Machine learning and Design of Experiments: Alternative approaches or complementary methodologies for quality improvement?

Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and...

Full description

Saved in:
Bibliographic Details
Published inQuality and reliability engineering international Vol. 36; no. 6; pp. 1837 - 1848
Main Authors Freiesleben, Johannes, Keim, Jan, Grutsch, Markus
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text
ISSN0748-8017
1099-1638
DOI10.1002/qre.2579

Cover

Abstract Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and available data sets increased manifold over the past two decades, providing an information‐rich environment in which human reasoning can partially be replaced by computer reasoning. In this paper, we want to assess the implications of ML for Design of Experiments (DoE), a statistical methodology widely used in Quality Management for quantifying effects and interactions of factors with influence on the production quality or the process yield. We specifically want to assess the future role and importance of DoE: Will it remain unaltered by ML, will it be made obsolete, or will it be reinforced? With this, we want to contribute to the discussion of the future use of traditional Quality Management methodologies in production, as our ML assessment can in principle be applied to other statistical methodologies as well. While we are convinced that ML will heavily impact the field of Quality Management and its predominant set of statistical methodologies, we find reason to expect that this impact will be a mutual one. As this is the first paper addressing the joint force potential of the two methodologies ML and DoE, we expect a range of follow‐up papers being written on the subject and a spark in specialized applications addressing DoE's ML‐enhanced vital functionality for process improvements.
AbstractList Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and available data sets increased manifold over the past two decades, providing an information‐rich environment in which human reasoning can partially be replaced by computer reasoning. In this paper, we want to assess the implications of ML for Design of Experiments (DoE), a statistical methodology widely used in Quality Management for quantifying effects and interactions of factors with influence on the production quality or the process yield. We specifically want to assess the future role and importance of DoE: Will it remain unaltered by ML, will it be made obsolete, or will it be reinforced? With this, we want to contribute to the discussion of the future use of traditional Quality Management methodologies in production, as our ML assessment can in principle be applied to other statistical methodologies as well. While we are convinced that ML will heavily impact the field of Quality Management and its predominant set of statistical methodologies, we find reason to expect that this impact will be a mutual one. As this is the first paper addressing the joint force potential of the two methodologies ML and DoE, we expect a range of follow‐up papers being written on the subject and a spark in specialized applications addressing DoE's ML‐enhanced vital functionality for process improvements.
Author Keim, Jan
Freiesleben, Johannes
Grutsch, Markus
Author_xml – sequence: 1
  givenname: Johannes
  orcidid: 0000-0003-3969-4129
  surname: Freiesleben
  fullname: Freiesleben, Johannes
  email: jfreiesleben@gmx.de
  organization: Institute for Quality Management and Business Administration
– sequence: 2
  givenname: Jan
  surname: Keim
  fullname: Keim, Jan
  organization: Institute for Quality Management and Business Administration
– sequence: 3
  givenname: Markus
  surname: Grutsch
  fullname: Grutsch, Markus
  organization: Institute for Quality Management and Business Administration
BookMark eNp1kEtLAzEUhYMoWB_gTwi4cTM1yWRmEjciWh-giKLrIZ25aVPSZJpM1frrTa0rUbhwF_c753LOHtp23gFCR5QMKSHsdBFgyIpKbqEBJVJmtMzFNhqQiotMEFrtor0YZ4QkWIoB-nxQzdQ4wBZUcMZNsHItvoJoJg57jUcfHQQzB9fHM3xhewhO9eYNsOq64JMWIvYBN37eWVhjKqzwHPqpb731E5POOt0XS2VNv8JmnlRv3-D5AdrRykY4_Nn76PV69HJ5m90_3txdXtxnTc5LmQmlqJYVMMlLISTTlW5zUXJeEpGTMdNpQLRAG141VSsLNi5E2SquxwUhOeT76Hjjm14vlhD7euaXKYaNNeO8KkoqGUvUyYZqgo8xgK67lDulqSmp183Wqdl63WxCh7_QxvSpFe_6oIz9S5BtBO_Gwupf4_rpefTNfwHtrI41
CitedBy_id crossref_primary_10_1007_s12633_024_02941_w
crossref_primary_10_1080_02664763_2021_1907840
crossref_primary_10_1016_j_procs_2022_09_168
crossref_primary_10_1021_acsami_1c14586
crossref_primary_10_1007_s00170_024_13951_8
crossref_primary_10_1177_09544062241281092
crossref_primary_10_1038_s41598_024_83581_3
crossref_primary_10_1039_D1SC01000J
crossref_primary_10_1108_IJQRM_09_2021_0305
crossref_primary_10_3390_pharmaceutics15082056
crossref_primary_10_3390_ma16124425
crossref_primary_10_1007_s11663_022_02689_x
crossref_primary_10_1007_s00362_023_01437_w
crossref_primary_10_1016_j_colsurfa_2024_134026
crossref_primary_10_1016_j_ceramint_2022_11_201
crossref_primary_10_1109_JSYST_2024_3521477
crossref_primary_10_1177_02670836251314970
crossref_primary_10_1007_s12008_024_02154_w
crossref_primary_10_3389_fpls_2020_576177
crossref_primary_10_1016_j_dajour_2024_100410
crossref_primary_10_3390_bdcc5040061
crossref_primary_10_1002_qre_3025
crossref_primary_10_1016_j_rechem_2023_101295
crossref_primary_10_1109_TEM_2023_3335237
crossref_primary_10_1371_journal_pntd_0012736
crossref_primary_10_1002_batt_202300046
crossref_primary_10_1007_s12633_023_02559_4
crossref_primary_10_1016_j_pecs_2024_101199
crossref_primary_10_1016_j_ceramint_2023_02_141
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1021_acs_iecr_2c00936
crossref_primary_10_1007_s11837_024_06595_2
crossref_primary_10_3390_math9192479
crossref_primary_10_1016_j_addr_2021_05_015
crossref_primary_10_1080_14783363_2020_1801342
crossref_primary_10_1126_science_adj1817
crossref_primary_10_1002_er_6217
crossref_primary_10_1007_s11663_024_03170_7
crossref_primary_10_3390_bioengineering9100561
crossref_primary_10_1177_02670836241249456
crossref_primary_10_1557_s43577_024_00816_4
Cites_doi 10.1147/rd.33.0210
10.1007/s00521-005-0470-3
10.1002/qre.444
10.1007/s10994-011-5242-y
10.1109/CERMA.2006.83
10.1109/MM.2018.112130030
10.1002/nme.2750
10.1016/j.specom.2009.08.009
10.1126/science.aaa8415
10.1016/j.ijpe.2018.08.016
10.1109/TSMCC.2012.2216260
10.2514/6.2004-2011
10.1016/j.infoandorg.2018.02.005
10.1039/C4RA12750A
10.12988/ces.2018.84166
10.1017/CBO9781107298019
10.1080/01441640902827623
10.1016/j.ijpe.2017.06.006
10.1002/1099-1638(200011/12)16:6<461::AID-QRE341>3.0.CO;2-G
10.1016/j.neucom.2008.02.002
10.1093/mind/LIX.236.433
10.1214/ss/1177010638
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.2579
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 1848
ExternalDocumentID 10_1002_qre_2579
QRE2579
Genre article
GrantInformation_xml – fundername: FHS St. Gallen University of Applied Sciences
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c3469-8aa1f97e29468892f7fd3864460830b2fb2fe8de1c47c7d952b586da4fb5003e3
IEDL.DBID DR2
ISSN 0748-8017
IngestDate Thu Jul 03 08:10:27 EDT 2025
Wed Oct 01 01:57:42 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:32:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3469-8aa1f97e29468892f7fd3864460830b2fb2fe8de1c47c7d952b586da4fb5003e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3969-4129
PQID 2447561922
PQPubID 1016437
PageCount 12
ParticipantIDs proquest_journals_2447561922
crossref_primary_10_1002_qre_2579
crossref_citationtrail_10_1002_qre_2579
wiley_primary_10_1002_qre_2579_QRE2579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2015; 5
2002; 18
2018; 204
2011; 82
2017; 191
1997
2006
1994
2004
2015; 349
2003
1959; 3
1935
2009; 29
2010; 82
1950; 59
2000; 16
2009; 72
1961; 3
2018
2017
1988; 110
2015
2014
2018; 11
2018; 38
2010; 52
2012; 42
1988
2005; 14
Domingos P (e_1_2_7_33_1) 2015
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Fisher RA (e_1_2_7_7_1) 1935
e_1_2_7_8_1
Staelin C. (e_1_2_7_18_1) 2003
e_1_2_7_19_1
e_1_2_7_17_1
Ghahramani Z. (e_1_2_7_29_1) 2003
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Montgomery DC (e_1_2_7_9_1) 2017
e_1_2_7_27_1
Box GEP (e_1_2_7_28_1) 1961; 3
Sarle WS (e_1_2_7_14_1) 1994
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Box GEP (e_1_2_7_34_1) 1988; 110
Box GEP (e_1_2_7_6_1) 1997
References_xml – year: 1935
– volume: 204
  start-page: 358
  year: 2018
  end-page: 364
  article-title: Quality design method using process capability index based on Monte‐Carlo method and real‐coded genetic algorithm
  publication-title: International Journal of Production Economics
– volume: 3
  start-page: 311
  issue: 3
  year: 1961
  end-page: 351
  article-title: The 2 fractional factorial designs
  publication-title: Dent Tech
– volume: 38
  start-page: 21
  issue: 2
  year: 2018
  end-page: 29
  article-title: A new golden age in computer architecture: empowering the machine‐learning revolution
  publication-title: IEEE Micro
– volume: 110
  start-page: 32
  issue: 1
  year: 1988
  end-page: 40
  article-title: Statistical tools for improving designs
  publication-title: Mechanical Engineering
– year: 2003
– volume: 28
  start-page: 62
  issue: 1
  year: 2018
  end-page: 70
  article-title: Working and organizing in the age of the learning algorithm
  publication-title: Information and Organization
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  end-page: 260
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– volume: 18
  start-page: 29
  issue: 1
  year: 2002
  end-page: 35
  article-title: Training for design of experiments using a catapult
  publication-title: Quality and Reliability Engineering International
– year: 2018
– year: 1994
– year: 2014
– volume: 16
  start-page: 461
  issue: 6
  year: 2000
  end-page: 473
  article-title: Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments
  publication-title: Quality and Reliability Engineering International
– volume: 82
  start-page: 275
  issue: 3
  year: 2011
  end-page: 279
  article-title: The changing science of machine learning
  publication-title: Machine Learning
– volume: 14
  start-page: 337
  issue: 4
  year: 2005
  end-page: 344
  article-title: The optimisation of neural network parameters using Taguchi's design of experiments approach: an application in manufacturing process modelling
  publication-title: Neural Comput Applic
– volume: 11
  start-page: 1677
  issue: 34
  year: 2018
  end-page: 1694
  article-title: Survey of biometric pattern recognition via machine learning techniques
  publication-title: Contemporary Engineering Sciences
– volume: 52
  start-page: 12
  issue: 2010
  year: 2010
  end-page: 40
  article-title: An overview of text‐independent speaker recognition: from features to supervectors
  publication-title: Speech Communication
– volume: 29
  start-page: 587
  issue: 5
  year: 2009
  end-page: 617
  article-title: Constructing efficient stated choice experimental designs
  publication-title: Transport Reviews
– year: 1988
– volume: 3
  start-page: 210
  issue: 3
  year: 1959
  end-page: 229
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM Journal of Research and Development
– year: 2006
– year: 2004
– year: 1997
– volume: 5
  start-page: 6385
  issue: 9
  year: 2015
  end-page: 6394
  article-title: Experimental design and machine learning strategies for parameters screening and optimization of Hantzsch condensation reaction for the assay of sodium alendronate in oral solution
  publication-title: RSC Adv
– volume: 42
  start-page: 1679
  issue: 6
  year: 2012
  end-page: 1689
  article-title: A machine learning‐based framework for automatic visual inspection of microdrill bits in PCB production
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics ‐ Part C: Applications and Reviews
– year: 2017
– volume: 191
  start-page: 97
  year: 2017
  end-page: 112
  article-title: A multidisciplinary perspective of big data in management research
  publication-title: International Journal of Production Economics
– volume: 72
  start-page: 1160
  issue: 4–6
  year: 2009
  end-page: 1178
  article-title: Design of experiments on neural network's training for nonlinear time series forecasting
  publication-title: Neurocomputing
– year: 2015
– volume: 59
  start-page: 433
  issue: 236
  year: 1950
  end-page: 460
  article-title: Computing machinery and intelligence
  publication-title: Mind
– volume: 82
  start-page: 135
  issue: 2
  year: 2010
  end-page: 156
  article-title: An algorithm for fast optimal Latin hypercube design of experiments
  publication-title: Int J Numer Methods Eng
– ident: e_1_2_7_10_1
  doi: 10.1147/rd.33.0210
– ident: e_1_2_7_20_1
  doi: 10.1007/s00521-005-0470-3
– volume-title: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
  year: 2015
  ident: e_1_2_7_33_1
– ident: e_1_2_7_27_1
  doi: 10.1002/qre.444
– ident: e_1_2_7_15_1
  doi: 10.1007/s10994-011-5242-y
– volume: 3
  start-page: 311
  issue: 3
  year: 1961
  ident: e_1_2_7_28_1
  article-title: The 2k−p fractional factorial designs
  publication-title: Dent Tech
– volume-title: Design and Analysis of Experiments
  year: 2017
  ident: e_1_2_7_9_1
– volume-title: Parameter selection for support vector machines
  year: 2003
  ident: e_1_2_7_18_1
– ident: e_1_2_7_21_1
  doi: 10.1109/CERMA.2006.83
– ident: e_1_2_7_4_1
  doi: 10.1109/MM.2018.112130030
– ident: e_1_2_7_24_1
  doi: 10.1002/nme.2750
– volume-title: Lecture Notes in Computer Science, 3176, 72–112
  year: 2003
  ident: e_1_2_7_29_1
– volume-title: The Design of Experiments
  year: 1935
  ident: e_1_2_7_7_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.specom.2009.08.009
– ident: e_1_2_7_16_1
  doi: 10.1126/science.aaa8415
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ijpe.2018.08.016
– ident: e_1_2_7_36_1
  doi: 10.1109/TSMCC.2012.2216260
– ident: e_1_2_7_23_1
  doi: 10.2514/6.2004-2011
– ident: e_1_2_7_5_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.infoandorg.2018.02.005
– ident: e_1_2_7_25_1
  doi: 10.1039/C4RA12750A
– ident: e_1_2_7_31_1
  doi: 10.12988/ces.2018.84166
– ident: e_1_2_7_2_1
– ident: e_1_2_7_30_1
  doi: 10.1017/CBO9781107298019
– volume: 110
  start-page: 32
  issue: 1
  year: 1988
  ident: e_1_2_7_34_1
  article-title: Statistical tools for improving designs
  publication-title: Mechanical Engineering
– ident: e_1_2_7_35_1
– ident: e_1_2_7_8_1
  doi: 10.1080/01441640902827623
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ijpe.2017.06.006
– ident: e_1_2_7_19_1
  doi: 10.1002/1099-1638(200011/12)16:6<461::AID-QRE341>3.0.CO;2-G
– volume-title: Statistical Control by Monitoring and Feedback Control
  year: 1997
  ident: e_1_2_7_6_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neucom.2008.02.002
– volume-title: Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual SAS Users Group International Conference
  year: 1994
  ident: e_1_2_7_14_1
– ident: e_1_2_7_11_1
  doi: 10.1093/mind/LIX.236.433
– ident: e_1_2_7_12_1
– ident: e_1_2_7_13_1
  doi: 10.1214/ss/1177010638
SSID ssj0010098
Score 2.4394739
Snippet Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1837
SubjectTerms Algorithms
Design of Experiments
in‐process monitoring
Machine learning
Optimization
quality improvement
quality maintenance
Quality management
Reasoning
Title Machine learning and Design of Experiments: Alternative approaches or complementary methodologies for quality improvement?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.2579
https://www.proquest.com/docview/2447561922
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-1638
  dateEnd: 20241004
  omitProxy: false
  ssIdentifier: ssj0010098
  issn: 0748-8017
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0748-8017
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLk6nRBB96ramTZv4IkM3hjDB4WDgQ0naRMTRabcJ2683l7aboiBCoQ89oW0up99Jv_MdAM6lh6XCrcRhiBPHZ4Q6CiUIh1l5Nkkp0wnOvfugO_DvhniYsyp1LozVhyg33PTKMP5aL3DGJ42laOh7JupqvuncPdfD5g9tv1SOcrVOplXgJNoJh4XubBM1ioZfv0RLeLkKUs1XprMFnorns-SS1_psyuvx4pt04_9eYBts5uATtuxs2QFrIt0FGyuShHtg0TPsSgHzchLPkKUJvDU8DziWsF1WBJhcwdYo3078ELAQJxcTOM6gYapbYno2h7ZMtXGz6rKCydDmcs7hi9nTMIbX-2DQaT_edJ28PoMTeyqqdghjrqShQNQPCKFIhjLxiAJYgcJ1TY6kOgRJhBv7YRwmFCOOSZAwX3KsnInwDkAlHafiEEDXU3Eb5r5IVICHmU8JEzhmSKgAlBKMquCyGKsozsXLdQ2NUWRll1GkejPSvVkFZ6XlmxXs-MGmVgx3lC_ZSYS09KEOJ9XNLsy4_do-eui39fnor4bHYB3pON2QAGugMs1m4kSBmSk_NdP2EwkE8zY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH3-Kj6gqip7TNJtvs6kGKVqq2gmKhByFskl0RpdU-BP317iNpqyiIEMghsyT7mNlvJrPfAOxLj0iFW6nDcUQdn1PmKJQgHG7p2SRjXB9wbl5X6i3_sk3aOTjOzsJYfohRwE1rhrHXWsF1QLo0Zg197YmiWnBsCqb17zmtlWe3I-4oVzNlWg5Oqs1wkDHPlnEpa_l1LxoDzEmYavaZ8wW4z77Qppc8FYeDqBh_fCNv_GcXFmE-xZ-oahfMEuREZxnmJlgJV-CjaRIsBUorSjwg3knQmUn1QF2JaqOiAP0jVH1OI4pvAmX85KKPuj1kktVtbnrvHdlK1cbSqscKKSN7nPMdPZqwhhE8WYXWee3utO6kJRqc2FOOtUM5dyULBGZ-hVKGZSATjyqMVVHQrhxhqS5BE-HGfhAHCSM4IrSScF9GRNkT4a1BvtPtiHVArqdcNxL5IlE-HuE-o1yQmGOhfFBGCd6Aw2yywjjlL9dlNJ5Dy7yMQzWaoR7NDdgbSb5Yzo4fZArZfIep1vZDrNkPtUepXnZgJu7X9uHNbU3fN_8quAsz9btmI2xcXF9twSzWbrvJCSxAftAbim2FbQbRjlnDnzAC91I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBu3iZGkH0qZtNmzbxRcRteJuoKAg-lLRNRBzb3EVwv96TpN2mKIhQ6ENPaJvLyXcOX76D0J7yqALcyhxBYub4gnEHUIJ0hJVnU5wLfcC5fh2cPfgXj_QxY1XqszBWH2KYcNMrw_hrvcDbqSqPREPfOrIE841Poik_gOBKA6K7oXSUq4UyrQQn0144zIVnD0k5b_l1Kxrhy3GUaraZ2jx6yj_QskteS_1eXEoG37Qb__cHC2guQ5_4xE6XRTQhm0todkyTcBkN6oZeKXFWT-IZi2aKK4bogVsKV4clAbpH-KSR5RPfJc7VyWUXtzrYUNUtM73zgW2dauNn4THgZGwPc37gF5PUMIbHK-ihVr0_PXOyAg1O4kFY7TAhXMVDSbgfMMaJClXqMUBYAQC7w5gouCRLpZv4YRKmnJKYsiAVvoopeBPpraJCs9WUawi7HgRuNPZlChEeFT5nQtJEEAkRKGeUrKODfKyiJFMv10U0GpHVXSYR9Gake3Md7Q4t21ax4webYj7cUbZmuxHR2oc6noSX7Ztx-7V9dHtX1feNvxruoOmbSi26Or--3EQzRMfshhBYRIVepy-3ANj04m0zgz8BXzP2AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+Design+of+Experiments%3A+Alternative+approaches+or+complementary+methodologies+for+quality+improvement%3F&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Freiesleben%2C+Johannes&rft.au=Keim%2C+Jan&rft.au=Grutsch%2C+Markus&rft.date=2020-10-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=36&rft.issue=6&rft.spage=1837&rft.epage=1848&rft_id=info:doi/10.1002%2Fqre.2579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qre_2579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon