Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale
The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left u...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 40; no. 1; pp. 59 - 70 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2020.3022034 |
Cover
| Abstract | The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%. |
|---|---|
| AbstractList | The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g ., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester—a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%. The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%. |
| Author | Lu, Le Yang, Lin Cai, Jinzheng Yan, Ke Zheng, Youjing Xiao, Jing Harrison, Adam P. Huo, Yuankai |
| Author_xml | – sequence: 1 givenname: Jinzheng orcidid: 0000-0002-7614-4524 surname: Cai fullname: Cai, Jinzheng email: caijinzheng883@paii-labs.com organization: PAII Inc., Bethesda, MD, USA – sequence: 2 givenname: Adam P. orcidid: 0000-0003-3315-1772 surname: Harrison fullname: Harrison, Adam P. email: adampharrison070@paii-labs.com organization: PAII Inc., Bethesda, MD, USA – sequence: 3 givenname: Youjing surname: Zheng fullname: Zheng, Youjing email: zhengyoujing@vt.edu organization: Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA – sequence: 4 givenname: Ke orcidid: 0000-0002-0034-9013 surname: Yan fullname: Yan, Ke email: yanke383@paii-labs.com organization: PAII Inc., Bethesda, MD, USA – sequence: 5 givenname: Yuankai orcidid: 0000-0002-2096-8065 surname: Huo fullname: Huo, Yuankai email: yuankai.huo@vanderbilt.edu organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA – sequence: 6 givenname: Jing surname: Xiao fullname: Xiao, Jing email: xiaojing661@pingan.com.cn organization: Ping An Insurance (Group) Company of China, Ltd., Shenzhen, China – sequence: 7 givenname: Lin surname: Yang fullname: Yang, Lin email: lin.yang@bme.ufl.edu organization: J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA – sequence: 8 givenname: Le surname: Lu fullname: Lu, Le email: le.lu@paii-labs.com organization: PAII Inc., Bethesda, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32894709$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URNPCHQkJrcSFy4bx19rmhqrSRkrhQCshLpZ3PalcOd5gbyr673GalEMPXMaHeZ6RZ94TcpTGhIS8pTCnFMyn66vFnAGDOQfGgIsXZEal1C2T4ucRmQFTugXo2DE5KeUOgAoJ5hU55kwbocDMyK8lljCm9tLleywT5s_NolY3hXuMD81VSCHdNjcpuh4j-maPl8Yl31THt9_w9hFuzv-49SZibU3Nj8FFfE1erlws-ObwnpKbr-fXZ5ft8vvF4uzLsh24UFNLHWfGGe5pL3tDDeuU7oFpStFTg4oryWA1rNB7waXxYKjsNe66WGvPT8nH_dxNHn9v6xJ2HcqAMbqE47ZYJgQYoEp3Ff3wDL0btznV31VKCS1FJ3bU-wO17dfo7SaHtcsP9ulqFej2wJDHUjKu7BCmeoUxTdmFaCnYXTy2xmN38dhDPFWEZ-LT7P8o7_ZKQMR_uKFaCU75X9CzmII |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_compmedimag_2021_101886 crossref_primary_10_1007_s11548_023_02954_7 crossref_primary_10_1016_j_compmedimag_2024_102363 crossref_primary_10_1016_j_acra_2023_07_026 crossref_primary_10_3389_fphar_2022_982130 crossref_primary_10_1002_acm2_14434 crossref_primary_10_1016_j_cpet_2021_09_010 crossref_primary_10_1007_s10462_024_10762_x crossref_primary_10_1016_j_media_2023_103014 crossref_primary_10_1109_JBHI_2024_3417274 |
| Cites_doi | 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.369 10.1109/CVPR.2018.00965 10.1007/978-3-030-32226-7_34 10.1007/978-3-030-00937-3_46 10.1007/978-3-319-10602-1_48 10.1007/978-3-319-66179-7_64 10.1117/1.JMI.5.3.036501 10.1016/j.ejca.2008.10.026 10.1007/978-3-030-31723-2_25 10.1007/s10278-017-9976-3 10.1109/CVPR.2017.243 10.1117/12.2514290 10.1007/978-3-030-32226-7_45 10.1007/978-3-030-32226-7_22 10.1007/978-3-319-94878-2_6 10.1109/ICCV.2017.306 10.1109/WACV.2017.116 10.1109/TPAMI.2018.2844175 10.1007/978-3-030-00928-1_58 10.1109/ACCESS.2019.2895376 10.1609/aaai.v33i01.3301590 10.1109/ISBI.2016.7493497 10.1109/ISBI.2019.8759478 10.1109/CVPR.2016.90 10.1109/ICCV.2017.324 10.1145/1015706.1015720 10.1109/CVPR.2018.00685 10.1007/978-3-319-10404-1_65 10.1109/CVPR.2009.5206848 10.1109/TBME.2016.2613502 10.1109/CVPR.2018.00433 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2020.3022034 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 70 |
| ExternalDocumentID | 32894709 10_1109_TMI_2020_3022034 9187431 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK056942 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-1a329a93d1b5b9192678b02811ed19e737520fcfedd4359d0915b8e1ed1ee1eb3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sat Sep 27 23:28:08 EDT 2025 Sun Jun 29 12:47:35 EDT 2025 Thu Apr 03 06:57:39 EDT 2025 Wed Oct 01 03:55:30 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed Aug 27 02:32:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-1a329a93d1b5b9192678b02811ed19e737520fcfedd4359d0915b8e1ed1ee1eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7614-4524 0000-0002-0034-9013 0000-0003-3315-1772 0000-0002-2096-8065 |
| PMID | 32894709 |
| PQID | 2474854646 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TMI_2020_3022034 pubmed_primary_32894709 proquest_miscellaneous_2440901786 proquest_journals_2474854646 crossref_citationtrail_10_1109_TMI_2020_3022034 ieee_primary_9187431 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Jan. 2021-1-00 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref31 ref30 ref33 ref11 ref32 ref10 wu (ref18) 2019 ref2 zhou (ref14) 2019 ref17 ref16 ref19 alex (ref29) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 rajpurkar (ref1) 2018 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/TPAMI.2016.2577031 – ident: ref3 doi: 10.1109/CVPR.2017.369 – ident: ref5 doi: 10.1109/CVPR.2018.00965 – ident: ref25 doi: 10.1007/978-3-030-32226-7_34 – ident: ref23 doi: 10.1007/978-3-030-00937-3_46 – ident: ref11 doi: 10.1007/978-3-319-10602-1_48 – ident: ref27 doi: 10.1007/978-3-319-66179-7_64 – ident: ref4 doi: 10.1117/1.JMI.5.3.036501 – ident: ref12 doi: 10.1016/j.ejca.2008.10.026 – year: 2019 ident: ref14 article-title: Objects as points publication-title: arXiv 1904 07850 – ident: ref20 doi: 10.1007/978-3-030-31723-2_25 – ident: ref6 doi: 10.1007/s10278-017-9976-3 – ident: ref32 doi: 10.1109/CVPR.2017.243 – ident: ref9 doi: 10.1117/12.2514290 – ident: ref26 doi: 10.1007/978-3-030-32226-7_45 – ident: ref15 doi: 10.1007/978-3-030-32226-7_22 – ident: ref7 doi: 10.1007/978-3-319-94878-2_6 – ident: ref19 doi: 10.1109/ICCV.2017.306 – ident: ref2 doi: 10.1109/WACV.2017.116 – start-page: 1 year: 2018 ident: ref1 article-title: MURA dataset: Towards radiologist-level abnormality detection in musculoskeletal radiographs publication-title: Proc MIDL – ident: ref16 doi: 10.1109/TPAMI.2018.2844175 – ident: ref13 doi: 10.1007/978-3-030-00928-1_58 – ident: ref33 doi: 10.1109/ACCESS.2019.2895376 – ident: ref8 doi: 10.1609/aaai.v33i01.3301590 – ident: ref22 doi: 10.1109/ISBI.2016.7493497 – ident: ref30 doi: 10.1109/ISBI.2019.8759478 – ident: ref35 doi: 10.1109/CVPR.2016.90 – ident: ref31 doi: 10.1109/ICCV.2017.324 – ident: ref24 doi: 10.1145/1015706.1015720 – ident: ref36 doi: 10.1109/CVPR.2018.00685 – ident: ref34 doi: 10.1007/978-3-319-10404-1_65 – ident: ref10 doi: 10.1109/CVPR.2009.5206848 – ident: ref28 doi: 10.1109/TBME.2016.2613502 – year: 2016 ident: ref29 article-title: Semi-supervised learning using denoising autoencoders for brain lesion detection and segmentation publication-title: arXiv 1611 08664 – ident: ref21 doi: 10.1109/CVPR.2018.00433 – start-page: 225 year: 2019 ident: ref18 article-title: Soft sampling for robust object detection publication-title: Proc BMVC |
| SSID | ssj0014509 |
| Score | 2.4504974 |
| Snippet | The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 59 |
| SubjectTerms | Algorithms Annotations Biomedical imaging Computed tomography Detectors hard negative mining Harvesters Harvesting Image acquisition Learning algorithms lesion detection Lesion harvesting Lesions Machine Learning Medical imaging Proposals pseudo 3D IoU Three-dimensional displays Training |
| Title | Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale |
| URI | https://ieeexplore.ieee.org/document/9187431 https://www.ncbi.nlm.nih.gov/pubmed/32894709 https://www.proquest.com/docview/2474854646 https://www.proquest.com/docview/2440901786 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF5qH0QfqrZejlZZwRfBnJPsJZv1TaSlFdMXe6D4EvYy8cGSIzYHqr_emc2FIiq-hMBObsxs9pudmW8Ye2US8tAhA4PTTXk048pLyIImNjOX60pScXJ9Vp6s1YcLfbHD3sy1MACQks9gSacplh83YUtbZStLDeSoaPqWqcqhVmuOGCg9pHMIYozNSzGFJHO7Oq9P0REU6J9SWamkVjwS_QxlKAvxxmqU2qv8HWmmFef4Hqundx0STb4ut71fhp-_0Tj-78fcZ3sj9OTvBlt5wHag22d3bxAS7rPb9RhqP2CfPwJtpGXUPCixKbzlp4mBGX-Plz94nRpL8HWHVoQrV-SD-BV3XeSUDpCdwZckzI-uHVEQ41DPP6FJwEO2Pj46f3-SjY0YsiCV6bPCSWGdlbHw2lvEhLjCeQQmRQGxsGCk0SJvQwsxIvqyETGI9hXQKODRy0dst9t08ITxtsqtaT2CouhUGYUrgrBFS9jNuTy4BVtNCmnCyFJOzTIum-St5LZBbTakzWbU5oK9nq_4NjB0_EP2gBQxy406WLDDSefNOIWvGqGMqrQqVblgL-dhnHwUUXEdbLYkg-4x_tMqlHk82Mp878nEnv75mc_YHUHpMWk355Dt9t-38BzxTe9fJMP-BXVo8hU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NFCWShgJC5IZDfxI4m5IdRqFzZ7YVequER27HBolUU0K0F_fWechyoEiEsUyZOXZhx_45n5BuBNFpCHqiKf4XSTFs04t8JHlSI2MxOrXFBxcrFK5xv56Uyd7cG7sRbGex-Sz_yUTkMs322rHW2VzTQ1kKOi6VtKSqm6aq0xZiBVl9DBiTM2TvkQlIz1bF0s0BXk6KFSYamgZjwCPQ2ZUR7ijfUoNFj5O9YMa87pAyiGt-1STc6nu9ZOq6vfiBz_93Mewv0efLIPnbU8gj3fHMC9G5SEB3C76IPth_B16WkrLaL2QYFP4T1bBA5m_EFe_GJFaC3BNg3aEa5djnXil8w0jlFCQLTy34IwO_lpiIQYh1r2BY3CP4bN6cn64zzqWzFElZBZGyVGcG20cIlVViMqxDXOIjRJEu8S7TORKR7XVe2dQ_ylHaIQZXNPox6PVjyB_Wbb-KfA6jzWWW0RFjkjU8dNUnGd1ITejIkrM4HZoJCy6nnKqV3GRRn8lViXqM2StFn22pzA2_GK7x1Hxz9kD0kRo1yvgwkcDzov-0l8WXKZyVzJVKYTeD0O4_SjmIpp_HZHMugg418tR5mjzlbGew8m9uzPz3wFd-brYlkuF6vPz-Eup2SZsLdzDPvtj51_gWintS-DkV8DScn1Yg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lesion-Harvester%3A+Iteratively+Mining+Unlabeled+Lesions+and+Hard-Negative+Examples+at+Scale&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Cai%2C+Jinzheng&rft.au=Harrison%2C+Adam+P&rft.au=Zheng%2C+Youjing&rft.au=Yan%2C+Ke&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=1&rft.spage=59&rft_id=info:doi/10.1109%2FTMI.2020.3022034&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |