Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification
Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 41; no. 1; pp. 237 - 251 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2021.3110829 |
Cover
| Abstract | Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly. |
|---|---|
| AbstractList | Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly. Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly. |
| Author | Liu, Jingyu Liu, Yu Li, Yang Lei, Baiying Jiang, Yiqiao |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-1751-1742 surname: Li fullname: Li, Yang email: liyang@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Jingyu orcidid: 0000-0002-1646-637X surname: Liu fullname: Liu, Jingyu email: liujingyu@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Yiqiao orcidid: 0000-0001-8777-5930 surname: Jiang fullname: Jiang, Yiqiao email: jiangyiqiao@bjtu.edu.cn organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Yu orcidid: 0000-0003-2281-6791 surname: Liu fullname: Liu, Yu email: sy1803113@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Baiying orcidid: 0000-0002-3087-2550 surname: Lei fullname: Lei, Baiying email: leiby@szu.edu.cn organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34491896$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1vEzEUxC1URNPCHQkJWeLCZYM_1l77GNIGIrVwCYib5azfRi4bb7C9Rbnwt-MmKYceuNjP0m9GzzMX6CwMARB6TcmUUqI_rG6XU0YYnfLyVEw_QxMqhKqYqH-coQlhjaoIkewcXaR0RwitBdEv0Dmva02VlhP057uPebQ9nrl7iMlGX-ZVtD74sKk-2gQOXwHs8AJsHiPg2WYTYWOzHwL-Avn3EH_iRRy2-Gof7Na3-LrroM3-HvB8COEw-rzH3RDx7XyJlw5C9p1vDxYv0fPO9glene5L9G1xvZp_rm6-flrOZzdVy-smV1RyDtBQVpeDS0mkVrWFlhDNlNCK6LZpXN1xp7lwbN2pRsi15co5xd2a80v0_ui7i8OvEVI2W59a6HsbYBiTYaIhvBFEkoK-e4LeDWMMZTvDZEmXli1Yod6eqHG9BWd20W9t3JvHZAsgj0Abh5QidKb1-fDnXNLtDSXmoUJTKjQPFZpThUVInggfvf8jeXOUeAD4h2vBiWCK_wW-V6VY |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TCSS_2024_3400029 crossref_primary_10_1109_TMI_2023_3337074 crossref_primary_10_1016_j_artmed_2024_102998 crossref_primary_10_1109_TNNLS_2022_3194733 crossref_primary_10_1016_j_compbiomed_2024_108069 crossref_primary_10_1016_j_bspc_2024_106955 crossref_primary_10_1109_TMI_2022_3151666 crossref_primary_10_1109_TMI_2022_3187141 crossref_primary_10_1109_TNSRE_2022_3202713 crossref_primary_10_1109_TMI_2024_3412399 crossref_primary_10_1186_s12967_024_05893_2 crossref_primary_10_1016_j_metrad_2023_100046 crossref_primary_10_1016_j_compbiomed_2023_107401 crossref_primary_10_1016_j_heliyon_2024_e34245 crossref_primary_10_1007_s11517_023_02859_2 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_3389_fnins_2022_1046268 crossref_primary_10_1007_s11042_022_12458_2 crossref_primary_10_1016_j_artmed_2024_102984 crossref_primary_10_1109_TMI_2024_3419041 crossref_primary_10_1109_JBHI_2024_3396457 crossref_primary_10_1109_JSEN_2024_3387103 crossref_primary_10_1002_hbm_26691 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1016_j_brainresbull_2025_111313 crossref_primary_10_1016_j_compbiomed_2023_106749 crossref_primary_10_1038_s41598_024_74508_z crossref_primary_10_1016_j_bspc_2023_105212 crossref_primary_10_1109_JBHI_2024_3393625 crossref_primary_10_1109_TMI_2023_3325261 crossref_primary_10_1109_TSMC_2023_3322195 crossref_primary_10_1109_TCYB_2022_3194099 crossref_primary_10_1007_s11042_022_11915_2 crossref_primary_10_1016_j_neucom_2023_126512 crossref_primary_10_1109_TMI_2023_3309874 crossref_primary_10_1016_j_compbiomed_2023_107079 crossref_primary_10_1109_TMI_2024_3381670 crossref_primary_10_1109_TNSRE_2023_3271062 crossref_primary_10_1007_s10278_024_01207_6 crossref_primary_10_1109_TMI_2023_3327283 |
| Cites_doi | 10.1038/s41593-019-0510-4 10.1002/hbm.23430 10.1159/000511210 10.1016/j.neuroimage.2015.11.055 10.1001/jamaneurol.2016.5701 10.1016/j.media.2018.03.013 10.1007/s12021-014-9221-x 10.1002/9780470374122.ch46 10.1016/j.media.2018.06.001 10.1016/j.neures.2020.06.006 10.1109/TMI.2018.2882189 10.1109/TMI.2019.2926667 10.1016/j.nicl.2019.101929 10.1109/TMI.2020.2976825 10.3389/fnagi.2018.00094 10.1186/s13195-020-00764-6 10.1109/TCYB.2019.2940526 10.1016/j.eswa.2018.07.039 10.1109/TMI.2020.3022591 10.1016/j.media.2020.101947 10.1109/ACCESS.2020.2999520 10.1016/j.ejrad.2013.03.012 10.1016/j.compbiomed.2020.104096 10.1109/TMI.2019.2957097 10.1109/TMI.2019.2958943 10.1089/brain.2014.0295 10.1109/TBME.2018.2880428 10.1016/j.jneumeth.2020.108600 10.1038/s41467-019-13055-y 10.1016/j.media.2018.11.006 10.1002/hbm.21153 10.1093/brain/awz192 10.1214/16-EJS1120 10.1515/revneuro-2016-0086 10.1016/j.media.2020.101652 10.1007/s12021-019-09418-x 10.1109/TBME.2010.2046325 10.1109/TPAMI.2018.2858821 10.1109/TMI.2019.2928790 10.3389/fninf.2018.00058 10.1109/TCYB.2021.3071860 10.1109/TCYB.2020.3005859 10.1002/hbm.23524 10.1109/TMI.2018.2876510 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2021.3110829 |
| DatabaseName | Accès INSA - IEEE Xplore ASPP 2005 IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 251 |
| ExternalDocumentID | 34491896 10_1109_TMI_2021_3110829 9530528 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Academic Excellence Foundation of BUAA for Ph.D. students funderid: 10.13039/501100012240 – fundername: National Natural Science Foundation of China grantid: U1809209; 61671042; 61403016 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L182015; 4172037 funderid: 10.13039/501100004826 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-1633ee7124e7136606984aec0092859809c77d4f3d935d2bf8756ba38dd83db33 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 02:33:37 EDT 2025 Mon Jun 30 04:29:45 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Wed Oct 01 03:55:31 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Aug 27 05:00:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-1633ee7124e7136606984aec0092859809c77d4f3d935d2bf8756ba38dd83db33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2281-6791 0000-0002-3087-2550 0000-0001-8777-5930 0000-0002-1751-1742 0000-0002-1646-637X |
| PMID | 34491896 |
| PQID | 2615511242 |
| PQPubID | 85460 |
| PageCount | 15 |
| ParticipantIDs | pubmed_primary_34491896 crossref_citationtrail_10_1109_TMI_2021_3110829 crossref_primary_10_1109_TMI_2021_3110829 proquest_miscellaneous_2570375060 proquest_journals_2615511242 ieee_primary_9530528 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Kingma (ref33) ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 Velikovi (ref26) ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref48 ref25 ref47 ref20 ref42 ref41 ref22 Ashburner (ref27) ref44 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Cawley (ref36) 2010; 11 ref40 |
| References_xml | – start-page: 1 volume-title: Proc. Trust Centre Neuroimag. ident: ref27 article-title: SPM12 manual – ident: ref18 doi: 10.1038/s41593-019-0510-4 – ident: ref13 doi: 10.1002/hbm.23430 – ident: ref42 doi: 10.1159/000511210 – ident: ref14 doi: 10.1016/j.neuroimage.2015.11.055 – ident: ref46 doi: 10.1001/jamaneurol.2016.5701 – ident: ref37 doi: 10.1016/j.media.2018.03.013 – ident: ref31 doi: 10.1007/s12021-014-9221-x – volume: 11 start-page: 2079 year: 2010 ident: ref36 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – ident: ref17 doi: 10.1002/9780470374122.ch46 – start-page: 1 volume-title: Proc. ICLR ident: ref26 article-title: Graph attention networks – ident: ref22 doi: 10.1016/j.media.2018.06.001 – ident: ref15 doi: 10.1016/j.neures.2020.06.006 – ident: ref19 doi: 10.1109/TMI.2018.2882189 – ident: ref7 doi: 10.1109/TMI.2019.2926667 – ident: ref21 doi: 10.1016/j.nicl.2019.101929 – ident: ref16 doi: 10.1109/TMI.2020.2976825 – ident: ref5 doi: 10.3389/fnagi.2018.00094 – ident: ref12 doi: 10.1186/s13195-020-00764-6 – ident: ref38 doi: 10.1109/TCYB.2019.2940526 – ident: ref35 doi: 10.1016/j.eswa.2018.07.039 – ident: ref20 doi: 10.1109/TMI.2020.3022591 – ident: ref40 doi: 10.1016/j.media.2020.101947 – ident: ref25 doi: 10.1109/ACCESS.2020.2999520 – ident: ref43 doi: 10.1016/j.ejrad.2013.03.012 – ident: ref23 doi: 10.1016/j.compbiomed.2020.104096 – ident: ref28 doi: 10.1109/TMI.2019.2957097 – ident: ref2 doi: 10.1109/TMI.2019.2958943 – ident: ref47 doi: 10.1089/brain.2014.0295 – ident: ref9 doi: 10.1109/TBME.2018.2880428 – ident: ref11 doi: 10.1016/j.jneumeth.2020.108600 – ident: ref41 doi: 10.1038/s41467-019-13055-y – ident: ref3 doi: 10.1016/j.media.2018.11.006 – ident: ref44 doi: 10.1002/hbm.21153 – ident: ref10 doi: 10.1093/brain/awz192 – ident: ref29 doi: 10.1214/16-EJS1120 – ident: ref45 doi: 10.1515/revneuro-2016-0086 – ident: ref39 doi: 10.1016/j.media.2020.101652 – ident: ref4 doi: 10.1007/s12021-019-09418-x – ident: ref30 doi: 10.1109/TBME.2010.2046325 – ident: ref32 doi: 10.1109/TPAMI.2018.2858821 – ident: ref1 doi: 10.1109/TMI.2019.2928790 – ident: ref8 doi: 10.3389/fninf.2018.00058 – ident: ref24 doi: 10.1109/TCYB.2021.3071860 – ident: ref34 doi: 10.1109/TCYB.2020.3005859 – start-page: 1 volume-title: Proc. ICLR ident: ref33 article-title: Adam: A method for stochastic optimization – ident: ref6 doi: 10.1002/hbm.23524 – ident: ref48 doi: 10.1109/TMI.2018.2876510 |
| SSID | ssj0014509 |
| Score | 2.5602124 |
| Snippet | Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 237 |
| SubjectTerms | Activity patterns Algorithms Alzheimer Disease Artificial neural networks Brain Brain - diagnostic imaging Brain mapping Brain modeling Classification Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive tasks Computer-aided analysis convolutional neural networks Deep learning Diseases dynamic effective connectivity Feature extraction Functional magnetic resonance imaging graph attention networks Graph theory Heuristic algorithms Humans Kalman filters Machine learning Magnetic Resonance Imaging Neural networks Neural Networks, Computer Perturbation Representations Time series analysis Training virtual adversarial training |
| Title | Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification |
| URI | https://ieeexplore.ieee.org/document/9530528 https://www.ncbi.nlm.nih.gov/pubmed/34491896 https://www.proquest.com/docview/2615511242 https://www.proquest.com/docview/2570375060 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB0QP0EJbUqBypV4qNbvZ2IntI4WuoFI4LRW3yI69CLXdRcvm0kN_e2fsJEJVW3GJIsV5zjj-5vUNwPvC4aphjUmtsSYVpdc4pYRIrUW8bDPhMkOugeqqvLgWX26Kmw34ONTCeO9D8pkf0W6I5btl05KrbKwL1M5cbcKmVGWs1RoiBqKI6Rw5McZmZd6HJDM9nlWXaAjmE7RPJ1RKugPbXAg9UcTU_2g1Cu1V_o00w4oz3YOqf9aYaPJt1K7tqPn5B43jU1_mOex20JOdRl15ARt-sQ_PHhES7sN21YXaD-DX17sV1Zaw0LL5wZCislnXUCL9hIufY-fe3zMCke3Ks9NbNN1vg6DZVUwuZ9PV8gc7j03vWSRKxr8rC9k1TexbwRA1s-rsksWS4XnnQ3wJ19PPs7OLtGvWkDZcyHWKuI57LxEu4IaXaBdpJYxviNRJFVplupHSiTl3mhcut3M0lEpruHJOcWc5fwVbi-XCHwLDL6ONzdDMR2WRpVAE8qRt3Fzg79nKBMa90OqmYzKnhhrf62DRZLpGidck8bqTeAIfhjPuI4vHf8YekLCGcZ2cEjju9aLupvlDnVNUFxGryBN4NxzGCUpRF7PwyxbHEMeZJB7HBF5HfRqu3avhm7_f8wh2cqq2CB6fY9har1p_ghhobd8G5f8N_Dn_LQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVy4NFSCC1gJC5IZDcbOw8f-2C1C82etqi3yI69FSrsVtvNhQO_nRnbiSoEiEsUKc5zxvE3r28A3mUGVw2tVKyVVrHIrcQpJUSsNeJlnQiTKHINVLN8ciE-XWaXW_Chr4Wx1rrkMzugXRfLN6umJVfZUGaonWl5D-5nQojMV2v1MQOR-YSOlDhjkzztgpKJHM6rKZqC6Qgt1BEVk-7CDhdCjkri6r-zHrkGK3_Hmm7NGT-Gqntan2pyPWg3etD8-I3I8X9f5wk8CuCTHXtteQpbdrkHD-9QEu7BThWC7fvw88vXNVWXMNe0-VaRqrJ5aCkRn-DyZ9iZtTeMYGS7tuz4Co33KydqNvPp5Wy8Xn1nZ77tPfNUyfh_ZS6_pvGdKxjiZladTpkvGl4EL-IzuBh_nJ9O4tCuIW64KDYxIjtubYGAATc8R8tIlkLZhmidykyWiWyKwogFN5JnJtULNJVyrXhpTMmN5vwAtperpX0BDL-MVDpBQx_VpchFSTCv0I1ZCPxB6yKCYSe0uglc5tRS41vtbJpE1ijxmiReB4lH8L4_48bzePxj7D4Jqx8X5BTBUacXdZjot3VKcV3ErCKN4G1_GKcoxV3U0q5aHEMsZwUxOUbw3OtTf-1ODV_--Z5v4MFkXp3X59PZ50PYTan2wvl_jmB7s27tK0REG_3aTYRffXkCiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Adversarial+Training-Based+Deep+Feature+Aggregation+Network+From+Dynamic+Effective+Connectivity+for+MCI+Identification&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Li%2C+Yang&rft.au=Liu%2C+Jingyu&rft.au=Jiang%2C+Yiqiao&rft.au=Liu%2C+Yu&rft.date=2022-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=41&rft.issue=1&rft.spage=237&rft.epage=251&rft_id=info:doi/10.1109%2FTMI.2021.3110829&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2021_3110829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |