Maize ( Zea mays L.) planted at higher density utilizes dynamic light more efficiently
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C 4 species than in C 3 species. However, little is known about the plasticity of PLUE under dynamic light in C 4...
Saved in:
Published in | Plant, cell and environment Vol. 46; no. 11; pp. 3305 - 3322 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-7791 1365-3040 1365-3040 |
DOI | 10.1111/pce.14673 |
Cover
Abstract | In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C
4
species than in C
3
species. However, little is known about the plasticity of PLUE under dynamic light in C
4
species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (
Zea mays
L.), a most important C
4
crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C
4
pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. |
---|---|
AbstractList | In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C₄ species than in C₃ species. However, little is known about the plasticity of PLUE under dynamic light in C₄ species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C₄ crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C₄ pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C 4 species than in C 3 species. However, little is known about the plasticity of PLUE under dynamic light in C 4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize ( Zea mays L.), a most important C 4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C 4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C species than in C species. However, little is known about the plasticity of PLUE under dynamic light in C species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD. |
Author | Zhao, Wei Zhang, Zi‐Shan Zheng, Bin Ning, Tang‐Yuan Zhang, Xing‐Hui Ren, Ting‐Hu Li, Yu‐Ting Wu, Qiu‐Ping Li, Geng |
Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0001-5271-7087 surname: Zheng fullname: Zheng, Bin organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 2 givenname: Yu‐Ting surname: Li fullname: Li, Yu‐Ting organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 3 givenname: Qiu‐Ping surname: Wu fullname: Wu, Qiu‐Ping organization: Jining Academy of Agricultural Sciences Shandong P. R. China – sequence: 4 givenname: Wei orcidid: 0000-0003-3125-3484 surname: Zhao fullname: Zhao, Wei organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 5 givenname: Ting‐Hu surname: Ren fullname: Ren, Ting‐Hu organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 6 givenname: Xing‐Hui surname: Zhang fullname: Zhang, Xing‐Hui organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 7 givenname: Geng orcidid: 0000-0001-5014-6217 surname: Li fullname: Li, Geng organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 8 givenname: Tang‐Yuan orcidid: 0000-0002-7356-5294 surname: Ning fullname: Ning, Tang‐Yuan organization: College of Agronomy Shandong Agricultural University Tai'an Shandong P. R. China – sequence: 9 givenname: Zi‐Shan orcidid: 0000-0002-2197-8660 surname: Zhang fullname: Zhang, Zi‐Shan organization: College of Life Sciences Shandong Agricultural University Tai'an Shandong P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37485705$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0TlLBDEUAOAgiq5H4R-QgI0Ws75kZpJNKYsXrNiohc2QzbxoZI41yRTjrzeehQimCbx8L7xjm6x3fYeE7DOYsnROVganrBAyXyMTlosyy6GAdTIBVkAmpWJbZDuEZ4AUkGqTbOWymJUSygm5v9buFekRfUBNWz0Gupge01Wju4g11ZE-uccn9LTGLrg40iG6JiUEWo-dbp2hTXqPtO09UrTWGYddbMZdsmF1E3Dv694hd-dnt_PLbHFzcTU_XWQmL0TMZIkzLKSwNufGlAI4V7USNkUUr5fKqKWAGUgrlDB5ybStBRhpWKmXErjId8jR578r378MGGLVumCwSfVjP4SKq4IzAMXV_3RWpHExLmWih7_ocz_4LjWSlASZSmKQ1MGXGpYt1tXKu1b7sfoebgLHn8D4PgSP9ocwqN4XV6XFVR-LS_bklzUu6uj6Lnrtmj8y3gBa_ZeM |
CitedBy_id | crossref_primary_10_3390_agronomy14071470 crossref_primary_10_1002_moda_20 crossref_primary_10_1016_j_fcr_2024_109529 crossref_primary_10_1016_j_jia_2024_07_032 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_1002_csc2_21443 crossref_primary_10_1016_j_plaphy_2024_109304 crossref_primary_10_3390_agronomy14112579 |
Cites_doi | 10.2134/agronj1982.00021962007400060013x 10.2307/2390189 10.1093/jxb/err080 10.1007/s004420050264 10.1038/s41598-020-79633-z 10.2307/1514594 10.1007/BF00392305 10.1371/journal.pone.0066428 10.1007/s11120-016-0323-1 10.1016/j.fcr.2021.108145 10.1111/TPJ.14897 10.1104/pp.105.4.1097 10.1071/pp97071 10.1016/j.fcr.2018.01.003 10.1111/nph.18534 10.1007/BF02348584 10.1186/s12870-018-1607-8 10.1016/j.pbi.2019.04.010 10.1038/srep26963 10.1073/pnas.1812916116 10.1093/plphys/kiab411 10.1111/j.1365-313X.2012.05041.x 10.1093/treephys/16.1-2.69 10.1111/nph.16454 10.1007/s10681-011-0560-5 10.1038/s41598-018-35275-w 10.2135/CROPSCI2013.04.0252 10.1016/j.fcr.2015.09.005 10.1007/s11120-020-00780-5 10.1126/science.ai8878 10.1016/S2095-3119(13)60281-6 10.1371/journal.pone.0182310 10.1111/pce.13725 10.1016/j.agrformet.2021.108554 10.1016/j.fcr.2017.05.006 10.1016/S2095-3119(19)62800-5 10.3390/ijms20205019 10.1111/tpj.15408 10.1111/ppl.12057 10.1111/pce.12427 10.1007/s00442-003-1178-7 10.1093/jxb/erw456 10.1163/156939308783122788 10.1093/jxb/eraa090 10.1093/treephys/tps064 10.1093/jxb/eraa520 10.1186/s12870-020-02516-y 10.1007/s11258-006-9243-z 10.1016/j.envc.2021.100417 10.1201/9781420007626-7 10.1007/s11284-005-0067-4 10.1093/jxb/erz100 10.1093/treephys/tps085 10.1093/jxb/eru406 10.1104/pp.17.01234 10.3390/ijms23063015 10.1016/j.eja.2014.05.007 10.1016/j.fcr.2010.09.012 10.2135/cropsci2016.04.0215 10.2307/4221893 10.2307/40065696 10.1111/pce.12674 10.1038/srep39601 10.1016/j.cj.2016.04.004 10.1098/rstb.2016.0543 10.3390/agronomy11061080 10.1016/j.fcr.2014.09.015 10.1146/annurev.arplant.41.1.421 10.1080/02827589709355429 10.1038/srep31305 10.3732/ajb.91.2.228 10.1093/jxb/erz304 10.1016/j.cj.2021.03.015 10.1007/s00442-007-0936-3 10.2135/cropsci2009.09.0530 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1111/pce.14673 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef PubMed Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 3322 |
ExternalDocumentID | 37485705 10_1111_pce_14673 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shandong "Double Tops" Program – fundername: National Natural Science Foundation of China – fundername: Shandong Agricultural Science and Technology Fund – fundername: Natural Science Foundation of Shandong Province – fundername: National Key Research and Development Program of China |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c346t-75e8e476ff32cc560229d96f76f92db9c9b60807f696c351afd60c7c15ab70263 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri Jul 11 18:30:07 EDT 2025 Fri Jul 11 13:23:30 EDT 2025 Fri Jul 25 10:34:26 EDT 2025 Thu Apr 03 07:01:48 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Wed Oct 01 05:05:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | planting density C3 photosynthesis C4 photosynthesis proteomics photosynthetic light utilization efficiency fluctuating light |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c346t-75e8e476ff32cc560229d96f76f92db9c9b60807f696c351afd60c7c15ab70263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5014-6217 0000-0002-7356-5294 0000-0002-2197-8660 0000-0003-3125-3484 0000-0001-5271-7087 |
PMID | 37485705 |
PQID | 2870708010 |
PQPubID | 37957 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2942100929 proquest_miscellaneous_2841401277 proquest_journals_2870708010 pubmed_primary_37485705 crossref_primary_10_1111_pce_14673 crossref_citationtrail_10_1111_pce_14673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Jin L.B. (e_1_2_9_22_1) 2013; 46 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Feng Z.M. (e_1_2_9_14_1) 2007; 31 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_8_1 doi: 10.2134/agronj1982.00021962007400060013x – ident: e_1_2_9_51_1 doi: 10.2307/2390189 – ident: e_1_2_9_15_1 doi: 10.1093/jxb/err080 – ident: e_1_2_9_64_1 doi: 10.1007/s004420050264 – ident: e_1_2_9_12_1 doi: 10.1038/s41598-020-79633-z – ident: e_1_2_9_60_1 doi: 10.2307/1514594 – ident: e_1_2_9_27_1 doi: 10.1007/BF00392305 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pone.0066428 – ident: e_1_2_9_53_1 doi: 10.1007/s11120-016-0323-1 – ident: e_1_2_9_75_1 doi: 10.1016/j.fcr.2021.108145 – ident: e_1_2_9_25_1 doi: 10.1111/TPJ.14897 – ident: e_1_2_9_50_1 doi: 10.1104/pp.105.4.1097 – ident: e_1_2_9_39_1 doi: 10.1071/pp97071 – ident: e_1_2_9_36_1 doi: 10.1016/j.fcr.2018.01.003 – ident: e_1_2_9_7_1 doi: 10.1111/nph.18534 – ident: e_1_2_9_59_1 doi: 10.1007/BF02348584 – ident: e_1_2_9_67_1 doi: 10.1186/s12870-018-1607-8 – ident: e_1_2_9_57_1 doi: 10.1016/j.pbi.2019.04.010 – ident: e_1_2_9_74_1 doi: 10.1038/srep26963 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.1812916116 – ident: e_1_2_9_33_1 doi: 10.1093/plphys/kiab411 – ident: e_1_2_9_70_1 doi: 10.1111/j.1365-313X.2012.05041.x – ident: e_1_2_9_30_1 doi: 10.1093/treephys/16.1-2.69 – ident: e_1_2_9_4_1 doi: 10.1111/nph.16454 – ident: e_1_2_9_10_1 doi: 10.1007/s10681-011-0560-5 – volume: 46 start-page: 2430 year: 2013 ident: e_1_2_9_22_1 article-title: Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize publication-title: Scientia Agricultural Sinica – ident: e_1_2_9_58_1 doi: 10.1038/s41598-018-35275-w – ident: e_1_2_9_37_1 doi: 10.2135/CROPSCI2013.04.0252 – ident: e_1_2_9_71_1 doi: 10.1016/j.fcr.2015.09.005 – ident: e_1_2_9_46_1 doi: 10.1007/s11120-020-00780-5 – ident: e_1_2_9_28_1 doi: 10.1126/science.ai8878 – ident: e_1_2_9_40_1 doi: 10.1016/S2095-3119(13)60281-6 – ident: e_1_2_9_62_1 doi: 10.1371/journal.pone.0182310 – ident: e_1_2_9_69_1 doi: 10.1111/pce.13725 – ident: e_1_2_9_13_1 doi: 10.1016/j.agrformet.2021.108554 – ident: e_1_2_9_68_1 doi: 10.1016/j.fcr.2017.05.006 – ident: e_1_2_9_20_1 doi: 10.1016/S2095-3119(19)62800-5 – ident: e_1_2_9_77_1 doi: 10.3390/ijms20205019 – ident: e_1_2_9_65_1 doi: 10.1111/tpj.15408 – ident: e_1_2_9_29_1 doi: 10.1111/ppl.12057 – ident: e_1_2_9_19_1 doi: 10.1111/pce.12427 – ident: e_1_2_9_31_1 doi: 10.1007/s00442-003-1178-7 – ident: e_1_2_9_43_1 doi: 10.1093/jxb/erw456 – ident: e_1_2_9_72_1 doi: 10.1163/156939308783122788 – ident: e_1_2_9_26_1 doi: 10.1093/jxb/eraa090 – ident: e_1_2_9_66_1 doi: 10.1093/treephys/tps064 – volume: 31 start-page: 15 year: 2007 ident: e_1_2_9_14_1 article-title: Future food security and arable land guarantee for population development in China publication-title: Population Research – ident: e_1_2_9_3_1 doi: 10.1093/jxb/eraa520 – ident: e_1_2_9_32_1 doi: 10.1186/s12870-020-02516-y – ident: e_1_2_9_63_1 doi: 10.1007/s11258-006-9243-z – ident: e_1_2_9_11_1 doi: 10.1016/j.envc.2021.100417 – ident: e_1_2_9_42_1 doi: 10.1201/9781420007626-7 – ident: e_1_2_9_48_1 doi: 10.1007/s11284-005-0067-4 – ident: e_1_2_9_49_1 doi: 10.1093/jxb/erz100 – ident: e_1_2_9_44_1 doi: 10.1093/treephys/tps085 – ident: e_1_2_9_23_1 doi: 10.1093/jxb/eru406 – ident: e_1_2_9_52_1 doi: 10.1104/pp.17.01234 – ident: e_1_2_9_76_1 doi: 10.3390/ijms23063015 – ident: e_1_2_9_2_1 doi: 10.1016/j.eja.2014.05.007 – ident: e_1_2_9_17_1 doi: 10.1016/j.fcr.2010.09.012 – ident: e_1_2_9_6_1 doi: 10.2135/cropsci2016.04.0215 – ident: e_1_2_9_18_1 doi: 10.2307/4221893 – ident: e_1_2_9_78_1 doi: 10.2307/40065696 – ident: e_1_2_9_54_1 doi: 10.1111/pce.12674 – ident: e_1_2_9_35_1 doi: 10.1038/srep39601 – ident: e_1_2_9_45_1 doi: 10.1016/j.cj.2016.04.004 – ident: e_1_2_9_61_1 doi: 10.1098/rstb.2016.0543 – ident: e_1_2_9_73_1 doi: 10.3390/agronomy11061080 – ident: e_1_2_9_34_1 doi: 10.1016/j.fcr.2014.09.015 – ident: e_1_2_9_41_1 doi: 10.1146/annurev.arplant.41.1.421 – ident: e_1_2_9_9_1 doi: 10.1080/02827589709355429 – ident: e_1_2_9_56_1 doi: 10.1038/srep31305 – ident: e_1_2_9_16_1 doi: 10.3732/ajb.91.2.228 – ident: e_1_2_9_5_1 doi: 10.1093/jxb/erz304 – ident: e_1_2_9_55_1 doi: 10.1016/j.cj.2021.03.015 – ident: e_1_2_9_38_1 doi: 10.1007/s00442-007-0936-3 – ident: e_1_2_9_21_1 doi: 10.2135/cropsci2009.09.0530 |
SSID | ssj0001479 |
Score | 2.4807131 |
Snippet | In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3305 |
SubjectTerms | Adaptation Corn energy Energy utilization environment Leaves Light Molecular modelling nitrogen Photosynthesis Planting Planting density plasticity Proteomics Ribulose-bisphosphate carboxylase Zea mays |
Title | Maize ( Zea mays L.) planted at higher density utilizes dynamic light more efficiently |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37485705 https://www.proquest.com/docview/2870708010 https://www.proquest.com/docview/2841401277 https://www.proquest.com/docview/2942100929 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0140-7791 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-3040 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001479 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKAIkXBANGYSCDEBqKUsVxEjePDDZNqBsItVrhJXIcR0QqbaHtQ_ff8J9yZztpKm3j4yWqbLdxfT-f7873Qcirfg4ML4cNCIcJx2tG7stCK1_0SzjuZZAzU2Pp9Cw5GUUfxvG40_nV8lpaLfOeurg0ruR_qAptQFeMkv0HyjY_Cg3wGegLT6AwPP-KxqeyujAy4lctve9yvfAGGDaFpaGnKEmC8v_N-nEU6KcO8jZMZgLfWXiFrUTvTVA599DbFl07KhMeOdm66sWyRoZTo43f3DW0guM2dmdtmcZh1aDty6rxpBjaWKrGylptuj5h1_mqZcA2xttzXbUNEkBhtmWQ-DPb2zJnBiDf23pdPW1ZMPrd8cAmcap5tDNTOiyyFsflPIhbpzfnNsz5ipNhrrQ5G_jm-Kuv_M8-ZsejwSAbHo2Hr-c_fCxMhhf4rkrLDXIzFEmCRTLef95kKGORTedY_xGXvAqdxZp3bYs8V-gxRp4Z3iN3nSJC31pU3ScdPd0lt21p0vUuuXU4A7Vh_YCMDMjoAUCMIsTooPeGOoBRuaQWYNQBjNYAow5g1ACMIsBoC2APyej4aPjuxHe1OHzFo2Tpi1j3dSSSsuShUiAmh2FapEkJLWlY5KlK8wSUD1EmaaJ4zGRZJIESisUyF6Dn80dkZzqb6seExrmKVRoV_ajA4g0FaCCpjHLF-4oxyVSXHNTLlSmXqB7rpUyyWmGFlc3MynbJy2bo3GZnuWzQfr3mmdu8iwzv9wVMmAVd8qLpBtaKe0lO9WyFYyI0P4RCXDMmjUKGicvSLtmz9GxmgpmdYhHET66fwFNyZ7ON9snO8udKPwNJd5k_N1j7DSQ9pwU |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+%28Zea+mays+L.%29+planted+at+higher+density+utilizes+dynamic+light+more+efficiently&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Zheng%2C+Bin&rft.au=Yu%E2%80%90Ting+Li&rft.au=Qiu%E2%80%90Ping+Wu&rft.au=Zhao%2C+Wei&rft.date=2023-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=46&rft.issue=11&rft.spage=3305&rft.epage=3322&rft_id=info:doi/10.1111%2Fpce.14673&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |