Enhancing building energy efficiency by adaptive façade: A computational optimization approach

•A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 265; p. 114797
Main Authors Bui, Dac-Khuong, Nguyen, Tuan Ngoc, Ghazlan, Abdallah, Ngo, Ngoc-Tri, Ngo, Tuan Duc
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2020.114797

Cover

Abstract •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%.•The study facilitates the exploration of next-generation adaptive façade concepts. The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings.
AbstractList •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed approach.•The effects of the adaptive façade system are analyzed and discussed.•The proposed approach could reduce energy consumption by 14.2–29.0%.•The study facilitates the exploration of next-generation adaptive façade concepts. The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings.
The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by employing adaptive façades. In this study, a computational optimization approach is proposed to enhance the energy efficiency of buildings based on the design of an adaptive façade system, which can adapt its thermal and visible transmittance for dynamically varying climatic conditions. The engine of the adaptive façade design approach is an automated optimization process, which combines the building energy simulation program (EnergyPlus) with an optimization technique through Eppy, a powerful Python toolkit. The modified firefly algorithm, an in-house optimization tool, is employed to design the adaptive façade system in this study. However, our proposed method is not tied to any particular optimization tool and does not impose any restrictions on a type of building. To this end, the capability of the proposed method for enhancing building energy efficiency is validated by two case studies, namely a typical single office room and a medium office building. We found that the proposed adaptive façade system can reduce the energy consumption by 14.9–29.0% and 14.2–22.3% for the first and second case study, respectively, compared to the static façades. These significant findings demonstrate the potential of adaptive façades to enhance the energy efficiency of buildings.
ArticleNumber 114797
Author Ghazlan, Abdallah
Ngo, Tuan Duc
Ngo, Ngoc-Tri
Bui, Dac-Khuong
Nguyen, Tuan Ngoc
Author_xml – sequence: 1
  givenname: Dac-Khuong
  surname: Bui
  fullname: Bui, Dac-Khuong
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 2
  givenname: Tuan Ngoc
  surname: Nguyen
  fullname: Nguyen, Tuan Ngoc
  email: tuan.nguyen@unimelb.edu.au
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 3
  givenname: Abdallah
  surname: Ghazlan
  fullname: Ghazlan, Abdallah
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 4
  givenname: Ngoc-Tri
  orcidid: 0000-0002-7102-4566
  surname: Ngo
  fullname: Ngo, Ngoc-Tri
  organization: Faculty of Project Management, The University of Danang – University of Science and Technology, Danang, Viet Nam
– sequence: 5
  givenname: Tuan Duc
  surname: Ngo
  fullname: Ngo, Tuan Duc
  email: dtngo@unimelb.edu.au
  organization: Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
BookMark eNqFkE1u2zAQhYkgBeK4vULAZTdy-CNTZNBFjSBNAxjoxntiRI5sGjKlkrIB90I9SC9WOWo32WQ1M5z33oDfLbmOXURC7jhbcMbV_X4BPUZM2_NCMDE-8rIy1RWZcV2JwnCur8mMSaYKobi5Ibc57xljggs2I_Yp7iC6ELe0PobWX5opjGLTBBcwujOtzxQ89EM4IW3gz2_w-EBX1HWH_jjAELoILe3G_SH8eh0p9H3qwO0-kg8NtBk__atzsvn2tHn8Xqx_PL88rtaFk-VyKBqjNNay0UbICkUJjde18iANqwEZ07r2YgnMu1JLuTSVMMI5A0qOcqXknHyeYserP4-YB3sI2WHbQsTumK0oJdcl06N-TtQkdanLOWFj-xQOkM6WM3sBavf2P1B7AWonoKPxyxujC9PnhwShfd_-dbLjiOEUMNn8Shd9SOgG67vwXsRfab-aqg
CitedBy_id crossref_primary_10_1016_j_buildenv_2022_108907
crossref_primary_10_1088_1757_899X_1289_1_012040
crossref_primary_10_1016_j_enbuild_2022_112303
crossref_primary_10_1016_j_solener_2021_10_058
crossref_primary_10_3846_jcem_2024_21745
crossref_primary_10_1016_j_enbuild_2024_114927
crossref_primary_10_3390_buildings13041096
crossref_primary_10_3390_en15041314
crossref_primary_10_3390_en16103976
crossref_primary_10_1177_17442591231219793
crossref_primary_10_1016_j_apenergy_2025_125374
crossref_primary_10_1016_j_solener_2021_06_035
crossref_primary_10_3390_su131810050
crossref_primary_10_1016_j_jobe_2021_102743
crossref_primary_10_1016_j_jobe_2022_104408
crossref_primary_10_3390_buildings13051186
crossref_primary_10_3390_su13179815
crossref_primary_10_1016_j_apenergy_2021_117341
crossref_primary_10_1016_j_tsep_2023_101835
crossref_primary_10_1016_j_jobe_2024_111377
crossref_primary_10_1016_j_icheatmasstransfer_2025_108669
crossref_primary_10_3390_atmos13081244
crossref_primary_10_1016_j_csite_2021_101250
crossref_primary_10_1016_j_egyr_2021_07_122
crossref_primary_10_3390_app11209371
crossref_primary_10_1016_j_conbuildmat_2023_131851
crossref_primary_10_1016_j_autcon_2020_103450
crossref_primary_10_1016_j_autcon_2022_104660
crossref_primary_10_3390_buildings10070114
crossref_primary_10_1016_j_buildenv_2022_109570
crossref_primary_10_1088_1755_1315_632_5_052008
crossref_primary_10_3390_buildings13071603
crossref_primary_10_3390_buildings12070884
crossref_primary_10_1061_JMCEE7_MTENG_17692
crossref_primary_10_1016_j_egyr_2022_10_428
crossref_primary_10_1016_j_apenergy_2023_120817
crossref_primary_10_20396_parc_v14i00_8671581
crossref_primary_10_1016_j_enbuild_2021_110864
crossref_primary_10_1007_s42108_020_00112_2
crossref_primary_10_1016_j_jobe_2024_111643
crossref_primary_10_1108_ECAM_07_2020_0559
crossref_primary_10_58317_eksen_1289803
crossref_primary_10_1016_j_jobe_2024_111449
crossref_primary_10_1016_j_solener_2021_06_012
crossref_primary_10_1016_j_apenergy_2024_124787
crossref_primary_10_1016_j_foar_2023_11_003
crossref_primary_10_1016_j_renene_2022_04_119
crossref_primary_10_1016_j_ceramint_2021_10_030
crossref_primary_10_1080_19401493_2024_2384487
crossref_primary_10_1016_j_applthermaleng_2021_117923
crossref_primary_10_1016_j_applthermaleng_2023_120573
crossref_primary_10_1038_s41598_024_68239_4
crossref_primary_10_3390_su16229739
crossref_primary_10_1016_j_enbuild_2024_115191
crossref_primary_10_57165_artgrid_1357657
crossref_primary_10_1016_j_energy_2023_130041
crossref_primary_10_1016_j_energy_2024_132644
crossref_primary_10_1016_j_jobe_2024_108842
crossref_primary_10_1016_j_egyr_2020_10_005
crossref_primary_10_1177_17442591241269182
crossref_primary_10_1016_j_jobe_2024_111310
crossref_primary_10_3390_en13153997
crossref_primary_10_1016_j_csite_2024_104680
crossref_primary_10_1016_j_seta_2021_101020
crossref_primary_10_1108_CI_12_2022_0314
crossref_primary_10_1016_j_seta_2023_103124
crossref_primary_10_3390_en15030829
crossref_primary_10_1007_s44213_023_00015_y
crossref_primary_10_1108_SASBE_04_2021_0075
crossref_primary_10_3389_fenef_2024_1430647
crossref_primary_10_1016_j_aej_2023_08_041
crossref_primary_10_3390_urbansci9030057
crossref_primary_10_1016_j_enbuild_2024_114598
crossref_primary_10_1007_s41024_022_00238_2
crossref_primary_10_1016_j_buildenv_2022_109479
crossref_primary_10_1016_j_eiar_2020_106548
crossref_primary_10_1109_ACCESS_2021_3065087
crossref_primary_10_1016_j_buildenv_2021_108527
crossref_primary_10_1016_j_enbenv_2024_04_001
crossref_primary_10_3390_app12126051
Cites_doi 10.1016/j.conbuildmat.2018.05.201
10.1016/j.egypro.2015.11.210
10.1016/j.apenergy.2019.114338
10.1016/j.apenergy.2018.07.015
10.1016/j.apenergy.2019.113690
10.1016/j.apenergy.2019.04.017
10.1016/j.apenergy.2019.113437
10.1016/j.jclepro.2018.02.137
10.1016/j.apenergy.2015.02.003
10.1016/j.buildenv.2019.106396
10.1016/j.enconman.2019.04.070
10.1016/j.enbuild.2018.07.009
10.1016/j.foar.2014.06.002
10.1007/s00158-016-1624-x
10.1016/j.solener.2015.12.039
10.1016/j.buildenv.2008.08.013
10.1504/IJBIC.2010.032124
10.1016/j.apenergy.2019.01.070
10.1016/j.enbuild.2018.10.004
10.2298/TSCI120201076A
10.1016/j.enbuild.2007.03.007
10.1016/j.enbuild.2019.04.017
10.1016/j.surfcoat.2016.10.074
10.1016/B978-0-12-397914-8.00010-2
10.1016/j.buildenv.2006.10.027
10.1016/j.egypro.2017.09.685
10.1016/j.buildenv.2018.08.046
10.1016/j.solener.2015.11.003
10.26868/25222708.2015.2240
10.1016/j.buildenv.2018.12.045
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.114797
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114797
S0306261920303093
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-f968eb3f89237e24afd8b6da390bae0088bd25a0dc4833597292cc9a6337e663
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sat Sep 27 19:01:29 EDT 2025
Thu Oct 09 00:21:45 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Fri Feb 23 02:48:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Building energy efficiency
Smart windows
Façade optimization
Building performance simulation
Modified firefly algorithm
Adaptive façade
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-f968eb3f89237e24afd8b6da390bae0088bd25a0dc4833597292cc9a6337e663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7102-4566
PQID 2431840863
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2431840863
crossref_primary_10_1016_j_apenergy_2020_114797
crossref_citationtrail_10_1016_j_apenergy_2020_114797
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114797
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Crawley, Lawrie, Pedersen, Winkelmann (b0075) 2000; 42
Iken, Fertahi, Dlimi, Agounoun, Kadiri, Sbai (b0110) 2019; 195
Inc, A. 2019; Available from
Hosseini, Mohammadi, Guerra-Santin (b0135) 2019; 165
Jung, Jazizadeh (b0040) 2019; 239
Lee (b0070) 2017
Administration, E.I. and G.P. Office, International Energy Outlook 2016, with Projections to 2040. Government Printing Office; 2016.
Al-Obaidi, Ismail, Abdul Rahman (b0065) 2014; 3
Lepkova N, Zubka D, Jensen RL. Chapter 10 - Financial Investments for Zero Energy Houses: The Case of Near-Zero Energy Buildings. In: Clark WW, Editor. Global Sustainable Communities Handbook. Boston: Butterworth-Heinemann; 2014. p. 217–53.
Hoon Lee, Jeong, Tae Chae (b0175) 2020; 260
Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b0205) 2018; 180
Piccolo, Simone (b0220) 2009; 44
Chong, Xu, Chao, Ngo (b0100) 2019; 194
Johnsen, Winther (b0120) 2015; 78
Loonen R. Approaches for computational performance optimization of innovative adaptive façade concepts. In: Department of the Built Environment. Netherlands: Eindhoven University of Technology; 2018.
Lee, Park (b0185) 2019
Ahmed, Abdel-Rahman, Bady, Mahrous (b0140) 2016; 16
Andjelkovic, Cvjetković, Đaković, Stojanović (b0045) 2012; 16
Hirsch, J.J. eQUEST the QUick Energy Simulation Tool. Available from
Gao, Dong, Isabella, Santbergen, Tan, Zeman (b0050) 2018; 228
Zhang, Tso, Iñigo, Liu, Miyazaki, Chao (b0155) 2019; 254
Lee, Gehbauer, Coffey, McNeil, Stadler, Marnay (b0165) 2015; 122
Chou, Ngo (b0210) 2017; 55
Li, Koo, Cha, Hong, Oh (b0035) 2018; 144
Wisconsin, T.U.o. A TRaNsient SYstems Simulation Program. Available from
Rodrigues, Fernandes, Gaspar, Gomes, Costa (b0055) 2019; 252
Ajaji Y, André P. Support for energy and comfort management in an office building using smart electrochromic glazing: dynamic simulations. In: Proceedings of BS2015: 14th conference of IBPSA. BS Publications; 2016.
Pérez-Lombard, Ortiz, Pout (b0020) 2008; 40
Ngo (b0180) 2019; 182
(DOE), U.S.D.o.E. Commercial Reference Buildings. Available from
Loonen RCGM. Shaping the next generation of adaptive facade concepts with the use of simulations. In: Luible A, Zihlmann U, Editors. Facade2014 - Conference on Building Envelopes, 28 November 2014, Lucerne, Switzerland; 2014, s.n. p. 84–95.
Crawley, Hand, Kummert, Griffith (b0095) 2008; 43
Santosh Philip, Tuan Tran, Eric Allen Youngson, J. Bull. Eppy. 2013; Available from
.
Liang, Sun, Aburas, Wilson, Wu (b0160) 2018; 176
Sun, Gou, Lau (b0030) 2018; 183
Yang (b0215) 2010; 2
Liu, Wittchen, Heiselberg (b0115) 2015; 145
Strathclyde, D.o.M.E.U.o. ESP-r. Available from
Taveres-Cachat, Grynning, Almas, Goia (b0130) 2017; 132
Taveres-Cachat, Grynning, Thomsen, Selkowitz (b0125) 2019; 149
Agency, I.E., World energy outlook special report; 2015.
Energy, Change (b0005) 2015
Wu, Zhao, Huang, Lim (b0150) 2017; 320
Kamal, Moloney, Wickramaratne, Narasimhan, Goswami (b0105) 2019; 246
Mahmoud, Elghazi (b0145) 2016; 126
Rodrigues (10.1016/j.apenergy.2020.114797_b0055) 2019; 252
Hoon Lee (10.1016/j.apenergy.2020.114797_b0175) 2020; 260
Liang (10.1016/j.apenergy.2020.114797_b0160) 2018; 176
Wu (10.1016/j.apenergy.2020.114797_b0150) 2017; 320
Bui (10.1016/j.apenergy.2020.114797_b0205) 2018; 180
10.1016/j.apenergy.2020.114797_b0025
Pérez-Lombard (10.1016/j.apenergy.2020.114797_b0020) 2008; 40
10.1016/j.apenergy.2020.114797_b0200
10.1016/j.apenergy.2020.114797_b0225
Johnsen (10.1016/j.apenergy.2020.114797_b0120) 2015; 78
Taveres-Cachat (10.1016/j.apenergy.2020.114797_b0125) 2019; 149
Sun (10.1016/j.apenergy.2020.114797_b0030) 2018; 183
10.1016/j.apenergy.2020.114797_b0170
10.1016/j.apenergy.2020.114797_b0010
Energy (10.1016/j.apenergy.2020.114797_b0005) 2015
10.1016/j.apenergy.2020.114797_b0195
Hosseini (10.1016/j.apenergy.2020.114797_b0135) 2019; 165
Li (10.1016/j.apenergy.2020.114797_b0035) 2018; 144
10.1016/j.apenergy.2020.114797_b0090
Liu (10.1016/j.apenergy.2020.114797_b0115) 2015; 145
10.1016/j.apenergy.2020.114797_b0190
Crawley (10.1016/j.apenergy.2020.114797_b0095) 2008; 43
Andjelkovic (10.1016/j.apenergy.2020.114797_b0045) 2012; 16
Chong (10.1016/j.apenergy.2020.114797_b0100) 2019; 194
Yang (10.1016/j.apenergy.2020.114797_b0215) 2010; 2
Piccolo (10.1016/j.apenergy.2020.114797_b0220) 2009; 44
Jung (10.1016/j.apenergy.2020.114797_b0040) 2019; 239
Kamal (10.1016/j.apenergy.2020.114797_b0105) 2019; 246
10.1016/j.apenergy.2020.114797_b0015
Iken (10.1016/j.apenergy.2020.114797_b0110) 2019; 195
Taveres-Cachat (10.1016/j.apenergy.2020.114797_b0130) 2017; 132
Ngo (10.1016/j.apenergy.2020.114797_b0180) 2019; 182
10.1016/j.apenergy.2020.114797_b0060
Lee (10.1016/j.apenergy.2020.114797_b0185) 2019
Gao (10.1016/j.apenergy.2020.114797_b0050) 2018; 228
Crawley (10.1016/j.apenergy.2020.114797_b0075) 2000; 42
Lee (10.1016/j.apenergy.2020.114797_b0165) 2015; 122
10.1016/j.apenergy.2020.114797_b0085
Mahmoud (10.1016/j.apenergy.2020.114797_b0145) 2016; 126
Al-Obaidi (10.1016/j.apenergy.2020.114797_b0065) 2014; 3
Chou (10.1016/j.apenergy.2020.114797_b0210) 2017; 55
Ahmed (10.1016/j.apenergy.2020.114797_b0140) 2016; 16
10.1016/j.apenergy.2020.114797_b0080
Lee (10.1016/j.apenergy.2020.114797_b0070) 2017
Zhang (10.1016/j.apenergy.2020.114797_b0155) 2019; 254
References_xml – volume: 145
  start-page: 43
  year: 2015
  end-page: 51
  ident: b0115
  article-title: Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark
  publication-title: Appl Energy
– reference: Santosh Philip, Tuan Tran, Eric Allen Youngson, J. Bull. Eppy. 2013; Available from:
– volume: 122
  start-page: 1384
  year: 2015
  end-page: 1397
  ident: b0165
  article-title: Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings
  publication-title: Sol Energy
– reference: Lepkova N, Zubka D, Jensen RL. Chapter 10 - Financial Investments for Zero Energy Houses: The Case of Near-Zero Energy Buildings. In: Clark WW, Editor. Global Sustainable Communities Handbook. Boston: Butterworth-Heinemann; 2014. p. 217–53.
– volume: 254
  year: 2019
  ident: b0155
  article-title: Perovskite thermochromic smart window: Advanced optical properties and low transition temperature
  publication-title: Appl Energy
– year: 2019
  ident: b0185
  article-title: Evaluating thermal performance of double-skin facade using response factor
  publication-title: Energy Build
– volume: 252
  year: 2019
  ident: b0055
  article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass
  publication-title: Appl Energy
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: b0020
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
– volume: 3
  start-page: 283
  year: 2014
  end-page: 297
  ident: b0065
  article-title: Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review
  publication-title: Front Archit Res
– year: 2017
  ident: b0070
  article-title: Simulation-based performance assessment of climate adaptive greenhouse shells
– volume: 149
  start-page: 446
  year: 2019
  end-page: 457
  ident: b0125
  article-title: Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation
  publication-title: Build Environ
– start-page: 37
  year: 2015
  ident: b0005
  article-title: World energy outlook special report
– volume: 126
  start-page: 111
  year: 2016
  end-page: 127
  ident: b0145
  article-title: Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns
  publication-title: Sol Energy
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b0215
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int J Bio-Inspired Comput
– volume: 176
  start-page: 216
  year: 2018
  end-page: 231
  ident: b0160
  article-title: Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China
  publication-title: Energy Build
– reference: Inc, A. 2019; Available from:
– reference: Loonen RCGM. Shaping the next generation of adaptive facade concepts with the use of simulations. In: Luible A, Zihlmann U, Editors. Facade2014 - Conference on Building Envelopes, 28 November 2014, Lucerne, Switzerland; 2014, s.n. p. 84–95.
– reference: Administration, E.I. and G.P. Office, International Energy Outlook 2016, with Projections to 2040. Government Printing Office; 2016.
– reference: Loonen R. Approaches for computational performance optimization of innovative adaptive façade concepts. In: Department of the Built Environment. Netherlands: Eindhoven University of Technology; 2018.
– volume: 43
  start-page: 661
  year: 2008
  end-page: 673
  ident: b0095
  article-title: Contrasting the capabilities of building energy performance simulation programs
  publication-title: Build Environ
– volume: 246
  start-page: 77
  year: 2019
  end-page: 90
  ident: b0105
  article-title: Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus
  publication-title: Appl Energy
– volume: 182
  start-page: 264
  year: 2019
  end-page: 273
  ident: b0180
  article-title: Early predicting cooling loads for energy-efficient design in office buildings by machine learning
  publication-title: Energy Build
– volume: 239
  start-page: 1471
  year: 2019
  end-page: 1508
  ident: b0040
  article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl Energy
– volume: 78
  start-page: 1568
  year: 2015
  end-page: 1573
  ident: b0120
  article-title: Dynamic facades, the smart way of meeting the energy requirements
  publication-title: Energy Procedia
– reference: Agency, I.E., World energy outlook special report; 2015.
– volume: 16
  year: 2012
  ident: b0045
  article-title: Development of simple calculation model for energy performance of double skin façades
  publication-title: Therm Sci
– reference: Wisconsin, T.U.o. A TRaNsient SYstems Simulation Program. Available from:
– volume: 228
  start-page: 1454
  year: 2018
  end-page: 1472
  ident: b0050
  article-title: A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting
  publication-title: Appl Energy
– volume: 55
  start-page: 2013
  year: 2017
  end-page: 2028
  ident: b0210
  article-title: Modified firefly algorithm for multidimensional optimization in structural design problems
  publication-title: Struct Multidiscip Optim
– volume: 144
  start-page: 365
  year: 2018
  end-page: 385
  ident: b0035
  article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms
  publication-title: Build Environ
– volume: 194
  start-page: 177
  year: 2019
  end-page: 190
  ident: b0100
  article-title: Continuous-time Bayesian calibration of energy models using BIM and energy data
  publication-title: Energy Build
– volume: 42
  start-page: 49
  year: 2000
  end-page: 56
  ident: b0075
  article-title: Energy plus: energy simulation program
  publication-title: Ashrae J
– reference: .
– reference: Strathclyde, D.o.M.E.U.o. ESP-r. Available from:
– volume: 320
  start-page: 601
  year: 2017
  end-page: 607
  ident: b0150
  article-title: Sol-gel based photochromic coating for solar responsive smart window
  publication-title: Surf Coat Technol
– volume: 44
  start-page: 1171
  year: 2009
  end-page: 1180
  ident: b0220
  article-title: Effect of switchable glazing on discomfort glare from windows
  publication-title: Build Environ
– volume: 183
  start-page: 35
  year: 2018
  end-page: 45
  ident: b0030
  article-title: Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building
  publication-title: J Clean Prod
– reference: Hirsch, J.J. eQUEST the QUick Energy Simulation Tool. Available from:
– reference: Ajaji Y, André P. Support for energy and comfort management in an office building using smart electrochromic glazing: dynamic simulations. In: Proceedings of BS2015: 14th conference of IBPSA. BS Publications; 2016.
– volume: 195
  start-page: 650
  year: 2019
  end-page: 671
  ident: b0110
  article-title: Thermal and energy performance investigation of a smart double skin facade integrating vanadium dioxide through CFD simulations
  publication-title: Energy Convers Manage
– reference: (DOE), U.S.D.o.E. Commercial Reference Buildings. Available from:
– volume: 132
  start-page: 496
  year: 2017
  end-page: 501
  ident: b0130
  article-title: Advanced transparent facades: market available products and associated challenges in building performance simulation
  publication-title: Energy Procedia
– volume: 180
  start-page: 320
  year: 2018
  end-page: 333
  ident: b0205
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr Build Mater
– volume: 260
  year: 2020
  ident: b0175
  article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions
  publication-title: Appl Energy
– volume: 16
  start-page: 97
  year: 2016
  end-page: 106
  ident: b0140
  article-title: The thermal performance of residential building integrated with adaptive kinetic shading system
  publication-title: Int Energy J
– volume: 165
  year: 2019
  ident: b0135
  article-title: Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes
  publication-title: Build Environ
– ident: 10.1016/j.apenergy.2020.114797_b0190
– volume: 180
  start-page: 320
  year: 2018
  ident: 10.1016/j.apenergy.2020.114797_b0205
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.05.201
– ident: 10.1016/j.apenergy.2020.114797_b0060
– ident: 10.1016/j.apenergy.2020.114797_b0085
– volume: 78
  start-page: 1568
  year: 2015
  ident: 10.1016/j.apenergy.2020.114797_b0120
  article-title: Dynamic facades, the smart way of meeting the energy requirements
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.210
– volume: 260
  year: 2020
  ident: 10.1016/j.apenergy.2020.114797_b0175
  article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114338
– volume: 228
  start-page: 1454
  year: 2018
  ident: 10.1016/j.apenergy.2020.114797_b0050
  article-title: A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.015
– volume: 254
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0155
  article-title: Perovskite thermochromic smart window: Advanced optical properties and low transition temperature
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113690
– volume: 246
  start-page: 77
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0105
  article-title: Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.017
– volume: 252
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0055
  article-title: Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113437
– volume: 183
  start-page: 35
  year: 2018
  ident: 10.1016/j.apenergy.2020.114797_b0030
  article-title: Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.02.137
– volume: 145
  start-page: 43
  year: 2015
  ident: 10.1016/j.apenergy.2020.114797_b0115
  article-title: Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.003
– volume: 165
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0135
  article-title: Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant's positions by 2D and 3D shape changes
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2019.106396
– start-page: 37
  year: 2015
  ident: 10.1016/j.apenergy.2020.114797_b0005
– volume: 195
  start-page: 650
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0110
  article-title: Thermal and energy performance investigation of a smart double skin facade integrating vanadium dioxide through CFD simulations
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.04.070
– volume: 176
  start-page: 216
  year: 2018
  ident: 10.1016/j.apenergy.2020.114797_b0160
  article-title: Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.07.009
– volume: 3
  start-page: 283
  issue: 3
  year: 2014
  ident: 10.1016/j.apenergy.2020.114797_b0065
  article-title: Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review
  publication-title: Front Archit Res
  doi: 10.1016/j.foar.2014.06.002
– volume: 16
  start-page: 97
  year: 2016
  ident: 10.1016/j.apenergy.2020.114797_b0140
  article-title: The thermal performance of residential building integrated with adaptive kinetic shading system
  publication-title: Int Energy J
– ident: 10.1016/j.apenergy.2020.114797_b0090
– year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0185
  article-title: Evaluating thermal performance of double-skin facade using response factor
  publication-title: Energy Build
– volume: 55
  start-page: 2013
  issue: 6
  year: 2017
  ident: 10.1016/j.apenergy.2020.114797_b0210
  article-title: Modified firefly algorithm for multidimensional optimization in structural design problems
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1624-x
– volume: 126
  start-page: 111
  year: 2016
  ident: 10.1016/j.apenergy.2020.114797_b0145
  article-title: Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.12.039
– volume: 44
  start-page: 1171
  issue: 6
  year: 2009
  ident: 10.1016/j.apenergy.2020.114797_b0220
  article-title: Effect of switchable glazing on discomfort glare from windows
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2008.08.013
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2020.114797_b0215
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2010.032124
– volume: 239
  start-page: 1471
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0040
  article-title: Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.070
– volume: 182
  start-page: 264
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0180
  article-title: Early predicting cooling loads for energy-efficient design in office buildings by machine learning
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.10.004
– ident: 10.1016/j.apenergy.2020.114797_b0010
– volume: 16
  year: 2012
  ident: 10.1016/j.apenergy.2020.114797_b0045
  article-title: Development of simple calculation model for energy performance of double skin façades
  publication-title: Therm Sci
  doi: 10.2298/TSCI120201076A
– ident: 10.1016/j.apenergy.2020.114797_b0200
– volume: 42
  start-page: 49
  issue: 4
  year: 2000
  ident: 10.1016/j.apenergy.2020.114797_b0075
  article-title: Energy plus: energy simulation program
  publication-title: Ashrae J
– volume: 40
  start-page: 394
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2020.114797_b0020
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.03.007
– ident: 10.1016/j.apenergy.2020.114797_b0225
– ident: 10.1016/j.apenergy.2020.114797_b0080
– volume: 194
  start-page: 177
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0100
  article-title: Continuous-time Bayesian calibration of energy models using BIM and energy data
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.04.017
– ident: 10.1016/j.apenergy.2020.114797_b0195
– volume: 320
  start-page: 601
  year: 2017
  ident: 10.1016/j.apenergy.2020.114797_b0150
  article-title: Sol-gel based photochromic coating for solar responsive smart window
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2016.10.074
– ident: 10.1016/j.apenergy.2020.114797_b0025
  doi: 10.1016/B978-0-12-397914-8.00010-2
– year: 2017
  ident: 10.1016/j.apenergy.2020.114797_b0070
– volume: 43
  start-page: 661
  issue: 4
  year: 2008
  ident: 10.1016/j.apenergy.2020.114797_b0095
  article-title: Contrasting the capabilities of building energy performance simulation programs
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2006.10.027
– volume: 132
  start-page: 496
  year: 2017
  ident: 10.1016/j.apenergy.2020.114797_b0130
  article-title: Advanced transparent facades: market available products and associated challenges in building performance simulation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.685
– volume: 144
  start-page: 365
  year: 2018
  ident: 10.1016/j.apenergy.2020.114797_b0035
  article-title: A novel real-time method for HVAC system operation to improve indoor environmental quality in meeting rooms
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.08.046
– volume: 122
  start-page: 1384
  year: 2015
  ident: 10.1016/j.apenergy.2020.114797_b0165
  article-title: Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.11.003
– ident: 10.1016/j.apenergy.2020.114797_b0170
  doi: 10.26868/25222708.2015.2240
– ident: 10.1016/j.apenergy.2020.114797_b0015
– volume: 149
  start-page: 446
  year: 2019
  ident: 10.1016/j.apenergy.2020.114797_b0125
  article-title: Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.12.045
SSID ssj0002120
Score 2.5723345
Snippet •A computational optimization approach is proposed to support adaptive façade design.•Two case studies are used to validate the capacity of the proposed...
The energy consumption in buildings, which accounts for approximately one-third of the total energy used in the world, can be reduced significantly by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114797
SubjectTerms Adaptive façade
algorithms
automation
Building energy efficiency
Building performance simulation
buildings
case studies
climatic factors
computer simulation
computer software
energy efficiency
Façade optimization
Modified firefly algorithm
Smart windows
transmittance
Title Enhancing building energy efficiency by adaptive façade: A computational optimization approach
URI https://dx.doi.org/10.1016/j.apenergy.2020.114797
https://www.proquest.com/docview/2431840863
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUqWGBAUKh4y0isoa3tJA5bhYoKSF0oEptlJzYPQVpBGVj4HT6EH-Nex6GAkDqw5WFHlq99fRzfcy4hhwUzsRWJixLZdZEQ3EZGplmUGW4BnrpEWh9tMUwGV-L8Or5ukJOaC4NhlcH3Vz7de-vwpB16sz25u2tfItr1-B8u8DwPGewixSwGR2-zMA8WpBmhcISlv7GE74_0xHqGHewTmZfNTVH86e8F6per9uvP6SpZCcCR9qq2rZGGLZtk-ZucYJO0-jPWGhQN0_Z5nah-eYu6GuUNNSENNq2aRK2XkED-JTWvVBd6gv6POv3xrgt7THs093kfwj9DOob3j4G7SWtB8g0yOu2PTgZRyKwQ5VzE08hlYAPDnQR4l1omtCukSQrNs47RFmCBNAWLdafIBZKyMkDgLM8znXAoDhilRRbKcWk3CQX8V6SO465HYoSNcal1XS4swC7WFfkWieveVHlQHcfkFw-qDi-7V7UVFFpBVVbYIu2vepNKd2Nujaw2lvoxghQsDnPrHtTWVTC98MxEl3b88qwYACzYA8uEb__j-ztkCe-qQMldsjB9erF7AGamZt-P1n2y2Du7GAw_AfHK9kc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYABQQFRnkZiDaW282KrUFGBwkKR2Cw7saEVpBWUgYW_ww_hj3F2HF5CYmCL4nNk-ezzd_HddwB7OVWh5pEJoqRlAs6ZDlQSp0GqmEZ4aqJEu2iLi6h7xU-vw-spOKpyYWxYpbf9pU131tq_afrZbI4Hg-alRbsO_-ODvc-bhhke0th6YPsvn3Ee1HMzonRgxb-kCQ_35Vi7FDt0FKnjzY0t-9PvJ9QPW-0OoONFWPDIkbTLwS3BlC7qMP-FT7AOq53PtDUU9fv2cRlEp7i1xBrFDVG-DjYph0S045CwCZhEPROZy7E1gMTIt1eZ60PSJpkr_OB_GpIRtt_75E1SMZKvQP-40z_qBr60QpAxHk4Ck6ISFDMJ4rtYUy5Nnqgolyw9UFIjLkhUTkN5kGfcZmWlCMFplqUyYiiOIGUVasWo0GtAEADmsWHW7UlsiI0ysTYtxjXiLtriWQPCajZF5mnHbfWLO1HFlw1FpQVhtSBKLTSg-dFvXBJv_NkjrZQlvi0hgafDn313K-0K3F_20kQWevT0KCgiLHSCk4it_-P7OzDb7Z_3RO_k4mwD5mxLGTW5CbXJw5PeQmQzUdtu5b4Doa733A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+building+energy+efficiency+by+adaptive+fa%C3%A7ade%3A+A+computational+optimization+approach&rft.jtitle=Applied+energy&rft.au=Bui%2C+Dac-Khuong&rft.au=Nguyen%2C+Tuan+Ngoc&rft.au=Ghazlan%2C+Abdallah&rft.au=Ngo%2C+Ngoc-Tri&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=265&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114797&rft.externalDocID=S0306261920303093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon