Automatic Classification of Open-Ended Questions: Check-All-That-Apply Questions

Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large,...

Full description

Saved in:
Bibliographic Details
Published inSocial science computer review Vol. 39; no. 4; pp. 562 - 572
Main Authors Schonlau, Matthias, Gweon, Hyukjun, Wenemark, Marika
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.08.2021
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0894-4393
1552-8286
1552-8286
DOI10.1177/0894439319869210

Cover

Abstract Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR. We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool.
AbstractList Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR. We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool.
Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not constrain respondents’ answers. Where open-ended questions are necessary, often human coders manually code answers. When data sets are large, it is impractical or too costly to manually code all answer texts. Instead, text answers can be converted into numerical variables, and a statistical/machine learning algorithm can be trained on a subset of manually coded data. This statistical model is then used to predict the codes of the remainder. We consider open-ended questions where the answers are coded into multiple labels (all-that-apply questions). For example, in the open-ended question in our Happy example respondents are explicitly told they may list multiple things that make them happy. Algorithms for multilabel data take into account the correlation among the answer codes and may therefore give better prediction results. For example, when giving examples of civil disobedience, respondents talking about “minor nonviolent offenses” were also likely to talk about “crimes.” We compare the performance of two different multilabel algorithms (random k-labelsets [RAKEL], classifier chains [CC]) to the default method of binary relevance (BR) which applies single-label algorithms to each code separately. Performance is evaluated on data from three open-ended questions (Happy, Civil Disobedience, and Immigrant). We found weak bivariate label correlations in the Happy data (90th percentile: 7.6%), and stronger bivariate label correlations in the Civil Disobedience (90th percentile: 17.2%) and Immigrant (90th percentile: 19.2%) data. For the data with stronger correlations, we found both multilabel methods performed substantially better than BR using 0/1 loss (“at least one label is incorrect”) and had little effect when using Hamming loss (average error). For data with weak label correlations, we found no difference in performance between multilabel methods and BR.We conclude that automatic classification of open-ended questions that allow multiple answers may benefit from using multilabel algorithms for 0/1 loss. The degree of correlations among the labels may be a useful prognostic tool.
Author Gweon, Hyukjun
Schonlau, Matthias
Wenemark, Marika
Author_xml – sequence: 1
  givenname: Matthias
  surname: Schonlau
  fullname: Schonlau, Matthias
  email: schonlau@uwaterloo.ca
– sequence: 2
  givenname: Hyukjun
  surname: Gweon
  fullname: Gweon, Hyukjun
– sequence: 3
  givenname: Marika
  surname: Wenemark
  fullname: Wenemark, Marika
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426$$DView record from Swedish Publication Index
BookMark eNp9kN1LwzAUxYNMcJu--1jwOZqPNkl9K3N-wGAK09eQpemW2TU1aZH997bOIQz06ZJ7fudyckZgULnKAHCJ0TXGnN8gkcYxTSlOBUsJRidgiJOEQEEEG4BhL8NePwOjEDYIYcIRGoLnrG3cVjVWR5NShWALq7uXqyJXRPPaVHBa5SaPXloT-nW4jSZro99hVpZwsVYNzOq63P3q5-C0UGUwFz9zDF7vp4vJI5zNH54m2QxqGvMGYiJyzgyjLGbcGKy6tSAM55yrVOElNZoxnqqEUMw1FqZAJEmoMMLgZUoRHQO4vxs-Td0uZe3tVvmddMrKO_uWSedXsrStxAzFhHX81Z6vvfvow8qNa33VRZQkiYWIO4p2FNtT2rsQvCmkts13H41XtpQYyb5tedx2Z0RHxkOgfyyHH6iV-U3zJ_8Fqc2N2g
CitedBy_id crossref_primary_10_1080_21670811_2022_2037006
crossref_primary_10_1016_j_jclepro_2023_138341
crossref_primary_10_1016_j_sctalk_2022_100005
crossref_primary_10_1080_21645515_2022_2114422
crossref_primary_10_1093_jssam_smad015
crossref_primary_10_1177_1525822X221107053
crossref_primary_10_1177_0894439319883393
crossref_primary_10_12677_SA_2023_125150
crossref_primary_10_3390_buildings13102405
Cites_doi 10.29115/SP-2018-0007
10.1007/s10994-011-5256-5
10.1007/978-1-4757-3264-1
10.1007/s11135-015-0273-2
10.1109/TKDE.2013.39
10.1109/TKDE.2010.164
10.1007/BFb0026683
10.1177/0894439311435305
10.1016/j.patcog.2012.03.004
10.1177/0894439309353037
10.1093/ijpor/eds034
10.4018/jdwm.2007070101
10.1111/rssa.12297
10.1371/journal.pone.0128337
10.1177/1525822X12462525
10.1177/1536867X1601600407
10.1515/jos-2017-0006
10.1007/s11135-012-9754-8
10.1177/1536867X0500500304
10.1177/1536867X1801700406
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID AAYXX
CITATION
7SC
7U4
8FD
BHHNA
DWI
JQ2
L7M
L~C
L~D
WZK
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1177/0894439319869210
DatabaseName CrossRef
Computer and Information Systems Abstracts
Sociological Abstracts (pre-2017)
Technology Research Database
Sociological Abstracts
Sociological Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Sociological Abstracts (Ovid)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Sociological Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Sociological Abstracts (pre-2017)

DeliveryMethod fulltext_linktorsrc
Discipline Education
Government
Social Sciences (General)
EISSN 1552-8286
EndPage 572
ExternalDocumentID oai_DiVA_org_liu_160426
10_1177_0894439319869210
10.1177_0894439319869210
GroupedDBID -TM
-~X
.2G
.2L
01A
09Z
0R~
123
18M
1OL
1~K
31S
31V
31W
31X
4.4
54M
56W
5VS
77K
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
ABAWP
ABCCA
ABCJG
ABDLQ
ABEIX
ABFXH
ABHQH
ABIDT
ABIPJ
ABIVO
ABJNI
ABKRH
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGFO
ACGFS
ACGOD
ACHQT
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMLS
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
AEDXQ
AEEHM
AENEX
AEOBU
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARBYP
ARTOV
AUTPY
AUVAJ
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
H~9
J8X
LPU
MVM
N9A
NHB
O9-
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFI
SFK
SFT
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPP
SQCSI
SSDHQ
TN5
ULY
YR2
ZCA
ZPLXX
ZPPRI
~32
0SE
77I
AAEJI
AAPII
AAYXX
ACCVC
AJGYC
AJHME
AJVBE
AMNSR
CITATION
7SC
7U4
8FD
BHHNA
DWI
JQ2
L7M
L~C
L~D
WZK
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c347t-128d76e636467ee1ac348261d77a9a1b3ec6679a52317c18ef025538e8e1b9303
ISSN 0894-4393
1552-8286
IngestDate Tue Sep 09 23:43:42 EDT 2025
Fri Jul 25 01:07:26 EDT 2025
Wed Oct 01 06:43:16 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Tue Jun 17 22:37:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multilabel
statistical learning
check-all-that-apply
text
machine learning
open-ended questions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-128d76e636467ee1ac348261d77a9a1b3ec6679a52317c18ef025538e8e1b9303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426
PQID 2548840423
PQPubID 4977
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_liu_160426
proquest_journals_2548840423
crossref_citationtrail_10_1177_0894439319869210
crossref_primary_10_1177_0894439319869210
sage_journals_10_1177_0894439319869210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Thousand Oaks
PublicationTitle Social science computer review
PublicationYear 2021
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Behr, Braun, Kaczmirek, Bandilla 2013; 25
Braun, Behr, Kaczmirek 2013; 25
Schonlau, Couper 2016; 10
Tsoumakas, Katakis 2007; 3
Read, Pfahringer, Holmes, Frank 2011; 85
Revilla, Couper, Ochoa 2018; 11
Gweon, Schonlau, Kaczmirek, Blohm, Steiner 2017; 33
Zhang, Zhou 2014; 26
Schonlau 2005; 5
Tsoumakas, Katakis, Vlahavas 2011; 23
Guenther, Schonlau 2016; 16
Behr, Kaczmirek, Bandilla, Braun 2012; 30
Behr, Braun, Kaczmirek, Bandilla 2014; 48
Peytchev, Hill 2010; 28
Revilla, Ochoa 2016; 50
Schober, Conrad, Antoun, Ehlen, Fail, Hupp, Zhang 2015; 10
Schonlau, Guenther, Sucholutsky 2017; 17
Madjarov, Kocev, Gjorgjevikj, Džeroski 2012; 45
Schierholz, Gensicke, Tschersich, Kreuter 2018; 181
bibr22-0894439319869210
bibr27-0894439319869210
bibr14-0894439319869210
bibr19-0894439319869210
bibr23-0894439319869210
bibr1-0894439319869210
Gweon H. (bibr7-0894439319869210) 2017
bibr21-0894439319869210
Büttcher S. (bibr5-0894439319869210) 2010
bibr4-0894439319869210
bibr10-0894439319869210
bibr17-0894439319869210
bibr18-0894439319869210
bibr13-0894439319869210
bibr26-0894439319869210
ISSP Research Group (bibr9-0894439319869210) 2012
Schierholz M. (bibr16-0894439319869210) 2014
bibr11-0894439319869210
bibr8-0894439319869210
bibr25-0894439319869210
bibr12-0894439319869210
bibr3-0894439319869210
Schonlau M. (bibr20-0894439319869210) 2016; 10
bibr6-0894439319869210
bibr15-0894439319869210
bibr2-0894439319869210
Tsoumakas G. (bibr24-0894439319869210) 2007
References_xml – volume: 33
  start-page: 101
  year: 2017
  end-page: 122
  article-title: Three methods for occupation coding based on statistical learning
  publication-title: Journal of Official Statistics
– volume: 16
  start-page: 917
  year: 2016
  end-page: 937
  article-title: Support vector machines
  publication-title: Stata Journal
– volume: 181
  start-page: 379
  year: 2018
  end-page: 407
  article-title: Occupation coding during the interview
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
– volume: 25
  start-page: 383
  year: 2013
  end-page: 395
  article-title: Assessing cross-national equivalence of measures of xenophobia: Evidence from probing in web surveys
  publication-title: International Journal of Public Opinion Research
– volume: 45
  start-page: 3084
  year: 2012
  end-page: 3104
  article-title: An extensive experimental comparison of methods for multi-label learning
  publication-title: Pattern Recognition
– volume: 25
  start-page: 124
  year: 2013
  end-page: 141
  article-title: Testing the validity of gender ideology items by implementing probing questions in web surveys
  publication-title: Field Methods
– volume: 3
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Multi-label classification: An overview
  publication-title: International Journal of Data Warehousing and Mining
– volume: 10
  start-page: e0128337
  year: 2015
  article-title: Precision and disclosure in text and voice interviews on smartphones
  publication-title: PLoS One
– volume: 17
  start-page: 866
  year: 2017
  end-page: 881
  article-title: Text mining with n-gram variables
  publication-title: Stata Journal
– volume: 48
  start-page: 127
  year: 2014
  end-page: 148
  article-title: Item comparability in cross-national surveys: Results from asking probing questions in cross-national web surveys about attitudes towards civil disobedience
  publication-title: Quality & Quantity
– volume: 28
  start-page: 319
  year: 2010
  end-page: 335
  article-title: Experiments in mobile web survey design: Similarities to other modes and unique considerations
  publication-title: Social Science Computer Review
– volume: 30
  start-page: 487
  year: 2012
  end-page: 498
  article-title: Asking probing questions in web surveys which factors have an impact on the quality of responses?
  publication-title: Social Science Computer Review
– volume: 5
  start-page: 330
  year: 2005
  end-page: 354
  article-title: Boosted regression (boosting): An introductory tutorial and a Stata plugin
  publication-title: The Stata Journal
– volume: 23
  start-page: 1079
  year: 2011
  end-page: 1089
  article-title: Random k-labelsets for multilabel classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 11
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Giving respondents voice? The feasibility of voice input for mobile web surveys
  publication-title: Survey Practice
– volume: 10
  start-page: 143
  year: 2016
  end-page: 152
  article-title: Semi-automated categorization of open-ended questions
  publication-title: Survey Research Methods
– volume: 50
  start-page: 2495
  year: 2016
  end-page: 2513
  article-title: Open narrative questions in PC and smartphones: Is the device playing a role?
  publication-title: Quality & Quantity
– volume: 26
  start-page: 1819
  year: 2014
  end-page: 1837
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 85
  start-page: 333
  year: 2011
  end-page: 359
  article-title: Classifier chains for multi-label classification
  publication-title: Machine Learning
– ident: bibr14-0894439319869210
  doi: 10.29115/SP-2018-0007
– ident: bibr13-0894439319869210
  doi: 10.1007/s10994-011-5256-5
– ident: bibr26-0894439319869210
– ident: bibr25-0894439319869210
  doi: 10.1007/978-1-4757-3264-1
– ident: bibr15-0894439319869210
  doi: 10.1007/s11135-015-0273-2
– ident: bibr27-0894439319869210
  doi: 10.1109/TKDE.2013.39
– volume-title: ZA3950: International social survey programme: Citizenship—ISSP 2004
  year: 2012
  ident: bibr9-0894439319869210
– volume: 10
  start-page: 143
  year: 2016
  ident: bibr20-0894439319869210
  publication-title: Survey Research Methods
– ident: bibr23-0894439319869210
  doi: 10.1109/TKDE.2010.164
– ident: bibr10-0894439319869210
  doi: 10.1007/BFb0026683
– ident: bibr3-0894439319869210
  doi: 10.1177/0894439311435305
– ident: bibr11-0894439319869210
  doi: 10.1016/j.patcog.2012.03.004
– ident: bibr12-0894439319869210
  doi: 10.1177/0894439309353037
– ident: bibr4-0894439319869210
  doi: 10.1093/ijpor/eds034
– volume-title: Automating survey coding for occupation
  year: 2014
  ident: bibr16-0894439319869210
– ident: bibr22-0894439319869210
  doi: 10.4018/jdwm.2007070101
– ident: bibr17-0894439319869210
  doi: 10.1111/rssa.12297
– volume-title: Random k-labelsets: An ensemble method for multilabel classification
  year: 2007
  ident: bibr24-0894439319869210
– volume-title: Statistical learning approaches to some classification problems
  year: 2017
  ident: bibr7-0894439319869210
– ident: bibr18-0894439319869210
  doi: 10.1371/journal.pone.0128337
– ident: bibr1-0894439319869210
  doi: 10.1177/1525822X12462525
– volume-title: Information retrieval: Implementing and evaluating search engines
  year: 2010
  ident: bibr5-0894439319869210
– ident: bibr6-0894439319869210
  doi: 10.1177/1536867X1601600407
– ident: bibr8-0894439319869210
  doi: 10.1515/jos-2017-0006
– ident: bibr2-0894439319869210
  doi: 10.1007/s11135-012-9754-8
– ident: bibr19-0894439319869210
  doi: 10.1177/1536867X0500500304
– ident: bibr21-0894439319869210
  doi: 10.1177/1536867X1801700406
SSID ssj0012700
Score 2.341627
Snippet Text data from open-ended questions in surveys are challenging to analyze and are often ignored. Open-ended questions are important though because they do not...
SourceID swepub
proquest
crossref
sage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 562
SubjectTerms Algorithms
Automatic classification
Bivariate analysis
Civil disobedience
Classification
Coders
Correlation
Data
Immigrants
Labels
Machine learning
Noncitizens
Obedience
Offenses
Performance evaluation
Questions
Statistical models
Title Automatic Classification of Open-Ended Questions: Check-All-That-Apply Questions
URI https://journals.sagepub.com/doi/full/10.1177/0894439319869210
https://www.proquest.com/docview/2548840423
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160426
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: Sage journals
  customDbUrl:
  eissn: 1552-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012700
  issn: 0894-4393
  databaseCode: AYPQM
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://journals.sagepub.com
  providerName: SAGE Publications
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9NILggAipSAfUERVLe36sba5WSUlQm0pkgPhZK03GxJi4pLaQuXAb2fGXj9SSgVcLMuvdTLj2W925psh5DlXppCxYJRzgG82OATUt92Yxq4npOPFYDiR4Hx6xkdj--3EmXQ6P9vskix-KX_cyCv5H6nCMZArsmT_QbL1Q-EA7IN8YQsShu1fyTjIs7QsuVr0tsSsnxoBYqYIHeL69n6xqIkvge7_0VzJJQ2ShIZzkVFEoVfNFW2sqpm7FfFH6v4Pmu3SRHDm6SoR-X7ROXwhaoz-5ruCNxld5csvea2BH8G0fhXrJXKEFkvRXnMwWZ3x1g52tcjOG-Sq0nb5NgWsU9oupW2rYxas9bbxLSsZaSWzW5bU0Ua6nJSdsr_P7_a-iDjjaDgY8z3umzpNdqO09tm76Hh8chKFw0k4uPhGsesYRud1C5Y7ZMuEWeGwS7aCT-fvT-s4lKlJTNXPaQLdB9cH3QQ2jbeiqzdsFKItwEt4j9zVXocRlCp0n3TUqocNu3VyT49sNz2Xe6RfSt7Qdv_SeKGLk-89IOe1zhmbOmekM6PROaPWqFfGTRrXnH9IxsfD8GhEdVcOKi3bzSgAmqnLFbc4zLFKMSGxPhJnU9cVvmCxpSTnri8c8BxcyTw1Q7fV8pSnWOwDYnpEuqt0pR4Tw4qFG3szDNApW3pSWPzQnk4B84qZI5nqk4PqL42kLlmPnVOSiFVV6q8JoU_26jsuynItt1y7W0kp0h_1ZWSCB-_ZmCzWJwOUXHPqz88ZlLKtR8SS7a8XH4IoXX-OkkUeMY5LFTu3D_iEbDff2i7pZutcPQXEm8XPtFr-Aj6zpn8
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6hcIBLoaGoodD6UCE4GOrsxvZyW1FQoARRKSDay8p2HEBESQWbA_31ndn1ZnmIqurZ9qzXHs_DnvkG4LP0beOsEVxKNN9idAh4EivLrdLGdbRFwUkJzr1T2T2Pjy87l49KfYUVvN-hsCqcUSGsZ6ebkJJ0EqMSRc7RMmlTctV8gWnWgPn0x9n33uwJoR3yT7A_pwH1G-ULGk91Um1ohsT7Jxiihd45XIKf1YzLcJPbnWmOk_39DMzxv35pGd4Ea5SlJfu8hTk_blIh5xD00YTFuhZvE1plLi8L8uCebQXQ6u0VOEun-aSAf2VFnU2KQCposMmQUdQKP6C7dlZcsBKr77H9a-9ueToa8f61yTnZww91-zs4Pzzo73d5qNbAXRSrnKOiGyjpZSRR9novjCPcHCkGSpnECBt5J6VKDHq-Qjmh_ZDcmUh77YVNUJOuQmM8Gfv3wCJrlNVDerjxsdPORPJLPBigLWSGHSd8C3ar_cpcgDKnihqjTFTo5c-WtAXbsxG_ShiPv_Rdr1ggq_YuQz9aoy-MxmcLNmkj66bX6WyWjDP7IkF5f725SLPJ3VU2uplmQpILu_avFD_BQrffO8lOjk6_fYDFNoXXFLGI69DI76Z-A-2j3H4MJ-EPZvj_zQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-swDI8QSIgLH-M9MT5zQAgOYWTtkpRbBUx8a0jwxDtVSZoCYtoQ6w7w12O32SpAIMQ5iZsmTmzH9s-EbArX1NZozoQA9S0Eg4BFoTTMSKVtSxm4ODHB-eJSHN-Ep7etWx-bg7kwfgUHuxhWBTMqLms83U9p1vA-xsaeikIQpMA9SkRNTLCaUmDGAFNPxf87VxdjN0LT56BAf4YDKj_lJxrv5VKlbPrk-3c4ooXsac-VBVYHBWQhhpw87g5zmPDrB0DHX__WPJn1WimNSzZaIBOuV8OCzj74o0Zmqpq8NVIvc3qpvxcGdNuDV-8skk48zPsFDCwt6m1iJFJBg_YzitEr7Ajf3Gnx0Iosv08P7p19ZHG3y67vdc5QL36p2v-Qm_bR9cEx81UbmA1CmTMQeKkUTgQC7mDnuLaInyN4KqWONDeBs0LISIMFzKXlymVo1gTKKcdNBBL1L5ns9XtuidDAaGlUhg4cF1pldSD2wjQFnUhnLctdnTRGe5ZYD2mOlTW6CR-hmH9Y0jrZGY94KuE8vum7OmKDZLR_CdjTCmxiUELrZAs3s2r6ms5WyTzjLyKk9-HDvzjpP98l3YdhwgWasss_pbhBpjuH7eT85PJshcw0McqmCElcJZP589CtgZqUm3V_GN4A4ocCUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Classification+of+Open-Ended+Questions%3A+Check-All-That-Apply+Questions&rft.jtitle=Social+science+computer+review&rft.au=Schonlau+Matthias&rft.au=Gweon+Hyukjun&rft.au=Wenemark+Marika&rft.date=2021-08-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=0894-4393&rft.eissn=1552-8286&rft.volume=39&rft.issue=4&rft.spage=562&rft.epage=572&rft_id=info:doi/10.1177%2F0894439319869210&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-4393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-4393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-4393&client=summon