Activation of XBP1s attenuates disease severity in models of proteotoxic Charcot–Marie–Tooth type 1B

Mutations in myelin protein zero (MPZ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic retic...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 148; no. 6; pp. 1978 - 1993
Main Authors Touvier, Thierry, Veneri, Francesca A, Claessens, Anke, Ferri, Cinzia, Mastrangelo, Rosa, Sorgiati, Noémie, Bianchi, Francesca, Valenzano, Serena, Del Carro, Ubaldo, Rivellini, Cristina, Duong, Phu, Shy, Michael E, Kelly, Jeffery W, Svaren, John, Wiseman, R Luke, D’Antonio, Maurizio
Format Journal Article
LanguageEnglish
Published England Oxford University Press 03.06.2025
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awae407

Cover

Abstract Mutations in myelin protein zero (MPZ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remain poorly understood. Here, we probe the importance of IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways, including ER proteostasis. We generated mouse models in which Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNA-sequencing analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1-deficient mice was accompanied by upregulation of ER-stress pathways and of regulated IRE1α-dependent mRNA decay signalling in Schwann cells, suggesting that the activation of XBP1s via IRE1α plays a crucial role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell-specific overexpression of XBP1s partly re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacological activation of IRE1α/XBP1 signalling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway might represent a therapeutic avenue in CMT1B and, possibly, for other neuropathies characterized by UPR activation.
AbstractList Mutations in myelin protein zero ( MPZ ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remain poorly understood. Here, we probe the importance of IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 ( Xbp1s ). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways, including ER proteostasis. We generated mouse models in which Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNA-sequencing analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 -deficient mice was accompanied by upregulation of ER-stress pathways and of regulated IRE1α-dependent mRNA decay signalling in Schwann cells, suggesting that the activation of XBP1s via IRE1α plays a crucial role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell-specific overexpression of XBP1s partly re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacological activation of IRE1α/XBP1 signalling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway might represent a therapeutic avenue in CMT1B and, possibly, for other neuropathies characterized by UPR activation. Touvier et al. investigate the role of the UPR transcription factor XBP1s in models of proteotoxic Charcot–Marie–Tooth type 1B. They show that activation of XBP1s limits Schwann cell demyelination, and that enhancing its activity—genetically or pharmacologically—could be a promising therapeutic approach for genetic neuropathies.
Mutations in myelin protein zero (MPZ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remain poorly understood. Here, we probe the importance of IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways, including ER proteostasis. We generated mouse models in which Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNA-sequencing analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1-deficient mice was accompanied by upregulation of ER-stress pathways and of regulated IRE1α-dependent mRNA decay signalling in Schwann cells, suggesting that the activation of XBP1s via IRE1α plays a crucial role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell-specific overexpression of XBP1s partly re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacological activation of IRE1α/XBP1 signalling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway might represent a therapeutic avenue in CMT1B and, possibly, for other neuropathies characterized by UPR activation.
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remain poorly understood. Here, we probe the importance of IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways, including ER proteostasis. We generated mouse models in which Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNA-sequencing analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1-deficient mice was accompanied by upregulation of ER-stress pathways and of regulated IRE1α-dependent mRNA decay signalling in Schwann cells, suggesting that the activation of XBP1s via IRE1α plays a crucial role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell-specific overexpression of XBP1s partly re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacological activation of IRE1α/XBP1 signalling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway might represent a therapeutic avenue in CMT1B and, possibly, for other neuropathies characterized by UPR activation.
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.
Author Claessens, Anke
Duong, Phu
Touvier, Thierry
Veneri, Francesca A
Bianchi, Francesca
Rivellini, Cristina
Sorgiati, Noémie
Mastrangelo, Rosa
Del Carro, Ubaldo
Kelly, Jeffery W
Svaren, John
D’Antonio, Maurizio
Ferri, Cinzia
Shy, Michael E
Wiseman, R Luke
Valenzano, Serena
Author_xml – sequence: 1
  givenname: Thierry
  surname: Touvier
  fullname: Touvier, Thierry
– sequence: 2
  givenname: Francesca A
  surname: Veneri
  fullname: Veneri, Francesca A
– sequence: 3
  givenname: Anke
  surname: Claessens
  fullname: Claessens, Anke
– sequence: 4
  givenname: Cinzia
  surname: Ferri
  fullname: Ferri, Cinzia
– sequence: 5
  givenname: Rosa
  surname: Mastrangelo
  fullname: Mastrangelo, Rosa
– sequence: 6
  givenname: Noémie
  surname: Sorgiati
  fullname: Sorgiati, Noémie
– sequence: 7
  givenname: Francesca
  surname: Bianchi
  fullname: Bianchi, Francesca
– sequence: 8
  givenname: Serena
  surname: Valenzano
  fullname: Valenzano, Serena
– sequence: 9
  givenname: Ubaldo
  surname: Del Carro
  fullname: Del Carro, Ubaldo
– sequence: 10
  givenname: Cristina
  surname: Rivellini
  fullname: Rivellini, Cristina
– sequence: 11
  givenname: Phu
  surname: Duong
  fullname: Duong, Phu
– sequence: 12
  givenname: Michael E
  surname: Shy
  fullname: Shy, Michael E
– sequence: 13
  givenname: Jeffery W
  surname: Kelly
  fullname: Kelly, Jeffery W
– sequence: 14
  givenname: John
  orcidid: 0000-0003-2963-7921
  surname: Svaren
  fullname: Svaren, John
– sequence: 15
  givenname: R Luke
  surname: Wiseman
  fullname: Wiseman, R Luke
– sequence: 16
  givenname: Maurizio
  orcidid: 0000-0001-6687-9183
  surname: D’Antonio
  fullname: D’Antonio, Maurizio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39979221$$D View this record in MEDLINE/PubMed
BookMark eNpVkb1OHDEUha2IKCyQkjZySTPBf-MZVwhWCYlElBQgpbPuzFyzjmbtxfYu2S7vwBvmSTKEDSLVKc6nc3TvOSB7IQYk5Jiz95wZedol8OEU7gEVa16RGVeaVYLXeo_MGGO6ak3N9slBzj8Y40oK_YbsS2MaIwSfkcV5X_wGio-BRke_X3zjmUIpGNZQMNPBZ4SMNOMGky9b6gNdxgHH_IivUiwYS_zpezpfQOpj-f3r4Qskj5Nex1gWtGxXSPnFEXntYMz4dqeH5Objh-v5p-rq6-Xn-flV1UulS9VC6zjvHXaDQNXUQko3YKeaRhtwru0c007V2rQoO9G2gwNTD1jzZjpIgZGH5Owpd7Xuljj0GEqC0a6SX0La2gje_u8Ev7C3cWO54MI0SkwJJ7uEFO_WmItd-tzjOELAuM5Wcm140wqjJvTdy7Lnln__nYDqCehTzDmhe0Y4s4_72b_72d1-8g9h95PY
Cites_doi 10.1016/j.cmet.2009.04.009
10.1002/glia.24346
10.1016/j.ymthe.2023.03.028
10.1177/1759091416642351
10.1002/jnr.22066
10.1111/j.1529-8027.2012.00398.x
10.1073/pnas.0711094105
10.1016/j.bbrc.2012.03.033
10.1523/JNEUROSCI.0201-18.2018
10.1126/science.273.5274.507
10.1016/0092-8674(92)90591-Y
10.1007/s00018-021-03952-1
10.1016/j.brainres.2016.03.046
10.1128/MCB.23.21.7448-7459.2003
10.1073/pnas.1105564108
10.1152/physrev.00001.2011
10.1371/journal.pgen.1008069
10.1038/srep21709
10.1093/hmg/ddt318
10.1126/science.1158042
10.1093/brain/awab249
10.1016/j.nbd.2008.11.014
10.1111/jns.12539
10.1093/brain/aws299
10.1101/gad.1830709
10.1002/acn3.543
10.1038/35085509
10.1038/s41467-022-28271-2
10.1523/JNEUROSCI.0957-20.2020
10.1007/s00415-019-09453-3
10.1093/hmg/dds040
10.1101/gad.14.2.152
10.1172/JCI78863
10.1146/annurev-neuro-110920-030610
10.1038/nprot.2013.099
10.1073/pnas.1115623109
10.1002/glia.20751
10.1016/j.neuron.2007.12.021
10.1016/j.molcel.2007.06.011
10.1523/JNEUROSCI.1637-16.2016
10.1093/brain/aws140
10.1016/j.cell.2008.07.021
10.1084/jem.20122005
10.1523/JNEUROSCI.5497-06.2007
10.1523/JNEUROSCI.0986-17.2017
10.1126/science.aaa4484
10.1523/JNEUROSCI.3819-05.2006
10.1038/s41589-020-0584-z
10.1038/sj.emboj.7600596
10.1016/j.neuron.2011.11.026
10.5966/sctm.2013-0011
10.3389/fnmol.2016.00162
10.1016/j.nbd.2022.105952
10.1007/s12035-022-02838-y
10.1016/j.cell.2009.07.017
10.1126/science.287.5453.664
10.1093/hmg/ddr100
10.1016/j.molcel.2018.06.038
10.1038/nrm2199
10.1093/bioinformatics/bts635
10.1111/j.1749-6632.1999.tb08574.x
10.1126/science.1209038
10.1126/science.1129631
10.1083/jcb.200803013
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/awae407
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1993
ExternalDocumentID PMC12129742
39979221
10_1093_brain_awae407
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P50 HD105353
– fundername: NIH HHS
  grantid: AG046495
– fundername: Charcot-Marie-Tooth Association
– fundername: Fondazione Telethon
  grantid: GGP14147
– fundername: Fondazione Telethon
  grantid: GGP19099
– fundername: Fondazione Fronzaroli
– fundername: NIH HHS
  grantid: R21 NS127432
– fundername: NIA NIH HHS
  grantid: R01 AG046495
– fundername: NIA NIH HHS
  grantid: RF1 AG046495
– fundername: NINDS NIH HHS
  grantid: R21 NS127432
– fundername: ;
– fundername: ;
  grantid: AG046495; R21 NS127432
– fundername: ;
  grantid: GGP14147; GGP19099
– fundername: ;
  grantid: P50 HD105353
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
N9A
NGC
NLBLG
NOMLY
NOYVH
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
NU-
5PM
ID FETCH-LOGICAL-c346t-8a8f11cfebd2e475233fdeb47769aff8bf06f45698e3b288dfa95de5177924a93
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 18:25:39 EDT 2025
Sun Sep 28 07:29:27 EDT 2025
Sat Jun 07 01:34:15 EDT 2025
Thu Jul 03 08:39:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords unfolded protein response
Charcot–Marie–Tooth
XBP1
proteostasis
Schwann cell
demyelinating neuropathy
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-8a8f11cfebd2e475233fdeb47769aff8bf06f45698e3b288dfa95de5177924a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2963-7921
0000-0001-6687-9183
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12129742
PMID 39979221
PQID 3169178294
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12129742
proquest_miscellaneous_3169178294
pubmed_primary_39979221
crossref_primary_10_1093_brain_awae407
PublicationCentury 2000
PublicationDate 2025-Jun-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-Jun-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: UK
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Giese (2025060300212669100_awae407-B4) 1992; 71
Saporta (2025060300212669100_awae407-B9) 2012; 135
Lee (2025060300212669100_awae407-B43) 2008; 320
Bai (2025060300212669100_awae407-B17) 2022; 59
Callegari (2025060300212669100_awae407-B7) 2019; 266
Gebert (2025060300212669100_awae407-B42) 2021; 78
Kim (2025060300212669100_awae407-B55) 2013; 2
D'Antonio (2025060300212669100_awae407-B14) 2009; 87
Urano (2025060300212669100_awae407-B44) 2000; 287
Wrabetz (2025060300212669100_awae407-B6) 2004
Bolino (2025060300212669100_awae407-B64) 2023; 28
Parkinson (2025060300212669100_awae407-B38) 2008; 181
Pennuto (2025060300212669100_awae407-B10) 2008; 57
Clayton (2025060300212669100_awae407-B15) 2016; 1648
D'Antonio (2025060300212669100_awae407-B16) 2013; 210
Scherer (2025060300212669100_awae407-B5) 2008; 56
Wu (2025060300212669100_awae407-B56) 2023; 71
Scapin (2025060300212669100_awae407-B41) 2020; 40
Casas-Tinto (2025060300212669100_awae407-B25) 2011; 20
Hollien (2025060300212669100_awae407-B21) 2006; 313
Miller (2025060300212669100_awae407-B37) 2012; 17
Bai (2025060300212669100_awae407-B11) 2018; 5
Ryu (2025060300212669100_awae407-B61) 2007; 27
Hetz (2025060300212669100_awae407-B50) 2011; 91
Bosch-Queralt (2025060300212669100_awae407-B3) 2023; 176
Dobin (2025060300212669100_awae407-B33) 2013; 29
Acosta-Alvear (2025060300212669100_awae407-B19) 2007; 27
Zuleta (2025060300212669100_awae407-B29) 2012; 420
Ohoka (2025060300212669100_awae407-B58) 2005; 24
Duran-Aniotz (2025060300212669100_awae407-B63) 2023; 31
Florio (2025060300212669100_awae407-B39) 2018; 38
Madhavan (2025060300212669100_awae407-B49) 2022; 13
Chang (2025060300212669100_awae407-B45) 2018; 71
Fazal (2025060300212669100_awae407-B62) 2017; 37
Sha (2025060300212669100_awae407-B35) 2009; 9
Grandjean (2025060300212669100_awae407-B48) 2020; 16
Volpi (2025060300212669100_awae407-B2) 2017; 9
Fedeles (2025060300212669100_awae407-B32) 2015; 125
Okamoto (2025060300212669100_awae407-B65) 2013; 22
Taveggia (2025060300212669100_awae407-B1) 2022; 45
Musner (2025060300212669100_awae407-B52) 2016; 8
Han (2025060300212669100_awae407-B46) 2009; 138
Onate (2025060300212669100_awae407-B36) 2016; 6
Das (2025060300212669100_awae407-B18) 2015; 348
Cross (2025060300212669100_awae407-B47) 2012; 109
Sidoli (2025060300212669100_awae407-B53) 2016; 36
Hetz (2025060300212669100_awae407-B31) 2008; 105
Anders (2025060300212669100_awae407-B34) 2013; 8
Vidal (2025060300212669100_awae407-B28) 2012; 21
Patzkó (2025060300212669100_awae407-B66) 2012; 135
VerPlank (2025060300212669100_awae407-B57) 2022; 145
Lee (2025060300212669100_awae407-B20) 2003; 23
Reimold (2025060300212669100_awae407-B23) 2001; 412
Feltri (2025060300212669100_awae407-B30) 1999; 883
Roberts (2025060300212669100_awae407-B40) 2017; 144
Kaser (2025060300212669100_awae407-B51) 2008; 134
Jaegle (2025060300212669100_awae407-B60) 1996; 273
Wrabetz (2025060300212669100_awae407-B8) 2006; 26
Hu (2025060300212669100_awae407-B26) 2012; 73
Hetz (2025060300212669100_awae407-B27) 2009; 23
Lee (2025060300212669100_awae407-B24) 2011; 108
Volpi (2025060300212669100_awae407-B54) 2019; 15
Reimold (2025060300212669100_awae407-B22) 2000; 14
Walter (2025060300212669100_awae407-B13) 2011; 334
Barbaria (2025060300212669100_awae407-B59) 2009; 33
Ron (2025060300212669100_awae407-B12) 2007; 8
38352425 - bioRxiv. 2024 Feb 02:2024.01.31.577760. doi: 10.1101/2024.01.31.577760.
References_xml – volume: 9
  start-page: 556
  year: 2009
  ident: 2025060300212669100_awae407-B35
  article-title: The IRE1α-XBP1 pathway of the unfolded protein response is required for adipogenesis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.04.009
– volume: 71
  start-page: 1360
  year: 2023
  ident: 2025060300212669100_awae407-B56
  article-title: Endoplasmic reticulum associated degradation is essential for maintaining the viability or function of mature myelinating cells in adults
  publication-title: Glia
  doi: 10.1002/glia.24346
– volume: 31
  start-page: 2240
  year: 2023
  ident: 2025060300212669100_awae407-B63
  article-title: The unfolded protein response transcription factor XBP1s ameliorates Alzheimer’s disease by improving synaptic function and proteostasis
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2023.03.028
– volume: 8
  start-page: 1759091416642351
  year: 2016
  ident: 2025060300212669100_awae407-B52
  article-title: Perk ablation ameliorates myelination in S63del-Charcot–Marie–Tooth 1B neuropathy
  publication-title: ASN Neuro
  doi: 10.1177/1759091416642351
– volume: 87
  start-page: 3241
  year: 2009
  ident: 2025060300212669100_awae407-B14
  article-title: Myelin under stress
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.22066
– volume: 17
  start-page: 197
  year: 2012
  ident: 2025060300212669100_awae407-B37
  article-title: Phenotypic presentation of the Ser63Del MPZ mutation
  publication-title: J Peripher Nerv Syst
  doi: 10.1111/j.1529-8027.2012.00398.x
– volume: 105
  start-page: 757
  year: 2008
  ident: 2025060300212669100_awae407-B31
  article-title: Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0711094105
– volume: 144
  start-page: 3114
  year: 2017
  ident: 2025060300212669100_awae407-B40
  article-title: Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve
  publication-title: Development
– volume: 420
  start-page: 558
  year: 2012
  ident: 2025060300212669100_awae407-B29
  article-title: AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2012.03.033
– volume: 38
  start-page: 4275
  year: 2018
  ident: 2025060300212669100_awae407-B39
  article-title: Sustained expression of negative regulators of myelination protects Schwann cells from dysmyelination in a Charcot–Marie–Tooth 1B mouse model
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0201-18.2018
– volume: 273
  start-page: 507
  year: 1996
  ident: 2025060300212669100_awae407-B60
  article-title: The POU factor Oct-6 and Schwann cell differentiation
  publication-title: Science
  doi: 10.1126/science.273.5274.507
– volume: 71
  start-page: 565
  year: 1992
  ident: 2025060300212669100_awae407-B4
  article-title: Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90591-Y
– volume: 78
  start-page: 7061
  year: 2021
  ident: 2025060300212669100_awae407-B42
  article-title: Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-021-03952-1
– volume: 1648
  start-page: 594
  issue: Pt B
  year: 2016
  ident: 2025060300212669100_awae407-B15
  article-title: Endoplasmic reticulum stress and the unfolded protein response in disorders of myelinating glia
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2016.03.046
– volume: 23
  start-page: 7448
  year: 2003
  ident: 2025060300212669100_awae407-B20
  article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.21.7448-7459.2003
– volume: 108
  start-page: 8885
  year: 2011
  ident: 2025060300212669100_awae407-B24
  article-title: Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1105564108
– volume: 91
  start-page: 1219
  year: 2011
  ident: 2025060300212669100_awae407-B50
  article-title: The unfolded protein response: Integrating stress signals through the stress sensor IRE1α
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00001.2011
– volume: 15
  start-page: e1008069
  year: 2019
  ident: 2025060300212669100_awae407-B54
  article-title: Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008069
– volume: 6
  start-page: 21709
  year: 2016
  ident: 2025060300212669100_awae407-B36
  article-title: Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury
  publication-title: Sci Rep
  doi: 10.1038/srep21709
– volume: 22
  start-page: 4698
  year: 2013
  ident: 2025060300212669100_awae407-B65
  article-title: Curcumin facilitates a transitory cellular stress response in Trembler-J mice
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt318
– volume: 320
  start-page: 1492
  year: 2008
  ident: 2025060300212669100_awae407-B43
  article-title: Regulation of hepatic lipogenesis by the transcription factor XBP1
  publication-title: Science
  doi: 10.1126/science.1158042
– volume: 145
  start-page: 168
  year: 2022
  ident: 2025060300212669100_awae407-B57
  article-title: Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy
  publication-title: Brain
  doi: 10.1093/brain/awab249
– volume: 33
  start-page: 448
  year: 2009
  ident: 2025060300212669100_awae407-B59
  article-title: The α-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot–Marie–Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.11.014
– volume: 28
  start-page: 134
  year: 2023
  ident: 2025060300212669100_awae407-B64
  article-title: Recent advances in the treatment of Charcot-Marie-Tooth neuropathies
  publication-title: J Peripher Nerv Syst
  doi: 10.1111/jns.12539
– volume: 135
  start-page: 3551
  issue: Pt 12
  year: 2012
  ident: 2025060300212669100_awae407-B66
  article-title: Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice
  publication-title: Brain
  doi: 10.1093/brain/aws299
– volume: 23
  start-page: 2294
  year: 2009
  ident: 2025060300212669100_awae407-B27
  article-title: XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy
  publication-title: Genes Dev
  doi: 10.1101/gad.1830709
– volume: 5
  start-page: 445
  year: 2018
  ident: 2025060300212669100_awae407-B11
  article-title: Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth disease type 1B
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.543
– volume: 412
  start-page: 300
  year: 2001
  ident: 2025060300212669100_awae407-B23
  article-title: Plasma cell differentiation requires the transcription factor XBP-1
  publication-title: Nature
  doi: 10.1038/35085509
– volume: 13
  start-page: 608
  year: 2022
  ident: 2025060300212669100_awae407-B49
  article-title: Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28271-2
– volume: 40
  start-page: 8174
  year: 2020
  ident: 2025060300212669100_awae407-B41
  article-title: Phosphorylation of eIF2α promotes Schwann cell differentiation and myelination in CMT1B mice with activated UPR
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0957-20.2020
– volume: 266
  start-page: 2629
  year: 2019
  ident: 2025060300212669100_awae407-B7
  article-title: Mutation update for myelin protein zero-related neuropathies and the increasing role of variants causing a late-onset phenotype
  publication-title: J Neurol
  doi: 10.1007/s00415-019-09453-3
– volume: 21
  start-page: 2245
  year: 2012
  ident: 2025060300212669100_awae407-B28
  article-title: Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds040
– volume: 14
  start-page: 152
  year: 2000
  ident: 2025060300212669100_awae407-B22
  article-title: An essential role in liver development for transcription factor XBP-1
  publication-title: Genes Dev
  doi: 10.1101/gad.14.2.152
– volume: 125
  start-page: 1955
  year: 2015
  ident: 2025060300212669100_awae407-B32
  article-title: Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity
  publication-title: J Clin Invest
  doi: 10.1172/JCI78863
– volume: 45
  start-page: 561
  year: 2022
  ident: 2025060300212669100_awae407-B1
  article-title: Beyond wrapping: Canonical and noncanonical functions of Schwann cells
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-110920-030610
– volume: 8
  start-page: 1765
  year: 2013
  ident: 2025060300212669100_awae407-B34
  article-title: Count-based differential expression analysis of RNA sequencing data using R and bioconductor
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.099
– volume: 109
  start-page: E869
  year: 2012
  ident: 2025060300212669100_awae407-B47
  article-title: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1115623109
– volume: 56
  start-page: 1578
  year: 2008
  ident: 2025060300212669100_awae407-B5
  article-title: Molecular mechanisms of inherited demyelinating neuropathies
  publication-title: Glia
  doi: 10.1002/glia.20751
– volume: 57
  start-page: 393
  year: 2008
  ident: 2025060300212669100_awae407-B10
  article-title: Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.021
– volume: 27
  start-page: 53
  year: 2007
  ident: 2025060300212669100_awae407-B19
  article-title: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.06.011
– volume: 36
  start-page: 11350
  year: 2016
  ident: 2025060300212669100_awae407-B53
  article-title: Ablation of Perk in Schwann cells improves myelination in the S63del Charcot-Marie-Tooth 1B mouse
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1637-16.2016
– volume: 135
  start-page: 2032
  issue: Pt 7
  year: 2012
  ident: 2025060300212669100_awae407-B9
  article-title: MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot–Marie–Tooth disease type 1B
  publication-title: Brain
  doi: 10.1093/brain/aws140
– volume: 134
  start-page: 743
  year: 2008
  ident: 2025060300212669100_awae407-B51
  article-title: XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.021
– volume: 210
  start-page: 821
  year: 2013
  ident: 2025060300212669100_awae407-B16
  article-title: Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice
  publication-title: J Exp Med
  doi: 10.1084/jem.20122005
– volume: 27
  start-page: 11552
  year: 2007
  ident: 2025060300212669100_awae407-B61
  article-title: Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5497-06.2007
– volume: 37
  start-page: 12297
  year: 2017
  ident: 2025060300212669100_awae407-B62
  article-title: Graded elevation of c-Jun in Schwann cells in vivo: Gene dosage determines effects on development, remyelination, tumorigenesis, and hypomyelination
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0986-17.2017
– volume: 348
  start-page: 239
  year: 2015
  ident: 2025060300212669100_awae407-B18
  article-title: Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit
  publication-title: Science
  doi: 10.1126/science.aaa4484
– volume: 26
  start-page: 2358
  year: 2006
  ident: 2025060300212669100_awae407-B8
  article-title: Different intracellular pathomechanisms produce diverse myelin protein zero neuropathies in transgenic mice
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3819-05.2006
– volume: 16
  start-page: 1052
  year: 2020
  ident: 2025060300212669100_awae407-B48
  article-title: Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-0584-z
– volume: 24
  start-page: 1243
  year: 2005
  ident: 2025060300212669100_awae407-B58
  article-title: TRB3, a novel ER stress-inducible gene, is induced via ATF4–CHOP pathway and is involved in cell death
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600596
– volume: 73
  start-page: 445
  year: 2012
  ident: 2025060300212669100_awae407-B26
  article-title: Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.026
– volume: 2
  start-page: 553
  year: 2013
  ident: 2025060300212669100_awae407-B55
  article-title: Plastic fantastic: Schwann cells and repair of the peripheral nervous system
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2013-0011
– volume: 9
  start-page: 162
  year: 2017
  ident: 2025060300212669100_awae407-B2
  article-title: Endoplasmic reticulum protein quality control failure in myelin disorders
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2016.00162
– volume: 176
  start-page: 105952
  year: 2023
  ident: 2025060300212669100_awae407-B3
  article-title: Schwann cell functions in peripheral nerve development and repair
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2022.105952
– start-page: 905-051
  volume-title: Myelin biology and disorders
  year: 2004
  ident: 2025060300212669100_awae407-B6
– volume: 59
  start-page: 4159
  year: 2022
  ident: 2025060300212669100_awae407-B17
  article-title: Treatment with IFB-088 improves neuropathy in CMT1A and CMT1B mice
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-022-02838-y
– volume: 138
  start-page: 562
  year: 2009
  ident: 2025060300212669100_awae407-B46
  article-title: IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.017
– volume: 287
  start-page: 664
  year: 2000
  ident: 2025060300212669100_awae407-B44
  article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
  publication-title: Science
  doi: 10.1126/science.287.5453.664
– volume: 20
  start-page: 2144
  year: 2011
  ident: 2025060300212669100_awae407-B25
  article-title: The ER stress factor XBP1s prevents amyloid-β neurotoxicity
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr100
– volume: 71
  start-page: 629
  year: 2018
  ident: 2025060300212669100_awae407-B45
  article-title: Coordination between two branches of the unfolded protein response determines apoptotic cell fate
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.06.038
– volume: 8
  start-page: 519
  year: 2007
  ident: 2025060300212669100_awae407-B12
  article-title: Signal integration in the endoplasmic reticulum unfolded protein response
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2199
– volume: 29
  start-page: 15
  year: 2013
  ident: 2025060300212669100_awae407-B33
  article-title: STAR: Ultrafast universal RNA-Seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 883
  start-page: 116
  year: 1999
  ident: 2025060300212669100_awae407-B30
  article-title: P0-Cre transgenic mice for inactivation of adhesion molecules in Schwann cells
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1999.tb08574.x
– volume: 334
  start-page: 1081
  year: 2011
  ident: 2025060300212669100_awae407-B13
  article-title: The unfolded protein response: From stress pathway to homeostatic regulation
  publication-title: Science
  doi: 10.1126/science.1209038
– volume: 313
  start-page: 104
  year: 2006
  ident: 2025060300212669100_awae407-B21
  article-title: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response
  publication-title: Science
  doi: 10.1126/science.1129631
– volume: 181
  start-page: 625
  year: 2008
  ident: 2025060300212669100_awae407-B38
  article-title: c-Jun is a negative regulator of myelination
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200803013
– reference: 38352425 - bioRxiv. 2024 Feb 02:2024.01.31.577760. doi: 10.1101/2024.01.31.577760.
SSID ssj0014326
Score 2.488932
Snippet Mutations in myelin protein zero (MPZ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating...
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating...
Mutations in myelin protein zero ( MPZ ) are generally associated with Charcot–Marie–Tooth type 1B (CMT1B) disease, one of the most common forms of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1978
SubjectTerms Animals
Charcot-Marie-Tooth Disease - genetics
Charcot-Marie-Tooth Disease - metabolism
Charcot-Marie-Tooth Disease - pathology
Disease Models, Animal
Endoplasmic Reticulum Stress - physiology
Endoribonucleases - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Myelin P0 Protein - genetics
Myelin P0 Protein - metabolism
Myelin Sheath - metabolism
Original
Protein Serine-Threonine Kinases - metabolism
Schwann Cells - metabolism
Unfolded Protein Response
X-Box Binding Protein 1 - genetics
X-Box Binding Protein 1 - metabolism
Title Activation of XBP1s attenuates disease severity in models of proteotoxic Charcot–Marie–Tooth type 1B
URI https://www.ncbi.nlm.nih.gov/pubmed/39979221
https://www.proquest.com/docview/3169178294
https://pubmed.ncbi.nlm.nih.gov/PMC12129742
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKkBA3iH86fmQkxM2UbY5dx7lsJ6oJaQikDvUush1bi0AJ2lIx7Yp34Gl4HZ6EYzu_oxeDmzRJYyvN-Xr8-fjkOwi9UVYlVOo8UkBGI5ZaHQnL4yh3pZEMV-AefILsB358yt6vZ-vJ5Ncga2lTq319tfW9kv-xKpwDu7q3ZP_Bsl2ncAL2wb6wBQvD9kY2nuu2OJnjfOvFR3Kx5_Qyy41jkO3iyx4MfsbVqHOxDV_5xqdveIWGqq4uC-0X3XVVt5kP9MTNoLujVVW1wVqyGK0Cu_oSW4uChEiDSMQg0rCqNm4QDmlJsNMnIH922tdFy6PBc2nZx1iPvkqnbx74_rz80iFx6UQlfaC3KK8KOYxfxDOfZ0VHPplHIg3ys_smuGHGDyMgI3zkp5kYAHLodUkaygA1I7jLSdw6OgTlLHXuYy5L-V0aFkrujnW4r42PXdZiWK-nme8ga5rfQrfjBGibywf41C9gMeor_XU_rpF3heYHvvlB03xMh_6a41xP1R1wn9V9dK-ZtOB5QOADNDHlQ3TnpEnLeITOeiDiymIPRNwDETdAxC0QcVHiAER3-QCIuAHi7x8_PQTh04MPO_BhsniMTpfvVkfHUVPCI9KU8ToSUlhCtDUqjw1LZjGlNjeKJQlPpbVC2UNugcOnwlAVC5Fbmc5yMyNJksZMpvQJ2imr0jxDmOSUaJaA5-OKaQJuhEhGeZ5YA3Muk0_R2_ZJZt-CUku21WJT9Lp9zhn4UrdAJktTbS4y6pSjgDKnbIqehufedQVEHm4pJlMkRhbpLnA67eNvyuLM67UToIcwbY93b3qHz9Hd_p_yAu3U5xvzErhvrV55lP0BNcm2Qg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+XBP1s+attenuates+disease+severity+in+models+of+proteotoxic+Charcot%E2%80%93Marie%E2%80%93Tooth+type+1B&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Touvier%2C+Thierry&rft.au=Veneri%2C+Francesca+A&rft.au=Claessens%2C+Anke&rft.au=Ferri%2C+Cinzia&rft.date=2025-06-03&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=148&rft.issue=6&rft.spage=1978&rft.epage=1993&rft_id=info:doi/10.1093%2Fbrain%2Fawae407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awae407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon