Automatic Classification of Open-Ended Questions: Check-All-That-Apply Questions
Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large,...
Saved in:
| Published in | Social science computer review Vol. 39; no. 4; pp. 562 - 572 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Los Angeles, CA
SAGE Publications
01.08.2021
SAGE PUBLICATIONS, INC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0894-4393 1552-8286 1552-8286 |
| DOI | 10.1177/0894439319869210 |
Cover
| Abstract | Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR.
We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool. |
|---|---|
| AbstractList | Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR.
We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool. Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR.We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool. |
| Author | Gweon, Hyukjun Schonlau, Matthias Wenemark, Marika |
| Author_xml | – sequence: 1 givenname: Matthias surname: Schonlau fullname: Schonlau, Matthias email: schonlau@uwaterloo.ca – sequence: 2 givenname: Hyukjun surname: Gweon fullname: Gweon, Hyukjun – sequence: 3 givenname: Marika surname: Wenemark fullname: Wenemark, Marika |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426$$DView record from Swedish Publication Index |
| BookMark | eNp9kN1LwzAUxYNMcJu--1jwOZqPNkl9K3N-wGAK09eQpemW2TU1aZH997bOIQz06ZJ7fudyckZgULnKAHCJ0TXGnN8gkcYxTSlOBUsJRidgiJOEQEEEG4BhL8NePwOjEDYIYcIRGoLnrG3cVjVWR5NShWALq7uXqyJXRPPaVHBa5SaPXloT-nW4jSZro99hVpZwsVYNzOq63P3q5-C0UGUwFz9zDF7vp4vJI5zNH54m2QxqGvMGYiJyzgyjLGbcGKy6tSAM55yrVOElNZoxnqqEUMw1FqZAJEmoMMLgZUoRHQO4vxs-Td0uZe3tVvmddMrKO_uWSedXsrStxAzFhHX81Z6vvfvow8qNa33VRZQkiYWIO4p2FNtT2rsQvCmkts13H41XtpQYyb5tedx2Z0RHxkOgfyyHH6iV-U3zJ_8Fqc2N2g |
| CitedBy_id | crossref_primary_10_1080_21670811_2022_2037006 crossref_primary_10_1016_j_jclepro_2023_138341 crossref_primary_10_1016_j_sctalk_2022_100005 crossref_primary_10_1080_21645515_2022_2114422 crossref_primary_10_1093_jssam_smad015 crossref_primary_10_1177_1525822X221107053 crossref_primary_10_1177_0894439319883393 crossref_primary_10_12677_SA_2023_125150 crossref_primary_10_3390_buildings13102405 |
| Cites_doi | 10.29115/SP-2018-0007 10.1007/s10994-011-5256-5 10.1007/978-1-4757-3264-1 10.1007/s11135-015-0273-2 10.1109/TKDE.2013.39 10.1109/TKDE.2010.164 10.1007/BFb0026683 10.1177/0894439311435305 10.1016/j.patcog.2012.03.004 10.1177/0894439309353037 10.1093/ijpor/eds034 10.4018/jdwm.2007070101 10.1111/rssa.12297 10.1371/journal.pone.0128337 10.1177/1525822X12462525 10.1177/1536867X1601600407 10.1515/jos-2017-0006 10.1007/s11135-012-9754-8 10.1177/1536867X0500500304 10.1177/1536867X1801700406 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 |
| Copyright_xml | – notice: The Author(s) 2019 |
| DBID | AAYXX CITATION 7SC 7U4 8FD BHHNA DWI JQ2 L7M L~C L~D WZK ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1177/0894439319869210 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Sociological Abstracts (pre-2017) Technology Research Database Sociological Abstracts Sociological Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Sociological Abstracts (Ovid) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) Technology Research Database Computer and Information Systems Abstracts – Academic Sociological Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Sociological Abstracts (pre-2017) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education Government Social Sciences (General) |
| EISSN | 1552-8286 |
| EndPage | 572 |
| ExternalDocumentID | oai_DiVA_org_liu_160426 10_1177_0894439319869210 10.1177_0894439319869210 |
| GroupedDBID | -TM -~X .2G .2L 01A 09Z 0R~ 123 18M 1OL 1~K 31S 31V 31W 31X 4.4 54M 56W 5VS 77K AABOD AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABDLQ ABEIX ABFXH ABHQH ABIDT ABIPJ ABIVO ABJNI ABKRH ABPNF ABQKF ABQPY ABQXT ABRHV ABTDE ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFO ACGFS ACGOD ACHQT ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMLS ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS AEDXQ AEEHM AENEX AEOBU AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALMA_UNASSIGNED_HOLDINGS ANDLU ARBYP ARTOV AUTPY AUVAJ AYPQM AZFZN B8O B8S B8T B8Z BDZRT BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ H~9 J8X LPU MVM N9A NHB O9- P.B P2P PQQKQ Q1R Q7O Q7P Q7X ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFI SFK SFT SGP SGU SGV SHB SHF SHM SPJ SPP SQCSI SSDHQ TN5 ULY YR2 ZCA ZPLXX ZPPRI ~32 0SE 77I AAEJI AAPII AAYXX ACCVC AJGYC AJHME AJVBE AMNSR CITATION 7SC 7U4 8FD BHHNA DWI JQ2 L7M L~C L~D WZK ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c347t-128d76e636467ee1ac348261d77a9a1b3ec6679a52317c18ef025538e8e1b9303 |
| ISSN | 0894-4393 1552-8286 |
| IngestDate | Tue Sep 09 23:43:42 EDT 2025 Fri Jul 25 01:07:26 EDT 2025 Wed Oct 01 06:43:16 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Tue Jun 17 22:37:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | multilabel statistical learning check-all-that-apply text machine learning open-ended questions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c347t-128d76e636467ee1ac348261d77a9a1b3ec6679a52317c18ef025538e8e1b9303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426 |
| PQID | 2548840423 |
| PQPubID | 4977 |
| PageCount | 11 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_160426 proquest_journals_2548840423 crossref_citationtrail_10_1177_0894439319869210 crossref_primary_10_1177_0894439319869210 sage_journals_10_1177_0894439319869210 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Los Angeles, CA |
| PublicationPlace_xml | – name: Los Angeles, CA – name: Thousand Oaks |
| PublicationTitle | Social science computer review |
| PublicationYear | 2021 |
| Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
| Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
| References | Behr, Braun, Kaczmirek, Bandilla 2013; 25 Braun, Behr, Kaczmirek 2013; 25 Schonlau, Couper 2016; 10 Tsoumakas, Katakis 2007; 3 Read, Pfahringer, Holmes, Frank 2011; 85 Revilla, Couper, Ochoa 2018; 11 Gweon, Schonlau, Kaczmirek, Blohm, Steiner 2017; 33 Zhang, Zhou 2014; 26 Schonlau 2005; 5 Tsoumakas, Katakis, Vlahavas 2011; 23 Guenther, Schonlau 2016; 16 Behr, Kaczmirek, Bandilla, Braun 2012; 30 Behr, Braun, Kaczmirek, Bandilla 2014; 48 Peytchev, Hill 2010; 28 Revilla, Ochoa 2016; 50 Schober, Conrad, Antoun, Ehlen, Fail, Hupp, Zhang 2015; 10 Schonlau, Guenther, Sucholutsky 2017; 17 Madjarov, Kocev, Gjorgjevikj, Džeroski 2012; 45 Schierholz, Gensicke, Tschersich, Kreuter 2018; 181 bibr22-0894439319869210 bibr27-0894439319869210 bibr14-0894439319869210 bibr19-0894439319869210 bibr23-0894439319869210 bibr1-0894439319869210 Gweon H. (bibr7-0894439319869210) 2017 bibr21-0894439319869210 Büttcher S. (bibr5-0894439319869210) 2010 bibr4-0894439319869210 bibr10-0894439319869210 bibr17-0894439319869210 bibr18-0894439319869210 bibr13-0894439319869210 bibr26-0894439319869210 ISSP Research Group (bibr9-0894439319869210) 2012 Schierholz M. (bibr16-0894439319869210) 2014 bibr11-0894439319869210 bibr8-0894439319869210 bibr25-0894439319869210 bibr12-0894439319869210 bibr3-0894439319869210 Schonlau M. (bibr20-0894439319869210) 2016; 10 bibr6-0894439319869210 bibr15-0894439319869210 bibr2-0894439319869210 Tsoumakas G. (bibr24-0894439319869210) 2007 |
| References_xml | – volume: 33 start-page: 101 year: 2017 end-page: 122 article-title: Three methods for occupation coding based on statistical learning publication-title: Journal of Official Statistics – volume: 16 start-page: 917 year: 2016 end-page: 937 article-title: Support vector machines publication-title: Stata Journal – volume: 181 start-page: 379 year: 2018 end-page: 407 article-title: Occupation coding during the interview publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society) – volume: 25 start-page: 383 year: 2013 end-page: 395 article-title: Assessing cross-national equivalence of measures of xenophobia: Evidence from probing in web surveys publication-title: International Journal of Public Opinion Research – volume: 45 start-page: 3084 year: 2012 end-page: 3104 article-title: An extensive experimental comparison of methods for multi-label learning publication-title: Pattern Recognition – volume: 25 start-page: 124 year: 2013 end-page: 141 article-title: Testing the validity of gender ideology items by implementing probing questions in web surveys publication-title: Field Methods – volume: 3 start-page: 1 year: 2007 end-page: 13 article-title: Multi-label classification: An overview publication-title: International Journal of Data Warehousing and Mining – volume: 10 start-page: e0128337 year: 2015 article-title: Precision and disclosure in text and voice interviews on smartphones publication-title: PLoS One – volume: 17 start-page: 866 year: 2017 end-page: 881 article-title: Text mining with n-gram variables publication-title: Stata Journal – volume: 48 start-page: 127 year: 2014 end-page: 148 article-title: Item comparability in cross-national surveys: Results from asking probing questions in cross-national web surveys about attitudes towards civil disobedience publication-title: Quality & Quantity – volume: 28 start-page: 319 year: 2010 end-page: 335 article-title: Experiments in mobile web survey design: Similarities to other modes and unique considerations publication-title: Social Science Computer Review – volume: 30 start-page: 487 year: 2012 end-page: 498 article-title: Asking probing questions in web surveys which factors have an impact on the quality of responses? publication-title: Social Science Computer Review – volume: 5 start-page: 330 year: 2005 end-page: 354 article-title: Boosted regression (boosting): An introductory tutorial and a Stata plugin publication-title: The Stata Journal – volume: 23 start-page: 1079 year: 2011 end-page: 1089 article-title: Random k-labelsets for multilabel classification publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 11 start-page: 1 year: 2018 end-page: 8 article-title: Giving respondents voice? The feasibility of voice input for mobile web surveys publication-title: Survey Practice – volume: 10 start-page: 143 year: 2016 end-page: 152 article-title: Semi-automated categorization of open-ended questions publication-title: Survey Research Methods – volume: 50 start-page: 2495 year: 2016 end-page: 2513 article-title: Open narrative questions in PC and smartphones: Is the device playing a role? publication-title: Quality & Quantity – volume: 26 start-page: 1819 year: 2014 end-page: 1837 article-title: A review on multi-label learning algorithms publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 85 start-page: 333 year: 2011 end-page: 359 article-title: Classifier chains for multi-label classification publication-title: Machine Learning – ident: bibr14-0894439319869210 doi: 10.29115/SP-2018-0007 – ident: bibr13-0894439319869210 doi: 10.1007/s10994-011-5256-5 – ident: bibr26-0894439319869210 – ident: bibr25-0894439319869210 doi: 10.1007/978-1-4757-3264-1 – ident: bibr15-0894439319869210 doi: 10.1007/s11135-015-0273-2 – ident: bibr27-0894439319869210 doi: 10.1109/TKDE.2013.39 – volume-title: ZA3950: International social survey programme: Citizenship—ISSP 2004 year: 2012 ident: bibr9-0894439319869210 – volume: 10 start-page: 143 year: 2016 ident: bibr20-0894439319869210 publication-title: Survey Research Methods – ident: bibr23-0894439319869210 doi: 10.1109/TKDE.2010.164 – ident: bibr10-0894439319869210 doi: 10.1007/BFb0026683 – ident: bibr3-0894439319869210 doi: 10.1177/0894439311435305 – ident: bibr11-0894439319869210 doi: 10.1016/j.patcog.2012.03.004 – ident: bibr12-0894439319869210 doi: 10.1177/0894439309353037 – ident: bibr4-0894439319869210 doi: 10.1093/ijpor/eds034 – volume-title: Automating survey coding for occupation year: 2014 ident: bibr16-0894439319869210 – ident: bibr22-0894439319869210 doi: 10.4018/jdwm.2007070101 – ident: bibr17-0894439319869210 doi: 10.1111/rssa.12297 – volume-title: Random k-labelsets: An ensemble method for multilabel classification year: 2007 ident: bibr24-0894439319869210 – volume-title: Statistical learning approaches to some classification problems year: 2017 ident: bibr7-0894439319869210 – ident: bibr18-0894439319869210 doi: 10.1371/journal.pone.0128337 – ident: bibr1-0894439319869210 doi: 10.1177/1525822X12462525 – volume-title: Information retrieval: Implementing and evaluating search engines year: 2010 ident: bibr5-0894439319869210 – ident: bibr6-0894439319869210 doi: 10.1177/1536867X1601600407 – ident: bibr8-0894439319869210 doi: 10.1515/jos-2017-0006 – ident: bibr2-0894439319869210 doi: 10.1007/s11135-012-9754-8 – ident: bibr19-0894439319869210 doi: 10.1177/1536867X0500500304 – ident: bibr21-0894439319869210 doi: 10.1177/1536867X1801700406 |
| SSID | ssj0012700 |
| Score | 2.341627 |
| Snippet | Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not... |
| SourceID | swepub proquest crossref sage |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 562 |
| SubjectTerms | Algorithms Automatic classification Bivariate analysis Civil disobedience Classification Coders Correlation Data Immigrants Labels Machine learning Noncitizens Obedience Offenses Performance evaluation Questions Statistical models |
| Title | Automatic Classification of Open-Ended Questions: Check-All-That-Apply Questions |
| URI | https://journals.sagepub.com/doi/full/10.1177/0894439319869210 https://www.proquest.com/docview/2548840423 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: Sage journals customDbUrl: eissn: 1552-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012700 issn: 0894-4393 databaseCode: AYPQM dateStart: 19990201 isFulltext: true titleUrlDefault: https://journals.sagepub.com providerName: SAGE Publications |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9NILggAipSAfUERVLe36sba5WSUlQm0pkgPhZK03GxJi4pLaQuXAb2fGXj9SSgVcLMuvdTLj2W925psh5DlXppCxYJRzgG82OATUt92Yxq4npOPFYDiR4Hx6xkdj--3EmXQ6P9vskix-KX_cyCv5H6nCMZArsmT_QbL1Q-EA7IN8YQsShu1fyTjIs7QsuVr0tsSsnxoBYqYIHeL69n6xqIkvge7_0VzJJQ2ShIZzkVFEoVfNFW2sqpm7FfFH6v4Pmu3SRHDm6SoR-X7ROXwhaoz-5ruCNxld5csvea2BH8G0fhXrJXKEFkvRXnMwWZ3x1g52tcjOG-Sq0nb5NgWsU9oupW2rYxas9bbxLSsZaSWzW5bU0Ua6nJSdsr_P7_a-iDjjaDgY8z3umzpNdqO09tm76Hh8chKFw0k4uPhGsesYRud1C5Y7ZMuEWeGwS7aCT-fvT-s4lKlJTNXPaQLdB9cH3QQ2jbeiqzdsFKItwEt4j9zVXocRlCp0n3TUqocNu3VyT49sNz2Xe6RfSt7Qdv_SeKGLk-89IOe1zhmbOmekM6PROaPWqFfGTRrXnH9IxsfD8GhEdVcOKi3bzSgAmqnLFbc4zLFKMSGxPhJnU9cVvmCxpSTnri8c8BxcyTw1Q7fV8pSnWOwDYnpEuqt0pR4Tw4qFG3szDNApW3pSWPzQnk4B84qZI5nqk4PqL42kLlmPnVOSiFVV6q8JoU_26jsuynItt1y7W0kp0h_1ZWSCB-_ZmCzWJwOUXHPqz88ZlLKtR8SS7a8XH4IoXX-OkkUeMY5LFTu3D_iEbDff2i7pZutcPQXEm8XPtFr-Aj6zpn8 |
| linkProvider | SAGE Publications |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6hcIBLoaGoodD6UCE4GOrsxvZyW1FQoARRKSDay8p2HEBESQWbA_31ndn1ZnmIqurZ9qzXHs_DnvkG4LP0beOsEVxKNN9idAh4EivLrdLGdbRFwUkJzr1T2T2Pjy87l49KfYUVvN-hsCqcUSGsZ6ebkJJ0EqMSRc7RMmlTctV8gWnWgPn0x9n33uwJoR3yT7A_pwH1G-ULGk91Um1ohsT7Jxiihd45XIKf1YzLcJPbnWmOk_39DMzxv35pGd4Ea5SlJfu8hTk_blIh5xD00YTFuhZvE1plLi8L8uCebQXQ6u0VOEun-aSAf2VFnU2KQCposMmQUdQKP6C7dlZcsBKr77H9a-9ueToa8f61yTnZww91-zs4Pzzo73d5qNbAXRSrnKOiGyjpZSRR9novjCPcHCkGSpnECBt5J6VKDHq-Qjmh_ZDcmUh77YVNUJOuQmM8Gfv3wCJrlNVDerjxsdPORPJLPBigLWSGHSd8C3ar_cpcgDKnihqjTFTo5c-WtAXbsxG_ShiPv_Rdr1ggq_YuQz9aoy-MxmcLNmkj66bX6WyWjDP7IkF5f725SLPJ3VU2uplmQpILu_avFD_BQrffO8lOjk6_fYDFNoXXFLGI69DI76Z-A-2j3H4MJ-EPZvj_zQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-swDI8QSIgLH-M9MT5zQAgOYWTtkpRbBUx8a0jwxDtVSZoCYtoQ6w7w12O32SpAIMQ5iZsmTmzH9s-EbArX1NZozoQA9S0Eg4BFoTTMSKVtSxm4ODHB-eJSHN-Ep7etWx-bg7kwfgUHuxhWBTMqLms83U9p1vA-xsaeikIQpMA9SkRNTLCaUmDGAFNPxf87VxdjN0LT56BAf4YDKj_lJxrv5VKlbPrk-3c4ooXsac-VBVYHBWQhhpw87g5zmPDrB0DHX__WPJn1WimNSzZaIBOuV8OCzj74o0Zmqpq8NVIvc3qpvxcGdNuDV-8skk48zPsFDCwt6m1iJFJBg_YzitEr7Ajf3Gnx0Iosv08P7p19ZHG3y67vdc5QL36p2v-Qm_bR9cEx81UbmA1CmTMQeKkUTgQC7mDnuLaInyN4KqWONDeBs0LISIMFzKXlymVo1gTKKcdNBBL1L5ns9XtuidDAaGlUhg4cF1pldSD2wjQFnUhnLctdnTRGe5ZYD2mOlTW6CR-hmH9Y0jrZGY94KuE8vum7OmKDZLR_CdjTCmxiUELrZAs3s2r6ms5WyTzjLyKk9-HDvzjpP98l3YdhwgWasss_pbhBpjuH7eT85PJshcw0McqmCElcJZP589CtgZqUm3V_GN4A4ocCUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Classification+of+Open-Ended+Questions%3A+Check-All-That-Apply+Questions&rft.jtitle=Social+science+computer+review&rft.au=Schonlau+Matthias&rft.au=Gweon+Hyukjun&rft.au=Wenemark+Marika&rft.date=2021-08-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=0894-4393&rft.eissn=1552-8286&rft.volume=39&rft.issue=4&rft.spage=562&rft.epage=572&rft_id=info:doi/10.1177%2F0894439319869210&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-4393&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-4393&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-4393&client=summon |