Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale

The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 40; no. 1; pp. 59 - 70
Main Authors Cai, Jinzheng, Harrison, Adam P., Zheng, Youjing, Yan, Ke, Huo, Yuankai, Xiao, Jing, Yang, Lin, Lu, Le
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2020.3022034

Cover

Abstract The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.
AbstractList The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester—a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.
The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.
Author Lu, Le
Yang, Lin
Cai, Jinzheng
Yan, Ke
Zheng, Youjing
Xiao, Jing
Harrison, Adam P.
Huo, Yuankai
Author_xml – sequence: 1
  givenname: Jinzheng
  orcidid: 0000-0002-7614-4524
  surname: Cai
  fullname: Cai, Jinzheng
  email: caijinzheng883@paii-labs.com
  organization: PAII Inc., Bethesda, MD, USA
– sequence: 2
  givenname: Adam P.
  orcidid: 0000-0003-3315-1772
  surname: Harrison
  fullname: Harrison, Adam P.
  email: adampharrison070@paii-labs.com
  organization: PAII Inc., Bethesda, MD, USA
– sequence: 3
  givenname: Youjing
  surname: Zheng
  fullname: Zheng, Youjing
  email: zhengyoujing@vt.edu
  organization: Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
– sequence: 4
  givenname: Ke
  orcidid: 0000-0002-0034-9013
  surname: Yan
  fullname: Yan, Ke
  email: yanke383@paii-labs.com
  organization: PAII Inc., Bethesda, MD, USA
– sequence: 5
  givenname: Yuankai
  orcidid: 0000-0002-2096-8065
  surname: Huo
  fullname: Huo, Yuankai
  email: yuankai.huo@vanderbilt.edu
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
– sequence: 6
  givenname: Jing
  surname: Xiao
  fullname: Xiao, Jing
  email: xiaojing661@pingan.com.cn
  organization: Ping An Insurance (Group) Company of China, Ltd., Shenzhen, China
– sequence: 7
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  email: lin.yang@bme.ufl.edu
  organization: J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
– sequence: 8
  givenname: Le
  surname: Lu
  fullname: Lu, Le
  email: le.lu@paii-labs.com
  organization: PAII Inc., Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32894709$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNPCHQkJrcSFy4bx19rmhqrSRkrhQCshLpZ3PalcOd5gbyr673GalEMPXMaHeZ6RZ94TcpTGhIS8pTCnFMyn66vFnAGDOQfGgIsXZEal1C2T4ucRmQFTugXo2DE5KeUOgAoJ5hU55kwbocDMyK8lljCm9tLleywT5s_NolY3hXuMD81VSCHdNjcpuh4j-maPl8Yl31THt9_w9hFuzv-49SZibU3Nj8FFfE1erlws-ObwnpKbr-fXZ5ft8vvF4uzLsh24UFNLHWfGGe5pL3tDDeuU7oFpStFTg4oryWA1rNB7waXxYKjsNe66WGvPT8nH_dxNHn9v6xJ2HcqAMbqE47ZYJgQYoEp3Ff3wDL0btznV31VKCS1FJ3bU-wO17dfo7SaHtcsP9ulqFej2wJDHUjKu7BCmeoUxTdmFaCnYXTy2xmN38dhDPFWEZ-LT7P8o7_ZKQMR_uKFaCU75X9CzmII
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compmedimag_2021_101886
crossref_primary_10_1007_s11548_023_02954_7
crossref_primary_10_1016_j_compmedimag_2024_102363
crossref_primary_10_1016_j_acra_2023_07_026
crossref_primary_10_3389_fphar_2022_982130
crossref_primary_10_1002_acm2_14434
crossref_primary_10_1016_j_cpet_2021_09_010
crossref_primary_10_1007_s10462_024_10762_x
crossref_primary_10_1016_j_media_2023_103014
crossref_primary_10_1109_JBHI_2024_3417274
Cites_doi 10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.369
10.1109/CVPR.2018.00965
10.1007/978-3-030-32226-7_34
10.1007/978-3-030-00937-3_46
10.1007/978-3-319-10602-1_48
10.1007/978-3-319-66179-7_64
10.1117/1.JMI.5.3.036501
10.1016/j.ejca.2008.10.026
10.1007/978-3-030-31723-2_25
10.1007/s10278-017-9976-3
10.1109/CVPR.2017.243
10.1117/12.2514290
10.1007/978-3-030-32226-7_45
10.1007/978-3-030-32226-7_22
10.1007/978-3-319-94878-2_6
10.1109/ICCV.2017.306
10.1109/WACV.2017.116
10.1109/TPAMI.2018.2844175
10.1007/978-3-030-00928-1_58
10.1109/ACCESS.2019.2895376
10.1609/aaai.v33i01.3301590
10.1109/ISBI.2016.7493497
10.1109/ISBI.2019.8759478
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1145/1015706.1015720
10.1109/CVPR.2018.00685
10.1007/978-3-319-10404-1_65
10.1109/CVPR.2009.5206848
10.1109/TBME.2016.2613502
10.1109/CVPR.2018.00433
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2020.3022034
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 70
ExternalDocumentID 32894709
10_1109_TMI_2020_3022034
9187431
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK056942
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-1a329a93d1b5b9192678b02811ed19e737520fcfedd4359d0915b8e1ed1ee1eb3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sat Sep 27 23:28:08 EDT 2025
Sun Jun 29 12:47:35 EDT 2025
Thu Apr 03 06:57:39 EDT 2025
Wed Oct 01 03:55:30 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Wed Aug 27 02:32:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1a329a93d1b5b9192678b02811ed19e737520fcfedd4359d0915b8e1ed1ee1eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7614-4524
0000-0002-0034-9013
0000-0003-3315-1772
0000-0002-2096-8065
PMID 32894709
PQID 2474854646
PQPubID 85460
PageCount 12
ParticipantIDs crossref_primary_10_1109_TMI_2020_3022034
pubmed_primary_32894709
proquest_miscellaneous_2440901786
proquest_journals_2474854646
crossref_citationtrail_10_1109_TMI_2020_3022034
ieee_primary_9187431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref31
ref30
ref33
ref11
ref32
ref10
wu (ref18) 2019
ref2
zhou (ref14) 2019
ref17
ref16
ref19
alex (ref29) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
rajpurkar (ref1) 2018
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref3
  doi: 10.1109/CVPR.2017.369
– ident: ref5
  doi: 10.1109/CVPR.2018.00965
– ident: ref25
  doi: 10.1007/978-3-030-32226-7_34
– ident: ref23
  doi: 10.1007/978-3-030-00937-3_46
– ident: ref11
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref27
  doi: 10.1007/978-3-319-66179-7_64
– ident: ref4
  doi: 10.1117/1.JMI.5.3.036501
– ident: ref12
  doi: 10.1016/j.ejca.2008.10.026
– year: 2019
  ident: ref14
  article-title: Objects as points
  publication-title: arXiv 1904 07850
– ident: ref20
  doi: 10.1007/978-3-030-31723-2_25
– ident: ref6
  doi: 10.1007/s10278-017-9976-3
– ident: ref32
  doi: 10.1109/CVPR.2017.243
– ident: ref9
  doi: 10.1117/12.2514290
– ident: ref26
  doi: 10.1007/978-3-030-32226-7_45
– ident: ref15
  doi: 10.1007/978-3-030-32226-7_22
– ident: ref7
  doi: 10.1007/978-3-319-94878-2_6
– ident: ref19
  doi: 10.1109/ICCV.2017.306
– ident: ref2
  doi: 10.1109/WACV.2017.116
– start-page: 1
  year: 2018
  ident: ref1
  article-title: MURA dataset: Towards radiologist-level abnormality detection in musculoskeletal radiographs
  publication-title: Proc MIDL
– ident: ref16
  doi: 10.1109/TPAMI.2018.2844175
– ident: ref13
  doi: 10.1007/978-3-030-00928-1_58
– ident: ref33
  doi: 10.1109/ACCESS.2019.2895376
– ident: ref8
  doi: 10.1609/aaai.v33i01.3301590
– ident: ref22
  doi: 10.1109/ISBI.2016.7493497
– ident: ref30
  doi: 10.1109/ISBI.2019.8759478
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– ident: ref31
  doi: 10.1109/ICCV.2017.324
– ident: ref24
  doi: 10.1145/1015706.1015720
– ident: ref36
  doi: 10.1109/CVPR.2018.00685
– ident: ref34
  doi: 10.1007/978-3-319-10404-1_65
– ident: ref10
  doi: 10.1109/CVPR.2009.5206848
– ident: ref28
  doi: 10.1109/TBME.2016.2613502
– year: 2016
  ident: ref29
  article-title: Semi-supervised learning using denoising autoencoders for brain lesion detection and segmentation
  publication-title: arXiv 1611 08664
– ident: ref21
  doi: 10.1109/CVPR.2018.00433
– start-page: 225
  year: 2019
  ident: ref18
  article-title: Soft sampling for robust object detection
  publication-title: Proc BMVC
SSID ssj0014509
Score 2.4504974
Snippet The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms Algorithms
Annotations
Biomedical imaging
Computed tomography
Detectors
hard negative mining
Harvesters
Harvesting
Image acquisition
Learning algorithms
lesion detection
Lesion harvesting
Lesions
Machine Learning
Medical imaging
Proposals
pseudo 3D IoU
Three-dimensional displays
Training
Title Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale
URI https://ieeexplore.ieee.org/document/9187431
https://www.ncbi.nlm.nih.gov/pubmed/32894709
https://www.proquest.com/docview/2474854646
https://www.proquest.com/docview/2440901786
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF5qH0QfqrZejlZZwRfBnJPsJZv1TaSlFdMXe6D4EvYy8cGSIzYHqr_emc2FIiq-hMBObsxs9pudmW8Ye2US8tAhA4PTTXk048pLyIImNjOX60pScXJ9Vp6s1YcLfbHD3sy1MACQks9gSacplh83YUtbZStLDeSoaPqWqcqhVmuOGCg9pHMIYozNSzGFJHO7Oq9P0REU6J9SWamkVjwS_QxlKAvxxmqU2qv8HWmmFef4Hqundx0STb4ut71fhp-_0Tj-78fcZ3sj9OTvBlt5wHag22d3bxAS7rPb9RhqP2CfPwJtpGXUPCixKbzlp4mBGX-Plz94nRpL8HWHVoQrV-SD-BV3XeSUDpCdwZckzI-uHVEQ41DPP6FJwEO2Pj46f3-SjY0YsiCV6bPCSWGdlbHw2lvEhLjCeQQmRQGxsGCk0SJvQwsxIvqyETGI9hXQKODRy0dst9t08ITxtsqtaT2CouhUGYUrgrBFS9jNuTy4BVtNCmnCyFJOzTIum-St5LZBbTakzWbU5oK9nq_4NjB0_EP2gBQxy406WLDDSefNOIWvGqGMqrQqVblgL-dhnHwUUXEdbLYkg-4x_tMqlHk82Mp878nEnv75mc_YHUHpMWk355Dt9t-38BzxTe9fJMP-BXVo8hU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFCWShgJC5IZDfxI4m5IdRqFzZ7YVequER27HBolUU0K0F_fWechyoEiEsUyZOXZhx_45n5BuBNFpCHqiKf4XSTFs04t8JHlSI2MxOrXFBxcrFK5xv56Uyd7cG7sRbGex-Sz_yUTkMs322rHW2VzTQ1kKOi6VtKSqm6aq0xZiBVl9DBiTM2TvkQlIz1bF0s0BXk6KFSYamgZjwCPQ2ZUR7ijfUoNFj5O9YMa87pAyiGt-1STc6nu9ZOq6vfiBz_93Mewv0efLIPnbU8gj3fHMC9G5SEB3C76IPth_B16WkrLaL2QYFP4T1bBA5m_EFe_GJFaC3BNg3aEa5djnXil8w0jlFCQLTy34IwO_lpiIQYh1r2BY3CP4bN6cn64zzqWzFElZBZGyVGcG20cIlVViMqxDXOIjRJEu8S7TORKR7XVe2dQ_ylHaIQZXNPox6PVjyB_Wbb-KfA6jzWWW0RFjkjU8dNUnGd1ITejIkrM4HZoJCy6nnKqV3GRRn8lViXqM2StFn22pzA2_GK7x1Hxz9kD0kRo1yvgwkcDzov-0l8WXKZyVzJVKYTeD0O4_SjmIpp_HZHMugg418tR5mjzlbGew8m9uzPz3wFd-brYlkuF6vPz-Eup2SZsLdzDPvtj51_gWintS-DkV8DScn1Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lesion-Harvester%3A+Iteratively+Mining+Unlabeled+Lesions+and+Hard-Negative+Examples+at+Scale&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Cai%2C+Jinzheng&rft.au=Harrison%2C+Adam+P&rft.au=Zheng%2C+Youjing&rft.au=Yan%2C+Ke&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1109%2FTMI.2020.3022034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon