Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential

For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial ini...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 46; no. 5; pp. 873 - 878
Main Author YUAN Qing-Xin DING Guo-Hui
Format Journal Article
LanguageEnglish
Published IOP Publishing 15.11.2006
Subjects
Online AccessGet full text
ISSN0253-6102
DOI10.1088/0253-6102/46/5/021

Cover

Abstract For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial initial wave function in real and imaginary time spaces, respectively. In real time space, the results are in agreement with [Phys. Rev. A 51 (1995) 4704], but the trial wave function is restricted in a very small range. On the contrary, in imaginary time space, the trial wave function can be chosen widely, moreover, the results are stable.
AbstractList For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial initial wave function in real and imaginary time spaces, respectively. In real time space, the results are in agreement with [Phys. Rev. A 51 (1995) 4704], but the trial wave function is restricted in a very small range. On the contrary, in imaginary time space, the trial wave function can be chosen widely, moreover, the results are stable.
Author YUAN Qing-Xin DING Guo-Hui
AuthorAffiliation Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Author_xml – sequence: 1
  fullname: YUAN Qing-Xin DING Guo-Hui
BookMark eNp9UbFOwzAQ9VAk2sIPMFlsDKF2HDvJCKG0SJWK1DJbTmIXl8QOdjrw9zgq6kClTqd7997p3bsJGBlrJAB3GD1ilGUzFFMSMYziWcJmNLR4BMYn8BpMvN8jhOKU4THYF7btDr02O7hw9mBquOlFL-HGNgG1BloFn62X0Vwb30ttYGFNLY0PJA-3TnSdrGGA10ZGL7oNk6ASDVwK11qjK_hue2l6LZobcKVE4-XtX52Cj9f5tlhGq_XirXhaRRVJWB8lNK-pKhEpaSZRlpcloqpOVQASUTMcUJXlsszTClUySVVMYoLCMbTMkzRVZAqy497KWe-dVLzS4aZgq3dCNxwjPuTEh0j4EAlPGKehxUEa_5N2TrfC_VwWPRxF2nYn_jmPd_XgLTrnXtx9_2fo05rdd3gTL0X1pXQjeUwIixPGyC9AHpWN
CitedBy_id crossref_primary_10_1515_zna_2023_0020
crossref_primary_10_1016_j_cpc_2009_04_015
Cites_doi 10.1103/PhysRevLett.88.020401
10.1103/PhysRevLett.79.3549
10.1103/PhysRevLett.87.140402
10.1088/0253-6102/39/1/49
10.1103/PhysRevA.51.4704
10.1103/PhysRevLett.77.5315
10.1103/PhysRevLett.83.5198
10.1038/nature747
10.1103/PhysRevLett.92.203201
10.1126/science.282.5394.1686
10.1103/PhysRevLett.87.210402
10.1103/PhysRevLett.78.582
10.1103/PhysRevA.60.R1779
10.1103/PhysRevLett.82.2022
10.1126/science.275.5300.637
10.1103/PhysRevLett.80.2972
10.1103/PhysRevA.53.4254
10.1126/science.1088876
10.1088/0253-6102/43/5/012
10.1103/PhysRevA.67.013605
10.1016/S0021-9991(03)00102-5
10.1103/PhysRevLett.83.2498
10.1103/PhysRevLett.92.230401
10.1137/S1064827503422956
10.1103/PhysRevLett.76.6
10.1088/0253-6102/43/5/011
10.1103/PhysRevA.51.1382
10.1103/PhysRevE.62.1382
10.1103/PhysRevLett.92.040403
10.1103/PhysRevLett.84.2294
10.1103/PhysRevLett.94.050402
10.1103/PhysRevLett.77.420
10.1103/PhysRevLett.86.4447
10.1007/BF02731494
10.1103/PhysRevE.62.7438
10.1038/415039a
10.1016/S0021-9991(03)00097-4
10.1103/PhysRevA.53.R1954
10.1103/PhysRevLett.83.284
10.1126/science.269.5221.198
10.1126/science.283.5408.1706
10.1103/PhysRevLett.77.1671
10.1103/PhysRevLett.79.2164
10.1126/science.1071021
10.1016/S0375-9601(99)00878-6
10.1103/PhysRevA.65.043609
10.1126/science.1060182
10.1103/PhysRevA.53.R1950
10.1103/PhysRevLett.78.1842
10.1103/PhysRevA.53.2477
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0253-6102/46/5/021
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential
EndPage 878
ExternalDocumentID 10_1088_0253_6102_46_5_021
23362466
GroupedDBID 02O
042
1JI
1PV
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AAPBV
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CDYEO
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
PB6
UNR
-SA
-S~
AAYXX
ABJNI
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c346t-459d5fb03b58e089bb05fd7f03b4ad6158ef89eb97c0ce47f232307615b9477f3
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Thu Apr 24 22:58:35 EDT 2025
Wed Oct 01 02:50:07 EDT 2025
Mon May 13 14:53:51 EDT 2019
Tue Nov 10 14:20:30 EST 2020
Fri Nov 25 17:01:55 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-459d5fb03b58e089bb05fd7f03b4ad6158ef89eb97c0ce47f232307615b9477f3
Notes Bose-Einstein condensates, nonlinear Schrodinger equation, Crank-Nicolson method
11-2592/O3
O413
PageCount 6
ParticipantIDs crossref_citationtrail_10_1088_0253_6102_46_5_021
iop_primary_10_1088_0253_6102_46_5_021
crossref_primary_10_1088_0253_6102_46_5_021
chongqing_backfile_23362466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-11-15
PublicationDateYYYYMMDD 2006-11-15
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-15
  day: 15
PublicationDecade 2000
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2006
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
46
47
48
49
50
52
10
11
12
13
14
15
16
17
W.H. Press (53) 1988
18
L.P. Pitaevskii (19) 1961; 40
1
2
3
4
5
6
7
8
9
21
G.P. Zheng (45) 2005; 43
22
23
24
25
26
27
28
29
L.P. Pitaevskii (20) 1961; 13
30
31
Q.X. Yuan (39) 2005; 43
32
33
34
35
36
37
38
G.X. Hu (51) 2003; 39
40
41
42
43
References_xml – ident: 9
  doi: 10.1103/PhysRevLett.88.020401
– ident: 41
  doi: 10.1103/PhysRevLett.79.3549
– ident: 46
  doi: 10.1103/PhysRevLett.87.140402
– volume: 39
  start-page: 49
  issn: 0253-6102
  year: 2003
  ident: 51
  publication-title: Commun. Theor. Phys. (Beijing, China)
  doi: 10.1088/0253-6102/39/1/49
– ident: 33
  doi: 10.1103/PhysRevA.51.4704
– ident: 50
  doi: 10.1103/PhysRevLett.77.5315
– ident: 14
  doi: 10.1103/PhysRevLett.83.5198
– ident: 15
  doi: 10.1038/nature747
– ident: 29
  doi: 10.1103/PhysRevLett.92.203201
– ident: 6
  doi: 10.1126/science.282.5394.1686
– ident: 12
  doi: 10.1103/PhysRevLett.87.210402
– ident: 3
  doi: 10.1103/PhysRevLett.78.582
– ident: 26
  doi: 10.1103/PhysRevA.60.R1779
– ident: 43
  doi: 10.1103/PhysRevLett.82.2022
– ident: 2
  doi: 10.1126/science.275.5300.637
– ident: 25
  doi: 10.1103/PhysRevLett.80.2972
– ident: 40
  doi: 10.1103/PhysRevA.53.4254
– ident: 28
  doi: 10.1126/science.1088876
– volume: 43
  start-page: 819
  issn: 0253-6102
  year: 2005
  ident: 45
  publication-title: Commun. Theor. Phys. (Beijing, China)
  doi: 10.1088/0253-6102/43/5/012
– ident: 30
  doi: 10.1103/PhysRevA.67.013605
– ident: 37
  doi: 10.1016/S0021-9991(03)00102-5
– ident: 11
  doi: 10.1103/PhysRevLett.83.2498
– ident: 17
  doi: 10.1103/PhysRevLett.92.230401
– ident: 38
  doi: 10.1137/S1064827503422956
– ident: 21
  doi: 10.1103/PhysRevLett.76.6
– volume: 43
  start-page: 814
  issn: 0253-6102
  year: 2005
  ident: 39
  publication-title: Commun. Theor. Phys. (Beijing, China)
  doi: 10.1088/0253-6102/43/5/011
– ident: 32
  doi: 10.1103/PhysRevA.51.1382
– ident: 52
  doi: 10.1103/PhysRevE.62.1382
– ident: 5
  doi: 10.1103/PhysRevLett.92.040403
– ident: 27
  doi: 10.1103/PhysRevLett.84.2294
– ident: 31
  doi: 10.1103/PhysRevLett.94.050402
– ident: 10
  doi: 10.1103/PhysRevLett.77.420
– ident: 44
  doi: 10.1103/PhysRevLett.86.4447
– ident: 18
  doi: 10.1007/BF02731494
– ident: 34
  doi: 10.1103/PhysRevE.62.7438
– ident: 4
  doi: 10.1038/415039a
– ident: 36
  doi: 10.1016/S0021-9991(03)00097-4
– volume: 13
  start-page: 451
  issn: 0038-5646
  year: 1961
  ident: 20
  publication-title: Sov. Phys. JETP
– ident: 49
  doi: 10.1103/PhysRevA.53.R1954
– ident: 8
  doi: 10.1103/PhysRevLett.83.284
– ident: 1
  doi: 10.1126/science.269.5221.198
– ident: 7
  doi: 10.1126/science.283.5408.1706
– ident: 22
  doi: 10.1103/PhysRevLett.77.1671
– ident: 24
  doi: 10.1103/PhysRevLett.79.2164
– ident: 16
  doi: 10.1126/science.1071021
– year: 1988
  ident: 53
  publication-title: Numerical Recipes in C
– volume: 40
  start-page: 646
  year: 1961
  ident: 19
  publication-title: Zh. Eksp. Teor. Fiz
– ident: 35
  doi: 10.1016/S0375-9601(99)00878-6
– ident: 42
  doi: 10.1103/PhysRevA.65.043609
– ident: 13
  doi: 10.1126/science.1060182
– ident: 48
  doi: 10.1103/PhysRevA.53.R1950
– ident: 23
  doi: 10.1103/PhysRevLett.78.1842
– ident: 47
  doi: 10.1103/PhysRevA.53.2477
SSID ssj0002761
Score 1.7104224
Snippet For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 873
SubjectTerms Crank-Nicolson法
玻色子-爱因斯坦冷凝物
非线性Schrodinger方程
Title Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential
URI http://lib.cqvip.com/qk/83837X/20065/23362466.html
http://iopscience.iop.org/0253-6102/46/5/021
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  issn: 0253-6102
  databaseCode: IOP
  dateStart: 19820101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://iopscience.iop.org/
  omitProxy: false
  ssIdentifier: ssj0002761
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BEtJc2GbQNJsshOaC0qQTL8mRVS0klgNI3KK2YzMtmiTQ4cKJf-AP-RKqknQEYhG32Co7lrd6VbZfAWwFMXeB07HXc07RkxzuxZJbT8mBQhUbWlMRaZ-cyv4lP74SV1MwCSU3zItm5-_iZ3WSTyXQwPGDHS53BCbJ1qF1Sq_1zs7bbTdQFTlqK968kMFV9EkVxKTwP8-u71A_vNNI0_jbNwrmaB5OJs906nslN92HUnfN40fWxh-1fQHmGqTJduupsQhTNluC-QZ1smZNj5dgtroEasa_YVSHeMDGMnJJZShFUJRNXGcsd2wvH9uXp-fDIcJKO8zYfk4hdMeEWBnqvaLAujH7LLPeAQUOqEk_WH9wf0skvOw8L-l-0mD0By6PDi_2-14TjcEzIZelx0WcCqf9UIvI-lGstS9cqhxm8EGKwCiyLoqtjpXxjeXKIVYLyUsidMyVcuEyzGR5Zv8CM8qglSLSEMEYGWgaEb6LECpyifZNZDuw2o4OanNzQxxVSRCisuVSdqA3Ga_ENETmFE9jlFQH6lGUULcn1O0Jl4nAZK8D222Zoqbx-FZ6E0ewFfwokBSp68C_t0Jf17byU8FV-FU5eOiSoViDmfL-wa4j5Cn1RjXVXwHrU_J0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAXCoWKpRQshLig7GYTv3IsbVfLq90DlbhZa8eGqksSuumFE_-Bf8gv6UySjVpeQuIWW2PLD9nzzWT8DcCzJOMhCTaLxiEoepLDo0xyHyk5V6hiU-8aIu13h3J6zF9_EKtowuYtTFl1V_8QP1ui4HYJu4A4PaIu0OKJkxGXI4HF8ajKwxpcFylaA_SG72jWX8aJaihT-zbdu5nf90P8Cp_K4uMX1BpX9NQajuWS2plsgF0NuI02OR2e13bovv7E5fhfM7oDtztQynbbBnfhmi82YaMDqKw7_stNuNHEi7rlPVi02SBwBoy8VwVKEWplKy8bKwN7WS79j2_fD04QgfqTgu2VlG13SeCWoYqsKuwbq48KH-1TjoGWH4RN52efia-XzcqaQpnmi_twPDl4vzeNusQNkUu5rCMuslwEG6dWaB_rzNpYhFwFrODzHDGU9kFn3mbKxc5zFRDWpeRQETbjSoV0C9aLsvAPgDnl0KAReYq4jWw5i8ZA0IgquURTSPsBbPdbhorfnRKdlUlS1MtcygGMV5toXMd5Tqk3Fqb59661oaU3tPSGSyOwOB7Ai75N1TJ-_FX6Ke5qL_irgMGdHMDzy0J_7u3hvwo-gZuz_Yl5--rwzTbcatxCFJooHsF6fXbudxAo1fZxcxQuAHIpAm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Ground+State+Solution+of+Bose%E2%80%93Einstein+Condensates+Trapped+in+One-Dimensional+Harmonic+Potential&rft.jtitle=Communications+in+theoretical+physics&rft.au=Qing-Xin%2C+Yuan&rft.au=Guo-Hui%2C+Ding&rft.date=2006-11-15&rft.issn=0253-6102&rft.volume=46&rft.issue=5&rft.spage=873&rft.epage=878&rft_id=info:doi/10.1088%2F0253-6102%2F46%2F5%2F021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_46_5_021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg