Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification

Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 1; pp. 237 - 251
Main Authors Li, Yang, Liu, Jingyu, Jiang, Yiqiao, Liu, Yu, Lei, Baiying
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2021.3110829

Cover

Abstract Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.
AbstractList Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.
Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.
Author Liu, Jingyu
Liu, Yu
Li, Yang
Lei, Baiying
Jiang, Yiqiao
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-1751-1742
  surname: Li
  fullname: Li, Yang
  email: liyang@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Jingyu
  orcidid: 0000-0002-1646-637X
  surname: Liu
  fullname: Liu, Jingyu
  email: liujingyu@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Yiqiao
  orcidid: 0000-0001-8777-5930
  surname: Jiang
  fullname: Jiang, Yiqiao
  email: jiangyiqiao@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Yu
  orcidid: 0000-0003-2281-6791
  surname: Liu
  fullname: Liu, Yu
  email: sy1803113@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Baiying
  orcidid: 0000-0002-3087-2550
  surname: Lei
  fullname: Lei, Baiying
  email: leiby@szu.edu.cn
  organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34491896$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vEzEUxC1URNPCHQkJWeLCZYM_1l77GNIGIrVwCYib5azfRi4bb7C9Rbnwt-MmKYceuNjP0m9GzzMX6CwMARB6TcmUUqI_rG6XU0YYnfLyVEw_QxMqhKqYqH-coQlhjaoIkewcXaR0RwitBdEv0Dmva02VlhP057uPebQ9nrl7iMlGX-ZVtD74sKk-2gQOXwHs8AJsHiPg2WYTYWOzHwL-Avn3EH_iRRy2-Gof7Na3-LrroM3-HvB8COEw-rzH3RDx7XyJlw5C9p1vDxYv0fPO9glene5L9G1xvZp_rm6-flrOZzdVy-smV1RyDtBQVpeDS0mkVrWFlhDNlNCK6LZpXN1xp7lwbN2pRsi15co5xd2a80v0_ui7i8OvEVI2W59a6HsbYBiTYaIhvBFEkoK-e4LeDWMMZTvDZEmXli1Yod6eqHG9BWd20W9t3JvHZAsgj0Abh5QidKb1-fDnXNLtDSXmoUJTKjQPFZpThUVInggfvf8jeXOUeAD4h2vBiWCK_wW-V6VY
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TCSS_2024_3400029
crossref_primary_10_1109_TMI_2023_3337074
crossref_primary_10_1016_j_artmed_2024_102998
crossref_primary_10_1109_TNNLS_2022_3194733
crossref_primary_10_1016_j_compbiomed_2024_108069
crossref_primary_10_1016_j_bspc_2024_106955
crossref_primary_10_1109_TMI_2022_3151666
crossref_primary_10_1109_TMI_2022_3187141
crossref_primary_10_1109_TNSRE_2022_3202713
crossref_primary_10_1109_TMI_2024_3412399
crossref_primary_10_1186_s12967_024_05893_2
crossref_primary_10_1016_j_metrad_2023_100046
crossref_primary_10_1016_j_compbiomed_2023_107401
crossref_primary_10_1016_j_heliyon_2024_e34245
crossref_primary_10_1007_s11517_023_02859_2
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_3389_fnins_2022_1046268
crossref_primary_10_1007_s11042_022_12458_2
crossref_primary_10_1016_j_artmed_2024_102984
crossref_primary_10_1109_TMI_2024_3419041
crossref_primary_10_1109_JBHI_2024_3396457
crossref_primary_10_1109_JSEN_2024_3387103
crossref_primary_10_1002_hbm_26691
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_1016_j_brainresbull_2025_111313
crossref_primary_10_1016_j_compbiomed_2023_106749
crossref_primary_10_1038_s41598_024_74508_z
crossref_primary_10_1016_j_bspc_2023_105212
crossref_primary_10_1109_JBHI_2024_3393625
crossref_primary_10_1109_TMI_2023_3325261
crossref_primary_10_1109_TSMC_2023_3322195
crossref_primary_10_1109_TCYB_2022_3194099
crossref_primary_10_1007_s11042_022_11915_2
crossref_primary_10_1016_j_neucom_2023_126512
crossref_primary_10_1109_TMI_2023_3309874
crossref_primary_10_1016_j_compbiomed_2023_107079
crossref_primary_10_1109_TMI_2024_3381670
crossref_primary_10_1109_TNSRE_2023_3271062
crossref_primary_10_1007_s10278_024_01207_6
crossref_primary_10_1109_TMI_2023_3327283
Cites_doi 10.1038/s41593-019-0510-4
10.1002/hbm.23430
10.1159/000511210
10.1016/j.neuroimage.2015.11.055
10.1001/jamaneurol.2016.5701
10.1016/j.media.2018.03.013
10.1007/s12021-014-9221-x
10.1002/9780470374122.ch46
10.1016/j.media.2018.06.001
10.1016/j.neures.2020.06.006
10.1109/TMI.2018.2882189
10.1109/TMI.2019.2926667
10.1016/j.nicl.2019.101929
10.1109/TMI.2020.2976825
10.3389/fnagi.2018.00094
10.1186/s13195-020-00764-6
10.1109/TCYB.2019.2940526
10.1016/j.eswa.2018.07.039
10.1109/TMI.2020.3022591
10.1016/j.media.2020.101947
10.1109/ACCESS.2020.2999520
10.1016/j.ejrad.2013.03.012
10.1016/j.compbiomed.2020.104096
10.1109/TMI.2019.2957097
10.1109/TMI.2019.2958943
10.1089/brain.2014.0295
10.1109/TBME.2018.2880428
10.1016/j.jneumeth.2020.108600
10.1038/s41467-019-13055-y
10.1016/j.media.2018.11.006
10.1002/hbm.21153
10.1093/brain/awz192
10.1214/16-EJS1120
10.1515/revneuro-2016-0086
10.1016/j.media.2020.101652
10.1007/s12021-019-09418-x
10.1109/TBME.2010.2046325
10.1109/TPAMI.2018.2858821
10.1109/TMI.2019.2928790
10.3389/fninf.2018.00058
10.1109/TCYB.2021.3071860
10.1109/TCYB.2020.3005859
10.1002/hbm.23524
10.1109/TMI.2018.2876510
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2021.3110829
DatabaseName Accès INSA - IEEE Xplore ASPP 2005
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 251
ExternalDocumentID 34491896
10_1109_TMI_2021_3110829
9530528
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Academic Excellence Foundation of BUAA for Ph.D. students
  funderid: 10.13039/501100012240
– fundername: National Natural Science Foundation of China
  grantid: U1809209; 61671042; 61403016
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L182015; 4172037
  funderid: 10.13039/501100004826
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-1633ee7124e7136606984aec0092859809c77d4f3d935d2bf8756ba38dd83db33
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 02:33:37 EDT 2025
Mon Jun 30 04:29:45 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Wed Oct 01 03:55:31 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Aug 27 05:00:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1633ee7124e7136606984aec0092859809c77d4f3d935d2bf8756ba38dd83db33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2281-6791
0000-0002-3087-2550
0000-0001-8777-5930
0000-0002-1751-1742
0000-0002-1646-637X
PMID 34491896
PQID 2615511242
PQPubID 85460
PageCount 15
ParticipantIDs pubmed_primary_34491896
crossref_citationtrail_10_1109_TMI_2021_3110829
crossref_primary_10_1109_TMI_2021_3110829
proquest_miscellaneous_2570375060
proquest_journals_2615511242
ieee_primary_9530528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Kingma (ref33)
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
Velikovi (ref26)
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref48
ref25
ref47
ref20
ref42
ref41
ref22
Ashburner (ref27)
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Cawley (ref36) 2010; 11
ref40
References_xml – start-page: 1
  volume-title: Proc. Trust Centre Neuroimag.
  ident: ref27
  article-title: SPM12 manual
– ident: ref18
  doi: 10.1038/s41593-019-0510-4
– ident: ref13
  doi: 10.1002/hbm.23430
– ident: ref42
  doi: 10.1159/000511210
– ident: ref14
  doi: 10.1016/j.neuroimage.2015.11.055
– ident: ref46
  doi: 10.1001/jamaneurol.2016.5701
– ident: ref37
  doi: 10.1016/j.media.2018.03.013
– ident: ref31
  doi: 10.1007/s12021-014-9221-x
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref36
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– ident: ref17
  doi: 10.1002/9780470374122.ch46
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref26
  article-title: Graph attention networks
– ident: ref22
  doi: 10.1016/j.media.2018.06.001
– ident: ref15
  doi: 10.1016/j.neures.2020.06.006
– ident: ref19
  doi: 10.1109/TMI.2018.2882189
– ident: ref7
  doi: 10.1109/TMI.2019.2926667
– ident: ref21
  doi: 10.1016/j.nicl.2019.101929
– ident: ref16
  doi: 10.1109/TMI.2020.2976825
– ident: ref5
  doi: 10.3389/fnagi.2018.00094
– ident: ref12
  doi: 10.1186/s13195-020-00764-6
– ident: ref38
  doi: 10.1109/TCYB.2019.2940526
– ident: ref35
  doi: 10.1016/j.eswa.2018.07.039
– ident: ref20
  doi: 10.1109/TMI.2020.3022591
– ident: ref40
  doi: 10.1016/j.media.2020.101947
– ident: ref25
  doi: 10.1109/ACCESS.2020.2999520
– ident: ref43
  doi: 10.1016/j.ejrad.2013.03.012
– ident: ref23
  doi: 10.1016/j.compbiomed.2020.104096
– ident: ref28
  doi: 10.1109/TMI.2019.2957097
– ident: ref2
  doi: 10.1109/TMI.2019.2958943
– ident: ref47
  doi: 10.1089/brain.2014.0295
– ident: ref9
  doi: 10.1109/TBME.2018.2880428
– ident: ref11
  doi: 10.1016/j.jneumeth.2020.108600
– ident: ref41
  doi: 10.1038/s41467-019-13055-y
– ident: ref3
  doi: 10.1016/j.media.2018.11.006
– ident: ref44
  doi: 10.1002/hbm.21153
– ident: ref10
  doi: 10.1093/brain/awz192
– ident: ref29
  doi: 10.1214/16-EJS1120
– ident: ref45
  doi: 10.1515/revneuro-2016-0086
– ident: ref39
  doi: 10.1016/j.media.2020.101652
– ident: ref4
  doi: 10.1007/s12021-019-09418-x
– ident: ref30
  doi: 10.1109/TBME.2010.2046325
– ident: ref32
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref1
  doi: 10.1109/TMI.2019.2928790
– ident: ref8
  doi: 10.3389/fninf.2018.00058
– ident: ref24
  doi: 10.1109/TCYB.2021.3071860
– ident: ref34
  doi: 10.1109/TCYB.2020.3005859
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref33
  article-title: Adam: A method for stochastic optimization
– ident: ref6
  doi: 10.1002/hbm.23524
– ident: ref48
  doi: 10.1109/TMI.2018.2876510
SSID ssj0014509
Score 2.5602124
Snippet Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Activity patterns
Algorithms
Alzheimer Disease
Artificial neural networks
Brain
Brain - diagnostic imaging
Brain mapping
Brain modeling
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive tasks
Computer-aided analysis
convolutional neural networks
Deep learning
Diseases
dynamic effective connectivity
Feature extraction
Functional magnetic resonance imaging
graph attention networks
Graph theory
Heuristic algorithms
Humans
Kalman filters
Machine learning
Magnetic Resonance Imaging
Neural networks
Neural Networks, Computer
Perturbation
Representations
Time series analysis
Training
virtual adversarial training
Title Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification
URI https://ieeexplore.ieee.org/document/9530528
https://www.ncbi.nlm.nih.gov/pubmed/34491896
https://www.proquest.com/docview/2615511242
https://www.proquest.com/docview/2570375060
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB0QP0EJbUqBypV4qNbvZ2IntI4WuoFI4LRW3yI69CLXdRcvm0kN_e2fsJEJVW3GJIsV5zjj-5vUNwPvC4aphjUmtsSYVpdc4pYRIrUW8bDPhMkOugeqqvLgWX26Kmw34ONTCeO9D8pkf0W6I5btl05KrbKwL1M5cbcKmVGWs1RoiBqKI6Rw5McZmZd6HJDM9nlWXaAjmE7RPJ1RKugPbXAg9UcTU_2g1Cu1V_o00w4oz3YOqf9aYaPJt1K7tqPn5B43jU1_mOex20JOdRl15ARt-sQ_PHhES7sN21YXaD-DX17sV1Zaw0LL5wZCislnXUCL9hIufY-fe3zMCke3Ks9NbNN1vg6DZVUwuZ9PV8gc7j03vWSRKxr8rC9k1TexbwRA1s-rsksWS4XnnQ3wJ19PPs7OLtGvWkDZcyHWKuI57LxEu4IaXaBdpJYxviNRJFVplupHSiTl3mhcut3M0lEpruHJOcWc5fwVbi-XCHwLDL6ONzdDMR2WRpVAE8qRt3Fzg79nKBMa90OqmYzKnhhrf62DRZLpGidck8bqTeAIfhjPuI4vHf8YekLCGcZ2cEjju9aLupvlDnVNUFxGryBN4NxzGCUpRF7PwyxbHEMeZJB7HBF5HfRqu3avhm7_f8wh2cqq2CB6fY9har1p_ghhobd8G5f8N_Dn_LQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVy4NFSCC1gJC5IZDcbOw8f-2C1C82etqi3yI69FSrsVtvNhQO_nRnbiSoEiEsUKc5zxvE3r28A3mUGVw2tVKyVVrHIrcQpJUSsNeJlnQiTKHINVLN8ciE-XWaXW_Chr4Wx1rrkMzugXRfLN6umJVfZUGaonWl5D-5nQojMV2v1MQOR-YSOlDhjkzztgpKJHM6rKZqC6Qgt1BEVk-7CDhdCjkri6r-zHrkGK3_Hmm7NGT-Gqntan2pyPWg3etD8-I3I8X9f5wk8CuCTHXtteQpbdrkHD-9QEu7BThWC7fvw88vXNVWXMNe0-VaRqrJ5aCkRn-DyZ9iZtTeMYGS7tuz4Co33KydqNvPp5Wy8Xn1nZ77tPfNUyfh_ZS6_pvGdKxjiZladTpkvGl4EL-IzuBh_nJ9O4tCuIW64KDYxIjtubYGAATc8R8tIlkLZhmidykyWiWyKwogFN5JnJtULNJVyrXhpTMmN5vwAtperpX0BDL-MVDpBQx_VpchFSTCv0I1ZCPxB6yKCYSe0uglc5tRS41vtbJpE1ijxmiReB4lH8L4_48bzePxj7D4Jqx8X5BTBUacXdZjot3VKcV3ErCKN4G1_GKcoxV3U0q5aHEMsZwUxOUbw3OtTf-1ODV_--Z5v4MFkXp3X59PZ50PYTan2wvl_jmB7s27tK0REG_3aTYRffXkCiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Adversarial+Training-Based+Deep+Feature+Aggregation+Network+From+Dynamic+Effective+Connectivity+for+MCI+Identification&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Li%2C+Yang&rft.au=Liu%2C+Jingyu&rft.au=Jiang%2C+Yiqiao&rft.au=Liu%2C+Yu&rft.date=2022-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=41&rft.issue=1&rft.spage=237&rft.epage=251&rft_id=info:doi/10.1109%2FTMI.2021.3110829&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2021_3110829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon