Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls

Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultane...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 348; no. Pt B; p. 122904
Main Authors Huang, Yuanping, Liao, Keke, Yang, Zengling, Tian, Sicong, Yuan, Xiangru, Sun, Xingming, Li, Zichao, Han, Lujia
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.01.2025
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2024.122904

Cover

Abstract Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale. This study proposes a novel confocal Raman microscopy (CRM) cosine similarity (CS) mapping strategy for simultaneous in-situ visual profiling lignin, cellulose and hemicellulose in plant cell walls. This strategy involves several key steps: 1) Acquiring CRM mapping images for different tissues including epidermis-sclerenchyma (Ep-Sc), vascular (Va), and parenchyma (Pa) tissue in rice stem cross-section; 2) Extracting cell wall regions of interest (ROI) in the CRM mapping images; 3) Cleaning of background signals in ROI spectra; 4) Performing a two-step spectral preprocessing involving lignin signal subtraction and second-order derivative to eliminate the interference of strong lignin signal and to enhance the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) Achieving simultaneous in-situ visual characterization by directly calculating the CS between the cell wall spectrum and the milled wood lignin reference spectrum for lignin and between the cell wall spectrum (after two-step spectral preprocessing) and the second derivative reference spectrum of microcrystalline cellulose or xylan for cellulose and hemicellulose. This approach provides new methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale. [Display omitted]
AbstractList Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale. This study proposes a novel confocal Raman microscopy (CRM) cosine similarity (CS) mapping strategy for simultaneous in-situ visual profiling lignin, cellulose and hemicellulose in plant cell walls. This strategy involves several key steps: 1) Acquiring CRM mapping images for different tissues including epidermis-sclerenchyma (Ep-Sc), vascular (Va), and parenchyma (Pa) tissue in rice stem cross-section; 2) Extracting cell wall regions of interest (ROI) in the CRM mapping images; 3) Cleaning of background signals in ROI spectra; 4) Performing a two-step spectral preprocessing involving lignin signal subtraction and second-order derivative to eliminate the interference of strong lignin signal and to enhance the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) Achieving simultaneous in-situ visual characterization by directly calculating the CS between the cell wall spectrum and the milled wood lignin reference spectrum for lignin and between the cell wall spectrum (after two-step spectral preprocessing) and the second derivative reference spectrum of microcrystalline cellulose or xylan for cellulose and hemicellulose. This approach provides new methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale. [Display omitted]
ArticleNumber 122904
Author Liao, Keke
Huang, Yuanping
Yang, Zengling
Tian, Sicong
Yuan, Xiangru
Li, Zichao
Sun, Xingming
Han, Lujia
Author_xml – sequence: 1
  givenname: Yuanping
  surname: Huang
  fullname: Huang, Yuanping
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
– sequence: 2
  givenname: Keke
  surname: Liao
  fullname: Liao, Keke
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
– sequence: 3
  givenname: Zengling
  surname: Yang
  fullname: Yang, Zengling
  email: yangzengling@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
– sequence: 4
  givenname: Sicong
  surname: Tian
  fullname: Tian, Sicong
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
– sequence: 5
  givenname: Xiangru
  surname: Yuan
  fullname: Yuan, Xiangru
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
– sequence: 6
  givenname: Xingming
  surname: Sun
  fullname: Sun, Xingming
  organization: College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
– sequence: 7
  givenname: Zichao
  surname: Li
  fullname: Li, Zichao
  organization: College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
– sequence: 8
  givenname: Lujia
  surname: Han
  fullname: Han, Lujia
  email: hanlj@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Beijing 100083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39567139$$D View this record in MEDLINE/PubMed
BookMark eNqNkcuO1DAQRS00iOkZ-ASQl2zSpPxKskKoNTykASQEa8txKi23nDjYTqP-exKlYQveWC6fe1VV947cjGFEQl5CuYcS1JvT3prYTsHvWcnEHhhrSvGE7KCumgK4EDdkV4IQRa2guiV3KZ3K5Sgon5Fb3khVAW925PIlnNHTw7fP1IbkRqTJDc6b6PKFDmaa3HikKUeT8XihfYjr_-yzGTHMibqxSC7P9OzSbDydYuidXyXeHcdg0fvZh4QLRydvxkzXEv1lvE_PydPe-IQvrvc9-fH-4fvhY_H49cOnw7vHwnKhciFl37ZVa_q-ZqyzhiuGrGG1WF_SttIoZhvJEBthK2WqqkIA01swXNa24_fk9ea7NPdzxpT14NLaxjaC5iAFSFA1_w-Ug2jqmqkFfXVF53bATk_RDSZe9J_NLoDcABtDShH7vwiUek1Qn_Q1Qb0mqLcEF93bTYfLTs4Oo07W4WixcxFt1l1w_3D4DX6ZqKk
Cites_doi 10.1007/s10570-017-1486-4
10.1016/j.ins.2015.02.024
10.1111/nph.13383
10.1366/0003702971939316
10.1155/2007/498206
10.1016/j.carbpol.2024.122261
10.1186/s13068-016-0669-9
10.1105/tpc.011775
10.1126/science.1102765
10.1104/pp.105.066993
10.1016/j.phytochem.2011.05.005
10.1016/j.ijbiomac.2022.08.084
10.1104/pp.107.102582
10.1039/c0ee00574f
10.1515/hf-2011-0126
10.1021/acs.analchem.1c00437
10.1002/jbio.202000286
10.1002/bit.24348
10.1186/1746-4811-10-14
10.1002/jrs.5588
10.1111/nph.16603
10.1039/C2RA20706K
10.1021/acsnano.2c11220
10.1007/s00425-010-1171-4
10.1016/j.carbpol.2020.116212
10.1109/TSMC.1979.4310076
10.1007/978-1-4939-9469-4_6
10.1021/acssuschemeng.3c04206
10.1126/science.1227491
10.1080/15592324.2020.1749786
10.1038/nprot.2015.008
10.1093/plphys/kiac369
10.1038/s41467-018-08252-0
10.1093/plphys/kiae203
10.1007/s00425-006-0295-z
10.1093/pcp/pcy246
10.1038/nprot.2012.092
10.1038/35030000
10.1038/nchembio.439
10.1371/journal.pgen.1003704
10.1016/j.jmbbm.2018.03.040
10.1016/j.carbpol.2020.117164
10.1038/s41477-024-01781-1
10.1016/j.carbpol.2016.06.086
10.1021/jf040456q
10.1021/ac504144s
10.1126/science.ade8055
10.1017/S1431927614000658
10.1007/s00299-014-1574-y
10.1038/nature14099
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2024.122904
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID 39567139
10_1016_j_carbpol_2024_122904
S0144861724011305
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSH
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AALCJ
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AGRDE
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
SCB
SMS
SOC
WUQ
XPP
~HD
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c346t-55fbb7baff822dca362e2928422dc5cb5a62c952ee94c76a777e11afc1a358cd3
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Fri Oct 03 00:07:24 EDT 2025
Sun Sep 28 08:34:40 EDT 2025
Wed Feb 19 02:02:31 EST 2025
Wed Oct 01 02:09:42 EDT 2025
Sun Apr 06 06:53:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Cosine similarity
Confocal Raman microscopy imaging
Spectral signal extraction and enhancement
Lignocellulosic components
Simultaneous in-situ mapping
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-55fbb7baff822dca362e2928422dc5cb5a62c952ee94c76a777e11afc1a358cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39567139
PQID 3131498826
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154151683
proquest_miscellaneous_3131498826
pubmed_primary_39567139
crossref_primary_10_1016_j_carbpol_2024_122904
elsevier_sciencedirect_doi_10_1016_j_carbpol_2024_122904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Somerville, Bauer, Brininstool, Facette, Hamann, Milne, Osborne, Paredez, Persson, Raab (bb0195) 2004; 306
Addison, Bu, Bharadwaj, Crowley, Harman-Ware, Crowley, Ciesielski (bb0005) 2024; 10
Ding, Liu, Zeng, Himmel, Baker, Bayer (bb0065) 2012; 338
Agarwal, Ralph (bb0015) 1997; 51
Coen, Cosgrove (bb0050) 2023; 379
Huang, Liu, Zhou, Peng (bb0110) 2018; 82
Sun, Li, Xue (bb0200) 2013; 3
Xia, Zhang, Li (bb0225) 2015; 307
Lifeng (bb0140) 2012
Coomey, Sibout, Hazen (bb0055) 2020; 227
Ma, Zhou, Ma, Ji, Zhang, Xu (bb0155) 2014; 20
Cao, Li, Yu, Chai, He, Hu, Qi, Kong, Fu, Zhou (bb0035) 2014; 33
Xiao, Chen, Cao, Chen, Zhao, Jiang, Sun (bb0230) 2020; 238
Liu, Lunter (bb0150) 2020; 13
Zhu, Ren, Guo, Wang, Yu (bb0265) 2024; 339
Ji, Zhang, Ling, Sun, Xu (bb0115) 2016; 154
Li, Liu, Tan, Chen, Zhu, Lv, Cai (bb0130) 2019; 60
Sun, Sun, P., & Baird, M. S. (bb0215) 2005; 53
Agarwal (bb0010) 2006; 224
Gierlinger, Schwanninger (bb0085) 2006; 140
Perez-de-Lis, Richard, Quiles, Deveau, Adikurnia, Rathgeber (bb0165) 2024; 195
Felten, Hall, Jaumot, Tauler, de Juan, Gorzsás (bb0070) 2015; 10
González Moreno, Domínguez, Mayer, Xiao, Bock, Heredia, Gierlinger (bb0095) 2023; 191
Sato, Suzuki, Nishikubo, Takenouchi, Ito, Nakano, Nakaba, Sano, Funada, Kajita, Kitano, Katayama (bb0175) 2010; 232
Hänninen, Kontturi, Vuorinen (bb0100) 2011; 72
Zhang, Chen, Ramaswamy, Kim, Xu (bb0250) 2017; 24
Taylor-Teeples, Lin, de Lucas, Turco, Toal, Gaudinier, Brady (bb0220) 2015; 517
Zhang, Shen, Liu, Wen, Yuan (bb0245) 2023; 11
Sun, Varanasi, Yang, Loque, Simmons, Singh (bb0205) 2012; 109
Zhang, Ji, Zhou, Ma, Hu, Xu (bb0255) 2015; 87
Chylinska, Szymanska-Chargot, Zdunek (bb0045) 2014; 10
Garemark, Perea-Buceta, Felhofer, Chen, Cortes Ruiz, Sapouna, Li (bb0075) 2023; 17
Sun, Sun, Wang, Li, Cao, Sun, Yuan (bb0210) 2021; 252
Gierlinger, Schwanninger (bb0090) 2007; 21
Cosgrove (bb0060) 2000; 407
Bock, Gierlinger (bb0020) 2019; 50
Liu, Shang-Guan, Zhang, Liu, Yan, Zhang, Shi, Zhang, Qian, Li, Zhou (bb0145) 2013; 9
Leng, He, Lu, Thirumalai, Nayanathara, Shi, Zhang (bb0125) 2022; 220
Sindhu, Langewisch, Olek, Multani, McCann, Vermerris, Johal (bb0185) 2007; 145
Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templaton (bb0190) 2012
pp. 83–107: Springer.
Yang, Liu, Li, Zhang, Zhang, Yang, Tan (bb0235) 2024; 10
Sato-Izawa, Nakamura, Matsumoto (bb0180) 2020; 15
Borowska-Wykręt, D., & Dulski, M. (2019). Raman spectroscopy in nonwoody plants.
Kang, Kirui, Dickwella Widanage, Mentink-Vigier, Cosgrove, Wang (bb0120) 2019; 10
Chundawat, Donohoe, Da Costa Sousa, Elder, Agarwal, Lu, Dale (bb0040) 2011; 4
Zhvansky, Ivanov, Sorokin, Bugrova, Nikolaev, Popov (bb0270) 2021; 93
Burton, Gidley, Fincher (bb0030) 2010; 6
Li, Qian, Zhou, Yan, Sun, Zhang, Fu, Wang, Han, Pang, Chen, Li (bb0135) 2003; 15
Zhong, Cui, Hua (bb0260) 2019; 221
Růžička, Ursache, Helariutta (bb0170) 2015; 207
Zeng, Yarbrough, Mittal, Tucker, Vinzant, Decker, Himmel (bb0240) 2016; 9
Horvath, Peszlen, Gierlinger, Peralta, Kelley, Csoka (bb0105) 2012; 66
Otsu (bb0160) 1979; 9
Gierlinger, Keplinger, Harrington (bb0080) 2012; 7
Sindhu (10.1016/j.carbpol.2024.122904_bb0185) 2007; 145
Zhang (10.1016/j.carbpol.2024.122904_bb0250) 2017; 24
Zhu (10.1016/j.carbpol.2024.122904_bb0265) 2024; 339
Lifeng (10.1016/j.carbpol.2024.122904_bb0140) 2012
Liu (10.1016/j.carbpol.2024.122904_bb0145) 2013; 9
Garemark (10.1016/j.carbpol.2024.122904_bb0075) 2023; 17
Chylinska (10.1016/j.carbpol.2024.122904_bb0045) 2014; 10
Sato-Izawa (10.1016/j.carbpol.2024.122904_bb0180) 2020; 15
Zhong (10.1016/j.carbpol.2024.122904_bb0260) 2019; 221
Zhang (10.1016/j.carbpol.2024.122904_bb0255) 2015; 87
Sun (10.1016/j.carbpol.2024.122904_bb0205) 2012; 109
Hänninen (10.1016/j.carbpol.2024.122904_bb0100) 2011; 72
Horvath (10.1016/j.carbpol.2024.122904_bb0105) 2012; 66
Růžička (10.1016/j.carbpol.2024.122904_bb0170) 2015; 207
Li (10.1016/j.carbpol.2024.122904_bb0130) 2019; 60
Coomey (10.1016/j.carbpol.2024.122904_bb0055) 2020; 227
Agarwal (10.1016/j.carbpol.2024.122904_bb0015) 1997; 51
Somerville (10.1016/j.carbpol.2024.122904_bb0195) 2004; 306
Xiao (10.1016/j.carbpol.2024.122904_bb0230) 2020; 238
González Moreno (10.1016/j.carbpol.2024.122904_bb0095) 2023; 191
Sato (10.1016/j.carbpol.2024.122904_bb0175) 2010; 232
Cosgrove (10.1016/j.carbpol.2024.122904_bb0060) 2000; 407
Gierlinger (10.1016/j.carbpol.2024.122904_bb0090) 2007; 21
Sun (10.1016/j.carbpol.2024.122904_bb0215) 2005; 53
Li (10.1016/j.carbpol.2024.122904_bb0135) 2003; 15
Chundawat (10.1016/j.carbpol.2024.122904_bb0040) 2011; 4
Burton (10.1016/j.carbpol.2024.122904_bb0030) 2010; 6
Sluiter (10.1016/j.carbpol.2024.122904_bb0190) 2012
Coen (10.1016/j.carbpol.2024.122904_bb0050) 2023; 379
Kang (10.1016/j.carbpol.2024.122904_bb0120) 2019; 10
Ding (10.1016/j.carbpol.2024.122904_bb0065) 2012; 338
Ma (10.1016/j.carbpol.2024.122904_bb0155) 2014; 20
Yang (10.1016/j.carbpol.2024.122904_bb0235) 2024; 10
Agarwal (10.1016/j.carbpol.2024.122904_bb0010) 2006; 224
Gierlinger (10.1016/j.carbpol.2024.122904_bb0085) 2006; 140
Xia (10.1016/j.carbpol.2024.122904_bb0225) 2015; 307
Sun (10.1016/j.carbpol.2024.122904_bb0210) 2021; 252
Sun (10.1016/j.carbpol.2024.122904_bb0200) 2013; 3
Cao (10.1016/j.carbpol.2024.122904_bb0035) 2014; 33
10.1016/j.carbpol.2024.122904_bb0025
Addison (10.1016/j.carbpol.2024.122904_bb0005) 2024; 10
Taylor-Teeples (10.1016/j.carbpol.2024.122904_bb0220) 2015; 517
Huang (10.1016/j.carbpol.2024.122904_bb0110) 2018; 82
Zhang (10.1016/j.carbpol.2024.122904_bb0245) 2023; 11
Zhvansky (10.1016/j.carbpol.2024.122904_bb0270) 2021; 93
Liu (10.1016/j.carbpol.2024.122904_bb0150) 2020; 13
Zeng (10.1016/j.carbpol.2024.122904_bb0240) 2016; 9
Gierlinger (10.1016/j.carbpol.2024.122904_bb0080) 2012; 7
Ji (10.1016/j.carbpol.2024.122904_bb0115) 2016; 154
Bock (10.1016/j.carbpol.2024.122904_bb0020) 2019; 50
Felten (10.1016/j.carbpol.2024.122904_bb0070) 2015; 10
Otsu (10.1016/j.carbpol.2024.122904_bb0160) 1979; 9
Perez-de-Lis (10.1016/j.carbpol.2024.122904_bb0165) 2024; 195
Leng (10.1016/j.carbpol.2024.122904_bb0125) 2022; 220
References_xml – volume: 4
  start-page: 973
  year: 2011
  ident: bb0040
  article-title: Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment
  publication-title: Energy & Environmental Science
– volume: 10
  start-page: 1389
  year: 2024
  end-page: 1399
  ident: bb0235
  article-title: A sucrose ferulate cycle linchpin for ferulyolation of arabinoxylans in plant commelinids
  publication-title: Nature Plants
– volume: 15
  start-page: 2020
  year: 2003
  end-page: 2031
  ident: bb0135
  article-title: BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants
  publication-title: The Plant Cell
– volume: 109
  start-page: 647
  year: 2012
  end-page: 656
  ident: bb0205
  article-title: Rapid determination of syringyl: Guaiacyl ratios using FT-Raman spectroscopy
  publication-title: Biotechnology and Bioengineering
– volume: 10
  start-page: 14
  year: 2014
  ident: bb0045
  article-title: Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
  publication-title: Plant Methods
– volume: 50
  start-page: 778
  year: 2019
  end-page: 792
  ident: bb0020
  article-title: Infrared and Raman spectra of lignin substructures: Coniferyl alcohol, abietin, and coniferyl aldehyde
  publication-title: Journal of Raman Spectroscopy
– reference: pp. 83–107: Springer.
– volume: 145
  start-page: 1444
  year: 2007
  end-page: 1459
  ident: bb0185
  article-title: Maize
  publication-title: Plant Physiology
– volume: 10
  start-page: eadi7965
  year: 2024
  ident: bb0005
  article-title: Atomistic, macromolecular model of the Populus secondary cell wall informed by solid-state NMR.
  publication-title: Advances
– volume: 66
  start-page: 717
  year: 2012
  end-page: 725
  ident: bb0105
  article-title: Distribution of wood polymers within the cell wall of transgenic aspen imaged by Raman microscopy
  publication-title: Holzforschung
– volume: 9
  year: 2013
  ident: bb0145
  article-title: Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils
  publication-title: PLoS Genetics
– volume: 207
  start-page: 519
  year: 2015
  end-page: 535
  ident: bb0170
  article-title: Xylem development-from the cradle to the grave
  publication-title: New Phytologist
– volume: 72
  start-page: 1889
  year: 2011
  end-page: 1895
  ident: bb0100
  article-title: Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging
  publication-title: Phytochemistry
– volume: 221
  start-page: 1703
  year: 2019
  end-page: 1723
  ident: bb0260
  publication-title: Secondary cell wall biosynthesis.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bb0160
  article-title: A threshold selection method from gray-level histograms
  publication-title: EEE Transactions on Systems, Man, and Cybernetics
– volume: 53
  start-page: 860
  year: 2005
  end-page: 870
  ident: bb0215
  article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw
  publication-title: Journal of Agricultural and Food Chemistry
– year: 2012
  ident: bb0140
  article-title: Studies on working mechanism of Brittle Culm1 in cellulose biosynthesis and transcriptional regulation network during secondary cell wall formation in rice
– volume: 306
  start-page: 2206
  year: 2004
  end-page: 2211
  ident: bb0195
  article-title: Toward a systems approach to understanding plant cell walls
  publication-title: Science
– volume: 191
  start-page: 219
  year: 2023
  end-page: 232
  ident: bb0095
  article-title: 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development
  publication-title: Plant Physiology
– volume: 33
  start-page: 643
  year: 2014
  end-page: 653
  ident: bb0035
  article-title: Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection
  publication-title: Plant Cell Reports
– volume: 60
  start-page: 788
  year: 2019
  end-page: 801
  ident: bb0130
  article-title: Brittle culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in sorghum
  publication-title: Plant & Cell Physiology
– volume: 379
  start-page: eade8055
  year: 2023
  ident: bb0050
  article-title: The mechanics of plant morphogenesis
  publication-title: Science
– volume: 21
  start-page: 69
  year: 2007
  end-page: 89
  ident: bb0090
  article-title: The potential of Raman microscopy and Raman imaging in plant research
  publication-title: Spectroscopy
– volume: 339
  year: 2024
  ident: bb0265
  article-title: Revealing spatial distribution and accessibility of cell wall polymers in bamboo through chemical imaging and mild chemical treatments
  publication-title: Carbohydrate Polymers
– volume: 232
  start-page: 257
  year: 2010
  end-page: 270
  ident: bb0175
  article-title: Isolation of a novel cell wall architecture mutant of rice with defective
  publication-title: Planta
– reference: Borowska-Wykręt, D., & Dulski, M. (2019). Raman spectroscopy in nonwoody plants.
– volume: 224
  start-page: 1141
  year: 2006
  end-page: 1153
  ident: bb0010
  article-title: Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana)
  publication-title: Planta
– volume: 7
  start-page: 1694
  year: 2012
  end-page: 1708
  ident: bb0080
  article-title: Imaging of plant cell walls by confocal Raman microscopy
  publication-title: Nature Protocols
– volume: 82
  start-page: 239
  year: 2018
  end-page: 247
  ident: bb0110
  article-title: Effect of multiscale structural parameters on the mechanical properties of rice stems
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 407
  start-page: 321
  year: 2000
  end-page: 326
  ident: bb0060
  article-title: Loosening of plant cell walls by expansins
  publication-title: Nature
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bb0120
  article-title: Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR
  publication-title: Nature Communications
– volume: 11
  start-page: 13778
  year: 2023
  end-page: 13786
  ident: bb0245
  article-title: Uncovering the structure of lignin from Moso bamboo with different tissues and growing ages for efficient ambient-pressure lignin depolymerization
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 15
  start-page: 1749786
  year: 2020
  ident: bb0180
  article-title: Mutation of rice
  publication-title: Plant Signaling & Behavior
– volume: 307
  start-page: 39
  year: 2015
  end-page: 52
  ident: bb0225
  article-title: Learning similarity with cosine similarity ensemble
  publication-title: Information Sciences
– volume: 195
  start-page: 2428
  year: 2024
  end-page: 2442
  ident: bb0165
  article-title: Multimodal imaging analysis in silver fir reveals coordination in cellulose and lignin deposition
  publication-title: Plant Physiology
– volume: 13
  year: 2020
  ident: bb0150
  article-title: Tracking heavy-water-incorporated confocal Raman spectroscopy for evaluating the effects of PEGylated emulsifiers on skin barrier
  publication-title: Journal of Biophotonics
– volume: 9
  year: 2016
  ident: bb0240
  article-title: In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy
  publication-title: Biotechnology for Biofuels
– volume: 6
  start-page: 724
  year: 2010
  end-page: 732
  ident: bb0030
  article-title: Heterogeneity in the chemistry, structure and function of plant cell walls
  publication-title: Nature Chemical Biology
– volume: 24
  start-page: 4671
  year: 2017
  end-page: 4682
  ident: bb0250
  article-title: Obtaining pure spectra of hemicellulose and cellulose from poplar cell wall Raman imaging data
  publication-title: Cellulose
– volume: 51
  start-page: 1648
  year: 1997
  end-page: 1655
  ident: bb0015
  article-title: FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea Mariana)
  publication-title: Applied Spectroscopy
– volume: 93
  start-page: 3706
  year: 2021
  end-page: 3709
  ident: bb0270
  article-title: Interactive estimation of heterogeneity from mass spectrometry imaging
  publication-title: Analytical Chemistry
– volume: 252
  year: 2021
  ident: bb0210
  article-title: Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses
  publication-title: Carbohydrate Polymers
– volume: 517
  start-page: 571
  year: 2015
  end-page: 575
  ident: bb0220
  article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis
  publication-title: Nature
– volume: 154
  start-page: 247
  year: 2016
  end-page: 256
  ident: bb0115
  article-title: Tissue specific response of
  publication-title: Carbohydrate Polymers
– volume: 87
  start-page: 1344
  year: 2015
  end-page: 1350
  ident: bb0255
  article-title: Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set
  publication-title: Analytical Chemistry
– volume: 227
  start-page: 1649
  year: 2020
  end-page: 1667
  ident: bb0055
  article-title: Grass secondary cell walls, Brachypodium distachyon as a model for discovery
  publication-title: The New Phytologist
– volume: 140
  start-page: 1246
  year: 2006
  end-page: 1254
  ident: bb0085
  article-title: Chemical imaging of poplar wood cell walls by confocal Raman microscopy
  publication-title: Plant Physiology
– volume: 220
  start-page: 159
  year: 2022
  end-page: 174
  ident: bb0125
  article-title: Raman imaging: An indispensable technique to comprehend the functionalization of lignocellulosic material
  publication-title: International Journal of Biological Macromolecules
– year: 2012
  ident: bb0190
  article-title: Determination of structural carbohydrates and lignin in biomass
  publication-title: Technical Report NREL/TP-510-42618
– volume: 338
  start-page: 1055
  year: 2012
  end-page: 1060
  ident: bb0065
  article-title: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?
  publication-title: Science
– volume: 10
  start-page: 217
  year: 2015
  end-page: 240
  ident: bb0070
  article-title: Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS)
  publication-title: Nature Protocols
– volume: 17
  start-page: 4775
  year: 2023
  end-page: 4789
  ident: bb0075
  article-title: Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly
  publication-title: ACS Nano
– volume: 238
  year: 2020
  ident: bb0230
  article-title: Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus
  publication-title: Carbohydrate Polymers
– volume: 20
  start-page: 956
  year: 2014
  end-page: 963
  ident: bb0155
  article-title: Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in
  publication-title: Microscopy and Microanalysis
– volume: 3
  start-page: 2017
  year: 2013
  end-page: 2027
  ident: bb0200
  article-title: Unveiling high-resolution, tissue specific dynamic changes in corn Stover during ionic liquid pretreatment
  publication-title: RSC. Advances
– volume: 24
  start-page: 4671
  issue: 11
  year: 2017
  ident: 10.1016/j.carbpol.2024.122904_bb0250
  article-title: Obtaining pure spectra of hemicellulose and cellulose from poplar cell wall Raman imaging data
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1486-4
– volume: 307
  start-page: 39
  year: 2015
  ident: 10.1016/j.carbpol.2024.122904_bb0225
  article-title: Learning similarity with cosine similarity ensemble
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.02.024
– volume: 207
  start-page: 519
  issue: 3
  year: 2015
  ident: 10.1016/j.carbpol.2024.122904_bb0170
  article-title: Xylem development-from the cradle to the grave
  publication-title: New Phytologist
  doi: 10.1111/nph.13383
– volume: 51
  start-page: 1648
  issue: 11
  year: 1997
  ident: 10.1016/j.carbpol.2024.122904_bb0015
  article-title: FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea Mariana)
  publication-title: Applied Spectroscopy
  doi: 10.1366/0003702971939316
– year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0140
– volume: 21
  start-page: 69
  issue: 2
  year: 2007
  ident: 10.1016/j.carbpol.2024.122904_bb0090
  article-title: The potential of Raman microscopy and Raman imaging in plant research
  publication-title: Spectroscopy
  doi: 10.1155/2007/498206
– volume: 339
  year: 2024
  ident: 10.1016/j.carbpol.2024.122904_bb0265
  article-title: Revealing spatial distribution and accessibility of cell wall polymers in bamboo through chemical imaging and mild chemical treatments
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2024.122261
– volume: 9
  issue: 1
  year: 2016
  ident: 10.1016/j.carbpol.2024.122904_bb0240
  article-title: In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy
  publication-title: Biotechnology for Biofuels
  doi: 10.1186/s13068-016-0669-9
– volume: 15
  start-page: 2020
  issue: 9
  year: 2003
  ident: 10.1016/j.carbpol.2024.122904_bb0135
  article-title: BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.011775
– volume: 306
  start-page: 2206
  issue: 5705
  year: 2004
  ident: 10.1016/j.carbpol.2024.122904_bb0195
  article-title: Toward a systems approach to understanding plant cell walls
  publication-title: Science
  doi: 10.1126/science.1102765
– volume: 140
  start-page: 1246
  issue: 4
  year: 2006
  ident: 10.1016/j.carbpol.2024.122904_bb0085
  article-title: Chemical imaging of poplar wood cell walls by confocal Raman microscopy
  publication-title: Plant Physiology
  doi: 10.1104/pp.105.066993
– volume: 72
  start-page: 1889
  issue: 14–15
  year: 2011
  ident: 10.1016/j.carbpol.2024.122904_bb0100
  article-title: Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.05.005
– volume: 220
  start-page: 159
  year: 2022
  ident: 10.1016/j.carbpol.2024.122904_bb0125
  article-title: Raman imaging: An indispensable technique to comprehend the functionalization of lignocellulosic material
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2022.08.084
– volume: 145
  start-page: 1444
  issue: 4
  year: 2007
  ident: 10.1016/j.carbpol.2024.122904_bb0185
  article-title: Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.102582
– volume: 4
  start-page: 973
  issue: 3
  year: 2011
  ident: 10.1016/j.carbpol.2024.122904_bb0040
  article-title: Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment
  publication-title: Energy & Environmental Science
  doi: 10.1039/c0ee00574f
– volume: 66
  start-page: 717
  issue: 6
  year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0105
  article-title: Distribution of wood polymers within the cell wall of transgenic aspen imaged by Raman microscopy
  publication-title: Holzforschung
  doi: 10.1515/hf-2011-0126
– volume: 93
  start-page: 3706
  issue: 8
  year: 2021
  ident: 10.1016/j.carbpol.2024.122904_bb0270
  article-title: Interactive estimation of heterogeneity from mass spectrometry imaging
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.1c00437
– volume: 13
  issue: 12
  year: 2020
  ident: 10.1016/j.carbpol.2024.122904_bb0150
  article-title: Tracking heavy-water-incorporated confocal Raman spectroscopy for evaluating the effects of PEGylated emulsifiers on skin barrier
  publication-title: Journal of Biophotonics
  doi: 10.1002/jbio.202000286
– volume: 109
  start-page: 647
  issue: 3
  year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0205
  article-title: Rapid determination of syringyl: Guaiacyl ratios using FT-Raman spectroscopy
  publication-title: Biotechnology and Bioengineering
  doi: 10.1002/bit.24348
– volume: 10
  start-page: 14
  year: 2014
  ident: 10.1016/j.carbpol.2024.122904_bb0045
  article-title: Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-10-14
– volume: 50
  start-page: 778
  issue: 6
  year: 2019
  ident: 10.1016/j.carbpol.2024.122904_bb0020
  article-title: Infrared and Raman spectra of lignin substructures: Coniferyl alcohol, abietin, and coniferyl aldehyde
  publication-title: Journal of Raman Spectroscopy
  doi: 10.1002/jrs.5588
– volume: 221
  start-page: 1703
  issue: 4
  year: 2019
  ident: 10.1016/j.carbpol.2024.122904_bb0260
  publication-title: Secondary cell wall biosynthesis. New phytologist
– volume: 227
  start-page: 1649
  issue: 6
  year: 2020
  ident: 10.1016/j.carbpol.2024.122904_bb0055
  article-title: Grass secondary cell walls, Brachypodium distachyon as a model for discovery
  publication-title: The New Phytologist
  doi: 10.1111/nph.16603
– volume: 10
  start-page: eadi7965
  issue: 1
  year: 2024
  ident: 10.1016/j.carbpol.2024.122904_bb0005
  article-title: Atomistic, macromolecular model of the Populus secondary cell wall informed by solid-state NMR. Science
  publication-title: Advances
– volume: 3
  start-page: 2017
  issue: 6
  year: 2013
  ident: 10.1016/j.carbpol.2024.122904_bb0200
  article-title: Unveiling high-resolution, tissue specific dynamic changes in corn Stover during ionic liquid pretreatment
  publication-title: RSC. Advances
  doi: 10.1039/C2RA20706K
– volume: 17
  start-page: 4775
  issue: 5
  year: 2023
  ident: 10.1016/j.carbpol.2024.122904_bb0075
  article-title: Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11220
– volume: 232
  start-page: 257
  issue: 1
  year: 2010
  ident: 10.1016/j.carbpol.2024.122904_bb0175
  article-title: Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components
  publication-title: Planta
  doi: 10.1007/s00425-010-1171-4
– volume: 238
  year: 2020
  ident: 10.1016/j.carbpol.2024.122904_bb0230
  article-title: Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.116212
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.carbpol.2024.122904_bb0160
  article-title: A threshold selection method from gray-level histograms
  publication-title: EEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– ident: 10.1016/j.carbpol.2024.122904_bb0025
  doi: 10.1007/978-1-4939-9469-4_6
– volume: 11
  start-page: 13778
  issue: 37
  year: 2023
  ident: 10.1016/j.carbpol.2024.122904_bb0245
  article-title: Uncovering the structure of lignin from Moso bamboo with different tissues and growing ages for efficient ambient-pressure lignin depolymerization
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.3c04206
– volume: 338
  start-page: 1055
  issue: 6110
  year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0065
  article-title: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?
  publication-title: Science
  doi: 10.1126/science.1227491
– volume: 15
  start-page: 1749786
  issue: 5
  year: 2020
  ident: 10.1016/j.carbpol.2024.122904_bb0180
  article-title: Mutation of rice bc1 gene affects internode elongation and induces delayed cell wall deposition in developing internodes
  publication-title: Plant Signaling & Behavior
  doi: 10.1080/15592324.2020.1749786
– volume: 10
  start-page: 217
  issue: 2
  year: 2015
  ident: 10.1016/j.carbpol.2024.122904_bb0070
  article-title: Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS)
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2015.008
– volume: 191
  start-page: 219
  issue: 1
  year: 2023
  ident: 10.1016/j.carbpol.2024.122904_bb0095
  article-title: 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiac369
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.carbpol.2024.122904_bb0120
  article-title: Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-08252-0
– volume: 195
  start-page: 2428
  issue: 3
  year: 2024
  ident: 10.1016/j.carbpol.2024.122904_bb0165
  article-title: Multimodal imaging analysis in silver fir reveals coordination in cellulose and lignin deposition
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiae203
– volume: 224
  start-page: 1141
  issue: 5
  year: 2006
  ident: 10.1016/j.carbpol.2024.122904_bb0010
  article-title: Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana)
  publication-title: Planta
  doi: 10.1007/s00425-006-0295-z
– volume: 60
  start-page: 788
  issue: 4
  year: 2019
  ident: 10.1016/j.carbpol.2024.122904_bb0130
  article-title: Brittle culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in sorghum
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pcy246
– volume: 7
  start-page: 1694
  issue: 9
  year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0080
  article-title: Imaging of plant cell walls by confocal Raman microscopy
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2012.092
– volume: 407
  start-page: 321
  issue: 6802
  year: 2000
  ident: 10.1016/j.carbpol.2024.122904_bb0060
  article-title: Loosening of plant cell walls by expansins
  publication-title: Nature
  doi: 10.1038/35030000
– volume: 6
  start-page: 724
  issue: 10
  year: 2010
  ident: 10.1016/j.carbpol.2024.122904_bb0030
  article-title: Heterogeneity in the chemistry, structure and function of plant cell walls
  publication-title: Nature Chemical Biology
  doi: 10.1038/nchembio.439
– volume: 9
  issue: 8
  year: 2013
  ident: 10.1016/j.carbpol.2024.122904_bb0145
  article-title: Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1003704
– volume: 82
  start-page: 239
  year: 2018
  ident: 10.1016/j.carbpol.2024.122904_bb0110
  article-title: Effect of multiscale structural parameters on the mechanical properties of rice stems
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
  doi: 10.1016/j.jmbbm.2018.03.040
– volume: 252
  year: 2021
  ident: 10.1016/j.carbpol.2024.122904_bb0210
  article-title: Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.117164
– volume: 10
  start-page: 1389
  year: 2024
  ident: 10.1016/j.carbpol.2024.122904_bb0235
  article-title: A sucrose ferulate cycle linchpin for ferulyolation of arabinoxylans in plant commelinids
  publication-title: Nature Plants
  doi: 10.1038/s41477-024-01781-1
– volume: 154
  start-page: 247
  year: 2016
  ident: 10.1016/j.carbpol.2024.122904_bb0115
  article-title: Tissue specific response of Miscanthus × giganteus to dilute acid pretreatment for enhancing cellulose digestibility
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.06.086
– volume: 53
  start-page: 860
  issue: 4
  year: 2005
  ident: 10.1016/j.carbpol.2024.122904_bb0215
  article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf040456q
– volume: 87
  start-page: 1344
  issue: 2
  year: 2015
  ident: 10.1016/j.carbpol.2024.122904_bb0255
  article-title: Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set
  publication-title: Analytical Chemistry
  doi: 10.1021/ac504144s
– volume: 379
  start-page: eade8055
  issue: 6631
  year: 2023
  ident: 10.1016/j.carbpol.2024.122904_bb0050
  article-title: The mechanics of plant morphogenesis
  publication-title: Science
  doi: 10.1126/science.ade8055
– volume: 20
  start-page: 956
  issue: 3
  year: 2014
  ident: 10.1016/j.carbpol.2024.122904_bb0155
  article-title: Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in Miscanthus sinensis
  publication-title: Microscopy and Microanalysis
  doi: 10.1017/S1431927614000658
– year: 2012
  ident: 10.1016/j.carbpol.2024.122904_bb0190
  article-title: Determination of structural carbohydrates and lignin in biomass
– volume: 33
  start-page: 643
  issue: 4
  year: 2014
  ident: 10.1016/j.carbpol.2024.122904_bb0035
  article-title: Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-014-1574-y
– volume: 517
  start-page: 571
  issue: 7536
  year: 2015
  ident: 10.1016/j.carbpol.2024.122904_bb0220
  article-title: An Arabidopsis gene regulatory network for secondary cell wall synthesis
  publication-title: Nature
  doi: 10.1038/nature14099
SSID ssj0000610
Score 2.4654326
Snippet Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 122904
SubjectTerms Algorithms
bioinformatics
brittleness
Cell Wall - chemistry
cellulose
Cellulose - chemistry
Confocal Raman microscopy imaging
Cosine similarity
hemicellulose
lignin
Lignin - chemistry
lignocellulose
Lignocellulosic components
Microscopy, Confocal - methods
Oryza - chemistry
Polysaccharides - analysis
Polysaccharides - chemistry
Raman imaging
rice
Simultaneous in-situ mapping
Spectral signal extraction and enhancement
Spectrum Analysis, Raman - methods
Title Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls
URI https://dx.doi.org/10.1016/j.carbpol.2024.122904
https://www.ncbi.nlm.nih.gov/pubmed/39567139
https://www.proquest.com/docview/3131498826
https://www.proquest.com/docview/3154151683
Volume 348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: AKRWK
  dateStart: 19810901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOBStaWl2wdypV69u44fSY5oBdq2Yg-oSNws23FQUEhWZAPiwm_vTB4tHKBSj3HGijXjzHxfMp4h5JuSOoS5dyxAeGcyCp45ERTjic4AD-ROdrk5pyu9PJc_LtTFFlmMZ2EwrXLw_b1P77z1MDIbtDlbF8UM05JkggEYKAJ4YjxoLmWMXQymD_yRN-4qEqAwQ-m_p3hmV0ABb9y6xj8QkZxyLH0un4tPz-HPLg6dvCavBgBJj_o1viFboXpLdhdj37Z9cr-qb0NJF2en1NeY1U6b4roAAgt4m15brMdwSZu-KO09BcyK99sSQGKo24YWFWuKTUtvi6aF5_Q9vXFKWVxWNX7nb8u6CSBH1yWYheIQvbNl2bwj5yfHvxZLNjRYYF5IvWFK5c7FzuY5wITMWwhmIUohYOGV8k5ZHflURSGk0sfaxnEcOLe551aoxGfiPdmu6ip8IBRr3AibqVTKIP08cVKJfJ6HVHt45zM-IdNRrWbd19EwY4LZlRnsYNAOprfDhCSj8s2TDWHA1_9r6tfRWAZ0j2roVWgEF8AIgVTol2QUgBquEzEhB72l_6xYAJsEVp9-_P_FfSJ7EbYQnnPG1WeyvblpwxfANRt32G3cQ7Jz9P3ncvUbiGj5xQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLojy3UDASV--u40eSI1pRLdDdA2ql3izbcapUabJqNq166W_vTB48DgWJY5yxYs04M9-XjGcI-aSkDmHuHQsQ3pmMgmdOBMV4ojPAA7mTXW7Oaq2Xp_LbmTrbIYvxLAymVQ6-v_fpnbceRmaDNmebophhWpJMMAADRQBPrB6Rx1JFMTKw6R3_zR13JQlQmqH4r2M8swvggFduU-MviEhOOdY-lw8FqIcAaBeIjp6RpwOCpJ_7Re6TnVA9J3uLsXHbC3K7rq9DSRc_VtTXmNZOm-KyAAYLgJteWizIcE6bvirtLQXQivfbElBiqNuGFhVrim1Lr4umhef0Tb1xSlmcVzV-6G_LugkgRzcl2IXiEL2xZdm8JKdHX04WSzZ0WGBeSL1lSuXOxc7mOeCEzFuIZiFKIWLhlfJOWR35VEUhpNLH2sZxHDi3uedWqMRn4hXZreoqvCEUi9wIm6lUyiD9PHFSiXyeh1R7eOkzPiHTUa1m0xfSMGOG2YUZ7GDQDqa3w4Qko_LNHzvCgLP_19SPo7EM6B7V0KvQCC6AEgKr0H-TUYBquE7EhLzuLf1zxQLoJND69OD_F_eB7C1PVsfm-Ov6-1vyJMJ-wnPOuHpHdrdXbTgEkLN177tNfA9Iivta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+CRM+cosine+similarity+mapping+strategy+for+simultaneous+in-situ+visual+profiling+lignocellulose+in+plant+cell+walls&rft.jtitle=Carbohydrate+polymers&rft.au=Huang%2C+Yuanping&rft.au=Liao%2C+Keke&rft.au=Yang%2C+Zengling&rft.au=Tian%2C+Sicong&rft.date=2025-01-15&rft.issn=0144-8617&rft.volume=348+p.122904-&rft_id=info:doi/10.1016%2Fj.carbpol.2024.122904&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon