Artificial neural networks in supply chain management, a review

Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help compa...

Full description

Saved in:
Bibliographic Details
Published inJournal of Economy and Technology Vol. 1; pp. 179 - 196
Main Authors Soori, Mohsen, Arezoo, Behrooz, Dastres, Roza
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN2949-9488
2949-9488
DOI10.1016/j.ject.2023.11.002

Cover

Abstract Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help companies to optimize their inventory levels, production schedules and procurement activities in terms of productivity enhancement of part production. By considering multiple variables and constraints, ANNs can identify the most efficient routes, allocate resources effectively, and reduce costs. Furthermore, ANNs can identify anomalies as well as abnormalities in supply chain data, such as unexpected demand patterns, quality issues and disruptions in logistics operations in order to minimize their impact on the supply chain. ANNs can also analyze supplier performance data, including quality, delivery times and pricing in order to assess the reliability and effectiveness of suppliers. This information can support decision-making processes in supplier evaluation and selection processes. Moreover, ANNs can continuously monitor supplier performance, raising alerts for deviations from predefined criteria to provide safe and secure supply chain in part production processes. By analyzing various data sources, including weather conditions, and political instability, ANNs can identify and mitigate risks in terms of safety enhancement of supply chain processes. Artificial neural networks in supply chain management is studied in the research work to analyze and enhance performances of supply chain management in process of part manufacturing. New ideas and concepts of future research works are presented by reviewing and analyzing of recent achievements in applications of artificial neural networks in supply chain management. Thus, productivity of part manufacturing can be enhanced by promoting the supply chain management using the artificial neural networks.
AbstractList Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help companies to optimize their inventory levels, production schedules and procurement activities in terms of productivity enhancement of part production. By considering multiple variables and constraints, ANNs can identify the most efficient routes, allocate resources effectively, and reduce costs. Furthermore, ANNs can identify anomalies as well as abnormalities in supply chain data, such as unexpected demand patterns, quality issues and disruptions in logistics operations in order to minimize their impact on the supply chain. ANNs can also analyze supplier performance data, including quality, delivery times and pricing in order to assess the reliability and effectiveness of suppliers. This information can support decision-making processes in supplier evaluation and selection processes. Moreover, ANNs can continuously monitor supplier performance, raising alerts for deviations from predefined criteria to provide safe and secure supply chain in part production processes. By analyzing various data sources, including weather conditions, and political instability, ANNs can identify and mitigate risks in terms of safety enhancement of supply chain processes. Artificial neural networks in supply chain management is studied in the research work to analyze and enhance performances of supply chain management in process of part manufacturing. New ideas and concepts of future research works are presented by reviewing and analyzing of recent achievements in applications of artificial neural networks in supply chain management. Thus, productivity of part manufacturing can be enhanced by promoting the supply chain management using the artificial neural networks.
Author Arezoo, Behrooz
Dastres, Roza
Soori, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-4358-7513
  surname: Soori
  fullname: Soori, Mohsen
– sequence: 2
  givenname: Behrooz
  surname: Arezoo
  fullname: Arezoo, Behrooz
– sequence: 3
  givenname: Roza
  surname: Dastres
  fullname: Dastres, Roza
BackLink https://hal.science/hal-04337912$$DView record in HAL
BookMark eNp9UE1Lw0AQXaSCWvsHPOUq2Lizs9lkT1LEj0LBi56X6WZTN6ZJ2aSV_nsTK6IeZA5v5jHvDfPO2KhuasfYBfAYOKjrMi6d7WLBBcYAMefiiJ0KLfVUyywb_ehP2KRtS845IqDM8JTdzELnC289VVHttuETuvcmvLWRr6N2u9lU-8i-Uj-sqaaVW7u6u4ooCm7n3fs5Oy6oat3kC8fs5f7u-fZxunh6mN_OFlOLUompohQVJlpyuyxA2mwoEDm6jEAoKZQSTgm9zHNMBOQFWs2XRaI5pyRJFI7Z_OCbN1SaTfBrCnvTkDefRBNWhvpPbOWMy6wGLUFjmsqcwxKxP0syI5colw5elwevV6p-WT3OFmbguERMNYgd9LvisGtD07bBFd8C4GZI35RmSN8M6RsA06ffi7I_Ius76nxTd4F89Z_0A8mOitQ
CitedBy_id crossref_primary_10_3390_su16114767
crossref_primary_10_3390_su16198388
crossref_primary_10_56294_dm2025500
crossref_primary_10_1007_s00170_024_14505_8
crossref_primary_10_1016_j_apenergy_2024_124468
crossref_primary_10_1016_j_techfore_2024_123841
crossref_primary_10_1002_tie_22370
crossref_primary_10_1007_s40735_024_00863_z
crossref_primary_10_1016_j_smse_2024_100026
crossref_primary_10_33042_2522_1809_2024_6_187_295_301
crossref_primary_10_4108_eetiot_5045
crossref_primary_10_1016_j_eswa_2025_127137
crossref_primary_10_1080_2331186X_2024_2433807
crossref_primary_10_1016_j_knosys_2024_112341
crossref_primary_10_1016_j_ject_2024_08_005
crossref_primary_10_2478_ama_2024_0048
crossref_primary_10_3389_fenvs_2024_1315812
crossref_primary_10_1080_00207543_2025_2458121
crossref_primary_10_1007_s40953_025_00449_7
crossref_primary_10_3390_machines12040279
crossref_primary_10_1007_s40815_024_01932_8
crossref_primary_10_1016_j_ject_2025_01_001
crossref_primary_10_1016_j_renene_2024_120744
crossref_primary_10_1007_s10489_023_05249_1
crossref_primary_10_1016_j_ject_2024_01_001
crossref_primary_10_1016_j_sasc_2025_200217
crossref_primary_10_1007_s10668_025_06026_5
crossref_primary_10_1371_journal_pone_0317148
Cites_doi 10.1007/s00521-019-04379-3
10.1016/j.cam.2020.113170
10.1504/IJSTL.2021.112910
10.1115/1.4032393
10.1007/s12652-020-02524-8
10.1016/j.promfg.2020.01.034
10.1109/ACCESS.2019.2948949
10.1016/j.cie.2021.107693
10.13164/trends.2016.25.48
10.3390/socsci7090153
10.1016/j.jclepro.2019.04.367
10.1057/jors.2010.188
10.1109/TII.2020.3009280
10.1177/13506501231158259
10.1155/2022/6308728
10.1016/j.compbiomed.2019.103415
10.32604/cmc.2022.031514
10.1016/j.cogr.2023.04.001
10.3390/f12080964
10.5897/AJBM2016.8030
10.1155/2013/537675
10.1016/j.iotcps.2023.04.006
10.1016/j.ijforecast.2018.09.003
10.15282/jmes.13.2.2019.04.0401
10.1007/s00521-019-04136-6
10.3390/su15010361
10.1016/j.jik.2022.100276
10.1016/j.ijpe.2010.07.018
10.1016/j.sbspro.2012.04.061
10.3390/info13050261
10.1504/IJCAT.2017.086015
10.1016/j.eswa.2008.08.058
10.1016/j.tre.2021.102319
10.1016/j.tre.2017.05.008
10.1016/j.proeng.2011.12.707
10.3109/10826089809115863
10.1016/j.sbspro.2012.11.214
10.1097/MD.0000000000021208
10.1007/s00500-021-05861-8
10.1109/TITS.2022.3150151
10.1080/00207543.2021.1998697
10.1007/s13198-017-0645-1
10.18564/jasss.3710
10.1016/j.jmsy.2014.04.007
10.1080/09537287.2010.489251
10.1111/poms.13525
10.1016/j.cogr.2023.05.003
10.1016/j.apm.2010.03.033
10.1016/j.jclepro.2022.131068
10.1016/j.tre.2019.05.007
10.1016/j.jclepro.2019.03.307
10.1016/j.epsr.2019.106073
10.1016/j.compag.2021.105988
10.1016/j.cie.2020.106380
10.1016/S1672-6529(13)60234-6
10.1016/j.eswa.2021.114573
10.1007/s12063-022-00254-y
10.1016/j.joitmc.2023.100093
10.1016/j.eswa.2015.09.052
10.1186/s40537-020-00329-2
10.1080/00207543.2021.1956697
10.3390/pr8111384
10.1016/j.jclepro.2010.03.020
10.1108/BIJ-10-2020-0514
10.1023/A:1009769804855
10.1016/j.aej.2021.06.010
10.1016/j.ijpe.2019.02.001
10.3390/s19102229
10.1155/2021/3338840
10.1007/s10796-017-9762-2
10.1016/j.ijpe.2019.107569
10.1016/j.jclepro.2019.04.322
10.1108/SCM-03-2021-0129
10.1007/s00521-020-05488-0
10.1016/j.iot.2020.100342
10.1016/j.ijforecast.2020.11.006
10.1080/00207543.2016.1140919
10.1016/j.micpro.2020.103790
10.1016/j.asoc.2005.06.001
10.1016/j.jbusres.2020.09.009
10.1016/j.ijpe.2019.07.012
10.1016/j.asoc.2022.109849
10.1016/j.foodcont.2017.04.013
10.1515/pomr-2017-0061
10.1016/j.aej.2022.01.046
10.1016/j.cam.2019.112457
10.1007/s13198-021-01594-x
10.1016/j.cad.2013.06.002
10.1016/j.rser.2019.109658
10.1016/j.cie.2022.108777
10.1016/j.trc.2013.10.012
10.1109/TITS.2019.2960057
10.1016/j.apenergy.2018.11.001
10.17531/ein.2018.2.16
10.1080/09537287.2021.1882690
10.1016/j.promfg.2017.07.329
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.ject.2023.11.002
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2949-9488
EndPage 196
ExternalDocumentID oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76
oai_HAL_hal_04337912v1
10_1016_j_ject_2023_11_002
GroupedDBID 0R~
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
FDB
GROUPED_DOAJ
M41
M~E
1XC
VOOES
ID FETCH-LOGICAL-c3462-6a73635940cbf14c8c8c812d3e8a12642662e629bdd3521df3c90bf5900a55563
IEDL.DBID DOA
ISSN 2949-9488
IngestDate Wed Aug 27 01:25:16 EDT 2025
Fri Sep 12 12:35:52 EDT 2025
Thu Sep 11 00:09:02 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3462-6a73635940cbf14c8c8c812d3e8a12642662e629bdd3521df3c90bf5900a55563
ORCID 0000-0002-4358-7513
OpenAccessLink https://doaj.org/article/e8c9194193774d01b3340ca48ae56e76
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76
hal_primary_oai_HAL_hal_04337912v1
crossref_primary_10_1016_j_ject_2023_11_002
crossref_citationtrail_10_1016_j_ject_2023_11_002
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Journal of Economy and Technology
PublicationYear 2023
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Dastres (10.1016/j.ject.2023.11.002_bib30) 2021; 21
Chen (10.1016/j.ject.2023.11.002_bib25) 2022; 2022
Bodendorf (10.1016/j.ject.2023.11.002_bib19) 2022; 60
Sharifnia (10.1016/j.ject.2023.11.002_bib92) 2021; 162
Soori (10.1016/j.ject.2023.11.002_bib100) 2022; 12
Menhaj (10.1016/j.ject.2023.11.002_bib74) 2005
Sustrova (10.1016/j.ject.2023.11.002_bib112) 2016; 10
Soori (10.1016/j.ject.2023.11.002_bib98) 2022; 12
Wen (10.1016/j.ject.2023.11.002_bib124) 2020; 179
Sang (10.1016/j.ject.2023.11.002_bib86) 2021; 384
Dumitrascu (10.1016/j.ject.2023.11.002_bib33) 2020; 8
Du (10.1016/j.ject.2023.11.002_bib32) 2020; 32
Schniederjans (10.1016/j.ject.2023.11.002_bib88) 2020; 220
Guo (10.1016/j.ject.2023.11.002_bib44) 2021; 33
Barlas (10.1016/j.ject.2023.11.002_bib15) 2011; 62
Liu (10.1016/j.ject.2023.11.002_bib66) 2021; 150
Swain (10.1016/j.ject.2023.11.002_bib113) 2019; 21
Liu (10.1016/j.ject.2023.11.002_bib68) 2022; 61
Seyedan (10.1016/j.ject.2023.11.002_bib91) 2020; 7
Soori (10.1016/j.ject.2023.11.002_bib99) 2022
Kochak (10.1016/j.ject.2023.11.002_bib56) 2015; 4
Thomassey (10.1016/j.ject.2023.11.002_bib116) 2010; 128
Nezamoddini (10.1016/j.ject.2023.11.002_bib77) 2020; 225
Biswas (10.1016/j.ject.2023.11.002_bib18) 2019; 22
Boone (10.1016/j.ject.2023.11.002_bib20) 2019; 35
Soori (10.1016/j.ject.2023.11.002_bib102) 2023
Fradinata (10.1016/j.ject.2023.11.002_bib38) 2019; 13
Radhakrishnan (10.1016/j.ject.2023.11.002_bib83) 2009; 9
Zhou (10.1016/j.ject.2023.11.002_bib50) 2019; 7
Wu (10.1016/j.ject.2023.11.002_bib125) 2023; 132
Ghorbani (10.1016/j.ject.2023.11.002_bib40) 2012; 41
Kiralp (10.1016/j.ject.2023.11.002_bib55) 2010; 21
Soori (10.1016/j.ject.2023.11.002_bib106) 2016; 138
Azadnia (10.1016/j.ject.2023.11.002_bib12) 2012; 65
Li (10.1016/j.ject.2023.11.002_bib62) 2021; 81
Bhattacharya (10.1016/j.ject.2023.11.002_bib17) 2014; 38
Efendigil (10.1016/j.ject.2023.11.002_bib34) 2009; 36
Gupta (10.1016/j.ject.2023.11.002_bib45) 2021; 13
Ali (10.1016/j.ject.2023.11.002_bib8) 2019; 228
Ren (10.1016/j.ject.2023.11.002_bib84) 2022; 23
Allaoui (10.1016/j.ject.2023.11.002_bib10) 2019; 229
Bansal (10.1016/j.ject.2023.11.002_bib14) 1998; 2
Kuo (10.1016/j.ject.2023.11.002_bib60) 2010; 18
Senthil (10.1016/j.ject.2023.11.002_bib89) 2022; 56
Kuo (10.1016/j.ject.2023.11.002_bib59) 2010; 34
Świderski (10.1016/j.ject.2023.11.002_bib114) 2018; 20
Helo (10.1016/j.ject.2023.11.002_bib47) 2022; 33
Liu (10.1016/j.ject.2023.11.002_bib69) 2016; 45
Buscema (10.1016/j.ject.2023.11.002_bib21) 1998; 33
Yang (10.1016/j.ject.2023.11.002_bib129) 2022; 31
Zhang (10.1016/j.ject.2023.11.002_bib131) 2021; 34
Fanoodi (10.1016/j.ject.2023.11.002_bib36) 2019; 113
Fashoto (10.1016/j.ject.2023.11.002_bib37) 2016; 10
de Paula Vidal (10.1016/j.ject.2023.11.002_bib80) 2022; 174
Kosasih (10.1016/j.ject.2023.11.002_bib58) 2022
Lim (10.1016/j.ject.2023.11.002_bib63) 2022; 27
Zhou (10.1016/j.ject.2023.11.002_bib133) 2020; 17
Noorul Haq (10.1016/j.ject.2023.11.002_bib78) 2006; 1
Hui (10.1016/j.ject.2023.11.002_bib49) 2016
Soori (10.1016/j.ject.2023.11.002_bib97) 2023
Zhu (10.1016/j.ject.2023.11.002_bib134) 2023; 15
Attaran (10.1016/j.ject.2023.11.002_bib11) 2020
Lin (10.1016/j.ject.2023.11.002_bib65) 2022; 7
Setak (10.1016/j.ject.2023.11.002_bib90) 2012; 18
Tsolaki (10.1016/j.ject.2023.11.002_bib119) 2022
Soori (10.1016/j.ject.2023.11.002_bib110) 2023; 3
Soori (10.1016/j.ject.2023.11.002_bib105) 2014; 33
Kosasih (10.1016/j.ject.2023.11.002_bib57) 2022; 60
Soori (10.1016/j.ject.2023.11.002_bib109) 2023
Aamer (10.1016/j.ject.2023.11.002_bib1) 2020; 14
Soori (10.1016/j.ject.2023.11.002_bib103) 2023
Guizzardi (10.1016/j.ject.2023.11.002_bib43) 2021; 37
Kayikci (10.1016/j.ject.2023.11.002_bib53) 2022; 344
Liu (10.1016/j.ject.2023.11.002_bib70) 2020; 32
10.1016/j.ject.2023.11.002_bib72
Nunes (10.1016/j.ject.2023.11.002_bib79) 2020; 120
Ahmadimanesh (10.1016/j.ject.2023.11.002_bib5) 2020; 99
Benkachcha (10.1016/j.ject.2023.11.002_bib16) 2014; 7
Leung (10.1016/j.ject.2023.11.002_bib61) 1995
Reynolds (10.1016/j.ject.2023.11.002_bib85) 2019; 235
Victor (10.1016/j.ject.2023.11.002_bib121) 2018; 7
Khaldi (10.1016/j.ject.2023.11.002_bib54) 2017
Zavvar Sabegh (10.1016/j.ject.2023.11.002_bib130) 2017; 8
Cai (10.1016/j.ject.2023.11.002_bib22) 2020; 367
Fan (10.1016/j.ject.2023.11.002_bib35) 2013; 10
Jafarzadeh-Ghoushchi (10.1016/j.ject.2023.11.002_bib51) 2016; 24
Dastres (10.1016/j.ject.2023.11.002_bib28) 2020; 14
Lima-Junior (10.1016/j.ject.2023.11.002_bib64) 2019; 212
Abolghasemi (10.1016/j.ject.2023.11.002_bib3) 2020; 142
Ganesh (10.1016/j.ject.2023.11.002_bib39) 2022; 169
Meidute-Kavaliauskiene (10.1016/j.ject.2023.11.002_bib73) 2022; 13
Sathyan (10.1016/j.ject.2023.11.002_bib87) 2021; 12
Carter (10.1016/j.ject.2023.11.002_bib23) 1995; 16
Guillermo-Muñoz (10.1016/j.ject.2023.11.002_bib42) 2020; 13
He (10.1016/j.ject.2023.11.002_bib46) 2013; 2013
Akbari (10.1016/j.ject.2023.11.002_bib7) 2021; 28
Teng (10.1016/j.ject.2023.11.002_bib115) 2021; 25
Chan (10.1016/j.ject.2023.11.002_bib24) 2021; 171
Choi (10.1016/j.ject.2023.11.002_bib27) 2019; 127
Lorenc (10.1016/j.ject.2023.11.002_bib71) 2021; 13
Guanghui (10.1016/j.ject.2023.11.002_bib41) 2012; 29
Dastres (10.1016/j.ject.2023.11.002_bib31) 2021
Soori (10.1016/j.ject.2023.11.002_bib108) 2023
Aburto (10.1016/j.ject.2023.11.002_bib4) 2007; 7
Wang (10.1016/j.ject.2023.11.002_bib123) 2021; 2021
Chen (10.1016/j.ject.2023.11.002_bib26) 2018; 21
Toorajipour (10.1016/j.ject.2023.11.002_bib117) 2021; 122
Huang (10.1016/j.ject.2023.11.002_bib48) 2021
Purnama (10.1016/j.ject.2023.11.002_bib82) 2023; 9
Singh (10.1016/j.ject.2023.11.002_bib95) 2018; 114
Soori (10.1016/j.ject.2023.11.002_bib107) 2017; 55
Soori (10.1016/j.ject.2023.11.002_bib101) 2023
Soori (10.1016/j.ject.2023.11.002_bib111) 2023
Baghizadeh (10.1016/j.ject.2023.11.002_bib13) 2021; 12
Liu (10.1016/j.ject.2023.11.002_bib67) 2021; 2021
Soori (10.1016/j.ject.2023.11.002_bib104) 2013; 45
Tsai (10.1016/j.ject.2023.11.002_bib118) 2016; 54
Wang (10.1016/j.ject.2023.11.002_bib122) 2017; 79
Silva (10.1016/j.ject.2023.11.002_bib94) 2017; 11
Abdallah (10.1016/j.ject.2023.11.002_bib2) 2022; 73
Minis (10.1016/j.ject.2023.11.002_bib75) 2007
Xiao (10.1016/j.ject.2023.11.002_bib126) 2017; 24
Zhang (10.1016/j.ject.2023.11.002_bib132) 2019; 19
Xu (10.1016/j.ject.2023.11.002_bib128) 2019; 225
Praveen (10.1016/j.ject.2023.11.002_bib81) 2019; 38
Slimani (10.1016/j.ject.2023.11.002_bib96) 2015
Shukla (10.1016/j.ject.2023.11.002_bib93) 2021
Mohamed (10.1016/j.ject.2023.11.002_bib76) 2019; 11
Vairagade (10.1016/j.ject.2023.11.002_bib120) 2019
Ahmed (10.1016/j.ject.2023.11.002_bib6) 2022; 13
Alkinani (10.1016/j.ject.2023.11.002_bib9) 2022; 61
Jianying (10.1016/j.ject.2023.11.002_bib52) 2021; 183
Xie (10.1016/j.ject.2023.11.002_bib127) 2022; 15
Dastres (10.1016/j.ject.2023.11.002_bib29) 2021; 19
References_xml – volume: 32
  start-page: 1981
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib32
  article-title: Genetic algorithm combined with BP neural network in hospital drug inventory management system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04379-3
– volume: 21
  start-page: 13
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib30
  article-title: Artificial neural network systems
  publication-title: Int. J. Imaging Robot. (IJIR)
– volume: 384
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib86
  article-title: Application of genetic algorithm and BP neural network in supply chain finance under information sharing
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113170
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib71
  article-title: The most common type of disruption in the supply chain-evaluation based on the method using artificial neural networks
  publication-title: Int. J. Shipp. Transp. Logist.
  doi: 10.1504/IJSTL.2021.112910
– volume: 138
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib106
  article-title: Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4032393
– volume: 12
  start-page: 7949
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib87
  article-title: A combined big data analytics and Fuzzy DEMATEL technique to improve the responsiveness of automotive supply chains
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02524-8
– volume: 38
  start-page: 256
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib81
  article-title: Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.034
– volume: 4
  start-page: 96
  year: 2015
  ident: 10.1016/j.ject.2023.11.002_bib56
  article-title: Demand forecasting using neural network for supply chain management
  publication-title: Int. J. Mech. Eng. Robot. Res.
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib109
  article-title: Machine learning and artificial intelligence in CNC machine tools, a review
  publication-title: Sustain. Manuf. Serv. Econ.
– volume: 1
  start-page: 1
  year: 2006
  ident: 10.1016/j.ject.2023.11.002_bib78
  article-title: Effect of forecasting on the multi-echelon distribution inventory supply chain cost using neural network, genetic algorithm and particle swarm optimisation
  publication-title: Int. J. Serv. Oper. Inform.
– volume: 7
  start-page: 154035
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib50
  article-title: A big data mining approach of PSO-based BP neural network for financial risk management with IoT
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948949
– volume: 162
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib92
  article-title: Robust simulation optimization for supply chain problem under uncertainty via neural network metamodeling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107693
– volume: 10
  start-page: 48
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib112
  article-title: A suitable artificial intelligence model for inventory level optimization
  publication-title: Trends Econ. Manag.
  doi: 10.13164/trends.2016.25.48
– start-page: 97
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib49
  article-title: Using artificial neural networks to improve decision making in apparel supply chain systems
– start-page: 1
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib58
  article-title: Towards knowledge graph reasoning for supply chain risk management using graph neural networks
  publication-title: Int. J. Prod. Res.
– volume: 7
  start-page: 153
  year: 2018
  ident: 10.1016/j.ject.2023.11.002_bib121
  article-title: Factors influencing consumer behavior and prospective purchase decisions in a dynamic pricing environment—an exploratory factor analysis approach
  publication-title: Soc. Sci.
  doi: 10.3390/socsci7090153
– year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib31
  article-title: Advances in web-based decision support systems
  publication-title: Int. J. Eng. Future Technol.
– volume: 229
  start-page: 761
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib10
  article-title: Decision support for collaboration planning in sustainable supply chains
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.367
– volume: 62
  start-page: 458
  year: 2011
  ident: 10.1016/j.ject.2023.11.002_bib15
  article-title: Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2010.188
– volume: 17
  start-page: 2802
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib133
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3009280
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib102
  article-title: Cutting tool wear minimization in drilling operations of titanium alloy Ti-6Al-4V
  publication-title: Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
  doi: 10.1177/13506501231158259
– volume: 2022
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib25
  article-title: Coordinated development of urban intelligent transportation data system and supply chain management
  publication-title: J. Adv. Transp.
  doi: 10.1155/2022/6308728
– volume: 113
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib36
  article-title: Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103415
– volume: 73
  start-page: 4311
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib2
  article-title: An optimal method for supply chain logistics management based on neural network
  publication-title: CMC-Comput. Mater. Continua
  doi: 10.32604/cmc.2022.031514
– volume: 3
  start-page: 54
  year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib110
  article-title: Artificial intelligence, machine learning and deep learning in advanced robotics, a review
  publication-title: Cogn. Robot.
  doi: 10.1016/j.cogr.2023.04.001
– volume: 12
  start-page: 964
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib13
  article-title: Modeling and optimization sustainable forest supply chain considering discount in transportation system and supplier selection under uncertainty
  publication-title: Forests
  doi: 10.3390/f12080964
– volume: 10
  start-page: 209
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib37
  article-title: Decision support model for supplier selection in healthcare service delivery using analytical hierarchy process and artificial neural network
  publication-title: Afr. J. Bus. Manag.
  doi: 10.5897/AJBM2016.8030
– volume: 2013
  year: 2013
  ident: 10.1016/j.ject.2023.11.002_bib46
  article-title: An inventory controlled supply chain model based on improved BP neural network
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2013/537675
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib108
  article-title: Internet of things for smart factories in industry 4.0, a review
  publication-title: Internet Things Cyber-Phys. Syst.
  doi: 10.1016/j.iotcps.2023.04.006
– volume: 35
  start-page: 170
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib20
  article-title: Forecasting sales in the supply chain: consumer analytics in the big data era
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2018.09.003
– start-page: 158
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib11
  article-title: Digital technology enablers and their implications for supply chain management
– volume: 13
  start-page: 4816
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib38
  article-title: Compare the forecasting method of artificial neural network and support vector regression model to measure the bullwhip effect in supply chain
  publication-title: J. Mech. Eng. Sci.
  doi: 10.15282/jmes.13.2.2019.04.0401
– volume: 32
  start-page: 1543
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib70
  article-title: Research on supply chain partner selection method based on BP neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04136-6
– volume: 15
  start-page: 361
  year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib134
  article-title: Hybrid methodology to study the risk management of prefabricated building supply chains: an outlook for sustainability
  publication-title: Sustainability
  doi: 10.3390/su15010361
– volume: 7
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib65
  article-title: An innovative machine learning model for supply chain management
  publication-title: J. Innov. Knowl.
  doi: 10.1016/j.jik.2022.100276
– volume: 128
  start-page: 470
  year: 2010
  ident: 10.1016/j.ject.2023.11.002_bib116
  article-title: Sales forecasts in clothing industry: the key success factor of the supply chain management
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2010.07.018
– year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib119
– volume: 41
  start-page: 498
  year: 2012
  ident: 10.1016/j.ject.2023.11.002_bib40
  article-title: Applying a neural network algorithm to distributor selection problem
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.04.061
– volume: 13
  start-page: 261
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib73
  article-title: Reviewing the applications of neural networks in supply chain: exploring research propositions for future directions
  publication-title: Information
  doi: 10.3390/info13050261
– volume: 55
  start-page: 308
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib107
  article-title: Accuracy analysis of tool deflection error modelling in prediction of milled surfaces by a virtual machining system
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2017.086015
– volume: 36
  start-page: 6697
  year: 2009
  ident: 10.1016/j.ject.2023.11.002_bib34
  article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.08.058
– volume: 150
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib66
  article-title: Sustainable supply chain management for perishable products in emerging markets: an integrated location-inventory-routing model
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2021.102319
– volume: 114
  start-page: 398
  year: 2018
  ident: 10.1016/j.ject.2023.11.002_bib95
  article-title: Social media data analytics to improve supply chain management in food industries
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2017.05.008
– volume: 29
  start-page: 280
  year: 2012
  ident: 10.1016/j.ject.2023.11.002_bib41
  article-title: Demand forecasting of supply chain based on support vector regression method
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.12.707
– volume: 33
  start-page: 233
  year: 1998
  ident: 10.1016/j.ject.2023.11.002_bib21
  article-title: Back propagation neural networks
  publication-title: Subst. Use Misuse
  doi: 10.3109/10826089809115863
– volume: 65
  start-page: 879
  year: 2012
  ident: 10.1016/j.ject.2023.11.002_bib12
  article-title: Sustainable supplier selection based on self-organizing map neural network and multi criteria decision making approaches
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.11.214
– start-page: 1
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib93
  article-title: Modeling of stage-discharge using back propagation ANN-, ANFIS-, and WANN-based computing techniques
  publication-title: Theor. Appl. Climatol.
– volume: 99
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib5
  article-title: Designing an optimal inventory management model for the blood supply chain: synthesis of reusable simulation and neural network
  publication-title: Medicine
  doi: 10.1097/MD.0000000000021208
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib97
  article-title: Advanced composite materials and structures
  publication-title: J. Mater. Eng. Struct.
– volume: 25
  start-page: 12107
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib115
  article-title: Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05861-8
– volume: 23
  start-page: 16410
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib84
  article-title: A multi-agent reinforcement learning method with route recorders for vehicle routing in supply chain management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3150151
– volume: 60
  start-page: 6637
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib19
  article-title: Artificial neural networks for intelligent cost estimation–a contribution to strategic cost management in the manufacturing supply chain
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1998697
– volume: 8
  start-page: 1689
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib130
  article-title: Multi-objective optimization considering quality concepts in a green healthcare supply chain for natural disaster response: neural network approaches
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-017-0645-1
– volume: 21
  year: 2018
  ident: 10.1016/j.ject.2023.11.002_bib26
  article-title: Dynamic pricing strategies for perishable product in a competitive multi-agent retailers market
  publication-title: J. Artif. Soc. Soc. Simul.
  doi: 10.18564/jasss.3710
– volume: 56
  start-page: 1752
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib89
  article-title: Development of lean construction supply chain risk management based on enhanced neural network
  publication-title: Mater. Today.: Proc.
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib29
  article-title: Advances in web-based decision support systems
  publication-title: Int. J. Eng. Future Technol.
– volume: 9
  start-page: 33
  year: 2009
  ident: 10.1016/j.ject.2023.11.002_bib83
  article-title: Inventory optimization in supply chain management using genetic algorithm
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– start-page: 1
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib54
  article-title: Artificial neural network based approach for blood demand forecasting: Fez transfusion blood center case study
  publication-title: Proceedings of the 2nd international Conference on Big Data, Cloud and Applications
– volume: 33
  start-page: 498
  year: 2014
  ident: 10.1016/j.ject.2023.11.002_bib105
  article-title: Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2014.04.007
– volume: 21
  start-page: 562
  year: 2010
  ident: 10.1016/j.ject.2023.11.002_bib55
  article-title: DSOPP: a platform for distributed simulation of order promising protocols in supply chain networks
  publication-title: Prod. Plan. Control
  doi: 10.1080/09537287.2010.489251
– volume: 31
  start-page: 155
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib129
  article-title: Dynamic pricing and information disclosure for fresh produce: an artificial intelligence approach
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/poms.13525
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib111
  article-title: Optimization of energy consumption in industrial robots, a review
  publication-title: Cogn. Robot.
  doi: 10.1016/j.cogr.2023.05.003
– volume: 34
  start-page: 3976
  year: 2010
  ident: 10.1016/j.ject.2023.11.002_bib59
  article-title: Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.03.033
– ident: 10.1016/j.ject.2023.11.002_bib72
– volume: 344
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib53
  article-title: Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131068
– volume: 127
  start-page: 178
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib27
  article-title: The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2019.05.007
– volume: 225
  start-page: 857
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib128
  article-title: Supply chain sustainability risk and assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.307
– volume: 179
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib124
  article-title: Load demand forecasting of residential buildings using a deep learning model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106073
– volume: 183
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib52
  article-title: Evaluation on risks of sustainable supply chain based on optimized BP neural networks in fresh grape industry
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.105988
– volume: 142
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib3
  article-title: Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106380
– volume: 10
  start-page: 383
  year: 2013
  ident: 10.1016/j.ject.2023.11.002_bib35
  article-title: An evaluation model of supply chain performances using 5DBSC and LMBP neural network algorithm
  publication-title: J. Bionic. Eng.
  doi: 10.1016/S1672-6529(13)60234-6
– volume: 171
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib24
  article-title: A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114573
– volume: 12
  start-page: 15
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib100
  article-title: Cutting tool wear prediction in machining operations, a review
  publication-title: J. N. Technol. Mater.
– volume: 15
  start-page: 711
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib127
  article-title: Supply chain and logistics optimization management for international trading enterprises using IoT-based economic logistics model
  publication-title: Oper. Manag. Res.
  doi: 10.1007/s12063-022-00254-y
– volume: 34
  start-page: 9061
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib131
  article-title: Labeling trick: a theory of using graph neural networks for multi-node representation learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib82
  article-title: Online data-driven concurrent product-process-supply chain design in the early stage of new product development
  publication-title: J. Open Innov.: Technol., Mark., Complex.
  doi: 10.1016/j.joitmc.2023.100093
– volume: 45
  start-page: 331
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib69
  article-title: An improved grey neural network model for predicting transportation disruptions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.09.052
– year: 2005
  ident: 10.1016/j.ject.2023.11.002_bib74
– volume: 7
  start-page: 279
  year: 2014
  ident: 10.1016/j.ject.2023.11.002_bib16
  article-title: Hassani, Demand forecasting in supply chain: comparing multiple linear regression and artificial neural networks approaches
  publication-title: Int. Rev. Model. Simul.
– start-page: 1
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib48
  article-title: Regional logistics demand forecasting: a BP neural network approach
  publication-title: Complex Intell. Syst.
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib91
  article-title: Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00329-2
– volume: 60
  start-page: 5380
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib57
  article-title: A machine learning approach for predicting hidden links in supply chain with graph neural networks
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1956697
– volume: 8
  start-page: 1384
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib33
  article-title: Performance evaluation for a sustainable supply chain management system in the automotive industry using artificial intelligence
  publication-title: Processes
  doi: 10.3390/pr8111384
– volume: 16
  start-page: 189
  year: 1995
  ident: 10.1016/j.ject.2023.11.002_bib23
  article-title: The impact of transportation costs on supply chain managemen
  publication-title: J. Bus. Logist.
– volume: 18
  start-page: 1161
  year: 2010
  ident: 10.1016/j.ject.2023.11.002_bib60
  article-title: Integration of artificial neural network and MADA methods for green supplier selection
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2010.03.020
– volume: 28
  start-page: 2977
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib7
  article-title: A systematic review of machine learning in logistics and supply chain management: current trends and future directions
  publication-title: Benchmark.: Int. J.
  doi: 10.1108/BIJ-10-2020-0514
– volume: 18
  start-page: 55
  year: 2012
  ident: 10.1016/j.ject.2023.11.002_bib90
  article-title: Supplier selection and order allocation models in supply chain management: a review
  publication-title: World Appl. Sci. J.
– volume: 12
  start-page: 64
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib98
  article-title: A review in machining-induced residual stress
  publication-title: J. N. Technol. Mater.
– volume: 2
  start-page: 97
  year: 1998
  ident: 10.1016/j.ject.2023.11.002_bib14
  article-title: Brief application description. neural networks based forecasting techniques for inventory control applications
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009769804855
– volume: 61
  start-page: 775
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib68
  article-title: Risk prediction of digital transformation of manufacturing supply chain based on principal component analysis and backpropagation artificial neural network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.06.010
– volume: 212
  start-page: 19
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib64
  article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.02.001
– volume: 19
  start-page: 2229
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib132
  article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks
  publication-title: Sensors
  doi: 10.3390/s19102229
– volume: 2021
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib67
  article-title: Logistics distribution route optimization model based on recursive fuzzy neural network algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/3338840
– year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib103
  article-title: Minimization of surface roughness and residual stress in abrasive water jet cutting of titanium alloy Ti6Al4V
  publication-title: Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
– volume: 21
  start-page: 469
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib113
  article-title: Using sentiment analysis to improve supply chain intelligence
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-017-9762-2
– volume: 225
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib77
  article-title: A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.107569
– volume: 24
  start-page: 200
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib51
  article-title: Performance study of artificial neural network modelling to predict carried weight in the transportation system
  publication-title: Int. J. Logist. Syst. Manag.
– volume: 228
  start-page: 786
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib8
  article-title: Framework for evaluating risks in food supply chain: implications in food wastage reduction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.322
– volume: 27
  start-page: 611
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib63
  article-title: Tan, Unfolding the impact of supply chain quality management practices on sustainability performance: an artificial neural network approach
  publication-title: Supply Chain Manag.: Int. J.
  doi: 10.1108/SCM-03-2021-0129
– start-page: 1
  year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib101
  article-title: The effects of coolant on the cutting temperature, surface roughness and tool wear in turning operations of Ti6Al4V alloy
  publication-title: Mech. Based Des. Struct. Mach.
– start-page: 589
  year: 2007
  ident: 10.1016/j.ject.2023.11.002_bib75
  article-title: Applications of neural networks in supply chain management
– volume: 33
  start-page: 3939
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib44
  article-title: MLP neural network-based regional logistics demand prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05488-0
– volume: 13
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib45
  article-title: Future smart connected communities to fight covid-19 outbreak
  publication-title: Internet Things
  doi: 10.1016/j.iot.2020.100342
– volume: 37
  start-page: 1049
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib43
  article-title: Big data from dynamic pricing: a smart approach to tourism demand forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2020.11.006
– volume: 54
  start-page: 2757
  year: 2016
  ident: 10.1016/j.ject.2023.11.002_bib118
  article-title: Supply chain relationship quality and performance in technological turbulence: an artificial neural network approach
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1140919
– volume: 81
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib62
  article-title: Algorithm optimization of large-scale supply chain design based on FPGA and neural network
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103790
– volume: 7
  start-page: 136
  year: 2007
  ident: 10.1016/j.ject.2023.11.002_bib4
  article-title: Improved supply chain management based on hybrid demand forecasts
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2005.06.001
– start-page: 328
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib120
  article-title: Demand forecasting using random forest and artificial neural network for supply chain management
– start-page: 347
  year: 1995
  ident: 10.1016/j.ject.2023.11.002_bib61
  article-title: Neural networks in supply chain management
– volume: 122
  start-page: 502
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib117
  article-title: Artificial intelligence in supply chain management: a systematic literature review
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2020.09.009
– volume: 220
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib88
  article-title: Supply chain digitisation trends: an integration of knowledge management
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.07.012
– volume: 132
  year: 2023
  ident: 10.1016/j.ject.2023.11.002_bib125
  article-title: Industry classification based on supply chain network information using Graph Neural Networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109849
– volume: 169
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib39
  article-title: Future of artificial intelligence and its influence on supply chain risk management–a systematic review
  publication-title: Comput. Ind. Eng.
– volume: 79
  start-page: 363
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib122
  article-title: An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2017.04.013
– volume: 24
  start-page: 30
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib126
  article-title: Study on maritime logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model
  publication-title: Pol. Marit. Res.
  doi: 10.1515/pomr-2017-0061
– volume: 61
  start-page: 8325
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib9
  article-title: Design and analysis of logistic agent-based swarm-neural network for intelligent transportation system
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.01.046
– volume: 367
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib22
  article-title: Exploration on the financing risks of enterprise supply chain using back propagation neural network
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112457
– volume: 13
  start-page: 699
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib6
  article-title: Business boosting through sentiment analysis using Artificial Intelligence approach
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-021-01594-x
– start-page: 266
  year: 2015
  ident: 10.1016/j.ject.2023.11.002_bib96
  article-title: Artificial neural networks for demand forecasting: Application using Moroccan supermarket data
– volume: 45
  start-page: 1306
  year: 2013
  ident: 10.1016/j.ject.2023.11.002_bib104
  article-title: Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system
  publication-title: Comput. - Aided Des.
  doi: 10.1016/j.cad.2013.06.002
– volume: 13
  start-page: 120
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib42
  article-title: Application of neural networks in predicting the level of integration in supply chains
  publication-title: J. Ind. Eng. Manag. (JIEM)
– volume: 120
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib79
  article-title: Biomass for energy: a review on supply chain management models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109658
– volume: 174
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib80
  article-title: Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108777
– start-page: 1
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib99
  article-title: Minimization of surface roughness and residual stress in grinding operations of inconel 718
  publication-title: J. Mater. Eng. Perform.
– volume: 38
  start-page: 73
  year: 2014
  ident: 10.1016/j.ject.2023.11.002_bib17
  article-title: An intermodal freight transport system for optimal supply chain logistics
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2013.10.012
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.ject.2023.11.002_bib123
  article-title: Research on supply chain financial risk assessment based on blockchain and fuzzy neural networks
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 22
  start-page: 430
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib18
  article-title: Multiobjective mission route planning problem: a neural network-based forecasting model for mission planning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2960057
– volume: 11
  start-page: 16
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib76
  article-title: Smart warehouse management using hybrid architecture of neural network with barcode reader 1D/2D vision technology
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 14
  start-page: 1
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib1
  article-title: Data analytics in the supply chain management: Review of machine learning applications in demand forecasting
  publication-title: Oper. Supply Chain Manag.: Int. J.
– volume: 14
  start-page: 330
  year: 2020
  ident: 10.1016/j.ject.2023.11.002_bib28
  article-title: Secure socket layer in the network and web security
  publication-title: Int. J. Comput. Inf. Eng.
– volume: 235
  start-page: 699
  year: 2019
  ident: 10.1016/j.ject.2023.11.002_bib85
  article-title: Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.001
– volume: 20
  start-page: 292
  year: 2018
  ident: 10.1016/j.ject.2023.11.002_bib114
  article-title: Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks
  publication-title: Eksploat. i Niezawodn.
  doi: 10.17531/ein.2018.2.16
– volume: 33
  start-page: 1573
  year: 2022
  ident: 10.1016/j.ject.2023.11.002_bib47
  article-title: Artificial intelligence in operations management and supply chain management: an exploratory case study
  publication-title: Prod. Plan. Control
  doi: 10.1080/09537287.2021.1882690
– volume: 11
  start-page: 2083
  year: 2017
  ident: 10.1016/j.ject.2023.11.002_bib94
  article-title: Improving supply chain visibility with artificial neural networks
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2017.07.329
SSID ssj0003313483
Score 2.240292
SecondaryResourceType review_article
Snippet Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 179
SubjectTerms Artificial neural networks
Engineering Sciences
Supply chain management
Title Artificial neural networks in supply chain management, a review
URI https://hal.science/hal-04337912
https://doaj.org/article/e8c9194193774d01b3340ca48ae56e76
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi-COJNuzZN-jrJKrss4npyYW8hzYNVtIq7Cl787c4k7bJe9CKFPkLapjMl802Y-YaQU5crUYLfEOVgnCIBJjpSeVzBmREph7nS-UTh8V02moibaTpdKfWFMWGBHjgI7sIWugRHG3AGABUTs4pzESMVt7JpZnNPth2X8YozhXMw54yLgjdZMiGgC9c1elgtvIe0nc06SmuJPGE_2JdZu57q7ctwk2w0wJD2w4C2yJqtt8klXgaOB4rMk_7g47bn9KGmcyzJ-Un1DNx7-rwMZDmnioaUlB0yGQ7ur0dRU_Ig0lxkSZSpnAMEAOnpyjGhC9xYYrgtFAPsAuY0sVlSVsYAcmLGcV3GlcPSnypFrq9d0qlfartHKFfcZYlJjFJKKJ0Xmas0uKSl0oUrdNwlrP18qRs-cCxL8STbwK9HiSKTKDJwFCSIrEvOlve8BjaMX3tfoVSXPZHJ2jeAfmWjX_mXfrvkBHTy4xmj_q3ENuRey0uWfLD9_3jTAVnHwYdEw0PSWby92yNAHIvq2P9csB9_Db4BN5LQRg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+in+supply+chain+management%2C+a+review&rft.jtitle=Journal+of+Economy+and+Technology&rft.au=Mohsen+Soori&rft.au=Behrooz+Arezoo&rft.au=Roza+Dastres&rft.date=2023-11-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9488&rft.volume=1&rft.spage=179&rft.epage=196&rft_id=info:doi/10.1016%2Fj.ject.2023.11.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8c9194193774d01b3340ca48ae56e76
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9488&client=summon