Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field

A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide g...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 7; pp. 454 - 460
Main Author 李超荣 李书文 梅洁 徐庆 郑莹莹 董文钧
Format Journal Article
LanguageEnglish
Published 01.07.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/7/078102

Cover

More Information
Summary:A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies fcritl ≈ 15 kHz and fcrit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f 〈 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz 〈 f 〈 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle-particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids.
Bibliography:A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies fcritl ≈ 15 kHz and fcrit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f 〈 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz 〈 f 〈 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle-particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids.
Li Chao-Rong, Li Shu-Wen, Mei Jie, Xu Qing, Zheng Ying-Ying, Dong Wen-Jun Department of Physics, Center for Optoelectronics Materials and Devices, and Key Laboratory of Advanced Textile Materials & Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
template-assisted, aggregation, dispersion, dynamics analysis
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/7/078102