Machine learning and Design of Experiments: Alternative approaches or complementary methodologies for quality improvement?
Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and...
Saved in:
Published in | Quality and reliability engineering international Vol. 36; no. 6; pp. 1837 - 1848 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0748-8017 1099-1638 |
DOI | 10.1002/qre.2579 |
Cover
Abstract | Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and available data sets increased manifold over the past two decades, providing an information‐rich environment in which human reasoning can partially be replaced by computer reasoning. In this paper, we want to assess the implications of ML for Design of Experiments (DoE), a statistical methodology widely used in Quality Management for quantifying effects and interactions of factors with influence on the production quality or the process yield. We specifically want to assess the future role and importance of DoE: Will it remain unaltered by ML, will it be made obsolete, or will it be reinforced? With this, we want to contribute to the discussion of the future use of traditional Quality Management methodologies in production, as our ML assessment can in principle be applied to other statistical methodologies as well. While we are convinced that ML will heavily impact the field of Quality Management and its predominant set of statistical methodologies, we find reason to expect that this impact will be a mutual one. As this is the first paper addressing the joint force potential of the two methodologies ML and DoE, we expect a range of follow‐up papers being written on the subject and a spark in specialized applications addressing DoE's ML‐enhanced vital functionality for process improvements. |
---|---|
AbstractList | Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and available data sets increased manifold over the past two decades, providing an information‐rich environment in which human reasoning can partially be replaced by computer reasoning. In this paper, we want to assess the implications of ML for Design of Experiments (DoE), a statistical methodology widely used in Quality Management for quantifying effects and interactions of factors with influence on the production quality or the process yield. We specifically want to assess the future role and importance of DoE: Will it remain unaltered by ML, will it be made obsolete, or will it be reinforced? With this, we want to contribute to the discussion of the future use of traditional Quality Management methodologies in production, as our ML assessment can in principle be applied to other statistical methodologies as well. While we are convinced that ML will heavily impact the field of Quality Management and its predominant set of statistical methodologies, we find reason to expect that this impact will be a mutual one. As this is the first paper addressing the joint force potential of the two methodologies ML and DoE, we expect a range of follow‐up papers being written on the subject and a spark in specialized applications addressing DoE's ML‐enhanced vital functionality for process improvements. |
Author | Keim, Jan Freiesleben, Johannes Grutsch, Markus |
Author_xml | – sequence: 1 givenname: Johannes orcidid: 0000-0003-3969-4129 surname: Freiesleben fullname: Freiesleben, Johannes email: jfreiesleben@gmx.de organization: Institute for Quality Management and Business Administration – sequence: 2 givenname: Jan surname: Keim fullname: Keim, Jan organization: Institute for Quality Management and Business Administration – sequence: 3 givenname: Markus surname: Grutsch fullname: Grutsch, Markus organization: Institute for Quality Management and Business Administration |
BookMark | eNp1kEtLAzEUhYMoWB_gTwi4cTM1yWRmEjciWh-giKLrIZ25aVPSZJpM1frrTa0rUbhwF_c753LOHtp23gFCR5QMKSHsdBFgyIpKbqEBJVJmtMzFNhqQiotMEFrtor0YZ4QkWIoB-nxQzdQ4wBZUcMZNsHItvoJoJg57jUcfHQQzB9fHM3xhewhO9eYNsOq64JMWIvYBN37eWVhjKqzwHPqpb731E5POOt0XS2VNv8JmnlRv3-D5AdrRykY4_Nn76PV69HJ5m90_3txdXtxnTc5LmQmlqJYVMMlLISTTlW5zUXJeEpGTMdNpQLRAG141VSsLNi5E2SquxwUhOeT76Hjjm14vlhD7euaXKYaNNeO8KkoqGUvUyYZqgo8xgK67lDulqSmp183Wqdl63WxCh7_QxvSpFe_6oIz9S5BtBO_Gwupf4_rpefTNfwHtrI41 |
CitedBy_id | crossref_primary_10_1007_s12633_024_02941_w crossref_primary_10_1080_02664763_2021_1907840 crossref_primary_10_1016_j_procs_2022_09_168 crossref_primary_10_1021_acsami_1c14586 crossref_primary_10_1007_s00170_024_13951_8 crossref_primary_10_1177_09544062241281092 crossref_primary_10_1038_s41598_024_83581_3 crossref_primary_10_1039_D1SC01000J crossref_primary_10_1108_IJQRM_09_2021_0305 crossref_primary_10_3390_pharmaceutics15082056 crossref_primary_10_3390_ma16124425 crossref_primary_10_1007_s11663_022_02689_x crossref_primary_10_1007_s00362_023_01437_w crossref_primary_10_1016_j_colsurfa_2024_134026 crossref_primary_10_1016_j_ceramint_2022_11_201 crossref_primary_10_1109_JSYST_2024_3521477 crossref_primary_10_1177_02670836251314970 crossref_primary_10_1007_s12008_024_02154_w crossref_primary_10_3389_fpls_2020_576177 crossref_primary_10_1016_j_dajour_2024_100410 crossref_primary_10_3390_bdcc5040061 crossref_primary_10_1002_qre_3025 crossref_primary_10_1016_j_rechem_2023_101295 crossref_primary_10_1109_TEM_2023_3335237 crossref_primary_10_1371_journal_pntd_0012736 crossref_primary_10_1002_batt_202300046 crossref_primary_10_1007_s12633_023_02559_4 crossref_primary_10_1016_j_pecs_2024_101199 crossref_primary_10_1016_j_ceramint_2023_02_141 crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1021_acs_iecr_2c00936 crossref_primary_10_1007_s11837_024_06595_2 crossref_primary_10_3390_math9192479 crossref_primary_10_1016_j_addr_2021_05_015 crossref_primary_10_1080_14783363_2020_1801342 crossref_primary_10_1126_science_adj1817 crossref_primary_10_1002_er_6217 crossref_primary_10_1007_s11663_024_03170_7 crossref_primary_10_3390_bioengineering9100561 crossref_primary_10_1177_02670836241249456 crossref_primary_10_1557_s43577_024_00816_4 |
Cites_doi | 10.1147/rd.33.0210 10.1007/s00521-005-0470-3 10.1002/qre.444 10.1007/s10994-011-5242-y 10.1109/CERMA.2006.83 10.1109/MM.2018.112130030 10.1002/nme.2750 10.1016/j.specom.2009.08.009 10.1126/science.aaa8415 10.1016/j.ijpe.2018.08.016 10.1109/TSMCC.2012.2216260 10.2514/6.2004-2011 10.1016/j.infoandorg.2018.02.005 10.1039/C4RA12750A 10.12988/ces.2018.84166 10.1017/CBO9781107298019 10.1080/01441640902827623 10.1016/j.ijpe.2017.06.006 10.1002/1099-1638(200011/12)16:6<461::AID-QRE341>3.0.CO;2-G 10.1016/j.neucom.2008.02.002 10.1093/mind/LIX.236.433 10.1214/ss/1177010638 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1002/qre.2579 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1638 |
EndPage | 1848 |
ExternalDocumentID | 10_1002_qre_2579 QRE2579 |
Genre | article |
GrantInformation_xml | – fundername: FHS St. Gallen University of Applied Sciences |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c3469-8aa1f97e29468892f7fd3864460830b2fb2fe8de1c47c7d952b586da4fb5003e3 |
IEDL.DBID | DR2 |
ISSN | 0748-8017 |
IngestDate | Thu Jul 03 08:10:27 EDT 2025 Wed Oct 01 01:57:42 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:32:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3469-8aa1f97e29468892f7fd3864460830b2fb2fe8de1c47c7d952b586da4fb5003e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3969-4129 |
PQID | 2447561922 |
PQPubID | 1016437 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2447561922 crossref_primary_10_1002_qre_2579 crossref_citationtrail_10_1002_qre_2579 wiley_primary_10_1002_qre_2579_QRE2579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Quality and reliability engineering international |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2015; 5 2002; 18 2018; 204 2011; 82 2017; 191 1997 2006 1994 2004 2015; 349 2003 1959; 3 1935 2009; 29 2010; 82 1950; 59 2000; 16 2009; 72 1961; 3 2018 2017 1988; 110 2015 2014 2018; 11 2018; 38 2010; 52 2012; 42 1988 2005; 14 Domingos P (e_1_2_7_33_1) 2015 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Fisher RA (e_1_2_7_7_1) 1935 e_1_2_7_8_1 Staelin C. (e_1_2_7_18_1) 2003 e_1_2_7_19_1 e_1_2_7_17_1 Ghahramani Z. (e_1_2_7_29_1) 2003 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Montgomery DC (e_1_2_7_9_1) 2017 e_1_2_7_27_1 Box GEP (e_1_2_7_28_1) 1961; 3 Sarle WS (e_1_2_7_14_1) 1994 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Box GEP (e_1_2_7_34_1) 1988; 110 Box GEP (e_1_2_7_6_1) 1997 |
References_xml | – year: 1935 – volume: 204 start-page: 358 year: 2018 end-page: 364 article-title: Quality design method using process capability index based on Monte‐Carlo method and real‐coded genetic algorithm publication-title: International Journal of Production Economics – volume: 3 start-page: 311 issue: 3 year: 1961 end-page: 351 article-title: The 2 fractional factorial designs publication-title: Dent Tech – volume: 38 start-page: 21 issue: 2 year: 2018 end-page: 29 article-title: A new golden age in computer architecture: empowering the machine‐learning revolution publication-title: IEEE Micro – volume: 110 start-page: 32 issue: 1 year: 1988 end-page: 40 article-title: Statistical tools for improving designs publication-title: Mechanical Engineering – year: 2003 – volume: 28 start-page: 62 issue: 1 year: 2018 end-page: 70 article-title: Working and organizing in the age of the learning algorithm publication-title: Information and Organization – volume: 349 start-page: 255 issue: 6245 year: 2015 end-page: 260 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – volume: 18 start-page: 29 issue: 1 year: 2002 end-page: 35 article-title: Training for design of experiments using a catapult publication-title: Quality and Reliability Engineering International – year: 2018 – year: 1994 – year: 2014 – volume: 16 start-page: 461 issue: 6 year: 2000 end-page: 473 article-title: Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments publication-title: Quality and Reliability Engineering International – volume: 82 start-page: 275 issue: 3 year: 2011 end-page: 279 article-title: The changing science of machine learning publication-title: Machine Learning – volume: 14 start-page: 337 issue: 4 year: 2005 end-page: 344 article-title: The optimisation of neural network parameters using Taguchi's design of experiments approach: an application in manufacturing process modelling publication-title: Neural Comput Applic – volume: 11 start-page: 1677 issue: 34 year: 2018 end-page: 1694 article-title: Survey of biometric pattern recognition via machine learning techniques publication-title: Contemporary Engineering Sciences – volume: 52 start-page: 12 issue: 2010 year: 2010 end-page: 40 article-title: An overview of text‐independent speaker recognition: from features to supervectors publication-title: Speech Communication – volume: 29 start-page: 587 issue: 5 year: 2009 end-page: 617 article-title: Constructing efficient stated choice experimental designs publication-title: Transport Reviews – year: 1988 – volume: 3 start-page: 210 issue: 3 year: 1959 end-page: 229 article-title: Some studies in machine learning using the game of checkers publication-title: IBM Journal of Research and Development – year: 2006 – year: 2004 – year: 1997 – volume: 5 start-page: 6385 issue: 9 year: 2015 end-page: 6394 article-title: Experimental design and machine learning strategies for parameters screening and optimization of Hantzsch condensation reaction for the assay of sodium alendronate in oral solution publication-title: RSC Adv – volume: 42 start-page: 1679 issue: 6 year: 2012 end-page: 1689 article-title: A machine learning‐based framework for automatic visual inspection of microdrill bits in PCB production publication-title: IEEE Transactions on Systems, Man, and Cybernetics ‐ Part C: Applications and Reviews – year: 2017 – volume: 191 start-page: 97 year: 2017 end-page: 112 article-title: A multidisciplinary perspective of big data in management research publication-title: International Journal of Production Economics – volume: 72 start-page: 1160 issue: 4–6 year: 2009 end-page: 1178 article-title: Design of experiments on neural network's training for nonlinear time series forecasting publication-title: Neurocomputing – year: 2015 – volume: 59 start-page: 433 issue: 236 year: 1950 end-page: 460 article-title: Computing machinery and intelligence publication-title: Mind – volume: 82 start-page: 135 issue: 2 year: 2010 end-page: 156 article-title: An algorithm for fast optimal Latin hypercube design of experiments publication-title: Int J Numer Methods Eng – ident: e_1_2_7_10_1 doi: 10.1147/rd.33.0210 – ident: e_1_2_7_20_1 doi: 10.1007/s00521-005-0470-3 – volume-title: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World year: 2015 ident: e_1_2_7_33_1 – ident: e_1_2_7_27_1 doi: 10.1002/qre.444 – ident: e_1_2_7_15_1 doi: 10.1007/s10994-011-5242-y – volume: 3 start-page: 311 issue: 3 year: 1961 ident: e_1_2_7_28_1 article-title: The 2k−p fractional factorial designs publication-title: Dent Tech – volume-title: Design and Analysis of Experiments year: 2017 ident: e_1_2_7_9_1 – volume-title: Parameter selection for support vector machines year: 2003 ident: e_1_2_7_18_1 – ident: e_1_2_7_21_1 doi: 10.1109/CERMA.2006.83 – ident: e_1_2_7_4_1 doi: 10.1109/MM.2018.112130030 – ident: e_1_2_7_24_1 doi: 10.1002/nme.2750 – volume-title: Lecture Notes in Computer Science, 3176, 72–112 year: 2003 ident: e_1_2_7_29_1 – volume-title: The Design of Experiments year: 1935 ident: e_1_2_7_7_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.specom.2009.08.009 – ident: e_1_2_7_16_1 doi: 10.1126/science.aaa8415 – ident: e_1_2_7_26_1 doi: 10.1016/j.ijpe.2018.08.016 – ident: e_1_2_7_36_1 doi: 10.1109/TSMCC.2012.2216260 – ident: e_1_2_7_23_1 doi: 10.2514/6.2004-2011 – ident: e_1_2_7_5_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.infoandorg.2018.02.005 – ident: e_1_2_7_25_1 doi: 10.1039/C4RA12750A – ident: e_1_2_7_31_1 doi: 10.12988/ces.2018.84166 – ident: e_1_2_7_2_1 – ident: e_1_2_7_30_1 doi: 10.1017/CBO9781107298019 – volume: 110 start-page: 32 issue: 1 year: 1988 ident: e_1_2_7_34_1 article-title: Statistical tools for improving designs publication-title: Mechanical Engineering – ident: e_1_2_7_35_1 – ident: e_1_2_7_8_1 doi: 10.1080/01441640902827623 – ident: e_1_2_7_17_1 doi: 10.1016/j.ijpe.2017.06.006 – ident: e_1_2_7_19_1 doi: 10.1002/1099-1638(200011/12)16:6<461::AID-QRE341>3.0.CO;2-G – volume-title: Statistical Control by Monitoring and Feedback Control year: 1997 ident: e_1_2_7_6_1 – ident: e_1_2_7_22_1 doi: 10.1016/j.neucom.2008.02.002 – volume-title: Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual SAS Users Group International Conference year: 1994 ident: e_1_2_7_14_1 – ident: e_1_2_7_11_1 doi: 10.1093/mind/LIX.236.433 – ident: e_1_2_7_12_1 – ident: e_1_2_7_13_1 doi: 10.1214/ss/1177010638 |
SSID | ssj0010098 |
Score | 2.4394739 |
Snippet | Machine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1837 |
SubjectTerms | Algorithms Design of Experiments in‐process monitoring Machine learning Optimization quality improvement quality maintenance Quality management Reasoning |
Title | Machine learning and Design of Experiments: Alternative approaches or complementary methodologies for quality improvement? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.2579 https://www.proquest.com/docview/2447561922 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1099-1638 dateEnd: 20241004 omitProxy: false ssIdentifier: ssj0010098 issn: 0748-8017 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0748-8017 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6yJ33wLk6nRBB96ramTZv4IkM3hjDB4WDgQ0naRMTRabcJ2683l7aboiBCoQ89oW0up99Jv_MdAM6lh6XCrcRhiBPHZ4Q6CiUIh1l5Nkkp0wnOvfugO_DvhniYsyp1LozVhyg33PTKMP5aL3DGJ42laOh7JupqvuncPdfD5g9tv1SOcrVOplXgJNoJh4XubBM1ioZfv0RLeLkKUs1XprMFnorns-SS1_psyuvx4pt04_9eYBts5uATtuxs2QFrIt0FGyuShHtg0TPsSgHzchLPkKUJvDU8DziWsF1WBJhcwdYo3078ELAQJxcTOM6gYapbYno2h7ZMtXGz6rKCydDmcs7hi9nTMIbX-2DQaT_edJ28PoMTeyqqdghjrqShQNQPCKFIhjLxiAJYgcJ1TY6kOgRJhBv7YRwmFCOOSZAwX3KsnInwDkAlHafiEEDXU3Eb5r5IVICHmU8JEzhmSKgAlBKMquCyGKsozsXLdQ2NUWRll1GkejPSvVkFZ6XlmxXs-MGmVgx3lC_ZSYS09KEOJ9XNLsy4_do-eui39fnor4bHYB3pON2QAGugMs1m4kSBmSk_NdP2EwkE8zY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH3-Kj6gqip7TNJtvs6kGKVqq2gmKhByFskl0RpdU-BP317iNpqyiIEMghsyT7mNlvJrPfAOxLj0iFW6nDcUQdn1PmKJQgHG7p2SRjXB9wbl5X6i3_sk3aOTjOzsJYfohRwE1rhrHXWsF1QLo0Zg197YmiWnBsCqb17zmtlWe3I-4oVzNlWg5Oqs1wkDHPlnEpa_l1LxoDzEmYavaZ8wW4z77Qppc8FYeDqBh_fCNv_GcXFmE-xZ-oahfMEuREZxnmJlgJV-CjaRIsBUorSjwg3knQmUn1QF2JaqOiAP0jVH1OI4pvAmX85KKPuj1kktVtbnrvHdlK1cbSqscKKSN7nPMdPZqwhhE8WYXWee3utO6kJRqc2FOOtUM5dyULBGZ-hVKGZSATjyqMVVHQrhxhqS5BE-HGfhAHCSM4IrSScF9GRNkT4a1BvtPtiHVArqdcNxL5IlE-HuE-o1yQmGOhfFBGCd6Aw2yywjjlL9dlNJ5Dy7yMQzWaoR7NDdgbSb5Yzo4fZArZfIep1vZDrNkPtUepXnZgJu7X9uHNbU3fN_8quAsz9btmI2xcXF9twSzWbrvJCSxAftAbim2FbQbRjlnDnzAC91I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBu3iZGkH0qZtNmzbxRcRteJuoKAg-lLRNRBzb3EVwv96TpN2mKIhQ6ENPaJvLyXcOX76D0J7yqALcyhxBYub4gnEHUIJ0hJVnU5wLfcC5fh2cPfgXj_QxY1XqszBWH2KYcNMrw_hrvcDbqSqPREPfOrIE841Poik_gOBKA6K7oXSUq4UyrQQn0144zIVnD0k5b_l1Kxrhy3GUaraZ2jx6yj_QskteS_1eXEoG37Qb__cHC2guQ5_4xE6XRTQhm0todkyTcBkN6oZeKXFWT-IZi2aKK4bogVsKV4clAbpH-KSR5RPfJc7VyWUXtzrYUNUtM73zgW2dauNn4THgZGwPc37gF5PUMIbHK-ihVr0_PXOyAg1O4kFY7TAhXMVDSbgfMMaJClXqMUBYAQC7w5gouCRLpZv4YRKmnJKYsiAVvoopeBPpraJCs9WUawi7HgRuNPZlChEeFT5nQtJEEAkRKGeUrKODfKyiJFMv10U0GpHVXSYR9Gake3Md7Q4t21ax4webYj7cUbZmuxHR2oc6noSX7Ztx-7V9dHtX1feNvxruoOmbSi26Or--3EQzRMfshhBYRIVepy-3ANj04m0zgz8BXzP2AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+Design+of+Experiments%3A+Alternative+approaches+or+complementary+methodologies+for+quality+improvement%3F&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Freiesleben%2C+Johannes&rft.au=Keim%2C+Jan&rft.au=Grutsch%2C+Markus&rft.date=2020-10-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=36&rft.issue=6&rft.spage=1837&rft.epage=1848&rft_id=info:doi/10.1002%2Fqre.2579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qre_2579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |