Enhancing building energy efficiency by adaptive façade: A computational optimization approach
•A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%...
        Saved in:
      
    
          | Published in | Applied energy Vol. 265; p. 114797 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.05.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-2619 1872-9118  | 
| DOI | 10.1016/j.apenergy.2020.114797 | 
Cover
| Abstract | •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%.•The study facilitates the exploration of next-generation adaptive façade concepts.
The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings. | 
    
|---|---|
| AbstractList | •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%.•The study facilitates the exploration of next-generation adaptive façade concepts.
The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings. The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings.  | 
    
| ArticleNumber | 114797 | 
    
| Author | Ghazlan, Abdallah Ngo, Tuan Duc Ngo, Ngoc-Tri Bui, Dac-Khuong Nguyen, Tuan Ngoc  | 
    
| Author_xml | – sequence: 1 givenname: Dac-Khuong surname: Bui fullname: Bui, Dac-Khuong organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia – sequence: 2 givenname: Tuan Ngoc surname: Nguyen fullname: Nguyen, Tuan Ngoc email: tuan.nguyen@unimelb.edu.au organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia – sequence: 3 givenname: Abdallah surname: Ghazlan fullname: Ghazlan, Abdallah organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia – sequence: 4 givenname: Ngoc-Tri orcidid: 0000-0002-7102-4566 surname: Ngo fullname: Ngo, Ngoc-Tri organization: Faculty of Project Management, The University of Danang – University of Science and Technology, Danang, Viet Nam – sequence: 5 givenname: Tuan Duc surname: Ngo fullname: Ngo, Tuan Duc email: dtngo@unimelb.edu.au organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia  | 
    
| BookMark | eNqFkE1u2zAQhYkgBeK4vULAZTdy-CNTZNBFjSBNAxjoxntiRI5sGjKlkrIB90I9SC9WOWo32WQ1M5z33oDfLbmOXURC7jhbcMbV_X4BPUZM2_NCMDE-8rIy1RWZcV2JwnCur8mMSaYKobi5Ibc57xljggs2I_Yp7iC6ELe0PobWX5opjGLTBBcwujOtzxQ89EM4IW3gz2_w-EBX1HWH_jjAELoILe3G_SH8eh0p9H3qwO0-kg8NtBk__atzsvn2tHn8Xqx_PL88rtaFk-VyKBqjNNay0UbICkUJjde18iANqwEZ07r2YgnMu1JLuTSVMMI5A0qOcqXknHyeYserP4-YB3sI2WHbQsTumK0oJdcl06N-TtQkdanLOWFj-xQOkM6WM3sBavf2P1B7AWonoKPxyxujC9PnhwShfd_-dbLjiOEUMNn8Shd9SOgG67vwXsRfab-aqg | 
    
| CitedBy_id | crossref_primary_10_1016_j_buildenv_2022_108907 crossref_primary_10_1088_1757_899X_1289_1_012040 crossref_primary_10_1016_j_enbuild_2022_112303 crossref_primary_10_1016_j_solener_2021_10_058 crossref_primary_10_3846_jcem_2024_21745 crossref_primary_10_1016_j_enbuild_2024_114927 crossref_primary_10_3390_buildings13041096 crossref_primary_10_3390_en15041314 crossref_primary_10_3390_en16103976 crossref_primary_10_1177_17442591231219793 crossref_primary_10_1016_j_apenergy_2025_125374 crossref_primary_10_1016_j_solener_2021_06_035 crossref_primary_10_3390_su131810050 crossref_primary_10_1016_j_jobe_2021_102743 crossref_primary_10_1016_j_jobe_2022_104408 crossref_primary_10_3390_buildings13051186 crossref_primary_10_3390_su13179815 crossref_primary_10_1016_j_apenergy_2021_117341 crossref_primary_10_1016_j_tsep_2023_101835 crossref_primary_10_1016_j_jobe_2024_111377 crossref_primary_10_1016_j_icheatmasstransfer_2025_108669 crossref_primary_10_3390_atmos13081244 crossref_primary_10_1016_j_csite_2021_101250 crossref_primary_10_1016_j_egyr_2021_07_122 crossref_primary_10_3390_app11209371 crossref_primary_10_1016_j_conbuildmat_2023_131851 crossref_primary_10_1016_j_autcon_2020_103450 crossref_primary_10_1016_j_autcon_2022_104660 crossref_primary_10_3390_buildings10070114 crossref_primary_10_1016_j_buildenv_2022_109570 crossref_primary_10_1088_1755_1315_632_5_052008 crossref_primary_10_3390_buildings13071603 crossref_primary_10_3390_buildings12070884 crossref_primary_10_1061_JMCEE7_MTENG_17692 crossref_primary_10_1016_j_egyr_2022_10_428 crossref_primary_10_1016_j_apenergy_2023_120817 crossref_primary_10_20396_parc_v14i00_8671581 crossref_primary_10_1016_j_enbuild_2021_110864 crossref_primary_10_1007_s42108_020_00112_2 crossref_primary_10_1016_j_jobe_2024_111643 crossref_primary_10_1108_ECAM_07_2020_0559 crossref_primary_10_58317_eksen_1289803 crossref_primary_10_1016_j_jobe_2024_111449 crossref_primary_10_1016_j_solener_2021_06_012 crossref_primary_10_1016_j_apenergy_2024_124787 crossref_primary_10_1016_j_foar_2023_11_003 crossref_primary_10_1016_j_renene_2022_04_119 crossref_primary_10_1016_j_ceramint_2021_10_030 crossref_primary_10_1080_19401493_2024_2384487 crossref_primary_10_1016_j_applthermaleng_2021_117923 crossref_primary_10_1016_j_applthermaleng_2023_120573 crossref_primary_10_1038_s41598_024_68239_4 crossref_primary_10_3390_su16229739 crossref_primary_10_1016_j_enbuild_2024_115191 crossref_primary_10_57165_artgrid_1357657 crossref_primary_10_1016_j_energy_2023_130041 crossref_primary_10_1016_j_energy_2024_132644 crossref_primary_10_1016_j_jobe_2024_108842 crossref_primary_10_1016_j_egyr_2020_10_005 crossref_primary_10_1177_17442591241269182 crossref_primary_10_1016_j_jobe_2024_111310 crossref_primary_10_3390_en13153997 crossref_primary_10_1016_j_csite_2024_104680 crossref_primary_10_1016_j_seta_2021_101020 crossref_primary_10_1108_CI_12_2022_0314 crossref_primary_10_1016_j_seta_2023_103124 crossref_primary_10_3390_en15030829 crossref_primary_10_1007_s44213_023_00015_y crossref_primary_10_1108_SASBE_04_2021_0075 crossref_primary_10_3389_fenef_2024_1430647 crossref_primary_10_1016_j_aej_2023_08_041 crossref_primary_10_3390_urbansci9030057 crossref_primary_10_1016_j_enbuild_2024_114598 crossref_primary_10_1007_s41024_022_00238_2 crossref_primary_10_1016_j_buildenv_2022_109479 crossref_primary_10_1016_j_eiar_2020_106548 crossref_primary_10_1109_ACCESS_2021_3065087 crossref_primary_10_1016_j_buildenv_2021_108527 crossref_primary_10_1016_j_enbenv_2024_04_001 crossref_primary_10_3390_app12126051  | 
    
| Cites_doi | 10.1016/j.conbuildmat.2018.05.201 10.1016/j.egypro.2015.11.210 10.1016/j.apenergy.2019.114338 10.1016/j.apenergy.2018.07.015 10.1016/j.apenergy.2019.113690 10.1016/j.apenergy.2019.04.017 10.1016/j.apenergy.2019.113437 10.1016/j.jclepro.2018.02.137 10.1016/j.apenergy.2015.02.003 10.1016/j.buildenv.2019.106396 10.1016/j.enconman.2019.04.070 10.1016/j.enbuild.2018.07.009 10.1016/j.foar.2014.06.002 10.1007/s00158-016-1624-x 10.1016/j.solener.2015.12.039 10.1016/j.buildenv.2008.08.013 10.1504/IJBIC.2010.032124 10.1016/j.apenergy.2019.01.070 10.1016/j.enbuild.2018.10.004 10.2298/TSCI120201076A 10.1016/j.enbuild.2007.03.007 10.1016/j.enbuild.2019.04.017 10.1016/j.surfcoat.2016.10.074 10.1016/B978-0-12-397914-8.00010-2 10.1016/j.buildenv.2006.10.027 10.1016/j.egypro.2017.09.685 10.1016/j.buildenv.2018.08.046 10.1016/j.solener.2015.11.003 10.26868/25222708.2015.2240 10.1016/j.buildenv.2018.12.045  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.apenergy.2020.114797 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1872-9118 | 
    
| ExternalDocumentID | 10_1016_j_apenergy_2020_114797 S0306261920303093  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c345t-f968eb3f89237e24afd8b6da390bae0088bd25a0dc4833597292cc9a6337e663 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0306-2619 | 
    
| IngestDate | Sat Sep 27 19:01:29 EDT 2025 Thu Oct 09 00:21:45 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 23 02:48:35 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Building energy efficiency Smart windows Façade optimization Building performance simulation Modified firefly algorithm Adaptive façade  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c345t-f968eb3f89237e24afd8b6da390bae0088bd25a0dc4833597292cc9a6337e663 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-7102-4566 | 
    
| PQID | 2431840863 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_2431840863 crossref_primary_10_1016_j_apenergy_2020_114797 crossref_citationtrail_10_1016_j_apenergy_2020_114797 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114797  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-05-01 2020-05-00 20200501  | 
    
| PublicationDateYYYYMMDD | 2020-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Applied energy | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Crawley, Lawrie, Pedersen, Winkelmann (b0075) 2000; 42 Iken, Fertahi, Dlimi, Agounoun, Kadiri, Sbai (b0110) 2019; 195 Inc, A. 2019; Available from Hosseini, Mohammadi, Guerra-Santin (b0135) 2019; 165 Jung, Jazizadeh (b0040) 2019; 239 Lee (b0070) 2017 Administration, E.I. and G.P. Office, International Energy Outlook 2016, with Projections to 2040. Government Printing Office; 2016. Al-Obaidi, Ismail, Abdul Rahman (b0065) 2014; 3 Lepkova N, Zubka D, Jensen RL. Chapter 10 - Financial Investments for Zero Energy Houses: The Case of Near-Zero Energy Buildings. In: Clark WW, Editor. Global Sustainable Communities Handbook. Boston: Butterworth-Heinemann; 2014. p. 217–53. Hoon Lee, Jeong, Tae Chae (b0175) 2020; 260 Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b0205) 2018; 180 Piccolo, Simone (b0220) 2009; 44 Chong, Xu, Chao, Ngo (b0100) 2019; 194 Johnsen, Winther (b0120) 2015; 78 Loonen R. Approaches for computational performance optimization of innovative adaptive façade concepts. In: Department of the Built Environment. Netherlands: Eindhoven University of Technology; 2018. Lee, Park (b0185) 2019 Ahmed, Abdel-Rahman, Bady, Mahrous (b0140) 2016; 16 Andjelkovic, Cvjetković, Đaković, Stojanović (b0045) 2012; 16 Hirsch, J.J. eQUEST the QUick Energy Simulation Tool. Available from Gao, Dong, Isabella, Santbergen, Tan, Zeman (b0050) 2018; 228 Zhang, Tso, Iñigo, Liu, Miyazaki, Chao (b0155) 2019; 254 Lee, Gehbauer, Coffey, McNeil, Stadler, Marnay (b0165) 2015; 122 Chou, Ngo (b0210) 2017; 55 Li, Koo, Cha, Hong, Oh (b0035) 2018; 144 Wisconsin, T.U.o. A TRaNsient SYstems Simulation Program. Available from Rodrigues, Fernandes, Gaspar, Gomes, Costa (b0055) 2019; 252 Ajaji Y, André P. Support for energy and comfort management in an office building using smart electrochromic glazing: dynamic simulations. In: Proceedings of BS2015: 14th conference of IBPSA. BS Publications; 2016. Pérez-Lombard, Ortiz, Pout (b0020) 2008; 40 Ngo (b0180) 2019; 182 (DOE), U.S.D.o.E. Commercial Reference Buildings. Available from Loonen RCGM. Shaping the next generation of adaptive facade concepts with the use of simulations. In: Luible A, Zihlmann U, Editors. Facade2014 - Conference on Building Envelopes, 28 November 2014, Lucerne, Switzerland; 2014, s.n. p. 84–95. Crawley, Hand, Kummert, Griffith (b0095) 2008; 43 Santosh Philip, Tuan Tran, Eric Allen Youngson, J. Bull. Eppy. 2013; Available from . Liang, Sun, Aburas, Wilson, Wu (b0160) 2018; 176 Sun, Gou, Lau (b0030) 2018; 183 Yang (b0215) 2010; 2 Liu, Wittchen, Heiselberg (b0115) 2015; 145 Strathclyde, D.o.M.E.U.o. ESP-r. Available from Taveres-Cachat, Grynning, Almas, Goia (b0130) 2017; 132 Taveres-Cachat, Grynning, Thomsen, Selkowitz (b0125) 2019; 149 Agency, I.E., World energy outlook special report; 2015. Energy, Change (b0005) 2015 Wu, Zhao, Huang, Lim (b0150) 2017; 320 Kamal, Moloney, Wickramaratne, Narasimhan, Goswami (b0105) 2019; 246 Mahmoud, Elghazi (b0145) 2016; 126 Rodrigues (10.1016/j.apenergy.2020.114797_b0055) 2019; 252 Hoon Lee (10.1016/j.apenergy.2020.114797_b0175) 2020; 260 Liang (10.1016/j.apenergy.2020.114797_b0160) 2018; 176 Wu (10.1016/j.apenergy.2020.114797_b0150) 2017; 320 Bui (10.1016/j.apenergy.2020.114797_b0205) 2018; 180 10.1016/j.apenergy.2020.114797_b0025 Pérez-Lombard (10.1016/j.apenergy.2020.114797_b0020) 2008; 40 10.1016/j.apenergy.2020.114797_b0200 10.1016/j.apenergy.2020.114797_b0225 Johnsen (10.1016/j.apenergy.2020.114797_b0120) 2015; 78 Taveres-Cachat (10.1016/j.apenergy.2020.114797_b0125) 2019; 149 Sun (10.1016/j.apenergy.2020.114797_b0030) 2018; 183 10.1016/j.apenergy.2020.114797_b0170 10.1016/j.apenergy.2020.114797_b0010 Energy (10.1016/j.apenergy.2020.114797_b0005) 2015 10.1016/j.apenergy.2020.114797_b0195 Hosseini (10.1016/j.apenergy.2020.114797_b0135) 2019; 165 Li (10.1016/j.apenergy.2020.114797_b0035) 2018; 144 10.1016/j.apenergy.2020.114797_b0090 Liu (10.1016/j.apenergy.2020.114797_b0115) 2015; 145 10.1016/j.apenergy.2020.114797_b0190 Crawley (10.1016/j.apenergy.2020.114797_b0095) 2008; 43 Andjelkovic (10.1016/j.apenergy.2020.114797_b0045) 2012; 16 Chong (10.1016/j.apenergy.2020.114797_b0100) 2019; 194 Yang (10.1016/j.apenergy.2020.114797_b0215) 2010; 2 Piccolo (10.1016/j.apenergy.2020.114797_b0220) 2009; 44 Jung (10.1016/j.apenergy.2020.114797_b0040) 2019; 239 Kamal (10.1016/j.apenergy.2020.114797_b0105) 2019; 246 10.1016/j.apenergy.2020.114797_b0015 Iken (10.1016/j.apenergy.2020.114797_b0110) 2019; 195 Taveres-Cachat (10.1016/j.apenergy.2020.114797_b0130) 2017; 132 Ngo (10.1016/j.apenergy.2020.114797_b0180) 2019; 182 10.1016/j.apenergy.2020.114797_b0060 Lee (10.1016/j.apenergy.2020.114797_b0185) 2019 Gao (10.1016/j.apenergy.2020.114797_b0050) 2018; 228 Crawley (10.1016/j.apenergy.2020.114797_b0075) 2000; 42 Lee (10.1016/j.apenergy.2020.114797_b0165) 2015; 122 10.1016/j.apenergy.2020.114797_b0085 Mahmoud (10.1016/j.apenergy.2020.114797_b0145) 2016; 126 Al-Obaidi (10.1016/j.apenergy.2020.114797_b0065) 2014; 3 Chou (10.1016/j.apenergy.2020.114797_b0210) 2017; 55 Ahmed (10.1016/j.apenergy.2020.114797_b0140) 2016; 16 10.1016/j.apenergy.2020.114797_b0080 Lee (10.1016/j.apenergy.2020.114797_b0070) 2017 Zhang (10.1016/j.apenergy.2020.114797_b0155) 2019; 254  | 
    
| References_xml | – volume: 145 start-page: 43 year: 2015 end-page: 51 ident: b0115 article-title: Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark publication-title: Appl Energy – reference: Santosh Philip, Tuan Tran, Eric Allen Youngson, J. Bull. Eppy. 2013; Available from: – volume: 122 start-page: 1384 year: 2015 end-page: 1397 ident: b0165 article-title: Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings publication-title: Sol Energy – reference: Lepkova N, Zubka D, Jensen RL. Chapter 10 - Financial Investments for Zero Energy Houses: The Case of Near-Zero Energy Buildings. In: Clark WW, Editor. Global Sustainable Communities Handbook. Boston: Butterworth-Heinemann; 2014. p. 217–53. – volume: 254 year: 2019 ident: b0155 article-title: Perovskite thermochromic smart window: Advanced optical properties and low transition temperature publication-title: Appl Energy – year: 2019 ident: b0185 article-title: Evaluating thermal performance of double-skin facade using response factor publication-title: Energy Build – volume: 252 year: 2019 ident: b0055 article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass publication-title: Appl Energy – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: b0020 article-title: A review on buildings energy consumption information publication-title: Energy Build – volume: 3 start-page: 283 year: 2014 end-page: 297 ident: b0065 article-title: Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review publication-title: Front Archit Res – year: 2017 ident: b0070 article-title: Simulation-based performance assessment of climate adaptive greenhouse shells – volume: 149 start-page: 446 year: 2019 end-page: 457 ident: b0125 article-title: Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation publication-title: Build Environ – start-page: 37 year: 2015 ident: b0005 article-title: World energy outlook special report – volume: 126 start-page: 111 year: 2016 end-page: 127 ident: b0145 article-title: Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns publication-title: Sol Energy – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b0215 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int J Bio-Inspired Comput – volume: 176 start-page: 216 year: 2018 end-page: 231 ident: b0160 article-title: Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China publication-title: Energy Build – reference: Inc, A. 2019; Available from: – reference: Loonen RCGM. Shaping the next generation of adaptive facade concepts with the use of simulations. In: Luible A, Zihlmann U, Editors. Facade2014 - Conference on Building Envelopes, 28 November 2014, Lucerne, Switzerland; 2014, s.n. p. 84–95. – reference: Administration, E.I. and G.P. Office, International Energy Outlook 2016, with Projections to 2040. Government Printing Office; 2016. – reference: Loonen R. Approaches for computational performance optimization of innovative adaptive façade concepts. In: Department of the Built Environment. Netherlands: Eindhoven University of Technology; 2018. – volume: 43 start-page: 661 year: 2008 end-page: 673 ident: b0095 article-title: Contrasting the capabilities of building energy performance simulation programs publication-title: Build Environ – volume: 246 start-page: 77 year: 2019 end-page: 90 ident: b0105 article-title: Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus publication-title: Appl Energy – volume: 182 start-page: 264 year: 2019 end-page: 273 ident: b0180 article-title: Early predicting cooling loads for energy-efficient design in office buildings by machine learning publication-title: Energy Build – volume: 239 start-page: 1471 year: 2019 end-page: 1508 ident: b0040 article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl Energy – volume: 78 start-page: 1568 year: 2015 end-page: 1573 ident: b0120 article-title: Dynamic facades, the smart way of meeting the energy requirements publication-title: Energy Procedia – reference: Agency, I.E., World energy outlook special report; 2015. – volume: 16 year: 2012 ident: b0045 article-title: Development of simple calculation model for energy performance of double skin façades publication-title: Therm Sci – reference: Wisconsin, T.U.o. A TRaNsient SYstems Simulation Program. Available from: – volume: 228 start-page: 1454 year: 2018 end-page: 1472 ident: b0050 article-title: A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting publication-title: Appl Energy – volume: 55 start-page: 2013 year: 2017 end-page: 2028 ident: b0210 article-title: Modified firefly algorithm for multidimensional optimization in structural design problems publication-title: Struct Multidiscip Optim – volume: 144 start-page: 365 year: 2018 end-page: 385 ident: b0035 article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms publication-title: Build Environ – volume: 194 start-page: 177 year: 2019 end-page: 190 ident: b0100 article-title: Continuous-time Bayesian calibration of energy models using BIM and energy data publication-title: Energy Build – volume: 42 start-page: 49 year: 2000 end-page: 56 ident: b0075 article-title: Energy plus: energy simulation program publication-title: Ashrae J – reference: . – reference: Strathclyde, D.o.M.E.U.o. ESP-r. Available from: – volume: 320 start-page: 601 year: 2017 end-page: 607 ident: b0150 article-title: Sol-gel based photochromic coating for solar responsive smart window publication-title: Surf Coat Technol – volume: 44 start-page: 1171 year: 2009 end-page: 1180 ident: b0220 article-title: Effect of switchable glazing on discomfort glare from windows publication-title: Build Environ – volume: 183 start-page: 35 year: 2018 end-page: 45 ident: b0030 article-title: Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building publication-title: J Clean Prod – reference: Hirsch, J.J. eQUEST the QUick Energy Simulation Tool. Available from: – reference: Ajaji Y, André P. Support for energy and comfort management in an office building using smart electrochromic glazing: dynamic simulations. In: Proceedings of BS2015: 14th conference of IBPSA. BS Publications; 2016. – volume: 195 start-page: 650 year: 2019 end-page: 671 ident: b0110 article-title: Thermal and energy performance investigation of a smart double skin facade integrating vanadium dioxide through CFD simulations publication-title: Energy Convers Manage – reference: (DOE), U.S.D.o.E. Commercial Reference Buildings. Available from: – volume: 132 start-page: 496 year: 2017 end-page: 501 ident: b0130 article-title: Advanced transparent facades: market available products and associated challenges in building performance simulation publication-title: Energy Procedia – volume: 180 start-page: 320 year: 2018 end-page: 333 ident: b0205 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr Build Mater – volume: 260 year: 2020 ident: b0175 article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions publication-title: Appl Energy – volume: 16 start-page: 97 year: 2016 end-page: 106 ident: b0140 article-title: The thermal performance of residential building integrated with adaptive kinetic shading system publication-title: Int Energy J – volume: 165 year: 2019 ident: b0135 article-title: Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes publication-title: Build Environ – ident: 10.1016/j.apenergy.2020.114797_b0190 – volume: 180 start-page: 320 year: 2018 ident: 10.1016/j.apenergy.2020.114797_b0205 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.05.201 – ident: 10.1016/j.apenergy.2020.114797_b0060 – ident: 10.1016/j.apenergy.2020.114797_b0085 – volume: 78 start-page: 1568 year: 2015 ident: 10.1016/j.apenergy.2020.114797_b0120 article-title: Dynamic facades, the smart way of meeting the energy requirements publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.210 – volume: 260 year: 2020 ident: 10.1016/j.apenergy.2020.114797_b0175 article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114338 – volume: 228 start-page: 1454 year: 2018 ident: 10.1016/j.apenergy.2020.114797_b0050 article-title: A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.07.015 – volume: 254 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0155 article-title: Perovskite thermochromic smart window: Advanced optical properties and low transition temperature publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113690 – volume: 246 start-page: 77 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0105 article-title: Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.017 – volume: 252 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0055 article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113437 – volume: 183 start-page: 35 year: 2018 ident: 10.1016/j.apenergy.2020.114797_b0030 article-title: Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.02.137 – volume: 145 start-page: 43 year: 2015 ident: 10.1016/j.apenergy.2020.114797_b0115 article-title: Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.003 – volume: 165 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0135 article-title: Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes publication-title: Build Environ doi: 10.1016/j.buildenv.2019.106396 – start-page: 37 year: 2015 ident: 10.1016/j.apenergy.2020.114797_b0005 – volume: 195 start-page: 650 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0110 article-title: Thermal and energy performance investigation of a smart double skin facade integrating vanadium dioxide through CFD simulations publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.04.070 – volume: 176 start-page: 216 year: 2018 ident: 10.1016/j.apenergy.2020.114797_b0160 article-title: Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China publication-title: Energy Build doi: 10.1016/j.enbuild.2018.07.009 – volume: 3 start-page: 283 issue: 3 year: 2014 ident: 10.1016/j.apenergy.2020.114797_b0065 article-title: Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review publication-title: Front Archit Res doi: 10.1016/j.foar.2014.06.002 – volume: 16 start-page: 97 year: 2016 ident: 10.1016/j.apenergy.2020.114797_b0140 article-title: The thermal performance of residential building integrated with adaptive kinetic shading system publication-title: Int Energy J – ident: 10.1016/j.apenergy.2020.114797_b0090 – year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0185 article-title: Evaluating thermal performance of double-skin facade using response factor publication-title: Energy Build – volume: 55 start-page: 2013 issue: 6 year: 2017 ident: 10.1016/j.apenergy.2020.114797_b0210 article-title: Modified firefly algorithm for multidimensional optimization in structural design problems publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1624-x – volume: 126 start-page: 111 year: 2016 ident: 10.1016/j.apenergy.2020.114797_b0145 article-title: Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns publication-title: Sol Energy doi: 10.1016/j.solener.2015.12.039 – volume: 44 start-page: 1171 issue: 6 year: 2009 ident: 10.1016/j.apenergy.2020.114797_b0220 article-title: Effect of switchable glazing on discomfort glare from windows publication-title: Build Environ doi: 10.1016/j.buildenv.2008.08.013 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2020.114797_b0215 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2010.032124 – volume: 239 start-page: 1471 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0040 article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.070 – volume: 182 start-page: 264 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0180 article-title: Early predicting cooling loads for energy-efficient design in office buildings by machine learning publication-title: Energy Build doi: 10.1016/j.enbuild.2018.10.004 – ident: 10.1016/j.apenergy.2020.114797_b0010 – volume: 16 year: 2012 ident: 10.1016/j.apenergy.2020.114797_b0045 article-title: Development of simple calculation model for energy performance of double skin façades publication-title: Therm Sci doi: 10.2298/TSCI120201076A – ident: 10.1016/j.apenergy.2020.114797_b0200 – volume: 42 start-page: 49 issue: 4 year: 2000 ident: 10.1016/j.apenergy.2020.114797_b0075 article-title: Energy plus: energy simulation program publication-title: Ashrae J – volume: 40 start-page: 394 issue: 3 year: 2008 ident: 10.1016/j.apenergy.2020.114797_b0020 article-title: A review on buildings energy consumption information publication-title: Energy Build doi: 10.1016/j.enbuild.2007.03.007 – ident: 10.1016/j.apenergy.2020.114797_b0225 – ident: 10.1016/j.apenergy.2020.114797_b0080 – volume: 194 start-page: 177 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0100 article-title: Continuous-time Bayesian calibration of energy models using BIM and energy data publication-title: Energy Build doi: 10.1016/j.enbuild.2019.04.017 – ident: 10.1016/j.apenergy.2020.114797_b0195 – volume: 320 start-page: 601 year: 2017 ident: 10.1016/j.apenergy.2020.114797_b0150 article-title: Sol-gel based photochromic coating for solar responsive smart window publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2016.10.074 – ident: 10.1016/j.apenergy.2020.114797_b0025 doi: 10.1016/B978-0-12-397914-8.00010-2 – year: 2017 ident: 10.1016/j.apenergy.2020.114797_b0070 – volume: 43 start-page: 661 issue: 4 year: 2008 ident: 10.1016/j.apenergy.2020.114797_b0095 article-title: Contrasting the capabilities of building energy performance simulation programs publication-title: Build Environ doi: 10.1016/j.buildenv.2006.10.027 – volume: 132 start-page: 496 year: 2017 ident: 10.1016/j.apenergy.2020.114797_b0130 article-title: Advanced transparent facades: market available products and associated challenges in building performance simulation publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.685 – volume: 144 start-page: 365 year: 2018 ident: 10.1016/j.apenergy.2020.114797_b0035 article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms publication-title: Build Environ doi: 10.1016/j.buildenv.2018.08.046 – volume: 122 start-page: 1384 year: 2015 ident: 10.1016/j.apenergy.2020.114797_b0165 article-title: Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings publication-title: Sol Energy doi: 10.1016/j.solener.2015.11.003 – ident: 10.1016/j.apenergy.2020.114797_b0170 doi: 10.26868/25222708.2015.2240 – ident: 10.1016/j.apenergy.2020.114797_b0015 – volume: 149 start-page: 446 year: 2019 ident: 10.1016/j.apenergy.2020.114797_b0125 article-title: Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation publication-title: Build Environ doi: 10.1016/j.buildenv.2018.12.045  | 
    
| SSID | ssj0002120 | 
    
| Score | 2.5723345 | 
    
| Snippet | •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed... The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 114797 | 
    
| SubjectTerms | Adaptive façade algorithms automation Building energy efficiency Building performance simulation buildings case studies climatic factors computer simulation computer software energy efficiency Façade optimization Modified firefly algorithm Smart windows transmittance  | 
    
| Title | Enhancing building energy efficiency by adaptive façade: A computational optimization approach | 
    
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.114797 https://www.proquest.com/docview/2431840863  | 
    
| Volume | 265 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUqWGBAUKh4y0isoa3tJA5bhYoKSF0oEptlJzYPQVpBGVj4HT6EH-Nex6GAkDqw5WFHlq99fRzfcy4hhwUzsRWJixLZdZEQ3EZGplmUGW4BnrpEWh9tMUwGV-L8Or5ukJOaC4NhlcH3Vz7de-vwpB16sz25u2tfItr1-B8u8DwPGewixSwGR2-zMA8WpBmhcISlv7GE74_0xHqGHewTmZfNTVH86e8F6per9uvP6SpZCcCR9qq2rZGGLZtk-ZucYJO0-jPWGhQN0_Z5nah-eYu6GuUNNSENNq2aRK2XkED-JTWvVBd6gv6POv3xrgt7THs093kfwj9DOob3j4G7SWtB8g0yOu2PTgZRyKwQ5VzE08hlYAPDnQR4l1omtCukSQrNs47RFmCBNAWLdafIBZKyMkDgLM8znXAoDhilRRbKcWk3CQX8V6SO465HYoSNcal1XS4swC7WFfkWieveVHlQHcfkFw-qDi-7V7UVFFpBVVbYIu2vepNKd2Nujaw2lvoxghQsDnPrHtTWVTC98MxEl3b88qwYACzYA8uEb__j-ztkCe-qQMldsjB9erF7AGamZt-P1n2y2Du7GAw_AfHK9kc | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYABQQFRnkZiDaW282KrUFGBwkKR2Cw7saEVpBWUgYW_ww_hj3F2HF5CYmCL4nNk-ezzd_HddwB7OVWh5pEJoqRlAs6ZDlQSp0GqmEZ4aqJEu2iLi6h7xU-vw-spOKpyYWxYpbf9pU131tq_afrZbI4Hg-alRbsO_-ODvc-bhhke0th6YPsvn3Ee1HMzonRgxb-kCQ_35Vi7FDt0FKnjzY0t-9PvJ9QPW-0OoONFWPDIkbTLwS3BlC7qMP-FT7AOq53PtDUU9fv2cRlEp7i1xBrFDVG-DjYph0S045CwCZhEPROZy7E1gMTIt1eZ60PSJpkr_OB_GpIRtt_75E1SMZKvQP-40z_qBr60QpAxHk4Ck6ISFDMJ4rtYUy5Nnqgolyw9UFIjLkhUTkN5kGfcZmWlCMFplqUyYiiOIGUVasWo0GtAEADmsWHW7UlsiI0ysTYtxjXiLtriWQPCajZF5mnHbfWLO1HFlw1FpQVhtSBKLTSg-dFvXBJv_NkjrZQlvi0hgafDn313K-0K3F_20kQWevT0KCgiLHSCk4it_-P7OzDb7Z_3RO_k4mwD5mxLGTW5CbXJw5PeQmQzUdtu5b4Doa733A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+building+energy+efficiency+by+adaptive+fa%C3%A7ade%3A+A+computational+optimization+approach&rft.jtitle=Applied+energy&rft.au=Bui%2C+Dac-Khuong&rft.au=Nguyen%2C+Tuan+Ngoc&rft.au=Ghazlan%2C+Abdallah&rft.au=Ngo%2C+Ngoc-Tri&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=265&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114797&rft.externalDocID=S0306261920303093 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |