Artificial neural networks in supply chain management, a review
Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help compa...
Saved in:
Published in | Journal of Economy and Technology Vol. 1; pp. 179 - 196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co., Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2949-9488 2949-9488 |
DOI | 10.1016/j.ject.2023.11.002 |
Cover
Abstract | Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help companies to optimize their inventory levels, production schedules and procurement activities in terms of productivity enhancement of part production. By considering multiple variables and constraints, ANNs can identify the most efficient routes, allocate resources effectively, and reduce costs. Furthermore, ANNs can identify anomalies as well as abnormalities in supply chain data, such as unexpected demand patterns, quality issues and disruptions in logistics operations in order to minimize their impact on the supply chain. ANNs can also analyze supplier performance data, including quality, delivery times and pricing in order to assess the reliability and effectiveness of suppliers. This information can support decision-making processes in supplier evaluation and selection processes. Moreover, ANNs can continuously monitor supplier performance, raising alerts for deviations from predefined criteria to provide safe and secure supply chain in part production processes. By analyzing various data sources, including weather conditions, and political instability, ANNs can identify and mitigate risks in terms of safety enhancement of supply chain processes. Artificial neural networks in supply chain management is studied in the research work to analyze and enhance performances of supply chain management in process of part manufacturing. New ideas and concepts of future research works are presented by reviewing and analyzing of recent achievements in applications of artificial neural networks in supply chain management. Thus, productivity of part manufacturing can be enhanced by promoting the supply chain management using the artificial neural networks. |
---|---|
AbstractList | Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help companies to optimize their inventory levels, production schedules and procurement activities in terms of productivity enhancement of part production. By considering multiple variables and constraints, ANNs can identify the most efficient routes, allocate resources effectively, and reduce costs. Furthermore, ANNs can identify anomalies as well as abnormalities in supply chain data, such as unexpected demand patterns, quality issues and disruptions in logistics operations in order to minimize their impact on the supply chain. ANNs can also analyze supplier performance data, including quality, delivery times and pricing in order to assess the reliability and effectiveness of suppliers. This information can support decision-making processes in supplier evaluation and selection processes. Moreover, ANNs can continuously monitor supplier performance, raising alerts for deviations from predefined criteria to provide safe and secure supply chain in part production processes. By analyzing various data sources, including weather conditions, and political instability, ANNs can identify and mitigate risks in terms of safety enhancement of supply chain processes. Artificial neural networks in supply chain management is studied in the research work to analyze and enhance performances of supply chain management in process of part manufacturing. New ideas and concepts of future research works are presented by reviewing and analyzing of recent achievements in applications of artificial neural networks in supply chain management. Thus, productivity of part manufacturing can be enhanced by promoting the supply chain management using the artificial neural networks. |
Author | Arezoo, Behrooz Dastres, Roza Soori, Mohsen |
Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0002-4358-7513 surname: Soori fullname: Soori, Mohsen – sequence: 2 givenname: Behrooz surname: Arezoo fullname: Arezoo, Behrooz – sequence: 3 givenname: Roza surname: Dastres fullname: Dastres, Roza |
BackLink | https://hal.science/hal-04337912$$DView record in HAL |
BookMark | eNp9UE1Lw0AQXaSCWvsHPOUq2Lizs9lkT1LEj0LBi56X6WZTN6ZJ2aSV_nsTK6IeZA5v5jHvDfPO2KhuasfYBfAYOKjrMi6d7WLBBcYAMefiiJ0KLfVUyywb_ehP2KRtS845IqDM8JTdzELnC289VVHttuETuvcmvLWRr6N2u9lU-8i-Uj-sqaaVW7u6u4ooCm7n3fs5Oy6oat3kC8fs5f7u-fZxunh6mN_OFlOLUompohQVJlpyuyxA2mwoEDm6jEAoKZQSTgm9zHNMBOQFWs2XRaI5pyRJFI7Z_OCbN1SaTfBrCnvTkDefRBNWhvpPbOWMy6wGLUFjmsqcwxKxP0syI5colw5elwevV6p-WT3OFmbguERMNYgd9LvisGtD07bBFd8C4GZI35RmSN8M6RsA06ffi7I_Ius76nxTd4F89Z_0A8mOitQ |
CitedBy_id | crossref_primary_10_3390_su16114767 crossref_primary_10_3390_su16198388 crossref_primary_10_56294_dm2025500 crossref_primary_10_1007_s00170_024_14505_8 crossref_primary_10_1016_j_apenergy_2024_124468 crossref_primary_10_1016_j_techfore_2024_123841 crossref_primary_10_1002_tie_22370 crossref_primary_10_1007_s40735_024_00863_z crossref_primary_10_1016_j_smse_2024_100026 crossref_primary_10_33042_2522_1809_2024_6_187_295_301 crossref_primary_10_4108_eetiot_5045 crossref_primary_10_1016_j_eswa_2025_127137 crossref_primary_10_1080_2331186X_2024_2433807 crossref_primary_10_1016_j_knosys_2024_112341 crossref_primary_10_1016_j_ject_2024_08_005 crossref_primary_10_2478_ama_2024_0048 crossref_primary_10_3389_fenvs_2024_1315812 crossref_primary_10_1080_00207543_2025_2458121 crossref_primary_10_1007_s40953_025_00449_7 crossref_primary_10_3390_machines12040279 crossref_primary_10_1007_s40815_024_01932_8 crossref_primary_10_1016_j_ject_2025_01_001 crossref_primary_10_1016_j_renene_2024_120744 crossref_primary_10_1007_s10489_023_05249_1 crossref_primary_10_1016_j_ject_2024_01_001 crossref_primary_10_1016_j_sasc_2025_200217 crossref_primary_10_1007_s10668_025_06026_5 crossref_primary_10_1371_journal_pone_0317148 |
Cites_doi | 10.1007/s00521-019-04379-3 10.1016/j.cam.2020.113170 10.1504/IJSTL.2021.112910 10.1115/1.4032393 10.1007/s12652-020-02524-8 10.1016/j.promfg.2020.01.034 10.1109/ACCESS.2019.2948949 10.1016/j.cie.2021.107693 10.13164/trends.2016.25.48 10.3390/socsci7090153 10.1016/j.jclepro.2019.04.367 10.1057/jors.2010.188 10.1109/TII.2020.3009280 10.1177/13506501231158259 10.1155/2022/6308728 10.1016/j.compbiomed.2019.103415 10.32604/cmc.2022.031514 10.1016/j.cogr.2023.04.001 10.3390/f12080964 10.5897/AJBM2016.8030 10.1155/2013/537675 10.1016/j.iotcps.2023.04.006 10.1016/j.ijforecast.2018.09.003 10.15282/jmes.13.2.2019.04.0401 10.1007/s00521-019-04136-6 10.3390/su15010361 10.1016/j.jik.2022.100276 10.1016/j.ijpe.2010.07.018 10.1016/j.sbspro.2012.04.061 10.3390/info13050261 10.1504/IJCAT.2017.086015 10.1016/j.eswa.2008.08.058 10.1016/j.tre.2021.102319 10.1016/j.tre.2017.05.008 10.1016/j.proeng.2011.12.707 10.3109/10826089809115863 10.1016/j.sbspro.2012.11.214 10.1097/MD.0000000000021208 10.1007/s00500-021-05861-8 10.1109/TITS.2022.3150151 10.1080/00207543.2021.1998697 10.1007/s13198-017-0645-1 10.18564/jasss.3710 10.1016/j.jmsy.2014.04.007 10.1080/09537287.2010.489251 10.1111/poms.13525 10.1016/j.cogr.2023.05.003 10.1016/j.apm.2010.03.033 10.1016/j.jclepro.2022.131068 10.1016/j.tre.2019.05.007 10.1016/j.jclepro.2019.03.307 10.1016/j.epsr.2019.106073 10.1016/j.compag.2021.105988 10.1016/j.cie.2020.106380 10.1016/S1672-6529(13)60234-6 10.1016/j.eswa.2021.114573 10.1007/s12063-022-00254-y 10.1016/j.joitmc.2023.100093 10.1016/j.eswa.2015.09.052 10.1186/s40537-020-00329-2 10.1080/00207543.2021.1956697 10.3390/pr8111384 10.1016/j.jclepro.2010.03.020 10.1108/BIJ-10-2020-0514 10.1023/A:1009769804855 10.1016/j.aej.2021.06.010 10.1016/j.ijpe.2019.02.001 10.3390/s19102229 10.1155/2021/3338840 10.1007/s10796-017-9762-2 10.1016/j.ijpe.2019.107569 10.1016/j.jclepro.2019.04.322 10.1108/SCM-03-2021-0129 10.1007/s00521-020-05488-0 10.1016/j.iot.2020.100342 10.1016/j.ijforecast.2020.11.006 10.1080/00207543.2016.1140919 10.1016/j.micpro.2020.103790 10.1016/j.asoc.2005.06.001 10.1016/j.jbusres.2020.09.009 10.1016/j.ijpe.2019.07.012 10.1016/j.asoc.2022.109849 10.1016/j.foodcont.2017.04.013 10.1515/pomr-2017-0061 10.1016/j.aej.2022.01.046 10.1016/j.cam.2019.112457 10.1007/s13198-021-01594-x 10.1016/j.cad.2013.06.002 10.1016/j.rser.2019.109658 10.1016/j.cie.2022.108777 10.1016/j.trc.2013.10.012 10.1109/TITS.2019.2960057 10.1016/j.apenergy.2018.11.001 10.17531/ein.2018.2.16 10.1080/09537287.2021.1882690 10.1016/j.promfg.2017.07.329 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES DOA |
DOI | 10.1016/j.ject.2023.11.002 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-9488 |
EndPage | 196 |
ExternalDocumentID | oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76 oai_HAL_hal_04337912v1 10_1016_j_ject_2023_11_002 |
GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION FDB GROUPED_DOAJ M41 M~E 1XC VOOES |
ID | FETCH-LOGICAL-c3462-6a73635940cbf14c8c8c812d3e8a12642662e629bdd3521df3c90bf5900a55563 |
IEDL.DBID | DOA |
ISSN | 2949-9488 |
IngestDate | Wed Aug 27 01:25:16 EDT 2025 Fri Sep 12 12:35:52 EDT 2025 Thu Sep 11 00:09:02 EDT 2025 Thu Apr 24 23:04:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3462-6a73635940cbf14c8c8c812d3e8a12642662e629bdd3521df3c90bf5900a55563 |
ORCID | 0000-0002-4358-7513 |
OpenAccessLink | https://doaj.org/article/e8c9194193774d01b3340ca48ae56e76 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76 hal_primary_oai_HAL_hal_04337912v1 crossref_primary_10_1016_j_ject_2023_11_002 crossref_citationtrail_10_1016_j_ject_2023_11_002 |
PublicationCentury | 2000 |
PublicationDate | November 2023 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Economy and Technology |
PublicationYear | 2023 |
Publisher | KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Communications Co., Ltd |
References | Dastres (10.1016/j.ject.2023.11.002_bib30) 2021; 21 Chen (10.1016/j.ject.2023.11.002_bib25) 2022; 2022 Bodendorf (10.1016/j.ject.2023.11.002_bib19) 2022; 60 Sharifnia (10.1016/j.ject.2023.11.002_bib92) 2021; 162 Soori (10.1016/j.ject.2023.11.002_bib100) 2022; 12 Menhaj (10.1016/j.ject.2023.11.002_bib74) 2005 Sustrova (10.1016/j.ject.2023.11.002_bib112) 2016; 10 Soori (10.1016/j.ject.2023.11.002_bib98) 2022; 12 Wen (10.1016/j.ject.2023.11.002_bib124) 2020; 179 Sang (10.1016/j.ject.2023.11.002_bib86) 2021; 384 Dumitrascu (10.1016/j.ject.2023.11.002_bib33) 2020; 8 Du (10.1016/j.ject.2023.11.002_bib32) 2020; 32 Schniederjans (10.1016/j.ject.2023.11.002_bib88) 2020; 220 Guo (10.1016/j.ject.2023.11.002_bib44) 2021; 33 Barlas (10.1016/j.ject.2023.11.002_bib15) 2011; 62 Liu (10.1016/j.ject.2023.11.002_bib66) 2021; 150 Swain (10.1016/j.ject.2023.11.002_bib113) 2019; 21 Liu (10.1016/j.ject.2023.11.002_bib68) 2022; 61 Seyedan (10.1016/j.ject.2023.11.002_bib91) 2020; 7 Soori (10.1016/j.ject.2023.11.002_bib99) 2022 Kochak (10.1016/j.ject.2023.11.002_bib56) 2015; 4 Thomassey (10.1016/j.ject.2023.11.002_bib116) 2010; 128 Nezamoddini (10.1016/j.ject.2023.11.002_bib77) 2020; 225 Biswas (10.1016/j.ject.2023.11.002_bib18) 2019; 22 Boone (10.1016/j.ject.2023.11.002_bib20) 2019; 35 Soori (10.1016/j.ject.2023.11.002_bib102) 2023 Fradinata (10.1016/j.ject.2023.11.002_bib38) 2019; 13 Radhakrishnan (10.1016/j.ject.2023.11.002_bib83) 2009; 9 Zhou (10.1016/j.ject.2023.11.002_bib50) 2019; 7 Wu (10.1016/j.ject.2023.11.002_bib125) 2023; 132 Ghorbani (10.1016/j.ject.2023.11.002_bib40) 2012; 41 Kiralp (10.1016/j.ject.2023.11.002_bib55) 2010; 21 Soori (10.1016/j.ject.2023.11.002_bib106) 2016; 138 Azadnia (10.1016/j.ject.2023.11.002_bib12) 2012; 65 Li (10.1016/j.ject.2023.11.002_bib62) 2021; 81 Bhattacharya (10.1016/j.ject.2023.11.002_bib17) 2014; 38 Efendigil (10.1016/j.ject.2023.11.002_bib34) 2009; 36 Gupta (10.1016/j.ject.2023.11.002_bib45) 2021; 13 Ali (10.1016/j.ject.2023.11.002_bib8) 2019; 228 Ren (10.1016/j.ject.2023.11.002_bib84) 2022; 23 Allaoui (10.1016/j.ject.2023.11.002_bib10) 2019; 229 Bansal (10.1016/j.ject.2023.11.002_bib14) 1998; 2 Kuo (10.1016/j.ject.2023.11.002_bib60) 2010; 18 Senthil (10.1016/j.ject.2023.11.002_bib89) 2022; 56 Kuo (10.1016/j.ject.2023.11.002_bib59) 2010; 34 Świderski (10.1016/j.ject.2023.11.002_bib114) 2018; 20 Helo (10.1016/j.ject.2023.11.002_bib47) 2022; 33 Liu (10.1016/j.ject.2023.11.002_bib69) 2016; 45 Buscema (10.1016/j.ject.2023.11.002_bib21) 1998; 33 Yang (10.1016/j.ject.2023.11.002_bib129) 2022; 31 Zhang (10.1016/j.ject.2023.11.002_bib131) 2021; 34 Fanoodi (10.1016/j.ject.2023.11.002_bib36) 2019; 113 Fashoto (10.1016/j.ject.2023.11.002_bib37) 2016; 10 de Paula Vidal (10.1016/j.ject.2023.11.002_bib80) 2022; 174 Kosasih (10.1016/j.ject.2023.11.002_bib58) 2022 Lim (10.1016/j.ject.2023.11.002_bib63) 2022; 27 Zhou (10.1016/j.ject.2023.11.002_bib133) 2020; 17 Noorul Haq (10.1016/j.ject.2023.11.002_bib78) 2006; 1 Hui (10.1016/j.ject.2023.11.002_bib49) 2016 Soori (10.1016/j.ject.2023.11.002_bib97) 2023 Zhu (10.1016/j.ject.2023.11.002_bib134) 2023; 15 Attaran (10.1016/j.ject.2023.11.002_bib11) 2020 Lin (10.1016/j.ject.2023.11.002_bib65) 2022; 7 Setak (10.1016/j.ject.2023.11.002_bib90) 2012; 18 Tsolaki (10.1016/j.ject.2023.11.002_bib119) 2022 Soori (10.1016/j.ject.2023.11.002_bib110) 2023; 3 Soori (10.1016/j.ject.2023.11.002_bib105) 2014; 33 Kosasih (10.1016/j.ject.2023.11.002_bib57) 2022; 60 Soori (10.1016/j.ject.2023.11.002_bib109) 2023 Aamer (10.1016/j.ject.2023.11.002_bib1) 2020; 14 Soori (10.1016/j.ject.2023.11.002_bib103) 2023 Guizzardi (10.1016/j.ject.2023.11.002_bib43) 2021; 37 Kayikci (10.1016/j.ject.2023.11.002_bib53) 2022; 344 Liu (10.1016/j.ject.2023.11.002_bib70) 2020; 32 10.1016/j.ject.2023.11.002_bib72 Nunes (10.1016/j.ject.2023.11.002_bib79) 2020; 120 Ahmadimanesh (10.1016/j.ject.2023.11.002_bib5) 2020; 99 Benkachcha (10.1016/j.ject.2023.11.002_bib16) 2014; 7 Leung (10.1016/j.ject.2023.11.002_bib61) 1995 Reynolds (10.1016/j.ject.2023.11.002_bib85) 2019; 235 Victor (10.1016/j.ject.2023.11.002_bib121) 2018; 7 Khaldi (10.1016/j.ject.2023.11.002_bib54) 2017 Zavvar Sabegh (10.1016/j.ject.2023.11.002_bib130) 2017; 8 Cai (10.1016/j.ject.2023.11.002_bib22) 2020; 367 Fan (10.1016/j.ject.2023.11.002_bib35) 2013; 10 Jafarzadeh-Ghoushchi (10.1016/j.ject.2023.11.002_bib51) 2016; 24 Dastres (10.1016/j.ject.2023.11.002_bib28) 2020; 14 Lima-Junior (10.1016/j.ject.2023.11.002_bib64) 2019; 212 Abolghasemi (10.1016/j.ject.2023.11.002_bib3) 2020; 142 Ganesh (10.1016/j.ject.2023.11.002_bib39) 2022; 169 Meidute-Kavaliauskiene (10.1016/j.ject.2023.11.002_bib73) 2022; 13 Sathyan (10.1016/j.ject.2023.11.002_bib87) 2021; 12 Carter (10.1016/j.ject.2023.11.002_bib23) 1995; 16 Guillermo-Muñoz (10.1016/j.ject.2023.11.002_bib42) 2020; 13 He (10.1016/j.ject.2023.11.002_bib46) 2013; 2013 Akbari (10.1016/j.ject.2023.11.002_bib7) 2021; 28 Teng (10.1016/j.ject.2023.11.002_bib115) 2021; 25 Chan (10.1016/j.ject.2023.11.002_bib24) 2021; 171 Choi (10.1016/j.ject.2023.11.002_bib27) 2019; 127 Lorenc (10.1016/j.ject.2023.11.002_bib71) 2021; 13 Guanghui (10.1016/j.ject.2023.11.002_bib41) 2012; 29 Dastres (10.1016/j.ject.2023.11.002_bib31) 2021 Soori (10.1016/j.ject.2023.11.002_bib108) 2023 Aburto (10.1016/j.ject.2023.11.002_bib4) 2007; 7 Wang (10.1016/j.ject.2023.11.002_bib123) 2021; 2021 Chen (10.1016/j.ject.2023.11.002_bib26) 2018; 21 Toorajipour (10.1016/j.ject.2023.11.002_bib117) 2021; 122 Huang (10.1016/j.ject.2023.11.002_bib48) 2021 Purnama (10.1016/j.ject.2023.11.002_bib82) 2023; 9 Singh (10.1016/j.ject.2023.11.002_bib95) 2018; 114 Soori (10.1016/j.ject.2023.11.002_bib107) 2017; 55 Soori (10.1016/j.ject.2023.11.002_bib101) 2023 Soori (10.1016/j.ject.2023.11.002_bib111) 2023 Baghizadeh (10.1016/j.ject.2023.11.002_bib13) 2021; 12 Liu (10.1016/j.ject.2023.11.002_bib67) 2021; 2021 Soori (10.1016/j.ject.2023.11.002_bib104) 2013; 45 Tsai (10.1016/j.ject.2023.11.002_bib118) 2016; 54 Wang (10.1016/j.ject.2023.11.002_bib122) 2017; 79 Silva (10.1016/j.ject.2023.11.002_bib94) 2017; 11 Abdallah (10.1016/j.ject.2023.11.002_bib2) 2022; 73 Minis (10.1016/j.ject.2023.11.002_bib75) 2007 Xiao (10.1016/j.ject.2023.11.002_bib126) 2017; 24 Zhang (10.1016/j.ject.2023.11.002_bib132) 2019; 19 Xu (10.1016/j.ject.2023.11.002_bib128) 2019; 225 Praveen (10.1016/j.ject.2023.11.002_bib81) 2019; 38 Slimani (10.1016/j.ject.2023.11.002_bib96) 2015 Shukla (10.1016/j.ject.2023.11.002_bib93) 2021 Mohamed (10.1016/j.ject.2023.11.002_bib76) 2019; 11 Vairagade (10.1016/j.ject.2023.11.002_bib120) 2019 Ahmed (10.1016/j.ject.2023.11.002_bib6) 2022; 13 Alkinani (10.1016/j.ject.2023.11.002_bib9) 2022; 61 Jianying (10.1016/j.ject.2023.11.002_bib52) 2021; 183 Xie (10.1016/j.ject.2023.11.002_bib127) 2022; 15 Dastres (10.1016/j.ject.2023.11.002_bib29) 2021; 19 |
References_xml | – volume: 32 start-page: 1981 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib32 article-title: Genetic algorithm combined with BP neural network in hospital drug inventory management system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04379-3 – volume: 21 start-page: 13 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib30 article-title: Artificial neural network systems publication-title: Int. J. Imaging Robot. (IJIR) – volume: 384 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib86 article-title: Application of genetic algorithm and BP neural network in supply chain finance under information sharing publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113170 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib71 article-title: The most common type of disruption in the supply chain-evaluation based on the method using artificial neural networks publication-title: Int. J. Shipp. Transp. Logist. doi: 10.1504/IJSTL.2021.112910 – volume: 138 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib106 article-title: Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4032393 – volume: 12 start-page: 7949 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib87 article-title: A combined big data analytics and Fuzzy DEMATEL technique to improve the responsiveness of automotive supply chains publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02524-8 – volume: 38 start-page: 256 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib81 article-title: Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.01.034 – volume: 4 start-page: 96 year: 2015 ident: 10.1016/j.ject.2023.11.002_bib56 article-title: Demand forecasting using neural network for supply chain management publication-title: Int. J. Mech. Eng. Robot. Res. – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib109 article-title: Machine learning and artificial intelligence in CNC machine tools, a review publication-title: Sustain. Manuf. Serv. Econ. – volume: 1 start-page: 1 year: 2006 ident: 10.1016/j.ject.2023.11.002_bib78 article-title: Effect of forecasting on the multi-echelon distribution inventory supply chain cost using neural network, genetic algorithm and particle swarm optimisation publication-title: Int. J. Serv. Oper. Inform. – volume: 7 start-page: 154035 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib50 article-title: A big data mining approach of PSO-based BP neural network for financial risk management with IoT publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948949 – volume: 162 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib92 article-title: Robust simulation optimization for supply chain problem under uncertainty via neural network metamodeling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107693 – volume: 10 start-page: 48 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib112 article-title: A suitable artificial intelligence model for inventory level optimization publication-title: Trends Econ. Manag. doi: 10.13164/trends.2016.25.48 – start-page: 97 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib49 article-title: Using artificial neural networks to improve decision making in apparel supply chain systems – start-page: 1 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib58 article-title: Towards knowledge graph reasoning for supply chain risk management using graph neural networks publication-title: Int. J. Prod. Res. – volume: 7 start-page: 153 year: 2018 ident: 10.1016/j.ject.2023.11.002_bib121 article-title: Factors influencing consumer behavior and prospective purchase decisions in a dynamic pricing environment—an exploratory factor analysis approach publication-title: Soc. Sci. doi: 10.3390/socsci7090153 – year: 2021 ident: 10.1016/j.ject.2023.11.002_bib31 article-title: Advances in web-based decision support systems publication-title: Int. J. Eng. Future Technol. – volume: 229 start-page: 761 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib10 article-title: Decision support for collaboration planning in sustainable supply chains publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.367 – volume: 62 start-page: 458 year: 2011 ident: 10.1016/j.ject.2023.11.002_bib15 article-title: Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2010.188 – volume: 17 start-page: 2802 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib133 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3009280 – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib102 article-title: Cutting tool wear minimization in drilling operations of titanium alloy Ti-6Al-4V publication-title: Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. doi: 10.1177/13506501231158259 – volume: 2022 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib25 article-title: Coordinated development of urban intelligent transportation data system and supply chain management publication-title: J. Adv. Transp. doi: 10.1155/2022/6308728 – volume: 113 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib36 article-title: Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103415 – volume: 73 start-page: 4311 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib2 article-title: An optimal method for supply chain logistics management based on neural network publication-title: CMC-Comput. Mater. Continua doi: 10.32604/cmc.2022.031514 – volume: 3 start-page: 54 year: 2023 ident: 10.1016/j.ject.2023.11.002_bib110 article-title: Artificial intelligence, machine learning and deep learning in advanced robotics, a review publication-title: Cogn. Robot. doi: 10.1016/j.cogr.2023.04.001 – volume: 12 start-page: 964 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib13 article-title: Modeling and optimization sustainable forest supply chain considering discount in transportation system and supplier selection under uncertainty publication-title: Forests doi: 10.3390/f12080964 – volume: 10 start-page: 209 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib37 article-title: Decision support model for supplier selection in healthcare service delivery using analytical hierarchy process and artificial neural network publication-title: Afr. J. Bus. Manag. doi: 10.5897/AJBM2016.8030 – volume: 2013 year: 2013 ident: 10.1016/j.ject.2023.11.002_bib46 article-title: An inventory controlled supply chain model based on improved BP neural network publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2013/537675 – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib108 article-title: Internet of things for smart factories in industry 4.0, a review publication-title: Internet Things Cyber-Phys. Syst. doi: 10.1016/j.iotcps.2023.04.006 – volume: 35 start-page: 170 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib20 article-title: Forecasting sales in the supply chain: consumer analytics in the big data era publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2018.09.003 – start-page: 158 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib11 article-title: Digital technology enablers and their implications for supply chain management – volume: 13 start-page: 4816 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib38 article-title: Compare the forecasting method of artificial neural network and support vector regression model to measure the bullwhip effect in supply chain publication-title: J. Mech. Eng. Sci. doi: 10.15282/jmes.13.2.2019.04.0401 – volume: 32 start-page: 1543 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib70 article-title: Research on supply chain partner selection method based on BP neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04136-6 – volume: 15 start-page: 361 year: 2023 ident: 10.1016/j.ject.2023.11.002_bib134 article-title: Hybrid methodology to study the risk management of prefabricated building supply chains: an outlook for sustainability publication-title: Sustainability doi: 10.3390/su15010361 – volume: 7 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib65 article-title: An innovative machine learning model for supply chain management publication-title: J. Innov. Knowl. doi: 10.1016/j.jik.2022.100276 – volume: 128 start-page: 470 year: 2010 ident: 10.1016/j.ject.2023.11.002_bib116 article-title: Sales forecasts in clothing industry: the key success factor of the supply chain management publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2010.07.018 – year: 2022 ident: 10.1016/j.ject.2023.11.002_bib119 – volume: 41 start-page: 498 year: 2012 ident: 10.1016/j.ject.2023.11.002_bib40 article-title: Applying a neural network algorithm to distributor selection problem publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.04.061 – volume: 13 start-page: 261 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib73 article-title: Reviewing the applications of neural networks in supply chain: exploring research propositions for future directions publication-title: Information doi: 10.3390/info13050261 – volume: 55 start-page: 308 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib107 article-title: Accuracy analysis of tool deflection error modelling in prediction of milled surfaces by a virtual machining system publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2017.086015 – volume: 36 start-page: 6697 year: 2009 ident: 10.1016/j.ject.2023.11.002_bib34 article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.08.058 – volume: 150 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib66 article-title: Sustainable supply chain management for perishable products in emerging markets: an integrated location-inventory-routing model publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2021.102319 – volume: 114 start-page: 398 year: 2018 ident: 10.1016/j.ject.2023.11.002_bib95 article-title: Social media data analytics to improve supply chain management in food industries publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2017.05.008 – volume: 29 start-page: 280 year: 2012 ident: 10.1016/j.ject.2023.11.002_bib41 article-title: Demand forecasting of supply chain based on support vector regression method publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.12.707 – volume: 33 start-page: 233 year: 1998 ident: 10.1016/j.ject.2023.11.002_bib21 article-title: Back propagation neural networks publication-title: Subst. Use Misuse doi: 10.3109/10826089809115863 – volume: 65 start-page: 879 year: 2012 ident: 10.1016/j.ject.2023.11.002_bib12 article-title: Sustainable supplier selection based on self-organizing map neural network and multi criteria decision making approaches publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.11.214 – start-page: 1 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib93 article-title: Modeling of stage-discharge using back propagation ANN-, ANFIS-, and WANN-based computing techniques publication-title: Theor. Appl. Climatol. – volume: 99 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib5 article-title: Designing an optimal inventory management model for the blood supply chain: synthesis of reusable simulation and neural network publication-title: Medicine doi: 10.1097/MD.0000000000021208 – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib97 article-title: Advanced composite materials and structures publication-title: J. Mater. Eng. Struct. – volume: 25 start-page: 12107 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib115 article-title: Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network publication-title: Soft Comput. doi: 10.1007/s00500-021-05861-8 – volume: 23 start-page: 16410 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib84 article-title: A multi-agent reinforcement learning method with route recorders for vehicle routing in supply chain management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3150151 – volume: 60 start-page: 6637 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib19 article-title: Artificial neural networks for intelligent cost estimation–a contribution to strategic cost management in the manufacturing supply chain publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1998697 – volume: 8 start-page: 1689 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib130 article-title: Multi-objective optimization considering quality concepts in a green healthcare supply chain for natural disaster response: neural network approaches publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-017-0645-1 – volume: 21 year: 2018 ident: 10.1016/j.ject.2023.11.002_bib26 article-title: Dynamic pricing strategies for perishable product in a competitive multi-agent retailers market publication-title: J. Artif. Soc. Soc. Simul. doi: 10.18564/jasss.3710 – volume: 56 start-page: 1752 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib89 article-title: Development of lean construction supply chain risk management based on enhanced neural network publication-title: Mater. Today.: Proc. – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib29 article-title: Advances in web-based decision support systems publication-title: Int. J. Eng. Future Technol. – volume: 9 start-page: 33 year: 2009 ident: 10.1016/j.ject.2023.11.002_bib83 article-title: Inventory optimization in supply chain management using genetic algorithm publication-title: Int. J. Comput. Sci. Netw. Secur. – start-page: 1 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib54 article-title: Artificial neural network based approach for blood demand forecasting: Fez transfusion blood center case study publication-title: Proceedings of the 2nd international Conference on Big Data, Cloud and Applications – volume: 33 start-page: 498 year: 2014 ident: 10.1016/j.ject.2023.11.002_bib105 article-title: Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2014.04.007 – volume: 21 start-page: 562 year: 2010 ident: 10.1016/j.ject.2023.11.002_bib55 article-title: DSOPP: a platform for distributed simulation of order promising protocols in supply chain networks publication-title: Prod. Plan. Control doi: 10.1080/09537287.2010.489251 – volume: 31 start-page: 155 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib129 article-title: Dynamic pricing and information disclosure for fresh produce: an artificial intelligence approach publication-title: Prod. Oper. Manag. doi: 10.1111/poms.13525 – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib111 article-title: Optimization of energy consumption in industrial robots, a review publication-title: Cogn. Robot. doi: 10.1016/j.cogr.2023.05.003 – volume: 34 start-page: 3976 year: 2010 ident: 10.1016/j.ject.2023.11.002_bib59 article-title: Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.03.033 – ident: 10.1016/j.ject.2023.11.002_bib72 – volume: 344 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib53 article-title: Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131068 – volume: 127 start-page: 178 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib27 article-title: The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2019.05.007 – volume: 225 start-page: 857 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib128 article-title: Supply chain sustainability risk and assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.307 – volume: 179 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib124 article-title: Load demand forecasting of residential buildings using a deep learning model publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.106073 – volume: 183 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib52 article-title: Evaluation on risks of sustainable supply chain based on optimized BP neural networks in fresh grape industry publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.105988 – volume: 142 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib3 article-title: Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106380 – volume: 10 start-page: 383 year: 2013 ident: 10.1016/j.ject.2023.11.002_bib35 article-title: An evaluation model of supply chain performances using 5DBSC and LMBP neural network algorithm publication-title: J. Bionic. Eng. doi: 10.1016/S1672-6529(13)60234-6 – volume: 171 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib24 article-title: A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114573 – volume: 12 start-page: 15 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib100 article-title: Cutting tool wear prediction in machining operations, a review publication-title: J. N. Technol. Mater. – volume: 15 start-page: 711 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib127 article-title: Supply chain and logistics optimization management for international trading enterprises using IoT-based economic logistics model publication-title: Oper. Manag. Res. doi: 10.1007/s12063-022-00254-y – volume: 34 start-page: 9061 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib131 article-title: Labeling trick: a theory of using graph neural networks for multi-node representation learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 year: 2023 ident: 10.1016/j.ject.2023.11.002_bib82 article-title: Online data-driven concurrent product-process-supply chain design in the early stage of new product development publication-title: J. Open Innov.: Technol., Mark., Complex. doi: 10.1016/j.joitmc.2023.100093 – volume: 45 start-page: 331 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib69 article-title: An improved grey neural network model for predicting transportation disruptions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.09.052 – year: 2005 ident: 10.1016/j.ject.2023.11.002_bib74 – volume: 7 start-page: 279 year: 2014 ident: 10.1016/j.ject.2023.11.002_bib16 article-title: Hassani, Demand forecasting in supply chain: comparing multiple linear regression and artificial neural networks approaches publication-title: Int. Rev. Model. Simul. – start-page: 1 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib48 article-title: Regional logistics demand forecasting: a BP neural network approach publication-title: Complex Intell. Syst. – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib91 article-title: Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities publication-title: J. Big Data doi: 10.1186/s40537-020-00329-2 – volume: 60 start-page: 5380 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib57 article-title: A machine learning approach for predicting hidden links in supply chain with graph neural networks publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1956697 – volume: 8 start-page: 1384 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib33 article-title: Performance evaluation for a sustainable supply chain management system in the automotive industry using artificial intelligence publication-title: Processes doi: 10.3390/pr8111384 – volume: 16 start-page: 189 year: 1995 ident: 10.1016/j.ject.2023.11.002_bib23 article-title: The impact of transportation costs on supply chain managemen publication-title: J. Bus. Logist. – volume: 18 start-page: 1161 year: 2010 ident: 10.1016/j.ject.2023.11.002_bib60 article-title: Integration of artificial neural network and MADA methods for green supplier selection publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2010.03.020 – volume: 28 start-page: 2977 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib7 article-title: A systematic review of machine learning in logistics and supply chain management: current trends and future directions publication-title: Benchmark.: Int. J. doi: 10.1108/BIJ-10-2020-0514 – volume: 18 start-page: 55 year: 2012 ident: 10.1016/j.ject.2023.11.002_bib90 article-title: Supplier selection and order allocation models in supply chain management: a review publication-title: World Appl. Sci. J. – volume: 12 start-page: 64 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib98 article-title: A review in machining-induced residual stress publication-title: J. N. Technol. Mater. – volume: 2 start-page: 97 year: 1998 ident: 10.1016/j.ject.2023.11.002_bib14 article-title: Brief application description. neural networks based forecasting techniques for inventory control applications publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009769804855 – volume: 61 start-page: 775 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib68 article-title: Risk prediction of digital transformation of manufacturing supply chain based on principal component analysis and backpropagation artificial neural network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.010 – volume: 212 start-page: 19 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib64 article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.02.001 – volume: 19 start-page: 2229 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib132 article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks publication-title: Sensors doi: 10.3390/s19102229 – volume: 2021 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib67 article-title: Logistics distribution route optimization model based on recursive fuzzy neural network algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/3338840 – year: 2023 ident: 10.1016/j.ject.2023.11.002_bib103 article-title: Minimization of surface roughness and residual stress in abrasive water jet cutting of titanium alloy Ti6Al4V publication-title: Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. – volume: 21 start-page: 469 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib113 article-title: Using sentiment analysis to improve supply chain intelligence publication-title: Inf. Syst. Front. doi: 10.1007/s10796-017-9762-2 – volume: 225 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib77 article-title: A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.107569 – volume: 24 start-page: 200 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib51 article-title: Performance study of artificial neural network modelling to predict carried weight in the transportation system publication-title: Int. J. Logist. Syst. Manag. – volume: 228 start-page: 786 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib8 article-title: Framework for evaluating risks in food supply chain: implications in food wastage reduction publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.322 – volume: 27 start-page: 611 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib63 article-title: Tan, Unfolding the impact of supply chain quality management practices on sustainability performance: an artificial neural network approach publication-title: Supply Chain Manag.: Int. J. doi: 10.1108/SCM-03-2021-0129 – start-page: 1 year: 2023 ident: 10.1016/j.ject.2023.11.002_bib101 article-title: The effects of coolant on the cutting temperature, surface roughness and tool wear in turning operations of Ti6Al4V alloy publication-title: Mech. Based Des. Struct. Mach. – start-page: 589 year: 2007 ident: 10.1016/j.ject.2023.11.002_bib75 article-title: Applications of neural networks in supply chain management – volume: 33 start-page: 3939 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib44 article-title: MLP neural network-based regional logistics demand prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05488-0 – volume: 13 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib45 article-title: Future smart connected communities to fight covid-19 outbreak publication-title: Internet Things doi: 10.1016/j.iot.2020.100342 – volume: 37 start-page: 1049 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib43 article-title: Big data from dynamic pricing: a smart approach to tourism demand forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2020.11.006 – volume: 54 start-page: 2757 year: 2016 ident: 10.1016/j.ject.2023.11.002_bib118 article-title: Supply chain relationship quality and performance in technological turbulence: an artificial neural network approach publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1140919 – volume: 81 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib62 article-title: Algorithm optimization of large-scale supply chain design based on FPGA and neural network publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103790 – volume: 7 start-page: 136 year: 2007 ident: 10.1016/j.ject.2023.11.002_bib4 article-title: Improved supply chain management based on hybrid demand forecasts publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2005.06.001 – start-page: 328 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib120 article-title: Demand forecasting using random forest and artificial neural network for supply chain management – start-page: 347 year: 1995 ident: 10.1016/j.ject.2023.11.002_bib61 article-title: Neural networks in supply chain management – volume: 122 start-page: 502 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib117 article-title: Artificial intelligence in supply chain management: a systematic literature review publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2020.09.009 – volume: 220 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib88 article-title: Supply chain digitisation trends: an integration of knowledge management publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.07.012 – volume: 132 year: 2023 ident: 10.1016/j.ject.2023.11.002_bib125 article-title: Industry classification based on supply chain network information using Graph Neural Networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109849 – volume: 169 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib39 article-title: Future of artificial intelligence and its influence on supply chain risk management–a systematic review publication-title: Comput. Ind. Eng. – volume: 79 start-page: 363 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib122 article-title: An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network publication-title: Food Control doi: 10.1016/j.foodcont.2017.04.013 – volume: 24 start-page: 30 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib126 article-title: Study on maritime logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model publication-title: Pol. Marit. Res. doi: 10.1515/pomr-2017-0061 – volume: 61 start-page: 8325 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib9 article-title: Design and analysis of logistic agent-based swarm-neural network for intelligent transportation system publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.01.046 – volume: 367 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib22 article-title: Exploration on the financing risks of enterprise supply chain using back propagation neural network publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112457 – volume: 13 start-page: 699 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib6 article-title: Business boosting through sentiment analysis using Artificial Intelligence approach publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-021-01594-x – start-page: 266 year: 2015 ident: 10.1016/j.ject.2023.11.002_bib96 article-title: Artificial neural networks for demand forecasting: Application using Moroccan supermarket data – volume: 45 start-page: 1306 year: 2013 ident: 10.1016/j.ject.2023.11.002_bib104 article-title: Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system publication-title: Comput. - Aided Des. doi: 10.1016/j.cad.2013.06.002 – volume: 13 start-page: 120 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib42 article-title: Application of neural networks in predicting the level of integration in supply chains publication-title: J. Ind. Eng. Manag. (JIEM) – volume: 120 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib79 article-title: Biomass for energy: a review on supply chain management models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109658 – volume: 174 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib80 article-title: Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108777 – start-page: 1 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib99 article-title: Minimization of surface roughness and residual stress in grinding operations of inconel 718 publication-title: J. Mater. Eng. Perform. – volume: 38 start-page: 73 year: 2014 ident: 10.1016/j.ject.2023.11.002_bib17 article-title: An intermodal freight transport system for optimal supply chain logistics publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2013.10.012 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.ject.2023.11.002_bib123 article-title: Research on supply chain financial risk assessment based on blockchain and fuzzy neural networks publication-title: Wirel. Commun. Mob. Comput. – volume: 22 start-page: 430 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib18 article-title: Multiobjective mission route planning problem: a neural network-based forecasting model for mission planning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2960057 – volume: 11 start-page: 16 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib76 article-title: Smart warehouse management using hybrid architecture of neural network with barcode reader 1D/2D vision technology publication-title: Int. J. Intell. Syst. Appl. – volume: 14 start-page: 1 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib1 article-title: Data analytics in the supply chain management: Review of machine learning applications in demand forecasting publication-title: Oper. Supply Chain Manag.: Int. J. – volume: 14 start-page: 330 year: 2020 ident: 10.1016/j.ject.2023.11.002_bib28 article-title: Secure socket layer in the network and web security publication-title: Int. J. Comput. Inf. Eng. – volume: 235 start-page: 699 year: 2019 ident: 10.1016/j.ject.2023.11.002_bib85 article-title: Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.001 – volume: 20 start-page: 292 year: 2018 ident: 10.1016/j.ject.2023.11.002_bib114 article-title: Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks publication-title: Eksploat. i Niezawodn. doi: 10.17531/ein.2018.2.16 – volume: 33 start-page: 1573 year: 2022 ident: 10.1016/j.ject.2023.11.002_bib47 article-title: Artificial intelligence in operations management and supply chain management: an exploratory case study publication-title: Prod. Plan. Control doi: 10.1080/09537287.2021.1882690 – volume: 11 start-page: 2083 year: 2017 ident: 10.1016/j.ject.2023.11.002_bib94 article-title: Improving supply chain visibility with artificial neural networks publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2017.07.329 |
SSID | ssj0003313483 |
Score | 2.240292 |
SecondaryResourceType | review_article |
Snippet | Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply... |
SourceID | doaj hal crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 179 |
SubjectTerms | Artificial neural networks Engineering Sciences Supply chain management |
Title | Artificial neural networks in supply chain management, a review |
URI | https://hal.science/hal-04337912 https://doaj.org/article/e8c9194193774d01b3340ca48ae56e76 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi-COJNuzZN-jrJKrss4npyYW8hzYNVtIq7Cl787c4k7bJe9CKFPkLapjMl802Y-YaQU5crUYLfEOVgnCIBJjpSeVzBmREph7nS-UTh8V02moibaTpdKfWFMWGBHjgI7sIWugRHG3AGABUTs4pzESMVt7JpZnNPth2X8YozhXMw54yLgjdZMiGgC9c1elgtvIe0nc06SmuJPGE_2JdZu57q7ctwk2w0wJD2w4C2yJqtt8klXgaOB4rMk_7g47bn9KGmcyzJ-Un1DNx7-rwMZDmnioaUlB0yGQ7ur0dRU_Ig0lxkSZSpnAMEAOnpyjGhC9xYYrgtFAPsAuY0sVlSVsYAcmLGcV3GlcPSnypFrq9d0qlfartHKFfcZYlJjFJKKJ0Xmas0uKSl0oUrdNwlrP18qRs-cCxL8STbwK9HiSKTKDJwFCSIrEvOlve8BjaMX3tfoVSXPZHJ2jeAfmWjX_mXfrvkBHTy4xmj_q3ENuRey0uWfLD9_3jTAVnHwYdEw0PSWby92yNAHIvq2P9csB9_Db4BN5LQRg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+in+supply+chain+management%2C+a+review&rft.jtitle=Journal+of+Economy+and+Technology&rft.au=Mohsen+Soori&rft.au=Behrooz+Arezoo&rft.au=Roza+Dastres&rft.date=2023-11-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9488&rft.volume=1&rft.spage=179&rft.epage=196&rft_id=info:doi/10.1016%2Fj.ject.2023.11.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9488&client=summon |