4
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slab077
– volume: 465
  start-page: 1075
  year: 2007
  ident: 2023081215024716500_bib30
  publication-title: A&A
  doi: 10.1051/0004-6361:20065466
– volume: 30
  start-page: 301
  year: 1977
  ident: 2023081215024716500_bib20
  publication-title: Icarus
  doi: 10.1016/0019-1035(77)90163-4
– volume: 170
  start-page: 1
  year: 1879
  ident: 2023081215024716500_bib9
  publication-title: Phil. Trans. R. Soc.
  doi: 10.1098/rstl.1879.0061
– volume: 490
  start-page: 1784
  year: 2019
  ident: 2023081215024716500_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2561
SSID ssj0004326
Score 2.47847
Snippet ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective...
This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale...
ABSTRACT This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective...
SourceID hal
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 508
SubjectTerms Physics
Sciences of the Universe
Title On the energetics of a tidally oscillating convective flow
URI https://hal.sorbonne-universite.fr/hal-04191372
Volume 525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0035-8711
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J19Ep7L5MYKIPpWtSZo2vo3hGOIcyAZ7K2ma6qBrZa3K_nsv6TY_UPStH5dCLmnyu8vd7xC6EEnHxKhFjoiJcJhKiCOkGzhUeh0uuKSeMInCw3s-mLDbqTddkUUXPxzhC9qeZwtZtAErxQTAA6y2LkBcmLnj0fQjA5LawmqWgBFMAHdDz_i9-ZftZ_vJBD-axLZPe0p_D-2uwCDuVqO3j7Z0VkeNbmHc0_l8iS-xva68D0UdNYcAcfOF9YTDy146A7xp7w7Q9SjDAOawoZE2qWOqwHmCJS5nsUzTJTaklakJfMsesQ01twsdTtL87RBN-jfj3sBZFUZwFGV-CeumlsJNeOwGEiwQ5QkuhFQBVdB_2MF9FftUE62YZr6MlMVpUaRcMF5iEgt6hGpZnukGwpQngWLwI2pfMwLCgkceD6A96FTypImctb5CtWINN8Ur0rA6vaah1W-41m8TXW3knyu-jF8lz0H9GyFDcz3o3oXmWYeBFUl98uqCEIzOH186_o_QCdoxleJt7J44RbVy8aLPAE-UUQuQ9ANp2Qn1DmURyXs
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+energetics+of+a+tidally+oscillating+convective+flow&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Terquem%2C+Caroline&rft.date=2023-08-09&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=1&rft.spage=508&rft.epage=526&rft_id=info:doi/10.1093%2Fmnras%2Fstad2163&rft.externalDocID=10.1093%2Fmnras%2Fstad2163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon