Maize ( Zea mays L.) planted at higher density utilizes dynamic light more efficiently

In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C 4 species than in C 3 species. However, little is known about the plasticity of PLUE under dynamic light in C 4...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 46; no. 11; pp. 3305 - 3322
Main Authors Zheng, Bin, Li, Yu‐Ting, Wu, Qiu‐Ping, Zhao, Wei, Ren, Ting‐Hu, Zhang, Xing‐Hui, Li, Geng, Ning, Tang‐Yuan, Zhang, Zi‐Shan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text
ISSN0140-7791
1365-3040
1365-3040
DOI10.1111/pce.14673

Cover

Abstract In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C 4 species than in C 3 species. However, little is known about the plasticity of PLUE under dynamic light in C 4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize ( Zea mays L.), a most important C 4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C 4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
AbstractList In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C₄ species than in C₃ species. However, little is known about the plasticity of PLUE under dynamic light in C₄ species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C₄ crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C₄ pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C 4 species than in C 3 species. However, little is known about the plasticity of PLUE under dynamic light in C 4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize ( Zea mays L.), a most important C 4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C 4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C species than in C species. However, little is known about the plasticity of PLUE under dynamic light in C species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
Author Zhao, Wei
Zhang, Zi‐Shan
Zheng, Bin
Ning, Tang‐Yuan
Zhang, Xing‐Hui
Ren, Ting‐Hu
Li, Yu‐Ting
Wu, Qiu‐Ping
Li, Geng
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0001-5271-7087
  surname: Zheng
  fullname: Zheng, Bin
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 2
  givenname: Yu‐Ting
  surname: Li
  fullname: Li, Yu‐Ting
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 3
  givenname: Qiu‐Ping
  surname: Wu
  fullname: Wu, Qiu‐Ping
  organization: Jining Academy of Agricultural Sciences Shandong P. R. China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3125-3484
  surname: Zhao
  fullname: Zhao, Wei
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 5
  givenname: Ting‐Hu
  surname: Ren
  fullname: Ren, Ting‐Hu
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 6
  givenname: Xing‐Hui
  surname: Zhang
  fullname: Zhang, Xing‐Hui
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 7
  givenname: Geng
  orcidid: 0000-0001-5014-6217
  surname: Li
  fullname: Li, Geng
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 8
  givenname: Tang‐Yuan
  orcidid: 0000-0002-7356-5294
  surname: Ning
  fullname: Ning, Tang‐Yuan
  organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China
– sequence: 9
  givenname: Zi‐Shan
  orcidid: 0000-0002-2197-8660
  surname: Zhang
  fullname: Zhang, Zi‐Shan
  organization: College of Life Sciences Shandong Agricultural University Tai'an Shandong P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37485705$$D View this record in MEDLINE/PubMed
BookMark eNqF0TlLBDEUAOAgiq5H4R-QgI0Ws75kZpJNKYsXrNiohc2QzbxoZI41yRTjrzeehQimCbx8L7xjm6x3fYeE7DOYsnROVganrBAyXyMTlosyy6GAdTIBVkAmpWJbZDuEZ4AUkGqTbOWymJUSygm5v9buFekRfUBNWz0Gupge01Wju4g11ZE-uccn9LTGLrg40iG6JiUEWo-dbp2hTXqPtO09UrTWGYddbMZdsmF1E3Dv694hd-dnt_PLbHFzcTU_XWQmL0TMZIkzLKSwNufGlAI4V7USNkUUr5fKqKWAGUgrlDB5ybStBRhpWKmXErjId8jR578r378MGGLVumCwSfVjP4SKq4IzAMXV_3RWpHExLmWih7_ocz_4LjWSlASZSmKQ1MGXGpYt1tXKu1b7sfoebgLHn8D4PgSP9ocwqN4XV6XFVR-LS_bklzUu6uj6Lnrtmj8y3gBa_ZeM
CitedBy_id crossref_primary_10_3390_agronomy14071470
crossref_primary_10_1002_moda_20
crossref_primary_10_1016_j_fcr_2024_109529
crossref_primary_10_1016_j_jia_2024_07_032
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_1002_csc2_21443
crossref_primary_10_1016_j_plaphy_2024_109304
crossref_primary_10_3390_agronomy14112579
Cites_doi 10.2134/agronj1982.00021962007400060013x
10.2307/2390189
10.1093/jxb/err080
10.1007/s004420050264
10.1038/s41598-020-79633-z
10.2307/1514594
10.1007/BF00392305
10.1371/journal.pone.0066428
10.1007/s11120-016-0323-1
10.1016/j.fcr.2021.108145
10.1111/TPJ.14897
10.1104/pp.105.4.1097
10.1071/pp97071
10.1016/j.fcr.2018.01.003
10.1111/nph.18534
10.1007/BF02348584
10.1186/s12870-018-1607-8
10.1016/j.pbi.2019.04.010
10.1038/srep26963
10.1073/pnas.1812916116
10.1093/plphys/kiab411
10.1111/j.1365-313X.2012.05041.x
10.1093/treephys/16.1-2.69
10.1111/nph.16454
10.1007/s10681-011-0560-5
10.1038/s41598-018-35275-w
10.2135/CROPSCI2013.04.0252
10.1016/j.fcr.2015.09.005
10.1007/s11120-020-00780-5
10.1126/science.ai8878
10.1016/S2095-3119(13)60281-6
10.1371/journal.pone.0182310
10.1111/pce.13725
10.1016/j.agrformet.2021.108554
10.1016/j.fcr.2017.05.006
10.1016/S2095-3119(19)62800-5
10.3390/ijms20205019
10.1111/tpj.15408
10.1111/ppl.12057
10.1111/pce.12427
10.1007/s00442-003-1178-7
10.1093/jxb/erw456
10.1163/156939308783122788
10.1093/jxb/eraa090
10.1093/treephys/tps064
10.1093/jxb/eraa520
10.1186/s12870-020-02516-y
10.1007/s11258-006-9243-z
10.1016/j.envc.2021.100417
10.1201/9781420007626-7
10.1007/s11284-005-0067-4
10.1093/jxb/erz100
10.1093/treephys/tps085
10.1093/jxb/eru406
10.1104/pp.17.01234
10.3390/ijms23063015
10.1016/j.eja.2014.05.007
10.1016/j.fcr.2010.09.012
10.2135/cropsci2016.04.0215
10.2307/4221893
10.2307/40065696
10.1111/pce.12674
10.1038/srep39601
10.1016/j.cj.2016.04.004
10.1098/rstb.2016.0543
10.3390/agronomy11061080
10.1016/j.fcr.2014.09.015
10.1146/annurev.arplant.41.1.421
10.1080/02827589709355429
10.1038/srep31305
10.3732/ajb.91.2.228
10.1093/jxb/erz304
10.1016/j.cj.2021.03.015
10.1007/s00442-007-0936-3
10.2135/cropsci2009.09.0530
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1111/pce.14673
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 3322
ExternalDocumentID 37485705
10_1111_pce_14673
Genre Journal Article
GrantInformation_xml – fundername: Shandong "Double Tops" Program
– fundername: National Natural Science Foundation of China
– fundername: Shandong Agricultural Science and Technology Fund
– fundername: Natural Science Foundation of Shandong Province
– fundername: National Key Research and Development Program of China
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c346t-75e8e476ff32cc560229d96f76f92db9c9b60807f696c351afd60c7c15ab70263
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 18:30:07 EDT 2025
Fri Jul 11 13:23:30 EDT 2025
Fri Jul 25 10:34:26 EDT 2025
Thu Apr 03 07:01:48 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Oct 01 05:05:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords planting density
C3 photosynthesis
C4 photosynthesis
proteomics
photosynthetic light utilization efficiency
fluctuating light
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-75e8e476ff32cc560229d96f76f92db9c9b60807f696c351afd60c7c15ab70263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5014-6217
0000-0002-7356-5294
0000-0002-2197-8660
0000-0003-3125-3484
0000-0001-5271-7087
PMID 37485705
PQID 2870708010
PQPubID 37957
PageCount 18
ParticipantIDs proquest_miscellaneous_2942100929
proquest_miscellaneous_2841401277
proquest_journals_2870708010
pubmed_primary_37485705
crossref_primary_10_1111_pce_14673
crossref_citationtrail_10_1111_pce_14673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Jin L.B. (e_1_2_9_22_1) 2013; 46
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Feng Z.M. (e_1_2_9_14_1) 2007; 31
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_8_1
  doi: 10.2134/agronj1982.00021962007400060013x
– ident: e_1_2_9_51_1
  doi: 10.2307/2390189
– ident: e_1_2_9_15_1
  doi: 10.1093/jxb/err080
– ident: e_1_2_9_64_1
  doi: 10.1007/s004420050264
– ident: e_1_2_9_12_1
  doi: 10.1038/s41598-020-79633-z
– ident: e_1_2_9_60_1
  doi: 10.2307/1514594
– ident: e_1_2_9_27_1
  doi: 10.1007/BF00392305
– ident: e_1_2_9_47_1
  doi: 10.1371/journal.pone.0066428
– ident: e_1_2_9_53_1
  doi: 10.1007/s11120-016-0323-1
– ident: e_1_2_9_75_1
  doi: 10.1016/j.fcr.2021.108145
– ident: e_1_2_9_25_1
  doi: 10.1111/TPJ.14897
– ident: e_1_2_9_50_1
  doi: 10.1104/pp.105.4.1097
– ident: e_1_2_9_39_1
  doi: 10.1071/pp97071
– ident: e_1_2_9_36_1
  doi: 10.1016/j.fcr.2018.01.003
– ident: e_1_2_9_7_1
  doi: 10.1111/nph.18534
– ident: e_1_2_9_59_1
  doi: 10.1007/BF02348584
– ident: e_1_2_9_67_1
  doi: 10.1186/s12870-018-1607-8
– ident: e_1_2_9_57_1
  doi: 10.1016/j.pbi.2019.04.010
– ident: e_1_2_9_74_1
  doi: 10.1038/srep26963
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.1812916116
– ident: e_1_2_9_33_1
  doi: 10.1093/plphys/kiab411
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1365-313X.2012.05041.x
– ident: e_1_2_9_30_1
  doi: 10.1093/treephys/16.1-2.69
– ident: e_1_2_9_4_1
  doi: 10.1111/nph.16454
– ident: e_1_2_9_10_1
  doi: 10.1007/s10681-011-0560-5
– volume: 46
  start-page: 2430
  year: 2013
  ident: e_1_2_9_22_1
  article-title: Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize
  publication-title: Scientia Agricultural Sinica
– ident: e_1_2_9_58_1
  doi: 10.1038/s41598-018-35275-w
– ident: e_1_2_9_37_1
  doi: 10.2135/CROPSCI2013.04.0252
– ident: e_1_2_9_71_1
  doi: 10.1016/j.fcr.2015.09.005
– ident: e_1_2_9_46_1
  doi: 10.1007/s11120-020-00780-5
– ident: e_1_2_9_28_1
  doi: 10.1126/science.ai8878
– ident: e_1_2_9_40_1
  doi: 10.1016/S2095-3119(13)60281-6
– ident: e_1_2_9_62_1
  doi: 10.1371/journal.pone.0182310
– ident: e_1_2_9_69_1
  doi: 10.1111/pce.13725
– ident: e_1_2_9_13_1
  doi: 10.1016/j.agrformet.2021.108554
– ident: e_1_2_9_68_1
  doi: 10.1016/j.fcr.2017.05.006
– ident: e_1_2_9_20_1
  doi: 10.1016/S2095-3119(19)62800-5
– ident: e_1_2_9_77_1
  doi: 10.3390/ijms20205019
– ident: e_1_2_9_65_1
  doi: 10.1111/tpj.15408
– ident: e_1_2_9_29_1
  doi: 10.1111/ppl.12057
– ident: e_1_2_9_19_1
  doi: 10.1111/pce.12427
– ident: e_1_2_9_31_1
  doi: 10.1007/s00442-003-1178-7
– ident: e_1_2_9_43_1
  doi: 10.1093/jxb/erw456
– ident: e_1_2_9_72_1
  doi: 10.1163/156939308783122788
– ident: e_1_2_9_26_1
  doi: 10.1093/jxb/eraa090
– ident: e_1_2_9_66_1
  doi: 10.1093/treephys/tps064
– volume: 31
  start-page: 15
  year: 2007
  ident: e_1_2_9_14_1
  article-title: Future food security and arable land guarantee for population development in China
  publication-title: Population Research
– ident: e_1_2_9_3_1
  doi: 10.1093/jxb/eraa520
– ident: e_1_2_9_32_1
  doi: 10.1186/s12870-020-02516-y
– ident: e_1_2_9_63_1
  doi: 10.1007/s11258-006-9243-z
– ident: e_1_2_9_11_1
  doi: 10.1016/j.envc.2021.100417
– ident: e_1_2_9_42_1
  doi: 10.1201/9781420007626-7
– ident: e_1_2_9_48_1
  doi: 10.1007/s11284-005-0067-4
– ident: e_1_2_9_49_1
  doi: 10.1093/jxb/erz100
– ident: e_1_2_9_44_1
  doi: 10.1093/treephys/tps085
– ident: e_1_2_9_23_1
  doi: 10.1093/jxb/eru406
– ident: e_1_2_9_52_1
  doi: 10.1104/pp.17.01234
– ident: e_1_2_9_76_1
  doi: 10.3390/ijms23063015
– ident: e_1_2_9_2_1
  doi: 10.1016/j.eja.2014.05.007
– ident: e_1_2_9_17_1
  doi: 10.1016/j.fcr.2010.09.012
– ident: e_1_2_9_6_1
  doi: 10.2135/cropsci2016.04.0215
– ident: e_1_2_9_18_1
  doi: 10.2307/4221893
– ident: e_1_2_9_78_1
  doi: 10.2307/40065696
– ident: e_1_2_9_54_1
  doi: 10.1111/pce.12674
– ident: e_1_2_9_35_1
  doi: 10.1038/srep39601
– ident: e_1_2_9_45_1
  doi: 10.1016/j.cj.2016.04.004
– ident: e_1_2_9_61_1
  doi: 10.1098/rstb.2016.0543
– ident: e_1_2_9_73_1
  doi: 10.3390/agronomy11061080
– ident: e_1_2_9_34_1
  doi: 10.1016/j.fcr.2014.09.015
– ident: e_1_2_9_41_1
  doi: 10.1146/annurev.arplant.41.1.421
– ident: e_1_2_9_9_1
  doi: 10.1080/02827589709355429
– ident: e_1_2_9_56_1
  doi: 10.1038/srep31305
– ident: e_1_2_9_16_1
  doi: 10.3732/ajb.91.2.228
– ident: e_1_2_9_5_1
  doi: 10.1093/jxb/erz304
– ident: e_1_2_9_55_1
  doi: 10.1016/j.cj.2021.03.015
– ident: e_1_2_9_38_1
  doi: 10.1007/s00442-007-0936-3
– ident: e_1_2_9_21_1
  doi: 10.2135/cropsci2009.09.0530
SSID ssj0001479
Score 2.4807131
Snippet In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3305
SubjectTerms Adaptation
Corn
energy
Energy utilization
environment
Leaves
Light
Molecular modelling
nitrogen
Photosynthesis
Planting
Planting density
plasticity
Proteomics
Ribulose-bisphosphate carboxylase
Zea mays
Title Maize ( Zea mays L.) planted at higher density utilizes dynamic light more efficiently
URI https://www.ncbi.nlm.nih.gov/pubmed/37485705
https://www.proquest.com/docview/2870708010
https://www.proquest.com/docview/2841401277
https://www.proquest.com/docview/2942100929
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0140-7791
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-3040
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001479
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKAIkXBANGYSCDEBqKUsVxEjePDDZNqBsItVrhJXIcR0QqbaHtQ_ff8J9yZztpKm3j4yWqbLdxfT-f7873Qcirfg4ML4cNCIcJx2tG7stCK1_0SzjuZZAzU2Pp9Cw5GUUfxvG40_nV8lpaLfOeurg0ruR_qAptQFeMkv0HyjY_Cg3wGegLT6AwPP-KxqeyujAy4lctve9yvfAGGDaFpaGnKEmC8v_N-nEU6KcO8jZMZgLfWXiFrUTvTVA599DbFl07KhMeOdm66sWyRoZTo43f3DW0guM2dmdtmcZh1aDty6rxpBjaWKrGylptuj5h1_mqZcA2xttzXbUNEkBhtmWQ-DPb2zJnBiDf23pdPW1ZMPrd8cAmcap5tDNTOiyyFsflPIhbpzfnNsz5ipNhrrQ5G_jm-Kuv_M8-ZsejwSAbHo2Hr-c_fCxMhhf4rkrLDXIzFEmCRTLef95kKGORTedY_xGXvAqdxZp3bYs8V-gxRp4Z3iN3nSJC31pU3ScdPd0lt21p0vUuuXU4A7Vh_YCMDMjoAUCMIsTooPeGOoBRuaQWYNQBjNYAow5g1ACMIsBoC2APyej4aPjuxHe1OHzFo2Tpi1j3dSSSsuShUiAmh2FapEkJLWlY5KlK8wSUD1EmaaJ4zGRZJIESisUyF6Dn80dkZzqb6seExrmKVRoV_ajA4g0FaCCpjHLF-4oxyVSXHNTLlSmXqB7rpUyyWmGFlc3MynbJy2bo3GZnuWzQfr3mmdu8iwzv9wVMmAVd8qLpBtaKe0lO9WyFYyI0P4RCXDMmjUKGicvSLtmz9GxmgpmdYhHET66fwFNyZ7ON9snO8udKPwNJd5k_N1j7DSQ9pwU
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+%28Zea+mays+L.%29+planted+at+higher+density+utilizes+dynamic+light+more+efficiently&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zheng%2C+Bin&rft.au=Yu%E2%80%90Ting+Li&rft.au=Qiu%E2%80%90Ping+Wu&rft.au=Zhao%2C+Wei&rft.date=2023-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=46&rft.issue=11&rft.spage=3305&rft.epage=3322&rft_id=info:doi/10.1111%2Fpce.14673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon