The L1/2 regularization approach for survival analysis in the accelerated failure time model
The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the siz...
Saved in:
| Published in | Computers in biology and medicine Vol. 64; pp. 283 - 290 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 |
| DOI | 10.1016/j.compbiomed.2014.09.002 |
Cover
| Abstract | The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of Lq(0<q<1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures.
•We propose a L1/2 penalized accelerated failure time (AFT) model.•A coordinate descent algorithm with renewed L1/2 threshold is developed.•The L1/2 penalized AFT model is able to reduce the size of the predictor in practice.•The classifier based on the model is suitable for the high dimension biological data. |
|---|---|
| AbstractList | The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of Lq(0<q<1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures.
•We propose a L1/2 penalized accelerated failure time (AFT) model.•A coordinate descent algorithm with renewed L1/2 threshold is developed.•The L1/2 penalized AFT model is able to reduce the size of the predictor in practice.•The classifier based on the model is suitable for the high dimension biological data. Abstract The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge to select the significantly relevant bio-marks from microarray gene expression datasets, in which the number of genes is far more than the size of samples. In this article, we develop a robust prediction approach for survival time of patient by a L1/2 regularization estimator with the accelerated failure time (AFT) model. The L1/2 regularization could be seen as a typical delegate of L q (0< q <1) regularization methods and it has shown many attractive features. In order to optimize the problem of the relevant gene selection in high-dimensional biological data, we implemented the L1/2 regularized AFT model by the coordinate descent algorithm with a renewed half thresholding operator. The results of the simulation experiment showed that we could obtain more accurate and sparse predictor for survival analysis by the L1/2 regularized AFT model compared with other L1 type regularization methods. The proposed procedures are applied to five real DNA microarray datasets to efficiently predict the survival time of patient based on a set of clinical prognostic factors and gene signatures. |
| Author | Liu, Xiao-Ying Liang, Yong Chai, Hua |
| Author_xml | – sequence: 1 givenname: Hua surname: Chai fullname: Chai, Hua email: 854330388@qq.com – sequence: 2 givenname: Yong surname: Liang fullname: Liang, Yong email: yliang@must.edu.mo – sequence: 3 givenname: Xiao-Ying surname: Liu fullname: Liu, Xiao-Ying email: 631218194@qq.com |
| BookMark | eNqNkd1q3DAQhUVJoZu076AXsDP68dq-CW1D_2ChF03vCmIsjRttZWuRvAubp6-2CQQChb2aq_Nx5juX7GKOMzHGBdQCxPp6W9s47QYfJ3K1BKFr6GsA-YqtRNf2FTRKX7AVgIBKd7J5wy5z3gKABgUr9uvunvhGXEue6Pc-YPIPuPg4c9ztUkR7z8eYeN6ngz9g4DhjOGafuZ_5UpJoLQVKuJDjI_qwT8QXPxGfoqPwlr0eMWR693Sv2M_Pn-5uv1ab71--3X7YVFbpZqlGiULrpmsHNWip1AhuGKVTTjWjc71q10BDL5sR146EBd1B63AtekTlNLTqit08cm2KOScajfXLvzeWVEoZAebkymzNsytzcmWgN8VVAXQvALvkJ0zHc6IfH6NUHjx4SiZbT7Ml5xPZxbjoz4HcvIDY4GdvMfyhI-Vt3KciPhthsjRgfpzWPI0pdEmXgQvg_f8B53X4C80VuMI |
| CitedBy_id | crossref_primary_10_3233_THC_199009 crossref_primary_10_1016_j_csbj_2020_10_028 crossref_primary_10_1186_s13040_020_00222_x crossref_primary_10_3389_fonc_2021_692774 crossref_primary_10_1016_j_compbiomed_2018_07_009 crossref_primary_10_1093_bib_bbaa122 crossref_primary_10_1109_TCYB_2019_2921827 crossref_primary_10_4236_ojs_2021_111008 crossref_primary_10_1109_LSP_2019_2900126 |
| Cites_doi | 10.1198/016214506000000735 10.1214/09-AOS729 10.2307/1267793 10.1016/S1535-6108(03)00028-X 10.1093/biomet/83.4.912 10.1016/j.bone.2011.12.022 10.1080/00401706.1970.10488634 10.1056/NEJMoa031046 10.1214/07-AOAS131 10.1214/10-AOAS388 10.1002/ijc.24266 10.1093/hmg/ddr128 10.1016/j.bbadis.2013.04.026 10.1111/j.2517-6161.1996.tb02080.x 10.1002/sim.4780111409 10.1056/NEJMoa012914 10.1109/TNNLS.2012.2197412 10.1214/009053604000000067 10.1093/biomet/66.3.429 10.1002/sim.2353 10.1093/biomet/81.3.425 10.1093/bioinformatics/bti422 10.1155/2013/768404 10.1093/biomet/asm037 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1111/j.1541-0420.2008.01074.x 10.1198/016214501753382273 10.1080/01621459.1958.10501452 10.1093/biomet/90.2.341 10.1038/35000501 10.1016/j.ccr.2008.06.001 10.1111/j.1541-0420.2006.00562.x 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 10.1111/j.1541-0420.2007.00877.x 10.18637/jss.v033.i01 10.1093/bib/bbs043 10.1002/9780470181218.ch22 10.1002/sim.2059 10.1016/j.stamet.2004.11.003 10.1016/j.asoc.2013.09.006 10.1038/nm733 10.1097/PAS.0b013e31817a909a 10.1016/j.oooo.2013.05.006 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compbiomed.2014.09.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 290 |
| ExternalDocumentID | 10_1016_j_compbiomed_2014_09_002 S0010482514002534 1_s2_0_S0010482514002534 |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ SV3 T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO |
| ID | FETCH-LOGICAL-c345t-f2a144587b3b4233f0dbf2d3d35fdd93760eb925fa6de1c04807da619aa3d4073 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 |
| IngestDate | Wed Oct 01 04:07:19 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Sun Feb 23 10:19:08 EST 2025 Tue Oct 14 19:33:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | L1/2 penalty Survival analysis Accelerated failure time model Regularization Variable selection L 1/2 penalty |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-f2a144587b3b4233f0dbf2d3d35fdd93760eb925fa6de1c04807da619aa3d4073 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compbiomed_2014_09_002 crossref_primary_10_1016_j_compbiomed_2014_09_002 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2014_09_002 elsevier_clinicalkeyesjournals_1_s2_0_S0010482514002534 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2014_09_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers in biology and medicine |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Lu (bib9) 2007; 94 Zhang (bib11) 2010; 38 Chen (bib44) 2009; 124 Subik (bib43) 2012; 50 Rosenwald (bib38) 2002; 346 Fan, Li (bib10) 2001; 96 Van, Bruinsma, Hart, van’t Veer, Wessels (bib35) 2006; 25 Graf (bib36) 1999; 18 Efron, Hastie, Johnstone, Tibshirani (bib13) 2004; 32 Martens, Naes (bib2) 1989 Beer (bib40) 2002; 8 Breheny, Huang (bib31) 2011; 5 Kim Y., Kim J., Gradient Lasso for feature selection, in: Proceedings of the Twenty-first International Conference on Machine Learning, 473–480. New York: ACM, 2004. Wei (bib17) 1992; 11 Currie (bib22) 1996; 83 Friedman, Hastie, Höfling, Tibshirani (bib32) 2007; 1 Buckley, James (bib20) 1979; 66 Liu (bib50) 2014; 14(c) Heerema-McKenney (bib48) 2008; 32 Tibshirani (bib14) 1997; 16 Liu, Li, Luo (bib5) 2013; 2013 Rosenwald (bib19) 2003; 3 Friedman, Hastie, Tibshirani (bib33) 2010; 33 Tibshirani (bib6) 1996; 58 Bender, Augustin, Blettner (bib37) 2005; 24 Alizadeh (bib18) 2000; 403 Kaplan, Meier (bib27) 1958; 53 Gui, Li (bib15) 2005; 21 Leung (bib49) 2013; 14 Tsiatis (bib23) 1996; 18 Donoho, Johnstone (bib34) 1994; 81 Jin, Lin, Wei, Ying (bib26) 2003; 90 Shin (bib47) 2013; 1832 Jolliffe (bib1) 1996 Datta (bib29) 2005; 2 Bernassola (bib46) 2008; 14 Wang, Nan, Zhu, Beer (bib21) 2008; 64 Hoerl, Kennard (bib4) 1970; 12 Lin (bib42) 2013; 116 Hirschfeld (bib45) 2011; 20 Xu, Zhang, Wang, Chang, Liang (bib28) 2010; 40 Huang, Ma, Xie (bib24) 2006; 62 Bullinger (bib41) 2004; 350 Li H., Censored Data Regression in High-dimension and Low Sample Size Settings for Genomic Applications. Statistical Advances in Biomedical Sciences: State of Art and Future Directions, A, 2008. Friedman, Popescu (bib7) 2004 Park (bib3) 1981; 23 Zou (bib8) 2006; 101 Van Houwelingen, Bruinsma, Hart, van’t Veer, Wessels (bib39) 2006; 25 Xu, Chang, Xu, Zhang (bib30) 2012; 23 Cai, Hunag, Tian (bib25) 2009; 65 Hirschfeld (10.1016/j.compbiomed.2014.09.002_bib45) 2011; 20 Wang (10.1016/j.compbiomed.2014.09.002_bib21) 2008; 64 Breheny (10.1016/j.compbiomed.2014.09.002_bib31) 2011; 5 Liu (10.1016/j.compbiomed.2014.09.002_bib5) 2013; 2013 Cai (10.1016/j.compbiomed.2014.09.002_bib25) 2009; 65 Efron (10.1016/j.compbiomed.2014.09.002_bib13) 2004; 32 Currie (10.1016/j.compbiomed.2014.09.002_bib22) 1996; 83 Friedman (10.1016/j.compbiomed.2014.09.002_bib32) 2007; 1 Tsiatis (10.1016/j.compbiomed.2014.09.002_bib23) 1996; 18 Xu (10.1016/j.compbiomed.2014.09.002_bib30) 2012; 23 Park (10.1016/j.compbiomed.2014.09.002_bib3) 1981; 23 Bullinger (10.1016/j.compbiomed.2014.09.002_bib41) 2004; 350 Huang (10.1016/j.compbiomed.2014.09.002_bib24) 2006; 62 Alizadeh (10.1016/j.compbiomed.2014.09.002_bib18) 2000; 403 Heerema-McKenney (10.1016/j.compbiomed.2014.09.002_bib48) 2008; 32 Liu (10.1016/j.compbiomed.2014.09.002_bib50) 2014; 14(c) Friedman (10.1016/j.compbiomed.2014.09.002_bib33) 2010; 33 Donoho (10.1016/j.compbiomed.2014.09.002_bib34) 1994; 81 Zou (10.1016/j.compbiomed.2014.09.002_bib8) 2006; 101 Fan (10.1016/j.compbiomed.2014.09.002_bib10) 2001; 96 Datta (10.1016/j.compbiomed.2014.09.002_bib29) 2005; 2 Zhang (10.1016/j.compbiomed.2014.09.002_bib11) 2010; 38 Jin (10.1016/j.compbiomed.2014.09.002_bib26) 2003; 90 Tibshirani (10.1016/j.compbiomed.2014.09.002_bib14) 1997; 16 Leung (10.1016/j.compbiomed.2014.09.002_bib49) 2013; 14 Buckley (10.1016/j.compbiomed.2014.09.002_bib20) 1979; 66 Gui (10.1016/j.compbiomed.2014.09.002_bib15) 2005; 21 Graf (10.1016/j.compbiomed.2014.09.002_bib36) 1999; 18 Van Houwelingen (10.1016/j.compbiomed.2014.09.002_bib39) 2006; 25 Friedman (10.1016/j.compbiomed.2014.09.002_bib7) 2004 Van (10.1016/j.compbiomed.2014.09.002_bib35) 2006; 25 Beer (10.1016/j.compbiomed.2014.09.002_bib40) 2002; 8 Bernassola (10.1016/j.compbiomed.2014.09.002_bib46) 2008; 14 Zhang (10.1016/j.compbiomed.2014.09.002_bib9) 2007; 94 Subik (10.1016/j.compbiomed.2014.09.002_bib43) 2012; 50 10.1016/j.compbiomed.2014.09.002_bib16 Jolliffe (10.1016/j.compbiomed.2014.09.002_bib1) 1996 Hoerl (10.1016/j.compbiomed.2014.09.002_bib4) 1970; 12 Wei (10.1016/j.compbiomed.2014.09.002_bib17) 1992; 11 Rosenwald (10.1016/j.compbiomed.2014.09.002_bib19) 2003; 3 10.1016/j.compbiomed.2014.09.002_bib12 Shin (10.1016/j.compbiomed.2014.09.002_bib47) 2013; 1832 Chen (10.1016/j.compbiomed.2014.09.002_bib44) 2009; 124 Rosenwald (10.1016/j.compbiomed.2014.09.002_bib38) 2002; 346 Xu (10.1016/j.compbiomed.2014.09.002_bib28) 2010; 40 Martens (10.1016/j.compbiomed.2014.09.002_bib2) 1989 Kaplan (10.1016/j.compbiomed.2014.09.002_bib27) 1958; 53 Tibshirani (10.1016/j.compbiomed.2014.09.002_bib6) 1996; 58 Lin (10.1016/j.compbiomed.2014.09.002_bib42) 2013; 116 Bender (10.1016/j.compbiomed.2014.09.002_bib37) 2005; 24 |
| References_xml | – volume: 116 start-page: 221 year: 2013 end-page: 231 ident: bib42 article-title: WWP1 gene is a potential molecular target of human oral cancer publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. – volume: 40 start-page: 1 year: 2010 end-page: 11 ident: bib28 article-title: regularization publication-title: Sci. China, Ser. F – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: bib13 article-title: Least angle regression publication-title: Ann. Stat. – volume: 83 start-page: 912 year: 1996 end-page: 915 ident: bib22 article-title: A note on Buckley–James estimators for censored data publication-title: Biometrika – volume: 66 start-page: 429 year: 1979 end-page: 436 ident: bib20 article-title: Linear regression with censored data publication-title: Biometrika – volume: 64 start-page: 132 year: 2008 end-page: 140 ident: bib21 article-title: Doubly penalized Buckley–James method for survival data with high dimensional covariates publication-title: Biometrics – year: 1996 ident: bib1 article-title: Principal Component Analysis – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib6 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Assoc., Ser B – volume: 346 start-page: 1937 year: 2002 end-page: 1946 ident: bib38 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma publication-title: N. Engl. J. Med – volume: 20 start-page: 2356 year: 2011 end-page: 2365 ident: bib45 article-title: Expression of tumor-promoting Cyr61 is regulated by hTRA2-β1 and acidosis publication-title: Hum. Mol. Gen. – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: bib4 article-title: Ridge regression: biased estimation for non-orthogonal problem publication-title: Technometrics – volume: 94 start-page: 691 year: 2007 end-page: 703 ident: bib9 article-title: Adaptive Lasso for Cox’s proportional hazards model publication-title: Biometrika – reference: Li H., Censored Data Regression in High-dimension and Low Sample Size Settings for Genomic Applications. Statistical Advances in Biomedical Sciences: State of Art and Future Directions, A, 2008. – volume: 32 start-page: 1513 year: 2008 end-page: 1522 ident: bib48 article-title: Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype publication-title: Am. J. Surg. Pathol. – volume: 2013 start-page: 10 year: 2013 ident: bib5 article-title: Iterative reweighted noninteger norm regularizing SVM for gene expression data classification publication-title: Comput. Math. Methods Med. – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: bib11 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. – volume: 14(c) start-page: 498 year: 2014 end-page: 503 ident: bib50 article-title: The publication-title: Appl. Soft Comput. – year: 1989 ident: bib2 article-title: Multivariate Calibration – volume: 25 start-page: 3201 year: 2006 end-page: 3216 ident: bib35 article-title: Cross-validated Cox regression on microarray gene expression data publication-title: Stat. Med. – volume: 403 start-page: 503 year: 2000 end-page: 511 ident: bib18 article-title: Distinct types of diffuse large B-Cell lymphoma identified by gene expression profiling publication-title: Nature – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: bib8 article-title: The adaptive Lasso and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: bib34 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – volume: 350 start-page: 1605 year: 2004 end-page: 1616 ident: bib41 article-title: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 23 start-page: 289 year: 1981 end-page: 295 ident: bib3 article-title: Collinearity and optimal restrictions on regression parameters for estimating responses publication-title: Technometrics – volume: 18 start-page: 305 year: 1996 end-page: 328 ident: bib23 article-title: Estimating regression parameters using linear rank tests for censored data publication-title: Ann. Stat. – volume: 25 start-page: 3201 year: 2006 end-page: 3216 ident: bib39 article-title: Cross-validated Cox regression on microarray gene expression data publication-title: Stat. Med. – volume: 50 start-page: 813 year: 2012 end-page: 823 ident: bib43 article-title: The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis publication-title: Bone – volume: 24 start-page: 1713 year: 2005 end-page: 1723 ident: bib37 article-title: Generating survival times to simulate Cox proportional hazards models publication-title: Stat. Med. – volume: 23 start-page: 1013 year: 2012 end-page: 1027 ident: bib30 article-title: -1/2 Regularization: a Thresholding Representation Theory and a Fast Solver publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 16 start-page: 385 year: 1997 end-page: 395 ident: bib14 article-title: The Lasso method for variable selection in the Cox model publication-title: Stat. Med. – volume: 1832 start-page: 1569 year: 2013 end-page: 1581 ident: bib47 article-title: Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell publication-title: Biochim. Biophys. Acta – volume: 5 start-page: 232 year: 2011 end-page: 253 ident: bib31 article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection publication-title: Ann. Appl. Stat – volume: 3 start-page: 185 year: 2003 end-page: 197 ident: bib19 article-title: The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma publication-title: Cancer Cell – volume: 96 start-page: 1348 year: 2001 end-page: 1361 ident: bib10 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 65 start-page: 394 year: 2009 end-page: 404 ident: bib25 article-title: Regularized estimation for the accelerated failure time model publication-title: Biometrics – volume: 18 start-page: 2529 year: 1999 end-page: 2545 ident: bib36 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. – volume: 124 start-page: 2829 year: 2009 end-page: 2836 ident: bib44 article-title: Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma publication-title: Int. J. Cancer – volume: 53 start-page: 457 year: 1958 end-page: 481 ident: bib27 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stat. Assoc. – volume: 2 start-page: 65 year: 2005 end-page: 69 ident: bib29 article-title: Estimating the mean life time using right censored data publication-title: Stat. Methodol. – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib33 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw – volume: 14 start-page: 10 year: 2008 end-page: 21 ident: bib46 article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development publication-title: Cancer Cell – volume: 62 start-page: 813 year: 2006 end-page: 820 ident: bib24 article-title: Regularized estimation in the accelerated failure time model with high dimensional covariates publication-title: Biometrics – volume: 8 start-page: 816 year: 2002 end-page: 824 ident: bib40 article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma publication-title: Nat. Med – volume: 11 start-page: 1871 year: 1992 end-page: 1879 ident: bib17 article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis publication-title: Stat. Med. – reference: Kim Y., Kim J., Gradient Lasso for feature selection, in: Proceedings of the Twenty-first International Conference on Machine Learning, 473–480. New York: ACM, 2004. – volume: 90 start-page: 341 year: 2003 end-page: 353 ident: bib26 article-title: Rank-based inference for the accelerated failure time model publication-title: Biometrika – volume: 14 start-page: 491 year: 2013 end-page: 505 ident: bib49 article-title: Network-based drug discovery by integrating systems biology and computational technologies publication-title: Brief. Bioinform. – year: 2004 ident: bib7 article-title: Gradient directed regularization – volume: 21 start-page: 3001 year: 2005 end-page: 3008 ident: bib15 article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size setting, with applications to microarray gene expression data publication-title: Bioinformatics – volume: 1 start-page: 302 year: 2007 end-page: 332 ident: bib32 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. – volume: 101 start-page: 1418 year: 2006 ident: 10.1016/j.compbiomed.2014.09.002_bib8 article-title: The adaptive Lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 38 start-page: 894 year: 2010 ident: 10.1016/j.compbiomed.2014.09.002_bib11 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 23 start-page: 289 year: 1981 ident: 10.1016/j.compbiomed.2014.09.002_bib3 article-title: Collinearity and optimal restrictions on regression parameters for estimating responses publication-title: Technometrics doi: 10.2307/1267793 – volume: 3 start-page: 185 year: 2003 ident: 10.1016/j.compbiomed.2014.09.002_bib19 article-title: The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00028-X – year: 1989 ident: 10.1016/j.compbiomed.2014.09.002_bib2 – volume: 83 start-page: 912 year: 1996 ident: 10.1016/j.compbiomed.2014.09.002_bib22 article-title: A note on Buckley–James estimators for censored data publication-title: Biometrika doi: 10.1093/biomet/83.4.912 – volume: 50 start-page: 813 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2014.09.002_bib43 article-title: The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis publication-title: Bone doi: 10.1016/j.bone.2011.12.022 – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.compbiomed.2014.09.002_bib4 article-title: Ridge regression: biased estimation for non-orthogonal problem publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 350 start-page: 1605 year: 2004 ident: 10.1016/j.compbiomed.2014.09.002_bib41 article-title: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa031046 – volume: 1 start-page: 302 year: 2007 ident: 10.1016/j.compbiomed.2014.09.002_bib32 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS131 – ident: 10.1016/j.compbiomed.2014.09.002_bib12 – volume: 5 start-page: 232 year: 2011 ident: 10.1016/j.compbiomed.2014.09.002_bib31 article-title: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection publication-title: Ann. Appl. Stat doi: 10.1214/10-AOAS388 – volume: 124 start-page: 2829 issue: 12 year: 2009 ident: 10.1016/j.compbiomed.2014.09.002_bib44 article-title: Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma publication-title: Int. J. Cancer doi: 10.1002/ijc.24266 – volume: 20 start-page: 2356 issue: 12 year: 2011 ident: 10.1016/j.compbiomed.2014.09.002_bib45 article-title: Expression of tumor-promoting Cyr61 is regulated by hTRA2-β1 and acidosis publication-title: Hum. Mol. Gen. doi: 10.1093/hmg/ddr128 – volume: 1832 start-page: 1569 issue: 10 year: 2013 ident: 10.1016/j.compbiomed.2014.09.002_bib47 article-title: Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.04.026 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.compbiomed.2014.09.002_bib6 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Assoc., Ser B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 11 start-page: 1871 year: 1992 ident: 10.1016/j.compbiomed.2014.09.002_bib17 article-title: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis publication-title: Stat. Med. doi: 10.1002/sim.4780111409 – volume: 346 start-page: 1937 year: 2002 ident: 10.1016/j.compbiomed.2014.09.002_bib38 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa012914 – volume: 23 start-page: 1013 issue: 7 year: 2012 ident: 10.1016/j.compbiomed.2014.09.002_bib30 article-title: L-1/2 Regularization: a Thresholding Representation Theory and a Fast Solver publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2012.2197412 – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.compbiomed.2014.09.002_bib13 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 66 start-page: 429 year: 1979 ident: 10.1016/j.compbiomed.2014.09.002_bib20 article-title: Linear regression with censored data publication-title: Biometrika doi: 10.1093/biomet/66.3.429 – volume: 25 start-page: 3201 year: 2006 ident: 10.1016/j.compbiomed.2014.09.002_bib39 article-title: Cross-validated Cox regression on microarray gene expression data publication-title: Stat. Med. doi: 10.1002/sim.2353 – volume: 81 start-page: 425 year: 1994 ident: 10.1016/j.compbiomed.2014.09.002_bib34 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 21 start-page: 3001 year: 2005 ident: 10.1016/j.compbiomed.2014.09.002_bib15 article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size setting, with applications to microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti422 – volume: 2013 start-page: 10 year: 2013 ident: 10.1016/j.compbiomed.2014.09.002_bib5 article-title: Iterative reweighted noninteger norm regularizing SVM for gene expression data classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/768404 – volume: 94 start-page: 691 year: 2007 ident: 10.1016/j.compbiomed.2014.09.002_bib9 article-title: Adaptive Lasso for Cox’s proportional hazards model publication-title: Biometrika doi: 10.1093/biomet/asm037 – volume: 16 start-page: 385 year: 1997 ident: 10.1016/j.compbiomed.2014.09.002_bib14 article-title: The Lasso method for variable selection in the Cox model publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 18 start-page: 305 year: 1996 ident: 10.1016/j.compbiomed.2014.09.002_bib23 article-title: Estimating regression parameters using linear rank tests for censored data publication-title: Ann. Stat. – volume: 65 start-page: 394 year: 2009 ident: 10.1016/j.compbiomed.2014.09.002_bib25 article-title: Regularized estimation for the accelerated failure time model publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01074.x – volume: 96 start-page: 1348 year: 2001 ident: 10.1016/j.compbiomed.2014.09.002_bib10 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 53 start-page: 457 year: 1958 ident: 10.1016/j.compbiomed.2014.09.002_bib27 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1958.10501452 – volume: 90 start-page: 341 year: 2003 ident: 10.1016/j.compbiomed.2014.09.002_bib26 article-title: Rank-based inference for the accelerated failure time model publication-title: Biometrika doi: 10.1093/biomet/90.2.341 – volume: 40 start-page: 1 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2014.09.002_bib28 article-title: L1/2 regularization publication-title: Sci. China, Ser. F – year: 1996 ident: 10.1016/j.compbiomed.2014.09.002_bib1 – year: 2004 ident: 10.1016/j.compbiomed.2014.09.002_bib7 – volume: 403 start-page: 503 year: 2000 ident: 10.1016/j.compbiomed.2014.09.002_bib18 article-title: Distinct types of diffuse large B-Cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – volume: 14 start-page: 10 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2014.09.002_bib46 article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.06.001 – volume: 62 start-page: 813 year: 2006 ident: 10.1016/j.compbiomed.2014.09.002_bib24 article-title: Regularized estimation in the accelerated failure time model with high dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00562.x – volume: 25 start-page: 3201 year: 2006 ident: 10.1016/j.compbiomed.2014.09.002_bib35 article-title: Cross-validated Cox regression on microarray gene expression data publication-title: Stat. Med. doi: 10.1002/sim.2353 – volume: 18 start-page: 2529 year: 1999 ident: 10.1016/j.compbiomed.2014.09.002_bib36 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – volume: 64 start-page: 132 year: 2008 ident: 10.1016/j.compbiomed.2014.09.002_bib21 article-title: Doubly penalized Buckley–James method for survival data with high dimensional covariates publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00877.x – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.compbiomed.2014.09.002_bib33 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw doi: 10.18637/jss.v033.i01 – volume: 14 start-page: 491 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2014.09.002_bib49 article-title: Network-based drug discovery by integrating systems biology and computational technologies publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs043 – ident: 10.1016/j.compbiomed.2014.09.002_bib16 doi: 10.1002/9780470181218.ch22 – volume: 24 start-page: 1713 year: 2005 ident: 10.1016/j.compbiomed.2014.09.002_bib37 article-title: Generating survival times to simulate Cox proportional hazards models publication-title: Stat. Med. doi: 10.1002/sim.2059 – volume: 2 start-page: 65 year: 2005 ident: 10.1016/j.compbiomed.2014.09.002_bib29 article-title: Estimating the mean life time using right censored data publication-title: Stat. Methodol. doi: 10.1016/j.stamet.2004.11.003 – volume: 14(c) start-page: 498 year: 2014 ident: 10.1016/j.compbiomed.2014.09.002_bib50 article-title: The L1/2 regularization method for variable selection in the Cox model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.006 – volume: 8 start-page: 816 year: 2002 ident: 10.1016/j.compbiomed.2014.09.002_bib40 article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma publication-title: Nat. Med doi: 10.1038/nm733 – volume: 32 start-page: 1513 issue: 10 year: 2008 ident: 10.1016/j.compbiomed.2014.09.002_bib48 article-title: Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype publication-title: Am. J. Surg. Pathol. doi: 10.1097/PAS.0b013e31817a909a – volume: 116 start-page: 221 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2014.09.002_bib42 article-title: WWP1 gene is a potential molecular target of human oral cancer publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2013.05.006 |
| SSID | ssj0004030 |
| Score | 2.136332 |
| Snippet | The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge challenge... Abstract The analysis of high-dimensional and low-sample size microarray data for survival analysis of cancer patients is an important problem. It is a huge... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 283 |
| SubjectTerms | Accelerated failure time model Internal Medicine L1/2 penalty Other Regularization Survival analysis Variable selection |
| Title | The L1/2 regularization approach for survival analysis in the accelerated failure time model |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482514002534 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482514002534 https://dx.doi.org/10.1016/j.compbiomed.2014.09.002 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DQbyInzg_Rg5e69okbRM8jeGcH9vJwQ5CSJMUJjLHul39231p002Zh4GXQksfLS-v7yP9_d5D6IZyrihP0yAVNg6YsDQQhOjACpLrzHJiy1mHg2HSH7GncTxuoG7NhXGwSu_7K59eemt_pe212Z5NJo7jC6WEY14yF7ip6wnKWOqmGNx-rWEeLKQVDQX8jbvbo3kqjJeDbVc0dwfyqjqe-g2WjRD1I-z0DtGBzxdxp3qlI9Sw02O0N_B_xE_QG6wzfonaBM_LqfJzz6vEdbNwDFkpLpbgEcCmsPI9SPBkiiH1w0priDuuXYTBuZo4jDp24-ZxOSHnFI1696_dfuAnJgSasngR5ERBgRTzNKMZ5Ek0D02WE0MNjXNjhAPA2EyQOFeJsZEu-eRGQQ2lFDVQ2tEztDP9nNpzhBPDhUkym8SCs0gligqqeRLZKNSRYLyJ0lpJUvt24m6qxYescWPvcq1e6dQrQyFBvU0UrSRnVUuNLWREvQ6ypoyCk5Pg97eQTf-StYX_WgsZyYLIUG5YVBPdrSR_GeVWz734l_Ql2oezuIKzXaGdxXxpryH_WWSt0sDhyHsPLbTbeXzuD78BRwYGuQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gHoRn7g-c_Bat82jTfAkoqy660nBgxDSJIUVWWV3vfrbnbSpD_Sw4LXt0DKZfplpv28G4JhJaZgsiqRQXiRceZYoSm3iFa1s6SX19azDwW3eu-fXD-JhDs5bLUygVUbsbzC9Rut4pBu92X0dDoPGF0uJoLzkYeNmfB4WuaBFqMBO3r94HjxljQ4FASdcHuk8Dckr8LYbnXtgeTUtT-MXll971Ld953INVmPCSM6aZ1qHOT_agKVB_CW-CY-40KSfdSkZ12Plx1FYSdpu4QTTUjJ5Q0jAoCImNiEhwxHB3I8Ya3HjCf0iHKnMMJDUSZg3T-oROVtwf3lxd95L4siExDIupklFDVZIQhYlKzFRYlXqyoo65pionFOBAeNLRUVlcuczWwvKncEiyhjmsLZj27Awehn5HSC5k8rlpc-FkjwzuWGKWZlnPkttprjsQNE6SdvYTzyMtXjWLXHsSX-5Vwf36lRpdG8Hsk_L16anxgw2ql0H3WpGEeU0Av8MtsVftn4SX9eJzvSE6lT_CqkOnH5a_ojKme67-y_rI1ju3Q36un91e7MHK3hGNNy2fViYjt_8ASZD0_KwDvYPHJgHaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+L1%2F2+regularization+approach+for+survival+analysis+in+the+accelerated+failure+time+model&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chai%2C+Hua&rft.au=Liang%2C+Yong&rft.au=Liu%2C+Xiao-Ying&rft.date=2015-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=64&rft.spage=283&rft.epage=290&rft_id=info:doi/10.1016%2Fj.compbiomed.2014.09.002&rft.externalDocID=S0010482514002534 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00084%2Fcov150h.gif |