Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential
For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial ini...
Saved in:
Published in | Communications in theoretical physics Vol. 46; no. 5; pp. 873 - 878 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
15.11.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-6102 |
DOI | 10.1088/0253-6102/46/5/021 |
Cover
Abstract | For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial initial wave function in real and imaginary time spaces, respectively. In real time space, the results are in agreement with [Phys. Rev. A 51 (1995) 4704], but the trial wave function is restricted in a very small range. On the contrary, in imaginary time space, the trial wave function can be chosen widely, moreover, the results are stable. |
---|---|
AbstractList | For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial initial wave function in real and imaginary time spaces, respectively. In real time space, the results are in agreement with [Phys. Rev. A 51 (1995) 4704], but the trial wave function is restricted in a very small range. On the contrary, in imaginary time space, the trial wave function can be chosen widely, moreover, the results are stable. |
Author | YUAN Qing-Xin DING Guo-Hui |
AuthorAffiliation | Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China |
Author_xml | – sequence: 1 fullname: YUAN Qing-Xin DING Guo-Hui |
BookMark | eNp9UbFOwzAQ9VAk2sIPMFlsDKF2HDvJCKG0SJWK1DJbTmIXl8QOdjrw9zgq6kClTqd7997p3bsJGBlrJAB3GD1ilGUzFFMSMYziWcJmNLR4BMYn8BpMvN8jhOKU4THYF7btDr02O7hw9mBquOlFL-HGNgG1BloFn62X0Vwb30ttYGFNLY0PJA-3TnSdrGGA10ZGL7oNk6ASDVwK11qjK_hue2l6LZobcKVE4-XtX52Cj9f5tlhGq_XirXhaRRVJWB8lNK-pKhEpaSZRlpcloqpOVQASUTMcUJXlsszTClUySVVMYoLCMbTMkzRVZAqy497KWe-dVLzS4aZgq3dCNxwjPuTEh0j4EAlPGKehxUEa_5N2TrfC_VwWPRxF2nYn_jmPd_XgLTrnXtx9_2fo05rdd3gTL0X1pXQjeUwIixPGyC9AHpWN |
CitedBy_id | crossref_primary_10_1515_zna_2023_0020 crossref_primary_10_1016_j_cpc_2009_04_015 |
Cites_doi | 10.1103/PhysRevLett.88.020401 10.1103/PhysRevLett.79.3549 10.1103/PhysRevLett.87.140402 10.1088/0253-6102/39/1/49 10.1103/PhysRevA.51.4704 10.1103/PhysRevLett.77.5315 10.1103/PhysRevLett.83.5198 10.1038/nature747 10.1103/PhysRevLett.92.203201 10.1126/science.282.5394.1686 10.1103/PhysRevLett.87.210402 10.1103/PhysRevLett.78.582 10.1103/PhysRevA.60.R1779 10.1103/PhysRevLett.82.2022 10.1126/science.275.5300.637 10.1103/PhysRevLett.80.2972 10.1103/PhysRevA.53.4254 10.1126/science.1088876 10.1088/0253-6102/43/5/012 10.1103/PhysRevA.67.013605 10.1016/S0021-9991(03)00102-5 10.1103/PhysRevLett.83.2498 10.1103/PhysRevLett.92.230401 10.1137/S1064827503422956 10.1103/PhysRevLett.76.6 10.1088/0253-6102/43/5/011 10.1103/PhysRevA.51.1382 10.1103/PhysRevE.62.1382 10.1103/PhysRevLett.92.040403 10.1103/PhysRevLett.84.2294 10.1103/PhysRevLett.94.050402 10.1103/PhysRevLett.77.420 10.1103/PhysRevLett.86.4447 10.1007/BF02731494 10.1103/PhysRevE.62.7438 10.1038/415039a 10.1016/S0021-9991(03)00097-4 10.1103/PhysRevA.53.R1954 10.1103/PhysRevLett.83.284 10.1126/science.269.5221.198 10.1126/science.283.5408.1706 10.1103/PhysRevLett.77.1671 10.1103/PhysRevLett.79.2164 10.1126/science.1071021 10.1016/S0375-9601(99)00878-6 10.1103/PhysRevA.65.043609 10.1126/science.1060182 10.1103/PhysRevA.53.R1950 10.1103/PhysRevLett.78.1842 10.1103/PhysRevA.53.2477 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0253-6102/46/5/021 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential |
EndPage | 878 |
ExternalDocumentID | 10_1088_0253_6102_46_5_021 23362466 |
GroupedDBID | 02O 042 1JI 1PV 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AAPBV AATNI ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CDYEO CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA PB6 UNR -SA -S~ AAYXX ABJNI ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c346t-459d5fb03b58e089bb05fd7f03b4ad6158ef89eb97c0ce47f232307615b9477f3 |
IEDL.DBID | IOP |
ISSN | 0253-6102 |
IngestDate | Thu Apr 24 22:58:35 EDT 2025 Wed Oct 01 02:50:07 EDT 2025 Mon May 13 14:53:51 EDT 2019 Tue Nov 10 14:20:30 EST 2020 Fri Nov 25 17:01:55 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-459d5fb03b58e089bb05fd7f03b4ad6158ef89eb97c0ce47f232307615b9477f3 |
Notes | Bose-Einstein condensates, nonlinear Schrodinger equation, Crank-Nicolson method 11-2592/O3 O413 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1088_0253_6102_46_5_021 iop_primary_10_1088_0253_6102_46_5_021 crossref_primary_10_1088_0253_6102_46_5_021 chongqing_backfile_23362466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-11-15 |
PublicationDateYYYYMMDD | 2006-11-15 |
PublicationDate_xml | – month: 11 year: 2006 text: 2006-11-15 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAlternate | Communications in Theoretical Physics |
PublicationYear | 2006 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 46 47 48 49 50 52 10 11 12 13 14 15 16 17 W.H. Press (53) 1988 18 L.P. Pitaevskii (19) 1961; 40 1 2 3 4 5 6 7 8 9 21 G.P. Zheng (45) 2005; 43 22 23 24 25 26 27 28 29 L.P. Pitaevskii (20) 1961; 13 30 31 Q.X. Yuan (39) 2005; 43 32 33 34 35 36 37 38 G.X. Hu (51) 2003; 39 40 41 42 43 |
References_xml | – ident: 9 doi: 10.1103/PhysRevLett.88.020401 – ident: 41 doi: 10.1103/PhysRevLett.79.3549 – ident: 46 doi: 10.1103/PhysRevLett.87.140402 – volume: 39 start-page: 49 issn: 0253-6102 year: 2003 ident: 51 publication-title: Commun. Theor. Phys. (Beijing, China) doi: 10.1088/0253-6102/39/1/49 – ident: 33 doi: 10.1103/PhysRevA.51.4704 – ident: 50 doi: 10.1103/PhysRevLett.77.5315 – ident: 14 doi: 10.1103/PhysRevLett.83.5198 – ident: 15 doi: 10.1038/nature747 – ident: 29 doi: 10.1103/PhysRevLett.92.203201 – ident: 6 doi: 10.1126/science.282.5394.1686 – ident: 12 doi: 10.1103/PhysRevLett.87.210402 – ident: 3 doi: 10.1103/PhysRevLett.78.582 – ident: 26 doi: 10.1103/PhysRevA.60.R1779 – ident: 43 doi: 10.1103/PhysRevLett.82.2022 – ident: 2 doi: 10.1126/science.275.5300.637 – ident: 25 doi: 10.1103/PhysRevLett.80.2972 – ident: 40 doi: 10.1103/PhysRevA.53.4254 – ident: 28 doi: 10.1126/science.1088876 – volume: 43 start-page: 819 issn: 0253-6102 year: 2005 ident: 45 publication-title: Commun. Theor. Phys. (Beijing, China) doi: 10.1088/0253-6102/43/5/012 – ident: 30 doi: 10.1103/PhysRevA.67.013605 – ident: 37 doi: 10.1016/S0021-9991(03)00102-5 – ident: 11 doi: 10.1103/PhysRevLett.83.2498 – ident: 17 doi: 10.1103/PhysRevLett.92.230401 – ident: 38 doi: 10.1137/S1064827503422956 – ident: 21 doi: 10.1103/PhysRevLett.76.6 – volume: 43 start-page: 814 issn: 0253-6102 year: 2005 ident: 39 publication-title: Commun. Theor. Phys. (Beijing, China) doi: 10.1088/0253-6102/43/5/011 – ident: 32 doi: 10.1103/PhysRevA.51.1382 – ident: 52 doi: 10.1103/PhysRevE.62.1382 – ident: 5 doi: 10.1103/PhysRevLett.92.040403 – ident: 27 doi: 10.1103/PhysRevLett.84.2294 – ident: 31 doi: 10.1103/PhysRevLett.94.050402 – ident: 10 doi: 10.1103/PhysRevLett.77.420 – ident: 44 doi: 10.1103/PhysRevLett.86.4447 – ident: 18 doi: 10.1007/BF02731494 – ident: 34 doi: 10.1103/PhysRevE.62.7438 – ident: 4 doi: 10.1038/415039a – ident: 36 doi: 10.1016/S0021-9991(03)00097-4 – volume: 13 start-page: 451 issn: 0038-5646 year: 1961 ident: 20 publication-title: Sov. Phys. JETP – ident: 49 doi: 10.1103/PhysRevA.53.R1954 – ident: 8 doi: 10.1103/PhysRevLett.83.284 – ident: 1 doi: 10.1126/science.269.5221.198 – ident: 7 doi: 10.1126/science.283.5408.1706 – ident: 22 doi: 10.1103/PhysRevLett.77.1671 – ident: 24 doi: 10.1103/PhysRevLett.79.2164 – ident: 16 doi: 10.1126/science.1071021 – year: 1988 ident: 53 publication-title: Numerical Recipes in C – volume: 40 start-page: 646 year: 1961 ident: 19 publication-title: Zh. Eksp. Teor. Fiz – ident: 35 doi: 10.1016/S0375-9601(99)00878-6 – ident: 42 doi: 10.1103/PhysRevA.65.043609 – ident: 13 doi: 10.1126/science.1060182 – ident: 48 doi: 10.1103/PhysRevA.53.R1950 – ident: 23 doi: 10.1103/PhysRevLett.78.1842 – ident: 47 doi: 10.1103/PhysRevA.53.2477 |
SSID | ssj0002761 |
Score | 1.7104224 |
Snippet | For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 873 |
SubjectTerms | Crank-Nicolson法 玻色子-爱因斯坦冷凝物 非线性Schrodinger方程 |
Title | Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential |
URI | http://lib.cqvip.com/qk/83837X/20065/23362466.html http://iopscience.iop.org/0253-6102/46/5/021 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform issn: 0253-6102 databaseCode: IOP dateStart: 19820101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0002761 providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BEtJc2GbQNJsshOaC0qQTL8mRVS0klgNI3KK2YzMtmiTQ4cKJf-AP-RKqknQEYhG32Co7lrd6VbZfAWwFMXeB07HXc07RkxzuxZJbT8mBQhUbWlMRaZ-cyv4lP74SV1MwCSU3zItm5-_iZ3WSTyXQwPGDHS53BCbJ1qF1Sq_1zs7bbTdQFTlqK968kMFV9EkVxKTwP8-u71A_vNNI0_jbNwrmaB5OJs906nslN92HUnfN40fWxh-1fQHmGqTJduupsQhTNluC-QZ1smZNj5dgtroEasa_YVSHeMDGMnJJZShFUJRNXGcsd2wvH9uXp-fDIcJKO8zYfk4hdMeEWBnqvaLAujH7LLPeAQUOqEk_WH9wf0skvOw8L-l-0mD0By6PDi_2-14TjcEzIZelx0WcCqf9UIvI-lGstS9cqhxm8EGKwCiyLoqtjpXxjeXKIVYLyUsidMyVcuEyzGR5Zv8CM8qglSLSEMEYGWgaEb6LECpyifZNZDuw2o4OanNzQxxVSRCisuVSdqA3Ga_ENETmFE9jlFQH6lGUULcn1O0Jl4nAZK8D222Zoqbx-FZ6E0ewFfwokBSp68C_t0Jf17byU8FV-FU5eOiSoViDmfL-wa4j5Cn1RjXVXwHrU_J0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAXCoWKpRQshLig7GYTv3IsbVfLq90DlbhZa8eGqksSuumFE_-Bf8gv6UySjVpeQuIWW2PLD9nzzWT8DcCzJOMhCTaLxiEoepLDo0xyHyk5V6hiU-8aIu13h3J6zF9_EKtowuYtTFl1V_8QP1ui4HYJu4A4PaIu0OKJkxGXI4HF8ajKwxpcFylaA_SG72jWX8aJaihT-zbdu5nf90P8Cp_K4uMX1BpX9NQajuWS2plsgF0NuI02OR2e13bovv7E5fhfM7oDtztQynbbBnfhmi82YaMDqKw7_stNuNHEi7rlPVi02SBwBoy8VwVKEWplKy8bKwN7WS79j2_fD04QgfqTgu2VlG13SeCWoYqsKuwbq48KH-1TjoGWH4RN52efia-XzcqaQpnmi_twPDl4vzeNusQNkUu5rCMuslwEG6dWaB_rzNpYhFwFrODzHDGU9kFn3mbKxc5zFRDWpeRQETbjSoV0C9aLsvAPgDnl0KAReYq4jWw5i8ZA0IgquURTSPsBbPdbhorfnRKdlUlS1MtcygGMV5toXMd5Tqk3Fqb59661oaU3tPSGSyOwOB7Ai75N1TJ-_FX6Ke5qL_irgMGdHMDzy0J_7u3hvwo-gZuz_Yl5--rwzTbcatxCFJooHsF6fXbudxAo1fZxcxQuAHIpAm8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Ground+State+Solution+of+Bose%E2%80%93Einstein+Condensates+Trapped+in+One-Dimensional+Harmonic+Potential&rft.jtitle=Communications+in+theoretical+physics&rft.au=Qing-Xin%2C+Yuan&rft.au=Guo-Hui%2C+Ding&rft.date=2006-11-15&rft.issn=0253-6102&rft.volume=46&rft.issue=5&rft.spage=873&rft.epage=878&rft_id=info:doi/10.1088%2F0253-6102%2F46%2F5%2F021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_46_5_021 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |