The L1/2 regularization approach for survival analysis in the accelerated failure time model

The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the siz...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 64; pp. 283 - 290
Main Authors Chai, Hua, Liang, Yong, Liu, Xiao-Ying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
DOI10.1016/j.compbiomed.2014.09.002

Cover

Abstract The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of Lq(0<q<1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures. •We propose a L1/2 penalized accelerated failure time (AFT) model.•A coordinate descent algorithm with renewed L1/2 threshold is developed.•The L1/2 penalized AFT model is able to reduce the size of the predictor in practice.•The classifier based on the model is suitable for the high dimension biological data.
AbstractList The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of Lq(0<q<1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures. •We propose a L1/2 penalized accelerated failure time (AFT) model.•A coordinate descent algorithm with renewed L1/2 threshold is developed.•The L1/2 penalized AFT model is able to reduce the size of the predictor in practice.•The classifier based on the model is suitable for the high dimension biological data.
Abstract The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of L q (0< q <1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures.
Author Liu, Xiao-Ying
Liang, Yong
Chai, Hua
Author_xml – sequence: 1
  givenname: Hua
  surname: Chai
  fullname: Chai, Hua
  email: 854330388@qq.com
– sequence: 2
  givenname: Yong
  surname: Liang
  fullname: Liang, Yong
  email: yliang@must.edu.mo
– sequence: 3
  givenname: Xiao-Ying
  surname: Liu
  fullname: Liu, Xiao-Ying
  email: 631218194@qq.com
BookMark eNqNkd1q3DAQhUVJoZu076AXsDP68dq-CW1D_2ChF03vCmIsjRttZWuRvAubp6-2CQQChb2aq_Nx5juX7GKOMzHGBdQCxPp6W9s47QYfJ3K1BKFr6GsA-YqtRNf2FTRKX7AVgIBKd7J5wy5z3gKABgUr9uvunvhGXEue6Pc-YPIPuPg4c9ztUkR7z8eYeN6ngz9g4DhjOGafuZ_5UpJoLQVKuJDjI_qwT8QXPxGfoqPwlr0eMWR693Sv2M_Pn-5uv1ab71--3X7YVFbpZqlGiULrpmsHNWip1AhuGKVTTjWjc71q10BDL5sR146EBd1B63AtekTlNLTqit08cm2KOScajfXLvzeWVEoZAebkymzNsytzcmWgN8VVAXQvALvkJ0zHc6IfH6NUHjx4SiZbT7Ml5xPZxbjoz4HcvIDY4GdvMfyhI-Vt3KciPhthsjRgfpzWPI0pdEmXgQvg_f8B53X4C80VuMI
CitedBy_id crossref_primary_10_3233_THC_199009
crossref_primary_10_1016_j_csbj_2020_10_028
crossref_primary_10_1186_s13040_020_00222_x
crossref_primary_10_3389_fonc_2021_692774
crossref_primary_10_1016_j_compbiomed_2018_07_009
crossref_primary_10_1093_bib_bbaa122
crossref_primary_10_1109_TCYB_2019_2921827
crossref_primary_10_4236_ojs_2021_111008
crossref_primary_10_1109_LSP_2019_2900126
Cites_doi 10.1198/016214506000000735
10.1214/09-AOS729
10.2307/1267793
10.1016/S1535-6108(03)00028-X
10.1093/biomet/83.4.912
10.1016/j.bone.2011.12.022
10.1080/00401706.1970.10488634
10.1056/NEJMoa031046
10.1214/07-AOAS131
10.1214/10-AOAS388
10.1002/ijc.24266
10.1093/hmg/ddr128
10.1016/j.bbadis.2013.04.026
10.1111/j.2517-6161.1996.tb02080.x
10.1002/sim.4780111409
10.1056/NEJMoa012914
10.1109/TNNLS.2012.2197412
10.1214/009053604000000067
10.1093/biomet/66.3.429
10.1002/sim.2353
10.1093/biomet/81.3.425
10.1093/bioinformatics/bti422
10.1155/2013/768404
10.1093/biomet/asm037
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1111/j.1541-0420.2008.01074.x
10.1198/016214501753382273
10.1080/01621459.1958.10501452
10.1093/biomet/90.2.341
10.1038/35000501
10.1016/j.ccr.2008.06.001
10.1111/j.1541-0420.2006.00562.x
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1111/j.1541-0420.2007.00877.x
10.18637/jss.v033.i01
10.1093/bib/bbs043
10.1002/9780470181218.ch22
10.1002/sim.2059
10.1016/j.stamet.2004.11.003
10.1016/j.asoc.2013.09.006
10.1038/nm733
10.1097/PAS.0b013e31817a909a
10.1016/j.oooo.2013.05.006
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compbiomed.2014.09.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 290
ExternalDocumentID 10_1016_j_compbiomed_2014_09_002
S0010482514002534
1_s2_0_S0010482514002534
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
ID FETCH-LOGICAL-c345t-f2a144587b3b4233f0dbf2d3d35fdd93760eb925fa6de1c04807da619aa3d4073
IEDL.DBID .~1
ISSN 0010-4825
IngestDate Wed Oct 01 04:07:19 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Oct 14 19:33:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords L1/2 penalty
Survival analysis
Accelerated failure time model
Regularization
Variable selection
L 1/2 penalty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-f2a144587b3b4233f0dbf2d3d35fdd93760eb925fa6de1c04807da619aa3d4073
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_compbiomed_2014_09_002
crossref_primary_10_1016_j_compbiomed_2014_09_002
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2014_09_002
elsevier_clinicalkeyesjournals_1_s2_0_S0010482514002534
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2014_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers in biology and medicine
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Lu (bib9) 2007; 94
Zhang (bib11) 2010; 38
Chen (bib44) 2009; 124
Subik (bib43) 2012; 50
Rosenwald (bib38) 2002; 346
Fan, Li (bib10) 2001; 96
Van, Bruinsma, Hart, van’t Veer, Wessels (bib35) 2006; 25
Graf (bib36) 1999; 18
Efron, Hastie, Johnstone, Tibshirani (bib13) 2004; 32
Martens, Naes (bib2) 1989
Beer (bib40) 2002; 8
Breheny, Huang (bib31) 2011; 5
Kim Y., Kim J., Gradient Lasso for feature selection, in: Proceedings of the Twenty-first International Conference on Machine Learning, 473–480. New York: ACM, 2004.
Wei (bib17) 1992; 11
Currie (bib22) 1996; 83
Friedman, Hastie, Höfling, Tibshirani (bib32) 2007; 1
Buckley, James (bib20) 1979; 66
Liu (bib50) 2014; 14(c)
Heerema-McKenney (bib48) 2008; 32
Tibshirani (bib14) 1997; 16
Liu, Li, Luo (bib5) 2013; 2013
Rosenwald (bib19) 2003; 3
Friedman, Hastie, Tibshirani (bib33) 2010; 33
Tibshirani (bib6) 1996; 58
Bender, Augustin, Blettner (bib37) 2005; 24
Alizadeh (bib18) 2000; 403
Kaplan, Meier (bib27) 1958; 53
Gui, Li (bib15) 2005; 21
Leung (bib49) 2013; 14
Tsiatis (bib23) 1996; 18
Donoho, Johnstone (bib34) 1994; 81
Jin, Lin, Wei, Ying (bib26) 2003; 90
Shin (bib47) 2013; 1832
Jolliffe (bib1) 1996
Datta (bib29) 2005; 2
Bernassola (bib46) 2008; 14
Wang, Nan, Zhu, Beer (bib21) 2008; 64
Hoerl, Kennard (bib4) 1970; 12
Lin (bib42) 2013; 116
Hirschfeld (bib45) 2011; 20
Xu, Zhang, Wang, Chang, Liang (bib28) 2010; 40
Huang, Ma, Xie (bib24) 2006; 62
Bullinger (bib41) 2004; 350
Li H., Censored Data Regression in High-dimension and Low Sample Size Settings for Genomic Applications. Statistical Advances in Biomedical Sciences: State of Art and Future Directions, A, 2008.
Friedman, Popescu (bib7) 2004
Park (bib3) 1981; 23
Zou (bib8) 2006; 101
Van Houwelingen, Bruinsma, Hart, van’t Veer, Wessels (bib39) 2006; 25
Xu, Chang, Xu, Zhang (bib30) 2012; 23
Cai, Hunag, Tian (bib25) 2009; 65
Hirschfeld (10.1016/j.compbiomed.2014.09.002_bib45) 2011; 20
Wang (10.1016/j.compbiomed.2014.09.002_bib21) 2008; 64
Breheny (10.1016/j.compbiomed.2014.09.002_bib31) 2011; 5
Liu (10.1016/j.compbiomed.2014.09.002_bib5) 2013; 2013
Cai (10.1016/j.compbiomed.2014.09.002_bib25) 2009; 65
Efron (10.1016/j.compbiomed.2014.09.002_bib13) 2004; 32
Currie (10.1016/j.compbiomed.2014.09.002_bib22) 1996; 83
Friedman (10.1016/j.compbiomed.2014.09.002_bib32) 2007; 1
Tsiatis (10.1016/j.compbiomed.2014.09.002_bib23) 1996; 18
Xu (10.1016/j.compbiomed.2014.09.002_bib30) 2012; 23
Park (10.1016/j.compbiomed.2014.09.002_bib3) 1981; 23
Bullinger (10.1016/j.compbiomed.2014.09.002_bib41) 2004; 350
Huang (10.1016/j.compbiomed.2014.09.002_bib24) 2006; 62
Alizadeh (10.1016/j.compbiomed.2014.09.002_bib18) 2000; 403
Heerema-McKenney (10.1016/j.compbiomed.2014.09.002_bib48) 2008; 32
Liu (10.1016/j.compbiomed.2014.09.002_bib50) 2014; 14(c)
Friedman (10.1016/j.compbiomed.2014.09.002_bib33) 2010; 33
Donoho (10.1016/j.compbiomed.2014.09.002_bib34) 1994; 81
Zou (10.1016/j.compbiomed.2014.09.002_bib8) 2006; 101
Fan (10.1016/j.compbiomed.2014.09.002_bib10) 2001; 96
Datta (10.1016/j.compbiomed.2014.09.002_bib29) 2005; 2
Zhang (10.1016/j.compbiomed.2014.09.002_bib11) 2010; 38
Jin (10.1016/j.compbiomed.2014.09.002_bib26) 2003; 90
Tibshirani (10.1016/j.compbiomed.2014.09.002_bib14) 1997; 16
Leung (10.1016/j.compbiomed.2014.09.002_bib49) 2013; 14
Buckley (10.1016/j.compbiomed.2014.09.002_bib20) 1979; 66
Gui (10.1016/j.compbiomed.2014.09.002_bib15) 2005; 21
Graf (10.1016/j.compbiomed.2014.09.002_bib36) 1999; 18
Van Houwelingen (10.1016/j.compbiomed.2014.09.002_bib39) 2006; 25
Friedman (10.1016/j.compbiomed.2014.09.002_bib7) 2004
Van (10.1016/j.compbiomed.2014.09.002_bib35) 2006; 25
Beer (10.1016/j.compbiomed.2014.09.002_bib40) 2002; 8
Bernassola (10.1016/j.compbiomed.2014.09.002_bib46) 2008; 14
Zhang (10.1016/j.compbiomed.2014.09.002_bib9) 2007; 94
Subik (10.1016/j.compbiomed.2014.09.002_bib43) 2012; 50
10.1016/j.compbiomed.2014.09.002_bib16
Jolliffe (10.1016/j.compbiomed.2014.09.002_bib1) 1996
Hoerl (10.1016/j.compbiomed.2014.09.002_bib4) 1970; 12
Wei (10.1016/j.compbiomed.2014.09.002_bib17) 1992; 11
Rosenwald (10.1016/j.compbiomed.2014.09.002_bib19) 2003; 3
10.1016/j.compbiomed.2014.09.002_bib12
Shin (10.1016/j.compbiomed.2014.09.002_bib47) 2013; 1832
Chen (10.1016/j.compbiomed.2014.09.002_bib44) 2009; 124
Rosenwald (10.1016/j.compbiomed.2014.09.002_bib38) 2002; 346
Xu (10.1016/j.compbiomed.2014.09.002_bib28) 2010; 40
Martens (10.1016/j.compbiomed.2014.09.002_bib2) 1989
Kaplan (10.1016/j.compbiomed.2014.09.002_bib27) 1958; 53
Tibshirani (10.1016/j.compbiomed.2014.09.002_bib6) 1996; 58
Lin (10.1016/j.compbiomed.2014.09.002_bib42) 2013; 116
Bender (10.1016/j.compbiomed.2014.09.002_bib37) 2005; 24
References_xml – volume: 116
  start-page: 221
  year: 2013
  end-page: 231
  ident: bib42
  article-title: WWP1 gene is a potential molecular target of human oral cancer
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
– volume: 40
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib28
  article-title: regularization
  publication-title: Sci. China, Ser. F
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bib13
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 83
  start-page: 912
  year: 1996
  end-page: 915
  ident: bib22
  article-title: A note on Buckley–James estimators for censored data
  publication-title: Biometrika
– volume: 66
  start-page: 429
  year: 1979
  end-page: 436
  ident: bib20
  article-title: Linear regression with censored data
  publication-title: Biometrika
– volume: 64
  start-page: 132
  year: 2008
  end-page: 140
  ident: bib21
  article-title: Doubly penalized Buckley–James method for survival data with high dimensional covariates
  publication-title: Biometrics
– year: 1996
  ident: bib1
  article-title: Principal Component Analysis
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib6
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Assoc., Ser B
– volume: 346
  start-page: 1937
  year: 2002
  end-page: 1946
  ident: bib38
  article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma
  publication-title: N. Engl. J. Med
– volume: 20
  start-page: 2356
  year: 2011
  end-page: 2365
  ident: bib45
  article-title: Expression of tumor-promoting Cyr61 is regulated by hTRA2-β1 and acidosis
  publication-title: Hum. Mol. Gen.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bib4
  article-title: Ridge regression: biased estimation for non-orthogonal problem
  publication-title: Technometrics
– volume: 94
  start-page: 691
  year: 2007
  end-page: 703
  ident: bib9
  article-title: Adaptive Lasso for Cox’s proportional hazards model
  publication-title: Biometrika
– reference: Li H., Censored Data Regression in High-dimension and Low Sample Size Settings for Genomic Applications. Statistical Advances in Biomedical Sciences: State of Art and Future Directions, A, 2008.
– volume: 32
  start-page: 1513
  year: 2008
  end-page: 1522
  ident: bib48
  article-title: Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype
  publication-title: Am. J. Surg. Pathol.
– volume: 2013
  start-page: 10
  year: 2013
  ident: bib5
  article-title: Iterative reweighted noninteger norm regularizing SVM for gene expression data classification
  publication-title: Comput. Math. Methods Med.
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: bib11
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
– volume: 14(c)
  start-page: 498
  year: 2014
  end-page: 503
  ident: bib50
  article-title: The
  publication-title: Appl. Soft Comput.
– year: 1989
  ident: bib2
  article-title: Multivariate Calibration
– volume: 25
  start-page: 3201
  year: 2006
  end-page: 3216
  ident: bib35
  article-title: Cross-validated Cox regression on microarray gene expression data
  publication-title: Stat. Med.
– volume: 403
  start-page: 503
  year: 2000
  end-page: 511
  ident: bib18
  article-title: Distinct types of diffuse large B-Cell lymphoma identified by gene expression profiling
  publication-title: Nature
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bib8
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: bib34
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 350
  start-page: 1605
  year: 2004
  end-page: 1616
  ident: bib41
  article-title: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 23
  start-page: 289
  year: 1981
  end-page: 295
  ident: bib3
  article-title: Collinearity and optimal restrictions on regression parameters for estimating responses
  publication-title: Technometrics
– volume: 18
  start-page: 305
  year: 1996
  end-page: 328
  ident: bib23
  article-title: Estimating regression parameters using linear rank tests for censored data
  publication-title: Ann. Stat.
– volume: 25
  start-page: 3201
  year: 2006
  end-page: 3216
  ident: bib39
  article-title: Cross-validated Cox regression on microarray gene expression data
  publication-title: Stat. Med.
– volume: 50
  start-page: 813
  year: 2012
  end-page: 823
  ident: bib43
  article-title: The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis
  publication-title: Bone
– volume: 24
  start-page: 1713
  year: 2005
  end-page: 1723
  ident: bib37
  article-title: Generating survival times to simulate Cox proportional hazards models
  publication-title: Stat. Med.
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: bib30
  article-title: -1/2 Regularization: a Thresholding Representation Theory and a Fast Solver
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  ident: bib14
  article-title: The Lasso method for variable selection in the Cox model
  publication-title: Stat. Med.
– volume: 1832
  start-page: 1569
  year: 2013
  end-page: 1581
  ident: bib47
  article-title: Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell
  publication-title: Biochim. Biophys. Acta
– volume: 5
  start-page: 232
  year: 2011
  end-page: 253
  ident: bib31
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat
– volume: 3
  start-page: 185
  year: 2003
  end-page: 197
  ident: bib19
  article-title: The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma
  publication-title: Cancer Cell
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1361
  ident: bib10
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 65
  start-page: 394
  year: 2009
  end-page: 404
  ident: bib25
  article-title: Regularized estimation for the accelerated failure time model
  publication-title: Biometrics
– volume: 18
  start-page: 2529
  year: 1999
  end-page: 2545
  ident: bib36
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
– volume: 124
  start-page: 2829
  year: 2009
  end-page: 2836
  ident: bib44
  article-title: Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma
  publication-title: Int. J. Cancer
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: bib27
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
– volume: 2
  start-page: 65
  year: 2005
  end-page: 69
  ident: bib29
  article-title: Estimating the mean life time using right censored data
  publication-title: Stat. Methodol.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib33
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw
– volume: 14
  start-page: 10
  year: 2008
  end-page: 21
  ident: bib46
  article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development
  publication-title: Cancer Cell
– volume: 62
  start-page: 813
  year: 2006
  end-page: 820
  ident: bib24
  article-title: Regularized estimation in the accelerated failure time model with high dimensional covariates
  publication-title: Biometrics
– volume: 8
  start-page: 816
  year: 2002
  end-page: 824
  ident: bib40
  article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma
  publication-title: Nat. Med
– volume: 11
  start-page: 1871
  year: 1992
  end-page: 1879
  ident: bib17
  article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis
  publication-title: Stat. Med.
– reference: Kim Y., Kim J., Gradient Lasso for feature selection, in: Proceedings of the Twenty-first International Conference on Machine Learning, 473–480. New York: ACM, 2004.
– volume: 90
  start-page: 341
  year: 2003
  end-page: 353
  ident: bib26
  article-title: Rank-based inference for the accelerated failure time model
  publication-title: Biometrika
– volume: 14
  start-page: 491
  year: 2013
  end-page: 505
  ident: bib49
  article-title: Network-based drug discovery by integrating systems biology and computational technologies
  publication-title: Brief. Bioinform.
– year: 2004
  ident: bib7
  article-title: Gradient directed regularization
– volume: 21
  start-page: 3001
  year: 2005
  end-page: 3008
  ident: bib15
  article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size setting, with applications to microarray gene expression data
  publication-title: Bioinformatics
– volume: 1
  start-page: 302
  year: 2007
  end-page: 332
  ident: bib32
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
– volume: 101
  start-page: 1418
  year: 2006
  ident: 10.1016/j.compbiomed.2014.09.002_bib8
  article-title: The adaptive Lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 38
  start-page: 894
  year: 2010
  ident: 10.1016/j.compbiomed.2014.09.002_bib11
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 23
  start-page: 289
  year: 1981
  ident: 10.1016/j.compbiomed.2014.09.002_bib3
  article-title: Collinearity and optimal restrictions on regression parameters for estimating responses
  publication-title: Technometrics
  doi: 10.2307/1267793
– volume: 3
  start-page: 185
  year: 2003
  ident: 10.1016/j.compbiomed.2014.09.002_bib19
  article-title: The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00028-X
– year: 1989
  ident: 10.1016/j.compbiomed.2014.09.002_bib2
– volume: 83
  start-page: 912
  year: 1996
  ident: 10.1016/j.compbiomed.2014.09.002_bib22
  article-title: A note on Buckley–James estimators for censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/83.4.912
– volume: 50
  start-page: 813
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2014.09.002_bib43
  article-title: The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis
  publication-title: Bone
  doi: 10.1016/j.bone.2011.12.022
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.compbiomed.2014.09.002_bib4
  article-title: Ridge regression: biased estimation for non-orthogonal problem
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 350
  start-page: 1605
  year: 2004
  ident: 10.1016/j.compbiomed.2014.09.002_bib41
  article-title: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa031046
– volume: 1
  start-page: 302
  year: 2007
  ident: 10.1016/j.compbiomed.2014.09.002_bib32
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS131
– ident: 10.1016/j.compbiomed.2014.09.002_bib12
– volume: 5
  start-page: 232
  year: 2011
  ident: 10.1016/j.compbiomed.2014.09.002_bib31
  article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
  publication-title: Ann. Appl. Stat
  doi: 10.1214/10-AOAS388
– volume: 124
  start-page: 2829
  issue: 12
  year: 2009
  ident: 10.1016/j.compbiomed.2014.09.002_bib44
  article-title: Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.24266
– volume: 20
  start-page: 2356
  issue: 12
  year: 2011
  ident: 10.1016/j.compbiomed.2014.09.002_bib45
  article-title: Expression of tumor-promoting Cyr61 is regulated by hTRA2-β1 and acidosis
  publication-title: Hum. Mol. Gen.
  doi: 10.1093/hmg/ddr128
– volume: 1832
  start-page: 1569
  issue: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2014.09.002_bib47
  article-title: Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.04.026
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.compbiomed.2014.09.002_bib6
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Assoc., Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 11
  start-page: 1871
  year: 1992
  ident: 10.1016/j.compbiomed.2014.09.002_bib17
  article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111409
– volume: 346
  start-page: 1937
  year: 2002
  ident: 10.1016/j.compbiomed.2014.09.002_bib38
  article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa012914
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2014.09.002_bib30
  article-title: L-1/2 Regularization: a Thresholding Representation Theory and a Fast Solver
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.compbiomed.2014.09.002_bib13
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 66
  start-page: 429
  year: 1979
  ident: 10.1016/j.compbiomed.2014.09.002_bib20
  article-title: Linear regression with censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.429
– volume: 25
  start-page: 3201
  year: 2006
  ident: 10.1016/j.compbiomed.2014.09.002_bib39
  article-title: Cross-validated Cox regression on microarray gene expression data
  publication-title: Stat. Med.
  doi: 10.1002/sim.2353
– volume: 81
  start-page: 425
  year: 1994
  ident: 10.1016/j.compbiomed.2014.09.002_bib34
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 21
  start-page: 3001
  year: 2005
  ident: 10.1016/j.compbiomed.2014.09.002_bib15
  article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size setting, with applications to microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– volume: 2013
  start-page: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2014.09.002_bib5
  article-title: Iterative reweighted noninteger norm regularizing SVM for gene expression data classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/768404
– volume: 94
  start-page: 691
  year: 2007
  ident: 10.1016/j.compbiomed.2014.09.002_bib9
  article-title: Adaptive Lasso for Cox’s proportional hazards model
  publication-title: Biometrika
  doi: 10.1093/biomet/asm037
– volume: 16
  start-page: 385
  year: 1997
  ident: 10.1016/j.compbiomed.2014.09.002_bib14
  article-title: The Lasso method for variable selection in the Cox model
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 18
  start-page: 305
  year: 1996
  ident: 10.1016/j.compbiomed.2014.09.002_bib23
  article-title: Estimating regression parameters using linear rank tests for censored data
  publication-title: Ann. Stat.
– volume: 65
  start-page: 394
  year: 2009
  ident: 10.1016/j.compbiomed.2014.09.002_bib25
  article-title: Regularized estimation for the accelerated failure time model
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01074.x
– volume: 96
  start-page: 1348
  year: 2001
  ident: 10.1016/j.compbiomed.2014.09.002_bib10
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 53
  start-page: 457
  year: 1958
  ident: 10.1016/j.compbiomed.2014.09.002_bib27
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 90
  start-page: 341
  year: 2003
  ident: 10.1016/j.compbiomed.2014.09.002_bib26
  article-title: Rank-based inference for the accelerated failure time model
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.341
– volume: 40
  start-page: 1
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2014.09.002_bib28
  article-title: L1/2 regularization
  publication-title: Sci. China, Ser. F
– year: 1996
  ident: 10.1016/j.compbiomed.2014.09.002_bib1
– year: 2004
  ident: 10.1016/j.compbiomed.2014.09.002_bib7
– volume: 403
  start-page: 503
  year: 2000
  ident: 10.1016/j.compbiomed.2014.09.002_bib18
  article-title: Distinct types of diffuse large B-Cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– volume: 14
  start-page: 10
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2014.09.002_bib46
  article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.06.001
– volume: 62
  start-page: 813
  year: 2006
  ident: 10.1016/j.compbiomed.2014.09.002_bib24
  article-title: Regularized estimation in the accelerated failure time model with high dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00562.x
– volume: 25
  start-page: 3201
  year: 2006
  ident: 10.1016/j.compbiomed.2014.09.002_bib35
  article-title: Cross-validated Cox regression on microarray gene expression data
  publication-title: Stat. Med.
  doi: 10.1002/sim.2353
– volume: 18
  start-page: 2529
  year: 1999
  ident: 10.1016/j.compbiomed.2014.09.002_bib36
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– volume: 64
  start-page: 132
  year: 2008
  ident: 10.1016/j.compbiomed.2014.09.002_bib21
  article-title: Doubly penalized Buckley–James method for survival data with high dimensional covariates
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00877.x
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2014.09.002_bib33
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw
  doi: 10.18637/jss.v033.i01
– volume: 14
  start-page: 491
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2014.09.002_bib49
  article-title: Network-based drug discovery by integrating systems biology and computational technologies
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs043
– ident: 10.1016/j.compbiomed.2014.09.002_bib16
  doi: 10.1002/9780470181218.ch22
– volume: 24
  start-page: 1713
  year: 2005
  ident: 10.1016/j.compbiomed.2014.09.002_bib37
  article-title: Generating survival times to simulate Cox proportional hazards models
  publication-title: Stat. Med.
  doi: 10.1002/sim.2059
– volume: 2
  start-page: 65
  year: 2005
  ident: 10.1016/j.compbiomed.2014.09.002_bib29
  article-title: Estimating the mean life time using right censored data
  publication-title: Stat. Methodol.
  doi: 10.1016/j.stamet.2004.11.003
– volume: 14(c)
  start-page: 498
  year: 2014
  ident: 10.1016/j.compbiomed.2014.09.002_bib50
  article-title: The L1/2 regularization method for variable selection in the Cox model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.006
– volume: 8
  start-page: 816
  year: 2002
  ident: 10.1016/j.compbiomed.2014.09.002_bib40
  article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma
  publication-title: Nat. Med
  doi: 10.1038/nm733
– volume: 32
  start-page: 1513
  issue: 10
  year: 2008
  ident: 10.1016/j.compbiomed.2014.09.002_bib48
  article-title: Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0b013e31817a909a
– volume: 116
  start-page: 221
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2014.09.002_bib42
  article-title: WWP1 gene is a potential molecular target of human oral cancer
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
  doi: 10.1016/j.oooo.2013.05.006
SSID ssj0004030
Score 2.136332
Snippet The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge...
Abstract The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Accelerated failure time model
Internal Medicine
L1/2 penalty
Other
Regularization
Survival analysis
Variable selection
Title The L1/2 regularization approach for survival analysis in the accelerated failure time model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482514002534
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482514002534
https://dx.doi.org/10.1016/j.compbiomed.2014.09.002
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DQbyInzg_Rg5e69okbRM8jeGcH9vJwQ5CSJMUJjLHul39231p002Zh4GXQksfLS-v7yP9_d5D6IZyrihP0yAVNg6YsDQQhOjACpLrzHJiy1mHg2HSH7GncTxuoG7NhXGwSu_7K59eemt_pe212Z5NJo7jC6WEY14yF7ip6wnKWOqmGNx-rWEeLKQVDQX8jbvbo3kqjJeDbVc0dwfyqjqe-g2WjRD1I-z0DtGBzxdxp3qlI9Sw02O0N_B_xE_QG6wzfonaBM_LqfJzz6vEdbNwDFkpLpbgEcCmsPI9SPBkiiH1w0priDuuXYTBuZo4jDp24-ZxOSHnFI1696_dfuAnJgSasngR5ERBgRTzNKMZ5Ek0D02WE0MNjXNjhAPA2EyQOFeJsZEu-eRGQQ2lFDVQ2tEztDP9nNpzhBPDhUkym8SCs0gligqqeRLZKNSRYLyJ0lpJUvt24m6qxYescWPvcq1e6dQrQyFBvU0UrSRnVUuNLWREvQ6ypoyCk5Pg97eQTf-StYX_WgsZyYLIUG5YVBPdrSR_GeVWz734l_Ql2oezuIKzXaGdxXxpryH_WWSt0sDhyHsPLbTbeXzuD78BRwYGuQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gHoRn7g-c_Bat82jTfAkoqy660nBgxDSJIUVWWV3vfrbnbSpD_Sw4LXt0DKZfplpv28G4JhJaZgsiqRQXiRceZYoSm3iFa1s6SX19azDwW3eu-fXD-JhDs5bLUygVUbsbzC9Rut4pBu92X0dDoPGF0uJoLzkYeNmfB4WuaBFqMBO3r94HjxljQ4FASdcHuk8Dckr8LYbnXtgeTUtT-MXll971Ld953INVmPCSM6aZ1qHOT_agKVB_CW-CY-40KSfdSkZ12Plx1FYSdpu4QTTUjJ5Q0jAoCImNiEhwxHB3I8Ya3HjCf0iHKnMMJDUSZg3T-oROVtwf3lxd95L4siExDIupklFDVZIQhYlKzFRYlXqyoo65pionFOBAeNLRUVlcuczWwvKncEiyhjmsLZj27Awehn5HSC5k8rlpc-FkjwzuWGKWZlnPkttprjsQNE6SdvYTzyMtXjWLXHsSX-5Vwf36lRpdG8Hsk_L16anxgw2ql0H3WpGEeU0Av8MtsVftn4SX9eJzvSE6lT_CqkOnH5a_ojKme67-y_rI1ju3Q36un91e7MHK3hGNNy2fViYjt_8ASZD0_KwDvYPHJgHaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+L1%2F2+regularization+approach+for+survival+analysis+in+the+accelerated+failure+time+model&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chai%2C+Hua&rft.au=Liang%2C+Yong&rft.au=Liu%2C+Xiao-Ying&rft.date=2015-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=64&rft.spage=283&rft.epage=290&rft_id=info:doi/10.1016%2Fj.compbiomed.2014.09.002&rft.externalDocID=S0010482514002534
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00084%2Fcov150h.gif