Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature

Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial inte...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 353; pp. 152 - 171
Main Authors Moazenzadeh, Roozbeh, Mohammadi, Babak
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2019.06.028

Cover

Abstract Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter. •Hybrid models improved Ts estimation compared to base models.•Especial improvement for Ts values <5 °C (5, 10 and 20 cm) and 15–25 °C (100 cm)•Bio-inspired metaheuristic optimisation algorithms reliably estimated Ts.•Estimation accuracy was reduced by soil depth.
AbstractList Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter.
Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter. •Hybrid models improved Ts estimation compared to base models.•Especial improvement for Ts values <5 °C (5, 10 and 20 cm) and 15–25 °C (100 cm)•Bio-inspired metaheuristic optimisation algorithms reliably estimated Ts.•Estimation accuracy was reduced by soil depth.
Author Moazenzadeh, Roozbeh
Mohammadi, Babak
Author_xml – sequence: 1
  givenname: Roozbeh
  orcidid: 0000-0002-1057-3801
  surname: Moazenzadeh
  fullname: Moazenzadeh, Roozbeh
  email: romo_sci@shahroodut.ac.ir
  organization: Department of Water Engineering, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
– sequence: 2
  givenname: Babak
  orcidid: 0000-0001-8427-5965
  surname: Mohammadi
  fullname: Mohammadi, Babak
  email: Babakmohammadi@aol.com
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
BookMark eNqFkE1PwzAMhiMEEtvgL6AcubQkaZuuEgemiS9pEhc4By91t0xtU5IUiX9PxuDCZSfL8vtY9jMlp73tkZArzlLOuLzZpRu0NboOUsF4lTKZMjE_IRM-L0UiRVGdkgmLyaRkkp-Tqfe72JZMsAl5X3iP3nfYB2obujY2Mb0fjMOadhhgi6MzPhhN7RBMZzwEY3sK7cY6E7adp411FGOii5N-Q701LQ3YDeggjA4vyFkDrcfL3zojbw_3r8unZPXy-LxcrBKd5UVIEDINa8YBEOp1xqCqMZd5kctCykqyuhCiEgBFNuegUWLJSiki0ohynZc8m5Hrw97B2Y8xHqTisRrbFnq0o1ciYwWfizLfR28PUe2s9w4bpU34-Ss4MK3iTO3Fqp36E6v2YhWTKoqNuPyHDy5-776Og3cHEKOHT4NOeW2w11hH3Tqo2ppjK74Bx5OcPA
CitedBy_id crossref_primary_10_1007_s10462_020_09915_5
crossref_primary_10_1007_s11269_020_02619_z
crossref_primary_10_1016_j_ecolind_2019_105664
crossref_primary_10_3390_ijgi9120701
crossref_primary_10_1016_j_seta_2021_101473
crossref_primary_10_3934_mbe_2023150
crossref_primary_10_1007_s00500_021_06095_4
crossref_primary_10_2166_ws_2020_226
crossref_primary_10_3390_cli7100124
crossref_primary_10_1016_j_agwat_2020_106622
crossref_primary_10_1007_s10661_024_13497_y
crossref_primary_10_1007_s12053_019_09836_5
crossref_primary_10_1007_s00500_020_05058_5
crossref_primary_10_1007_s11831_022_09857_x
crossref_primary_10_1016_j_agwat_2020_106145
crossref_primary_10_1080_19942060_2022_2037467
crossref_primary_10_1007_s40866_022_00128_z
crossref_primary_10_1007_s11053_020_09638_y
crossref_primary_10_1051_bioconf_202410821003
crossref_primary_10_1007_s40866_020_00100_9
crossref_primary_10_1007_s00704_021_03819_2
crossref_primary_10_1007_s12517_021_06910_0
crossref_primary_10_1016_j_csite_2019_100540
crossref_primary_10_1109_ACCESS_2025_3532980
crossref_primary_10_1016_j_geoderma_2021_115651
crossref_primary_10_1007_s11356_021_12792_2
crossref_primary_10_1016_j_asej_2021_06_022
crossref_primary_10_1007_s11356_022_20837_3
crossref_primary_10_1007_s10661_020_08828_8
crossref_primary_10_1007_s00477_020_01898_7
crossref_primary_10_1016_j_pce_2024_103646
crossref_primary_10_1007_s11269_021_02934_z
crossref_primary_10_1016_j_ecolind_2020_106990
crossref_primary_10_1007_s11356_020_08666_8
crossref_primary_10_1016_j_catena_2020_105024
crossref_primary_10_1016_j_measurement_2020_107616
crossref_primary_10_1080_24749508_2020_1720475
crossref_primary_10_1002_vzj2_20151
crossref_primary_10_1016_j_scienta_2019_108756
crossref_primary_10_1007_s00704_020_03283_4
crossref_primary_10_1061__ASCE_GM_1943_5622_0001843
crossref_primary_10_29039_2409_6024_2023_11_2_122_134
crossref_primary_10_1007_s11356_024_35002_1
crossref_primary_10_1016_j_asej_2020_08_017
crossref_primary_10_1016_j_matcom_2022_11_020
crossref_primary_10_3390_su15097677
crossref_primary_10_1007_s11356_024_33044_z
crossref_primary_10_1016_j_ecolind_2020_106869
crossref_primary_10_1080_02626667_2020_1758703
crossref_primary_10_1016_j_ecolind_2020_106864
crossref_primary_10_1007_s10115_021_01590_4
crossref_primary_10_1109_ACCESS_2020_2979822
crossref_primary_10_1016_j_ecolind_2020_106740
crossref_primary_10_4018_IJACI_2020070104
crossref_primary_10_1007_s11227_019_03096_x
crossref_primary_10_1007_s12517_020_05355_1
crossref_primary_10_1016_j_asej_2022_101876
crossref_primary_10_1016_j_compag_2020_105279
crossref_primary_10_1007_s11356_021_17852_1
crossref_primary_10_1007_s11368_022_03374_x
crossref_primary_10_1007_s00477_021_02011_2
crossref_primary_10_3390_hydrology10030058
crossref_primary_10_1007_s00500_021_06009_4
crossref_primary_10_3390_hydrology7030059
crossref_primary_10_1109_ACCESS_2020_2982996
crossref_primary_10_3390_w12113015
crossref_primary_10_1007_s11356_020_07837_x
crossref_primary_10_1016_j_jclepro_2020_124267
crossref_primary_10_1155_2022_9016823
crossref_primary_10_1016_j_measurement_2020_108127
crossref_primary_10_1007_s11356_020_07868_4
crossref_primary_10_1016_j_still_2022_105502
crossref_primary_10_1038_s41598_022_15689_3
crossref_primary_10_32417_1997_4868_2024_24_03_440_449
crossref_primary_10_29039_2409_6024_2023_11_3_140_149
crossref_primary_10_1016_j_neunet_2020_07_019
crossref_primary_10_3390_atmos12040439
crossref_primary_10_1007_s13201_022_01815_z
Cites_doi 10.1016/j.solener.2008.07.013
10.4141/cjss10073
10.1016/j.still.2017.04.009
10.1016/j.envexpbot.2004.03.016
10.1016/S1002-0160(07)60102-7
10.1016/j.asoc.2014.02.002
10.1097/00010694-197809000-00008
10.3390/w10050628
10.1007/s00704-014-1232-x
10.1007/s00704-017-2227-1
10.1111/ejss.12489
10.1016/j.agrformet.2003.08.030
10.1016/j.still.2017.08.012
10.1016/j.neucom.2018.01.046
10.1016/j.still.2017.07.010
10.1016/j.geoderma.2018.11.044
10.1007/s00704-012-0807-7
10.1007/s12665-017-6395-1
10.1016/j.geoderma.2018.10.044
10.1016/j.jhydrol.2010.11.002
10.1016/j.geoderma.2017.11.015
10.1016/j.cnsns.2012.05.010
10.1016/S0378-7788(01)00089-5
10.1016/j.femsec.2004.10.002
10.1504/IJSI.2013.055801
10.1016/0002-1571(76)90022-4
10.1016/j.aca.2013.12.002
10.1016/j.geoderma.2018.05.030
10.1016/j.geoderma.2016.03.011
10.1002/hyp.6323
10.1007/s12517-016-2388-8
10.1093/treephys/21.8.541
10.1016/j.chemolab.2010.10.004
10.1016/j.compag.2016.03.025
10.1016/j.jhydrol.2013.11.008
10.1016/0016-7061(75)90070-1
10.1016/0022-1694(92)90174-T
10.1007/s11269-015-0976-0
10.1016/S1002-0160(07)60092-7
10.1111/j.1365-2389.2008.01060.x
10.1007/s00704-013-1065-z
10.1007/s00703-010-0110-z
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.06.028
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 171
ExternalDocumentID 10_1016_j_geoderma_2019_06_028
S001670611832353X
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
VH1
WUQ
XPP
Y6R
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-ea3cab01aaeadb30a9de464546566960d52292aa5381ace6e70762cabf27b4713
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Sun Sep 28 08:33:07 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Wed Oct 01 05:20:56 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Meteorological parameters
Firefly algorithm
Krill herd algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-ea3cab01aaeadb30a9de464546566960d52292aa5381ace6e70762cabf27b4713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1057-3801
0000-0001-8427-5965
PQID 2305182741
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2305182741
crossref_citationtrail_10_1016_j_geoderma_2019_06_028
crossref_primary_10_1016_j_geoderma_2019_06_028
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_06_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bilgili (bb0025) 2011; 35
Zhou, Persaud, Belesky, Clark (bb0265) 2007; 17
Kazemzadeh, Daneshmand, Ahmadfard (bb0090) 2015; 29
Kang, Kim, Oh, Lee (bb0080) 2000; 18
Samadianfard, Asadi, Jarhan, Kazemi, Kheshtgar, Kisi, Sajjadi, Manaf (bb0200) 2018; 175
Knight, Minasny, McBratney, Koen, Murphy (bb0110) 2018; 313
Araghi, Mousavi-Baygi, Adamowski (bb0010) 2017; 174
Rahi, Jensen (bb0190) 1975; 14
Liu, Huang (bb0120) 2005; 53
Mihalakakou (bb0130) 2002
Gao, Horton, Wang, Liu, Wen (bb0055) 2008; 59
Ghorbani, Shamshirband, Zare Haghie, Azani, Bonakdari, Ebtehaj (bb0060) 2017; 172
Yang, He (bb0250) 2013; 1
Hu, Zhao, Li, Wu, Wu, Xie, Zhu, Su (bb0070) 2019; 337
Paul, Polglase, Smethurst, Oconnell, Carlyle, Khanna (bb0175) 2004; 121
Zare Abyaneh, Varkeshi, Golmohammadi, Mohammadi (bb0260) 2016; 9
Guntinas, Gil-Sotres, Leiros, Trasar-Cepeda (bb0065) 2013; 13
Ren, Cao, Wen, Huang, Zeng (bb0195) 2018
Kisi, Shiri, Karimi, Shamshirband, Motamedi, Petkovic, Hashim (bb0100) 2015; 270
Okkonen, Ala-Aho, Hanninen, Hayashi, Sutinen, Liwata (bb0160) 2017; 68
Mohammadi, Shamshirband, Danesh, Zamani, Sudheer (bb0140) 2015
Pai, Hong (bb0170) 2007; 21
Nabi, Mullins (bb0145) 2008; 18
Feng, Cui, Hao, Gao, Gong (bb0045) 2019; 338
Droulia, Lykoudis, Tsiros, Alvertos, Akylas, Garofalakis (bb0040) 2009; 83
Wierenga, Dewit (bb0240) 1970; 34
Jahani, Mohammadi (bb0075) 2018
Kim, Singh (bb0095) 2014; 118
Wang, Chen, Lau (bb0235) 2011; 105
Kisi, Tombul, Kermani (bb0105) 2015; 121
Raghavendra, Chandra Deka (bb0185) 2014; 19
Sommers, Gilmour, Wildung, Beck (bb0210) 1981; vol. 9
Van-Bevel, Hillel (bb0230) 1976; 17
Dong, Scagel, Cheng, Fuchigami, Rygiewicz (bb0035) 2001; 21
Moazenzadeh, Mohammadi, Shamshirband, Chau (bb0135) 2018; 12
Tabari, Sabziparvar, Ahmadi (bb0215) 2011; 110
Wu, Tang, Guo, Yang, Liu, Shang (bb0245) 2013; 113
Zhou, Peng, Zhang, Sun (bb0270) 2018; 10
Behmanesh, Mehdizadeh (bb0020) 2017; 76
Katul, Parlange (bb0085) 1992; 132
Cheng, Chuan, Haiwei (bb0030) 2011
Yoon, Jun, Hyun, Bae, Lee (bb0255) 2011; 396
Tabari, Hosseinzadeh, Willems (bb0220) 2014
Baydaroglu, Koçak (bb0015) 2014; 508
Ni, Norgaard, Morup (bb0155) 2014; 813
Toy, Kuhaida, Munson (bb0225) 1978; 126
Gandomi, Alavi (bb0050) 2012; 17
Allen, Pereira, Raes, Smith (bb0005) 1998
Ozturk, Salman, Koc (bb0165) 2011; 91
Kunkel, Wells, Hancock (bb0115) 2016; 273
Nahvi, Habibi, Mohammadi, Shamshirband, Razgan (bb0150) 2016; 124
Mehdizadeh, Behmanesh, Khalili (bb0125) 2017; 133
Sanikhani, Deo, Yaseen, Eray, Kisi (bb0205) 2018; 330
Pietikainen, Pettersson, Baath (bb0180) 2005; 52
Behmanesh (10.1016/j.geoderma.2019.06.028_bb0020) 2017; 76
Dong (10.1016/j.geoderma.2019.06.028_bb0035) 2001; 21
Cheng (10.1016/j.geoderma.2019.06.028_bb0030) 2011
Droulia (10.1016/j.geoderma.2019.06.028_bb0040) 2009; 83
Mihalakakou (10.1016/j.geoderma.2019.06.028_bb0130) 2002
Tabari (10.1016/j.geoderma.2019.06.028_bb0215) 2011; 110
Raghavendra (10.1016/j.geoderma.2019.06.028_bb0185) 2014; 19
Baydaroglu (10.1016/j.geoderma.2019.06.028_bb0015) 2014; 508
Van-Bevel (10.1016/j.geoderma.2019.06.028_bb0230) 1976; 17
Wierenga (10.1016/j.geoderma.2019.06.028_bb0240) 1970; 34
Yang (10.1016/j.geoderma.2019.06.028_bb0250) 2013; 1
Kunkel (10.1016/j.geoderma.2019.06.028_bb0115) 2016; 273
Ozturk (10.1016/j.geoderma.2019.06.028_bb0165) 2011; 91
Kisi (10.1016/j.geoderma.2019.06.028_bb0100) 2015; 270
Kisi (10.1016/j.geoderma.2019.06.028_bb0105) 2015; 121
Nabi (10.1016/j.geoderma.2019.06.028_bb0145) 2008; 18
Gao (10.1016/j.geoderma.2019.06.028_bb0055) 2008; 59
Zare Abyaneh (10.1016/j.geoderma.2019.06.028_bb0260) 2016; 9
Nahvi (10.1016/j.geoderma.2019.06.028_bb0150) 2016; 124
Katul (10.1016/j.geoderma.2019.06.028_bb0085) 1992; 132
Sanikhani (10.1016/j.geoderma.2019.06.028_bb0205) 2018; 330
Okkonen (10.1016/j.geoderma.2019.06.028_bb0160) 2017; 68
Araghi (10.1016/j.geoderma.2019.06.028_bb0010) 2017; 174
Tabari (10.1016/j.geoderma.2019.06.028_bb0220) 2014
Zhou (10.1016/j.geoderma.2019.06.028_bb0265) 2007; 17
Liu (10.1016/j.geoderma.2019.06.028_bb0120) 2005; 53
Kim (10.1016/j.geoderma.2019.06.028_bb0095) 2014; 118
Wu (10.1016/j.geoderma.2019.06.028_bb0245) 2013; 113
Gandomi (10.1016/j.geoderma.2019.06.028_bb0050) 2012; 17
Pietikainen (10.1016/j.geoderma.2019.06.028_bb0180) 2005; 52
Samadianfard (10.1016/j.geoderma.2019.06.028_bb0200) 2018; 175
Allen (10.1016/j.geoderma.2019.06.028_bb0005) 1998
Feng (10.1016/j.geoderma.2019.06.028_bb0045) 2019; 338
Sommers (10.1016/j.geoderma.2019.06.028_bb0210) 1981; vol. 9
Wang (10.1016/j.geoderma.2019.06.028_bb0235) 2011; 105
Pai (10.1016/j.geoderma.2019.06.028_bb0170) 2007; 21
Knight (10.1016/j.geoderma.2019.06.028_bb0110) 2018; 313
Ren (10.1016/j.geoderma.2019.06.028_bb0195) 2018
Ghorbani (10.1016/j.geoderma.2019.06.028_bb0060) 2017; 172
Moazenzadeh (10.1016/j.geoderma.2019.06.028_bb0135) 2018; 12
Guntinas (10.1016/j.geoderma.2019.06.028_bb0065) 2013; 13
Rahi (10.1016/j.geoderma.2019.06.028_bb0190) 1975; 14
Paul (10.1016/j.geoderma.2019.06.028_bb0175) 2004; 121
Toy (10.1016/j.geoderma.2019.06.028_bb0225) 1978; 126
Ni (10.1016/j.geoderma.2019.06.028_bb0155) 2014; 813
Hu (10.1016/j.geoderma.2019.06.028_bb0070) 2019; 337
Yoon (10.1016/j.geoderma.2019.06.028_bb0255) 2011; 396
Bilgili (10.1016/j.geoderma.2019.06.028_bb0025) 2011; 35
Kang (10.1016/j.geoderma.2019.06.028_bb0080) 2000; 18
Mehdizadeh (10.1016/j.geoderma.2019.06.028_bb0125) 2017; 133
Kazemzadeh (10.1016/j.geoderma.2019.06.028_bb0090) 2015; 29
Mohammadi (10.1016/j.geoderma.2019.06.028_bb0140) 2015
Jahani (10.1016/j.geoderma.2019.06.028_bb0075) 2018
Zhou (10.1016/j.geoderma.2019.06.028_bb0270) 2018; 10
References_xml – start-page: 251
  year: 2002
  end-page: 259
  ident: bb0130
  article-title: On estimating soil surface temperature profiles
  publication-title: Energ. Buildings
– volume: 12
  start-page: 584
  year: 2018
  end-page: 597
  ident: bb0135
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
  publication-title: Eng Appl Comp Fluid
– year: 1998
  ident: bb0005
  article-title: FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements
– volume: 17
  start-page: 453
  year: 1976
  end-page: 476
  ident: bb0230
  article-title: Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat
  publication-title: Agric. Meteorol.
– volume: 9
  year: 2016
  ident: bb0260
  article-title: Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates
  publication-title: Arab. J. Geosci.
– volume: 83
  start-page: 211
  year: 2009
  end-page: 219
  ident: bb0040
  article-title: Ground temperature estimations using simplified analytical and semi-empirical approaches
  publication-title: Sol. Energy
– volume: 19
  start-page: 372
  year: 2014
  end-page: 386
  ident: bb0185
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: bb0195
  article-title: A modified Elman neural network with a new learning rate scheme
  publication-title: Neurocomputing
– volume: 21
  start-page: 819
  year: 2007
  end-page: 827
  ident: bb0170
  article-title: A recurrent support vector regression model in rainfall forecasting
  publication-title: Hydrol. Process.
– volume: 313
  start-page: 241
  year: 2018
  end-page: 249
  ident: bb0110
  article-title: Soil temperature increase in eastern Australia for the past 50 years
  publication-title: Geoderma
– volume: 68
  start-page: 829
  year: 2017
  end-page: 839
  ident: bb0160
  article-title: Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil
  publication-title: Eur. J. Soil Sci.
– volume: 118
  start-page: 465
  year: 2014
  end-page: 479
  ident: bb0095
  article-title: Modeling daily soil temperature using data-driven models and spatial distribution
  publication-title: Theor. Appl. Climatol.
– volume: 172
  start-page: 32
  year: 2017
  end-page: 38
  ident: bb0060
  article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point
  publication-title: Soil Tillage Res.
– volume: 133
  start-page: 911
  year: 2017
  end-page: 924
  ident: bb0125
  article-title: Comprehensive modelling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine
  publication-title: Theor. Appl. Climatol.
– volume: 174
  start-page: 177
  year: 2017
  end-page: 192
  ident: bb0010
  article-title: Detecting soil temperature trends in northern Iran from 1993 to 2016
  publication-title: Soil Tillage Res.
– volume: 53
  start-page: 233
  year: 2005
  end-page: 245
  ident: bb0120
  article-title: Root physiological factors involved in cool-season grass response to high soil temperature
  publication-title: Environ. Exp. Bot.
– volume: 175
  start-page: 37
  year: 2018
  end-page: 50
  ident: bb0200
  article-title: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths
  publication-title: Soil Tillage Res.
– volume: vol. 9
  start-page: 97
  year: 1981
  end-page: 117
  ident: bb0210
  article-title: The effect of water potential on decomposition processes in soils
  publication-title: Water Potential Relations in Soil Microbiology
– start-page: 968
  year: 2011
  end-page: 971
  ident: bb0030
  article-title: Research on hydrology time series prediction based on grey theory and epsilon-support vector regression
  publication-title: International Conference on Computer Distributed Control and Intelligent Environmental Monitoring
– volume: 273
  start-page: 32
  year: 2016
  end-page: 44
  ident: bb0115
  article-title: Soil temperature dynamics at the catchment scale
  publication-title: Geoderma
– volume: 105
  start-page: 1
  year: 2011
  end-page: 6
  ident: bb0235
  article-title: Bagging for robust non-linear multivariate calibration of spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 113
  start-page: 481
  year: 2013
  end-page: 494
  ident: bb0245
  article-title: Spatiotemporal modelling of monthly soil temperature using artificial neural networks
  publication-title: Theor. Appl. Climatol.
– volume: 18
  start-page: 136
  year: 2000
  end-page: 173
  ident: bb0080
  article-title: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature
  publication-title: For. Ecol. Manag.
– volume: 76
  start-page: 76
  year: 2017
  ident: bb0020
  article-title: Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region
  publication-title: Environ. Earth Sci.
– volume: 21
  start-page: 541
  year: 2001
  end-page: 547
  ident: bb0035
  article-title: Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth
  publication-title: Tree Physiol.
– volume: 17
  start-page: 766
  year: 2007
  end-page: 775
  ident: bb0265
  article-title: Significance of transients in soil temperature series
  publication-title: Pedosphere
– start-page: 1
  year: 2015
  end-page: 18
  ident: bb0140
  article-title: Horizontal global solar radiation estimation using hybrid SVM-firefly and SVM-wavelet algorithms: a case study
  publication-title: Nat. Hazards
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bb0255
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
– volume: 121
  start-page: 377
  year: 2015
  end-page: 387
  ident: bb0105
  article-title: Modeling soil temperatures at different depths by using three different neural computing techniques
  publication-title: Theor. Appl. Climatol.
– volume: 29
  start-page: 2895
  year: 2015
  end-page: 2912
  ident: bb0090
  article-title: Optimal remediation design of unconfined contaminated aquifers based on the finite element method and a modified firefly algorithm
  publication-title: Water Resour. Manag.
– volume: 813
  start-page: 1
  year: 2014
  end-page: 14
  ident: bb0155
  article-title: Non-linear calibration models for near infrared spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 124
  start-page: 150
  year: 2016
  end-page: 160
  ident: bb0150
  article-title: Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature
  publication-title: Comput. Electron. Agric.
– volume: 270
  start-page: 731
  year: 2015
  end-page: 743
  ident: bb0100
  article-title: A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm
  publication-title: Appl. Math. Comput.
– volume: 126
  start-page: 181
  year: 1978
  end-page: 189
  ident: bb0225
  article-title: The prediction of mean monthly soil temperature from mean monthly air temperature
  publication-title: Soil Sci.
– volume: 337
  start-page: 893
  year: 2019
  end-page: 905
  ident: bb0070
  article-title: Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products
  publication-title: Geoderma
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: bb0050
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun Nonlinear Sci Numer Simulat
– year: 2014
  ident: bb0220
  article-title: Short-term forecasting of soil temperature using artificial neural network
  publication-title: Meteorol. Appl.
– volume: 1
  start-page: 36
  year: 2013
  end-page: 50
  ident: bb0250
  article-title: Firefly algorithm: recent advances and applications
  publication-title: I. J. Swarm Intelligence.
– year: 2018
  ident: bb0075
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 132
  start-page: 91
  year: 1992
  end-page: 106
  ident: bb0085
  article-title: Estimation of bare soil evaporation using skin temperature measurements
  publication-title: J. Hydrol.
– volume: 110
  start-page: 135
  year: 2011
  end-page: 142
  ident: bb0215
  article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
  publication-title: Meteorog. Atmos. Phys.
– volume: 35
  start-page: 83
  year: 2011
  end-page: 93
  ident: bb0025
  article-title: The use of artifcial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey
  publication-title: Turk. J. Agric. For.
– volume: 121
  start-page: 197-182
  year: 2004
  ident: bb0175
  article-title: Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types
  publication-title: Agric. For. Meteorol.
– volume: 34
  start-page: 845
  year: 1970
  end-page: 848
  ident: bb0240
  article-title: Simulation of heat flow in soils
  publication-title: S.S.S.A.
– volume: 13
  start-page: 445
  year: 2013
  end-page: 461
  ident: bb0065
  article-title: Sensitivity of soil respiration to moisture and temperature
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 18
  start-page: 54
  year: 2008
  end-page: 59
  ident: bb0145
  article-title: Soil temperature dependent growth of cotton seedlings before emergence
  publication-title: Pedosphere
– volume: 508
  start-page: 356
  year: 2014
  end-page: 363
  ident: bb0015
  article-title: SVR-based prediction of evaporation combined with chaotic approach
  publication-title: J. Hydrol.
– volume: 91
  start-page: 551
  year: 2011
  end-page: 562
  ident: bb0165
  article-title: Artificial neural network model for estimating the soil temperature
  publication-title: Can. J. Soil Sci.
– volume: 10
  start-page: 628
  year: 2018
  ident: bb0270
  article-title: Data pre-analysis and ensemble of various artificial neural networks for monthly streamflow forecasting
  publication-title: Water
– volume: 14
  start-page: 115
  year: 1975
  end-page: 124
  ident: bb0190
  article-title: Effect of temperature on soil water diffusivity
  publication-title: Geoderma
– volume: 338
  start-page: 67
  year: 2019
  end-page: 77
  ident: bb0045
  article-title: Estimation of soil temperature from meteorological data using different machine learning models
  publication-title: Geoderma
– volume: 330
  start-page: 52
  year: 2018
  end-page: 64
  ident: bb0205
  article-title: Non-tuned data intelligent model for soil temperature estimation: A new approach
  publication-title: Geoderma
– volume: 52
  start-page: 49
  year: 2005
  end-page: 58
  ident: bb0180
  article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates
  publication-title: FEMS Microbiol. Ecol.
– volume: 59
  start-page: 972
  year: 2008
  end-page: 981
  ident: bb0055
  article-title: An improved force-restore method for soil temperature prediction
  publication-title: Eur. J. Soil Sci.
– volume: 12
  start-page: 584
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0135
  article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran
  publication-title: Eng Appl Comp Fluid
– volume: 83
  start-page: 211
  year: 2009
  ident: 10.1016/j.geoderma.2019.06.028_bb0040
  article-title: Ground temperature estimations using simplified analytical and semi-empirical approaches
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.07.013
– volume: 91
  start-page: 551
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0165
  article-title: Artificial neural network model for estimating the soil temperature
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss10073
– volume: 172
  start-page: 32
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.028_bb0060
  article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.04.009
– volume: 53
  start-page: 233
  issue: 3
  year: 2005
  ident: 10.1016/j.geoderma.2019.06.028_bb0120
  article-title: Root physiological factors involved in cool-season grass response to high soil temperature
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2004.03.016
– volume: 18
  start-page: 54
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2019.06.028_bb0145
  article-title: Soil temperature dependent growth of cotton seedlings before emergence
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(07)60102-7
– start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.028_bb0140
  article-title: Horizontal global solar radiation estimation using hybrid SVM-firefly and SVM-wavelet algorithms: a case study
  publication-title: Nat. Hazards
– volume: 19
  start-page: 372
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.028_bb0185
  article-title: Support vector machine applications in the field of hydrology: a review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.002
– volume: 126
  start-page: 181
  year: 1978
  ident: 10.1016/j.geoderma.2019.06.028_bb0225
  article-title: The prediction of mean monthly soil temperature from mean monthly air temperature
  publication-title: Soil Sci.
  doi: 10.1097/00010694-197809000-00008
– volume: 10
  start-page: 628
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0270
  article-title: Data pre-analysis and ensemble of various artificial neural networks for monthly streamflow forecasting
  publication-title: Water
  doi: 10.3390/w10050628
– volume: 13
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.028_bb0065
  article-title: Sensitivity of soil respiration to moisture and temperature
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 121
  start-page: 377
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.028_bb0105
  article-title: Modeling soil temperatures at different depths by using three different neural computing techniques
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-014-1232-x
– volume: 133
  start-page: 911
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.028_bb0125
  article-title: Comprehensive modelling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2227-1
– year: 1998
  ident: 10.1016/j.geoderma.2019.06.028_bb0005
– volume: 68
  start-page: 829
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.028_bb0160
  article-title: Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12489
– volume: 121
  start-page: 197-182
  year: 2004
  ident: 10.1016/j.geoderma.2019.06.028_bb0175
  article-title: Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.030
– year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0075
  article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
  publication-title: Theor. Appl. Climatol.
– volume: 18
  start-page: 136
  year: 2000
  ident: 10.1016/j.geoderma.2019.06.028_bb0080
  article-title: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature
  publication-title: For. Ecol. Manag.
– volume: 175
  start-page: 37
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0200
  article-title: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.08.012
– volume: 34
  start-page: 845
  issue: 6
  year: 1970
  ident: 10.1016/j.geoderma.2019.06.028_bb0240
  article-title: Simulation of heat flow in soils
  publication-title: S.S.S.A.
– year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0195
  article-title: A modified Elman neural network with a new learning rate scheme
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.046
– volume: 270
  start-page: 731
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.028_bb0100
  article-title: A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm
  publication-title: Appl. Math. Comput.
– volume: 174
  start-page: 177
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.028_bb0010
  article-title: Detecting soil temperature trends in northern Iran from 1993 to 2016
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.07.010
– volume: 338
  start-page: 67
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.028_bb0045
  article-title: Estimation of soil temperature from meteorological data using different machine learning models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.044
– volume: 113
  start-page: 481
  issue: 3–4
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.028_bb0245
  article-title: Spatiotemporal modelling of monthly soil temperature using artificial neural networks
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-012-0807-7
– volume: 76
  start-page: 76
  issue: 2
  year: 2017
  ident: 10.1016/j.geoderma.2019.06.028_bb0020
  article-title: Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6395-1
– volume: 337
  start-page: 893
  year: 2019
  ident: 10.1016/j.geoderma.2019.06.028_bb0070
  article-title: Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.044
– volume: 396
  start-page: 128
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0255
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 313
  start-page: 241
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0110
  article-title: Soil temperature increase in eastern Australia for the past 50 years
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.015
– start-page: 968
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0030
  article-title: Research on hydrology time series prediction based on grey theory and epsilon-support vector regression
– volume: 17
  start-page: 4831
  year: 2012
  ident: 10.1016/j.geoderma.2019.06.028_bb0050
  article-title: Krill herd: a new bio-inspired optimization algorithm
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2012.05.010
– start-page: 251
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2019.06.028_bb0130
  article-title: On estimating soil surface temperature profiles
  publication-title: Energ. Buildings
  doi: 10.1016/S0378-7788(01)00089-5
– volume: 52
  start-page: 49
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2019.06.028_bb0180
  article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/j.femsec.2004.10.002
– volume: 1
  start-page: 36
  issue: 1
  year: 2013
  ident: 10.1016/j.geoderma.2019.06.028_bb0250
  article-title: Firefly algorithm: recent advances and applications
  publication-title: I. J. Swarm Intelligence.
  doi: 10.1504/IJSI.2013.055801
– volume: 17
  start-page: 453
  issue: 6
  year: 1976
  ident: 10.1016/j.geoderma.2019.06.028_bb0230
  article-title: Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(76)90022-4
– volume: 813
  start-page: 1
  issue: 813
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.028_bb0155
  article-title: Non-linear calibration models for near infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.12.002
– volume: 330
  start-page: 52
  year: 2018
  ident: 10.1016/j.geoderma.2019.06.028_bb0205
  article-title: Non-tuned data intelligent model for soil temperature estimation: A new approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.030
– volume: 273
  start-page: 32
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.028_bb0115
  article-title: Soil temperature dynamics at the catchment scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.03.011
– volume: 21
  start-page: 819
  year: 2007
  ident: 10.1016/j.geoderma.2019.06.028_bb0170
  article-title: A recurrent support vector regression model in rainfall forecasting
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6323
– volume: 9
  issue: 5
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.028_bb0260
  article-title: Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-016-2388-8
– volume: 21
  start-page: 541
  issue: 8
  year: 2001
  ident: 10.1016/j.geoderma.2019.06.028_bb0035
  article-title: Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/21.8.541
– volume: 105
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0235
  article-title: Bagging for robust non-linear multivariate calibration of spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.10.004
– volume: 124
  start-page: 150
  year: 2016
  ident: 10.1016/j.geoderma.2019.06.028_bb0150
  article-title: Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.03.025
– volume: 35
  start-page: 83
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0025
  article-title: The use of artifcial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey
  publication-title: Turk. J. Agric. For.
– volume: 508
  start-page: 356
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.028_bb0015
  article-title: SVR-based prediction of evaporation combined with chaotic approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.008
– volume: 14
  start-page: 115
  issue: 2
  year: 1975
  ident: 10.1016/j.geoderma.2019.06.028_bb0190
  article-title: Effect of temperature on soil water diffusivity
  publication-title: Geoderma
  doi: 10.1016/0016-7061(75)90070-1
– volume: 132
  start-page: 91
  year: 1992
  ident: 10.1016/j.geoderma.2019.06.028_bb0085
  article-title: Estimation of bare soil evaporation using skin temperature measurements
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90174-T
– volume: 29
  start-page: 2895
  issue: 8
  year: 2015
  ident: 10.1016/j.geoderma.2019.06.028_bb0090
  article-title: Optimal remediation design of unconfined contaminated aquifers based on the finite element method and a modified firefly algorithm
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0976-0
– volume: 17
  start-page: 766
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2019.06.028_bb0265
  article-title: Significance of transients in soil temperature series
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(07)60092-7
– year: 2014
  ident: 10.1016/j.geoderma.2019.06.028_bb0220
  article-title: Short-term forecasting of soil temperature using artificial neural network
  publication-title: Meteorol. Appl.
– volume: 59
  start-page: 972
  year: 2008
  ident: 10.1016/j.geoderma.2019.06.028_bb0055
  article-title: An improved force-restore method for soil temperature prediction
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2008.01060.x
– volume: 118
  start-page: 465
  year: 2014
  ident: 10.1016/j.geoderma.2019.06.028_bb0095
  article-title: Modeling daily soil temperature using data-driven models and spatial distribution
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-013-1065-z
– volume: vol. 9
  start-page: 97
  year: 1981
  ident: 10.1016/j.geoderma.2019.06.028_bb0210
  article-title: The effect of water potential on decomposition processes in soils
– volume: 110
  start-page: 135
  year: 2011
  ident: 10.1016/j.geoderma.2019.06.028_bb0215
  article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
  publication-title: Meteorog. Atmos. Phys.
  doi: 10.1007/s00703-010-0110-z
SSID ssj0017020
Score 2.542389
Snippet Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms air temperature
algorithms
artificial intelligence
climatic factors
Firefly algorithm
germination
Iran
Krill herd algorithm
Meteorological parameters
regression analysis
relative humidity
root zone temperature
soil depth
solar radiation
vapor pressure deficit
wind speed
Title Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
URI https://dx.doi.org/10.1016/j.geoderma.2019.06.028
https://www.proquest.com/docview/2305182741
Volume 353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 20221115
  omitProxy: true
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 20221115
  omitProxy: true
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: AKRWK
  dateStart: 19670901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8xua12eQYiqUq9mSht3WTbNqUNiltevW3O5NsiorQg8eEzBJmh2--ZWe-IeRBAUn2uRMZQcJtw_UTF3GQGUoFQSJTZsYeNie_jbzh2H2ZsEmL9JteGCyr1NhfY3qF1vpNT3uzt8oy7PG1PA7pCIPSYc4EO9hdjlMMHj93ZR4WN7U0o-UZ-PW3LuE57BEOHKv0h6yg0vHEqex_J6hfUF3ln8EJOdbEkYb1v52SlsrPyFE4XWvxDHVOPsKdzCYtUhplhZHleJOuErpUpZypba3LTAsAiqUu5KFyMS3WWTlbbigwWIqyG0hj8yndFNmConiVVl6-IOPB03t_aOgJCkbsuKw0lHRiGZmWlBAwkWPKIFGVhheyODi7JMC-AltKQD1LxspT3ARwBJPU5hGkLeeStPMiV1eE-mbEbZmAjZu6bsp9xbzITFMZM5tLi3cIa9wmYi0vjlMuFqKpI5uLxt0C3S2woM72O6S3s1vVAht7LYJmV8SPUBGQBfba3jfbKMDNeDkic1VsNwKOYgzOWkCwrv-x_g05xKe6WfGWtMv1Vt0BaymjbhWWXXIQPr8OR18XSvAs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN5UPagH4zO-XROvWB67LBybRlNfPdWkt3WBpdK00LT06m93BpZGjYkHr8AQMjv55psw8w0hNxpIciC8yAoT4VosSBjiILe0DsNEpdyOfRxOfun7vVf2OOTDFuk2szDYVmmwv8b0Cq3NlbbxZnuWZTjj6_gC0hEGpce94RrZYNwVWIHdfqz6PBxhG21Gx7fw8S9jwmM4JNw4VgkQOWEl5Ilr2X_PUD-wukpA97tkxzBH2qk_bo-0dL5PtjujuVHP0AfkrbPS2aRFSqOssLIcf6XrhE51qd71shZmpgUgxdR08lA1GRXzrHyfLihQWIq6G8hj8xFdFNmEonqVkV4-JK_3d4NuzzIrFKzYY7y0tPJiFdmOUhAxkWerMNGViBfSOCheEqBfoasUwJ6jYu1rYQM6gknqigjylndE1vMi18eEBnYkXJWADUsZS0WguR_ZaapicLpyxAnhjdtkbPTFcc3FRDaNZGPZuFuiuyV21LnBCWmv7Ga1wsafFmFzKvJbrEhIA3_aXjfHKMHN-HdE5bpYLiTUYhyKLWBYp_94_xXZ7A1enuXzQ__pjGzhnXpy8Zysl_OlvgAKU0aXVYh-Aql18cE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+bio-inspired+metaheuristic+optimisation+algorithms+for+estimating+soil+temperature&rft.jtitle=Geoderma&rft.au=Moazenzadeh%2C+Roozbeh&rft.au=Mohammadi%2C+Babak&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=353&rft.spage=152&rft.epage=171&rft_id=info:doi/10.1016%2Fj.geoderma.2019.06.028&rft.externalDocID=S001670611832353X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon