Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature
Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial inte...
Saved in:
| Published in | Geoderma Vol. 353; pp. 152 - 171 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-7061 1872-6259 |
| DOI | 10.1016/j.geoderma.2019.06.028 |
Cover
| Abstract | Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter.
•Hybrid models improved Ts estimation compared to base models.•Especial improvement for Ts values <5 °C (5, 10 and 20 cm) and 15–25 °C (100 cm)•Bio-inspired metaheuristic optimisation algorithms reliably estimated Ts.•Estimation accuracy was reduced by soil depth. |
|---|---|
| AbstractList | Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter. Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil. Temperature varies by soil depth, and exerts a profound impact on plant germination and growth. In this study, the accuracy of two artificial intelligence models including support vector regression (SVR) and elman neural network (ENN) and their hybrids with firefly algorithm (SVR-FA and ENN-FA) and krill herd algorithm (SVR-KHA and ENN-KHA) was assessed in estimating soil temperature (Ts) at 5, 10, 20, 30, 50 and 100 cm depths at Maragheh meteorological station in north-western Iran. The results of the models were evaluated under 5 scenarios with various inputs including the main meteorological parameters measured at the station (air temperature, sunshine hours, relative humidity, wind speed and saturation vapour pressure deficit). Daily Ts data recorded from January 1, 2006 to December 30, 2012 and from January 1, 2013 to December 30, 2015 were used for model training and testing, respectively. The results showed that error rates have decreased from 5 to 10 cm soil depth (root mean square error (RMSE) reduced by 2.97, 4.68 and 3.19% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively), whereas error rates have been increasing from 10 to 100 cm soil depths (RMSE increased by 62.4, 80.9 and 73.6% for the best scenarios of SVR, SVR-FA and SVR-KHA models, respectively). For the best scenarios of ENN, ENN-FA and ENN-KHA models, RMSE values decreased by 2.1, 1.6 and 3.1% from 5 to 10 cm depth and increased by 61.1, 84.1 and 81.1% from 10 to 100 cm depth, so that all six models reached their best performance at 10 cm soil depth. Examination of the results in terms of under-estimation or over-estimation of Ts indicated that the lowest and highest differences in performance between under- and over-estimation sets were 0.01 °C (SVR-FA at 5 cm depth) and 1.64 °C (SVR at 100 cm depth) for SVR-based models and 0 °C (ENN at 10 cm depth) and 0.56 °C (ENN at 100 cm depth) for ELM-based models, respectively. According to the results from the best scenarios of SVR, SVR-FA and SVR-KHA models in the under-estimation set at 100 cm depth, all the three models have exhibited a poorer performance over the temperature range 15–25 °C (RMSE increased by 56.7, 47 and 61.3% for SVR, SVR-FA and SVR-KHA, respectively) compared to temperature values outside that range. Exactly the same trend was also observed for ELM-based models, where the mentioned increases in RMSE were about 37.7, 59.4 and 55.5% for ELM, ELM-FA and ELM-KHA, respectively. According to the results, bio-inspired metaheuristic optimisation algorithms based on SVR and ENN which use appropriate meteorological parameters as inputs can have a relatively satisfactory performance in estimating Ts under climatic conditions similar to our study area, especially in lower depths, and can be used as an alternative to direct measurement of this important parameter. •Hybrid models improved Ts estimation compared to base models.•Especial improvement for Ts values <5 °C (5, 10 and 20 cm) and 15–25 °C (100 cm)•Bio-inspired metaheuristic optimisation algorithms reliably estimated Ts.•Estimation accuracy was reduced by soil depth. |
| Author | Moazenzadeh, Roozbeh Mohammadi, Babak |
| Author_xml | – sequence: 1 givenname: Roozbeh orcidid: 0000-0002-1057-3801 surname: Moazenzadeh fullname: Moazenzadeh, Roozbeh email: romo_sci@shahroodut.ac.ir organization: Department of Water Engineering, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran – sequence: 2 givenname: Babak orcidid: 0000-0001-8427-5965 surname: Mohammadi fullname: Mohammadi, Babak email: Babakmohammadi@aol.com organization: College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China |
| BookMark | eNqFkE1PwzAMhiMEEtvgL6AcubQkaZuuEgemiS9pEhc4By91t0xtU5IUiX9PxuDCZSfL8vtY9jMlp73tkZArzlLOuLzZpRu0NboOUsF4lTKZMjE_IRM-L0UiRVGdkgmLyaRkkp-Tqfe72JZMsAl5X3iP3nfYB2obujY2Mb0fjMOadhhgi6MzPhhN7RBMZzwEY3sK7cY6E7adp411FGOii5N-Q701LQ3YDeggjA4vyFkDrcfL3zojbw_3r8unZPXy-LxcrBKd5UVIEDINa8YBEOp1xqCqMZd5kctCykqyuhCiEgBFNuegUWLJSiki0ohynZc8m5Hrw97B2Y8xHqTisRrbFnq0o1ciYwWfizLfR28PUe2s9w4bpU34-Ss4MK3iTO3Fqp36E6v2YhWTKoqNuPyHDy5-776Og3cHEKOHT4NOeW2w11hH3Tqo2ppjK74Bx5OcPA |
| CitedBy_id | crossref_primary_10_1007_s10462_020_09915_5 crossref_primary_10_1007_s11269_020_02619_z crossref_primary_10_1016_j_ecolind_2019_105664 crossref_primary_10_3390_ijgi9120701 crossref_primary_10_1016_j_seta_2021_101473 crossref_primary_10_3934_mbe_2023150 crossref_primary_10_1007_s00500_021_06095_4 crossref_primary_10_2166_ws_2020_226 crossref_primary_10_3390_cli7100124 crossref_primary_10_1016_j_agwat_2020_106622 crossref_primary_10_1007_s10661_024_13497_y crossref_primary_10_1007_s12053_019_09836_5 crossref_primary_10_1007_s00500_020_05058_5 crossref_primary_10_1007_s11831_022_09857_x crossref_primary_10_1016_j_agwat_2020_106145 crossref_primary_10_1080_19942060_2022_2037467 crossref_primary_10_1007_s40866_022_00128_z crossref_primary_10_1007_s11053_020_09638_y crossref_primary_10_1051_bioconf_202410821003 crossref_primary_10_1007_s40866_020_00100_9 crossref_primary_10_1007_s00704_021_03819_2 crossref_primary_10_1007_s12517_021_06910_0 crossref_primary_10_1016_j_csite_2019_100540 crossref_primary_10_1109_ACCESS_2025_3532980 crossref_primary_10_1016_j_geoderma_2021_115651 crossref_primary_10_1007_s11356_021_12792_2 crossref_primary_10_1016_j_asej_2021_06_022 crossref_primary_10_1007_s11356_022_20837_3 crossref_primary_10_1007_s10661_020_08828_8 crossref_primary_10_1007_s00477_020_01898_7 crossref_primary_10_1016_j_pce_2024_103646 crossref_primary_10_1007_s11269_021_02934_z crossref_primary_10_1016_j_ecolind_2020_106990 crossref_primary_10_1007_s11356_020_08666_8 crossref_primary_10_1016_j_catena_2020_105024 crossref_primary_10_1016_j_measurement_2020_107616 crossref_primary_10_1080_24749508_2020_1720475 crossref_primary_10_1002_vzj2_20151 crossref_primary_10_1016_j_scienta_2019_108756 crossref_primary_10_1007_s00704_020_03283_4 crossref_primary_10_1061__ASCE_GM_1943_5622_0001843 crossref_primary_10_29039_2409_6024_2023_11_2_122_134 crossref_primary_10_1007_s11356_024_35002_1 crossref_primary_10_1016_j_asej_2020_08_017 crossref_primary_10_1016_j_matcom_2022_11_020 crossref_primary_10_3390_su15097677 crossref_primary_10_1007_s11356_024_33044_z crossref_primary_10_1016_j_ecolind_2020_106869 crossref_primary_10_1080_02626667_2020_1758703 crossref_primary_10_1016_j_ecolind_2020_106864 crossref_primary_10_1007_s10115_021_01590_4 crossref_primary_10_1109_ACCESS_2020_2979822 crossref_primary_10_1016_j_ecolind_2020_106740 crossref_primary_10_4018_IJACI_2020070104 crossref_primary_10_1007_s11227_019_03096_x crossref_primary_10_1007_s12517_020_05355_1 crossref_primary_10_1016_j_asej_2022_101876 crossref_primary_10_1016_j_compag_2020_105279 crossref_primary_10_1007_s11356_021_17852_1 crossref_primary_10_1007_s11368_022_03374_x crossref_primary_10_1007_s00477_021_02011_2 crossref_primary_10_3390_hydrology10030058 crossref_primary_10_1007_s00500_021_06009_4 crossref_primary_10_3390_hydrology7030059 crossref_primary_10_1109_ACCESS_2020_2982996 crossref_primary_10_3390_w12113015 crossref_primary_10_1007_s11356_020_07837_x crossref_primary_10_1016_j_jclepro_2020_124267 crossref_primary_10_1155_2022_9016823 crossref_primary_10_1016_j_measurement_2020_108127 crossref_primary_10_1007_s11356_020_07868_4 crossref_primary_10_1016_j_still_2022_105502 crossref_primary_10_1038_s41598_022_15689_3 crossref_primary_10_32417_1997_4868_2024_24_03_440_449 crossref_primary_10_29039_2409_6024_2023_11_3_140_149 crossref_primary_10_1016_j_neunet_2020_07_019 crossref_primary_10_3390_atmos12040439 crossref_primary_10_1007_s13201_022_01815_z |
| Cites_doi | 10.1016/j.solener.2008.07.013 10.4141/cjss10073 10.1016/j.still.2017.04.009 10.1016/j.envexpbot.2004.03.016 10.1016/S1002-0160(07)60102-7 10.1016/j.asoc.2014.02.002 10.1097/00010694-197809000-00008 10.3390/w10050628 10.1007/s00704-014-1232-x 10.1007/s00704-017-2227-1 10.1111/ejss.12489 10.1016/j.agrformet.2003.08.030 10.1016/j.still.2017.08.012 10.1016/j.neucom.2018.01.046 10.1016/j.still.2017.07.010 10.1016/j.geoderma.2018.11.044 10.1007/s00704-012-0807-7 10.1007/s12665-017-6395-1 10.1016/j.geoderma.2018.10.044 10.1016/j.jhydrol.2010.11.002 10.1016/j.geoderma.2017.11.015 10.1016/j.cnsns.2012.05.010 10.1016/S0378-7788(01)00089-5 10.1016/j.femsec.2004.10.002 10.1504/IJSI.2013.055801 10.1016/0002-1571(76)90022-4 10.1016/j.aca.2013.12.002 10.1016/j.geoderma.2018.05.030 10.1016/j.geoderma.2016.03.011 10.1002/hyp.6323 10.1007/s12517-016-2388-8 10.1093/treephys/21.8.541 10.1016/j.chemolab.2010.10.004 10.1016/j.compag.2016.03.025 10.1016/j.jhydrol.2013.11.008 10.1016/0016-7061(75)90070-1 10.1016/0022-1694(92)90174-T 10.1007/s11269-015-0976-0 10.1016/S1002-0160(07)60092-7 10.1111/j.1365-2389.2008.01060.x 10.1007/s00704-013-1065-z 10.1007/s00703-010-0110-z |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.geoderma.2019.06.028 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-6259 |
| EndPage | 171 |
| ExternalDocumentID | 10_1016_j_geoderma_2019_06_028 S001670611832353X |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW VH1 WUQ XPP Y6R ZMT ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-ea3cab01aaeadb30a9de464546566960d52292aa5381ace6e70762cabf27b4713 |
| IEDL.DBID | .~1 |
| ISSN | 0016-7061 |
| IngestDate | Sun Sep 28 08:33:07 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Wed Oct 01 05:20:56 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Meteorological parameters Firefly algorithm Krill herd algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-ea3cab01aaeadb30a9de464546566960d52292aa5381ace6e70762cabf27b4713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1057-3801 0000-0001-8427-5965 |
| PQID | 2305182741 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2305182741 crossref_citationtrail_10_1016_j_geoderma_2019_06_028 crossref_primary_10_1016_j_geoderma_2019_06_028 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_06_028 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 2019-11-00 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Geoderma |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bilgili (bb0025) 2011; 35 Zhou, Persaud, Belesky, Clark (bb0265) 2007; 17 Kazemzadeh, Daneshmand, Ahmadfard (bb0090) 2015; 29 Kang, Kim, Oh, Lee (bb0080) 2000; 18 Samadianfard, Asadi, Jarhan, Kazemi, Kheshtgar, Kisi, Sajjadi, Manaf (bb0200) 2018; 175 Knight, Minasny, McBratney, Koen, Murphy (bb0110) 2018; 313 Araghi, Mousavi-Baygi, Adamowski (bb0010) 2017; 174 Rahi, Jensen (bb0190) 1975; 14 Liu, Huang (bb0120) 2005; 53 Mihalakakou (bb0130) 2002 Gao, Horton, Wang, Liu, Wen (bb0055) 2008; 59 Ghorbani, Shamshirband, Zare Haghie, Azani, Bonakdari, Ebtehaj (bb0060) 2017; 172 Yang, He (bb0250) 2013; 1 Hu, Zhao, Li, Wu, Wu, Xie, Zhu, Su (bb0070) 2019; 337 Paul, Polglase, Smethurst, Oconnell, Carlyle, Khanna (bb0175) 2004; 121 Zare Abyaneh, Varkeshi, Golmohammadi, Mohammadi (bb0260) 2016; 9 Guntinas, Gil-Sotres, Leiros, Trasar-Cepeda (bb0065) 2013; 13 Ren, Cao, Wen, Huang, Zeng (bb0195) 2018 Kisi, Shiri, Karimi, Shamshirband, Motamedi, Petkovic, Hashim (bb0100) 2015; 270 Okkonen, Ala-Aho, Hanninen, Hayashi, Sutinen, Liwata (bb0160) 2017; 68 Mohammadi, Shamshirband, Danesh, Zamani, Sudheer (bb0140) 2015 Pai, Hong (bb0170) 2007; 21 Nabi, Mullins (bb0145) 2008; 18 Feng, Cui, Hao, Gao, Gong (bb0045) 2019; 338 Droulia, Lykoudis, Tsiros, Alvertos, Akylas, Garofalakis (bb0040) 2009; 83 Wierenga, Dewit (bb0240) 1970; 34 Jahani, Mohammadi (bb0075) 2018 Kim, Singh (bb0095) 2014; 118 Wang, Chen, Lau (bb0235) 2011; 105 Kisi, Tombul, Kermani (bb0105) 2015; 121 Raghavendra, Chandra Deka (bb0185) 2014; 19 Sommers, Gilmour, Wildung, Beck (bb0210) 1981; vol. 9 Van-Bevel, Hillel (bb0230) 1976; 17 Dong, Scagel, Cheng, Fuchigami, Rygiewicz (bb0035) 2001; 21 Moazenzadeh, Mohammadi, Shamshirband, Chau (bb0135) 2018; 12 Tabari, Sabziparvar, Ahmadi (bb0215) 2011; 110 Wu, Tang, Guo, Yang, Liu, Shang (bb0245) 2013; 113 Zhou, Peng, Zhang, Sun (bb0270) 2018; 10 Behmanesh, Mehdizadeh (bb0020) 2017; 76 Katul, Parlange (bb0085) 1992; 132 Cheng, Chuan, Haiwei (bb0030) 2011 Yoon, Jun, Hyun, Bae, Lee (bb0255) 2011; 396 Tabari, Hosseinzadeh, Willems (bb0220) 2014 Baydaroglu, Koçak (bb0015) 2014; 508 Ni, Norgaard, Morup (bb0155) 2014; 813 Toy, Kuhaida, Munson (bb0225) 1978; 126 Gandomi, Alavi (bb0050) 2012; 17 Allen, Pereira, Raes, Smith (bb0005) 1998 Ozturk, Salman, Koc (bb0165) 2011; 91 Kunkel, Wells, Hancock (bb0115) 2016; 273 Nahvi, Habibi, Mohammadi, Shamshirband, Razgan (bb0150) 2016; 124 Mehdizadeh, Behmanesh, Khalili (bb0125) 2017; 133 Sanikhani, Deo, Yaseen, Eray, Kisi (bb0205) 2018; 330 Pietikainen, Pettersson, Baath (bb0180) 2005; 52 Behmanesh (10.1016/j.geoderma.2019.06.028_bb0020) 2017; 76 Dong (10.1016/j.geoderma.2019.06.028_bb0035) 2001; 21 Cheng (10.1016/j.geoderma.2019.06.028_bb0030) 2011 Droulia (10.1016/j.geoderma.2019.06.028_bb0040) 2009; 83 Mihalakakou (10.1016/j.geoderma.2019.06.028_bb0130) 2002 Tabari (10.1016/j.geoderma.2019.06.028_bb0215) 2011; 110 Raghavendra (10.1016/j.geoderma.2019.06.028_bb0185) 2014; 19 Baydaroglu (10.1016/j.geoderma.2019.06.028_bb0015) 2014; 508 Van-Bevel (10.1016/j.geoderma.2019.06.028_bb0230) 1976; 17 Wierenga (10.1016/j.geoderma.2019.06.028_bb0240) 1970; 34 Yang (10.1016/j.geoderma.2019.06.028_bb0250) 2013; 1 Kunkel (10.1016/j.geoderma.2019.06.028_bb0115) 2016; 273 Ozturk (10.1016/j.geoderma.2019.06.028_bb0165) 2011; 91 Kisi (10.1016/j.geoderma.2019.06.028_bb0100) 2015; 270 Kisi (10.1016/j.geoderma.2019.06.028_bb0105) 2015; 121 Nabi (10.1016/j.geoderma.2019.06.028_bb0145) 2008; 18 Gao (10.1016/j.geoderma.2019.06.028_bb0055) 2008; 59 Zare Abyaneh (10.1016/j.geoderma.2019.06.028_bb0260) 2016; 9 Nahvi (10.1016/j.geoderma.2019.06.028_bb0150) 2016; 124 Katul (10.1016/j.geoderma.2019.06.028_bb0085) 1992; 132 Sanikhani (10.1016/j.geoderma.2019.06.028_bb0205) 2018; 330 Okkonen (10.1016/j.geoderma.2019.06.028_bb0160) 2017; 68 Araghi (10.1016/j.geoderma.2019.06.028_bb0010) 2017; 174 Tabari (10.1016/j.geoderma.2019.06.028_bb0220) 2014 Zhou (10.1016/j.geoderma.2019.06.028_bb0265) 2007; 17 Liu (10.1016/j.geoderma.2019.06.028_bb0120) 2005; 53 Kim (10.1016/j.geoderma.2019.06.028_bb0095) 2014; 118 Wu (10.1016/j.geoderma.2019.06.028_bb0245) 2013; 113 Gandomi (10.1016/j.geoderma.2019.06.028_bb0050) 2012; 17 Pietikainen (10.1016/j.geoderma.2019.06.028_bb0180) 2005; 52 Samadianfard (10.1016/j.geoderma.2019.06.028_bb0200) 2018; 175 Allen (10.1016/j.geoderma.2019.06.028_bb0005) 1998 Feng (10.1016/j.geoderma.2019.06.028_bb0045) 2019; 338 Sommers (10.1016/j.geoderma.2019.06.028_bb0210) 1981; vol. 9 Wang (10.1016/j.geoderma.2019.06.028_bb0235) 2011; 105 Pai (10.1016/j.geoderma.2019.06.028_bb0170) 2007; 21 Knight (10.1016/j.geoderma.2019.06.028_bb0110) 2018; 313 Ren (10.1016/j.geoderma.2019.06.028_bb0195) 2018 Ghorbani (10.1016/j.geoderma.2019.06.028_bb0060) 2017; 172 Moazenzadeh (10.1016/j.geoderma.2019.06.028_bb0135) 2018; 12 Guntinas (10.1016/j.geoderma.2019.06.028_bb0065) 2013; 13 Rahi (10.1016/j.geoderma.2019.06.028_bb0190) 1975; 14 Paul (10.1016/j.geoderma.2019.06.028_bb0175) 2004; 121 Toy (10.1016/j.geoderma.2019.06.028_bb0225) 1978; 126 Ni (10.1016/j.geoderma.2019.06.028_bb0155) 2014; 813 Hu (10.1016/j.geoderma.2019.06.028_bb0070) 2019; 337 Yoon (10.1016/j.geoderma.2019.06.028_bb0255) 2011; 396 Bilgili (10.1016/j.geoderma.2019.06.028_bb0025) 2011; 35 Kang (10.1016/j.geoderma.2019.06.028_bb0080) 2000; 18 Mehdizadeh (10.1016/j.geoderma.2019.06.028_bb0125) 2017; 133 Kazemzadeh (10.1016/j.geoderma.2019.06.028_bb0090) 2015; 29 Mohammadi (10.1016/j.geoderma.2019.06.028_bb0140) 2015 Jahani (10.1016/j.geoderma.2019.06.028_bb0075) 2018 Zhou (10.1016/j.geoderma.2019.06.028_bb0270) 2018; 10 |
| References_xml | – start-page: 251 year: 2002 end-page: 259 ident: bb0130 article-title: On estimating soil surface temperature profiles publication-title: Energ. Buildings – volume: 12 start-page: 584 year: 2018 end-page: 597 ident: bb0135 article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran publication-title: Eng Appl Comp Fluid – year: 1998 ident: bb0005 article-title: FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements – volume: 17 start-page: 453 year: 1976 end-page: 476 ident: bb0230 article-title: Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat publication-title: Agric. Meteorol. – volume: 9 year: 2016 ident: bb0260 article-title: Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates publication-title: Arab. J. Geosci. – volume: 83 start-page: 211 year: 2009 end-page: 219 ident: bb0040 article-title: Ground temperature estimations using simplified analytical and semi-empirical approaches publication-title: Sol. Energy – volume: 19 start-page: 372 year: 2014 end-page: 386 ident: bb0185 article-title: Support vector machine applications in the field of hydrology: a review publication-title: Appl. Soft Comput. – year: 2018 ident: bb0195 article-title: A modified Elman neural network with a new learning rate scheme publication-title: Neurocomputing – volume: 21 start-page: 819 year: 2007 end-page: 827 ident: bb0170 article-title: A recurrent support vector regression model in rainfall forecasting publication-title: Hydrol. Process. – volume: 313 start-page: 241 year: 2018 end-page: 249 ident: bb0110 article-title: Soil temperature increase in eastern Australia for the past 50 years publication-title: Geoderma – volume: 68 start-page: 829 year: 2017 end-page: 839 ident: bb0160 article-title: Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil publication-title: Eur. J. Soil Sci. – volume: 118 start-page: 465 year: 2014 end-page: 479 ident: bb0095 article-title: Modeling daily soil temperature using data-driven models and spatial distribution publication-title: Theor. Appl. Climatol. – volume: 172 start-page: 32 year: 2017 end-page: 38 ident: bb0060 article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point publication-title: Soil Tillage Res. – volume: 133 start-page: 911 year: 2017 end-page: 924 ident: bb0125 article-title: Comprehensive modelling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine publication-title: Theor. Appl. Climatol. – volume: 174 start-page: 177 year: 2017 end-page: 192 ident: bb0010 article-title: Detecting soil temperature trends in northern Iran from 1993 to 2016 publication-title: Soil Tillage Res. – volume: 53 start-page: 233 year: 2005 end-page: 245 ident: bb0120 article-title: Root physiological factors involved in cool-season grass response to high soil temperature publication-title: Environ. Exp. Bot. – volume: 175 start-page: 37 year: 2018 end-page: 50 ident: bb0200 article-title: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths publication-title: Soil Tillage Res. – volume: vol. 9 start-page: 97 year: 1981 end-page: 117 ident: bb0210 article-title: The effect of water potential on decomposition processes in soils publication-title: Water Potential Relations in Soil Microbiology – start-page: 968 year: 2011 end-page: 971 ident: bb0030 article-title: Research on hydrology time series prediction based on grey theory and epsilon-support vector regression publication-title: International Conference on Computer Distributed Control and Intelligent Environmental Monitoring – volume: 273 start-page: 32 year: 2016 end-page: 44 ident: bb0115 article-title: Soil temperature dynamics at the catchment scale publication-title: Geoderma – volume: 105 start-page: 1 year: 2011 end-page: 6 ident: bb0235 article-title: Bagging for robust non-linear multivariate calibration of spectroscopy publication-title: Chemom. Intell. Lab. Syst. – volume: 113 start-page: 481 year: 2013 end-page: 494 ident: bb0245 article-title: Spatiotemporal modelling of monthly soil temperature using artificial neural networks publication-title: Theor. Appl. Climatol. – volume: 18 start-page: 136 year: 2000 end-page: 173 ident: bb0080 article-title: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature publication-title: For. Ecol. Manag. – volume: 76 start-page: 76 year: 2017 ident: bb0020 article-title: Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region publication-title: Environ. Earth Sci. – volume: 21 start-page: 541 year: 2001 end-page: 547 ident: bb0035 article-title: Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth publication-title: Tree Physiol. – volume: 17 start-page: 766 year: 2007 end-page: 775 ident: bb0265 article-title: Significance of transients in soil temperature series publication-title: Pedosphere – start-page: 1 year: 2015 end-page: 18 ident: bb0140 article-title: Horizontal global solar radiation estimation using hybrid SVM-firefly and SVM-wavelet algorithms: a case study publication-title: Nat. Hazards – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: bb0255 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. – volume: 121 start-page: 377 year: 2015 end-page: 387 ident: bb0105 article-title: Modeling soil temperatures at different depths by using three different neural computing techniques publication-title: Theor. Appl. Climatol. – volume: 29 start-page: 2895 year: 2015 end-page: 2912 ident: bb0090 article-title: Optimal remediation design of unconfined contaminated aquifers based on the finite element method and a modified firefly algorithm publication-title: Water Resour. Manag. – volume: 813 start-page: 1 year: 2014 end-page: 14 ident: bb0155 article-title: Non-linear calibration models for near infrared spectroscopy publication-title: Anal. Chim. Acta – volume: 124 start-page: 150 year: 2016 end-page: 160 ident: bb0150 article-title: Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature publication-title: Comput. Electron. Agric. – volume: 270 start-page: 731 year: 2015 end-page: 743 ident: bb0100 article-title: A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm publication-title: Appl. Math. Comput. – volume: 126 start-page: 181 year: 1978 end-page: 189 ident: bb0225 article-title: The prediction of mean monthly soil temperature from mean monthly air temperature publication-title: Soil Sci. – volume: 337 start-page: 893 year: 2019 end-page: 905 ident: bb0070 article-title: Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products publication-title: Geoderma – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: bb0050 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun Nonlinear Sci Numer Simulat – year: 2014 ident: bb0220 article-title: Short-term forecasting of soil temperature using artificial neural network publication-title: Meteorol. Appl. – volume: 1 start-page: 36 year: 2013 end-page: 50 ident: bb0250 article-title: Firefly algorithm: recent advances and applications publication-title: I. J. Swarm Intelligence. – year: 2018 ident: bb0075 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran publication-title: Theor. Appl. Climatol. – volume: 132 start-page: 91 year: 1992 end-page: 106 ident: bb0085 article-title: Estimation of bare soil evaporation using skin temperature measurements publication-title: J. Hydrol. – volume: 110 start-page: 135 year: 2011 end-page: 142 ident: bb0215 article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region publication-title: Meteorog. Atmos. Phys. – volume: 35 start-page: 83 year: 2011 end-page: 93 ident: bb0025 article-title: The use of artifcial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey publication-title: Turk. J. Agric. For. – volume: 121 start-page: 197-182 year: 2004 ident: bb0175 article-title: Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types publication-title: Agric. For. Meteorol. – volume: 34 start-page: 845 year: 1970 end-page: 848 ident: bb0240 article-title: Simulation of heat flow in soils publication-title: S.S.S.A. – volume: 13 start-page: 445 year: 2013 end-page: 461 ident: bb0065 article-title: Sensitivity of soil respiration to moisture and temperature publication-title: J. Soil Sci. Plant Nutr. – volume: 18 start-page: 54 year: 2008 end-page: 59 ident: bb0145 article-title: Soil temperature dependent growth of cotton seedlings before emergence publication-title: Pedosphere – volume: 508 start-page: 356 year: 2014 end-page: 363 ident: bb0015 article-title: SVR-based prediction of evaporation combined with chaotic approach publication-title: J. Hydrol. – volume: 91 start-page: 551 year: 2011 end-page: 562 ident: bb0165 article-title: Artificial neural network model for estimating the soil temperature publication-title: Can. J. Soil Sci. – volume: 10 start-page: 628 year: 2018 ident: bb0270 article-title: Data pre-analysis and ensemble of various artificial neural networks for monthly streamflow forecasting publication-title: Water – volume: 14 start-page: 115 year: 1975 end-page: 124 ident: bb0190 article-title: Effect of temperature on soil water diffusivity publication-title: Geoderma – volume: 338 start-page: 67 year: 2019 end-page: 77 ident: bb0045 article-title: Estimation of soil temperature from meteorological data using different machine learning models publication-title: Geoderma – volume: 330 start-page: 52 year: 2018 end-page: 64 ident: bb0205 article-title: Non-tuned data intelligent model for soil temperature estimation: A new approach publication-title: Geoderma – volume: 52 start-page: 49 year: 2005 end-page: 58 ident: bb0180 article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates publication-title: FEMS Microbiol. Ecol. – volume: 59 start-page: 972 year: 2008 end-page: 981 ident: bb0055 article-title: An improved force-restore method for soil temperature prediction publication-title: Eur. J. Soil Sci. – volume: 12 start-page: 584 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0135 article-title: Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran publication-title: Eng Appl Comp Fluid – volume: 83 start-page: 211 year: 2009 ident: 10.1016/j.geoderma.2019.06.028_bb0040 article-title: Ground temperature estimations using simplified analytical and semi-empirical approaches publication-title: Sol. Energy doi: 10.1016/j.solener.2008.07.013 – volume: 91 start-page: 551 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0165 article-title: Artificial neural network model for estimating the soil temperature publication-title: Can. J. Soil Sci. doi: 10.4141/cjss10073 – volume: 172 start-page: 32 year: 2017 ident: 10.1016/j.geoderma.2019.06.028_bb0060 article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.04.009 – volume: 53 start-page: 233 issue: 3 year: 2005 ident: 10.1016/j.geoderma.2019.06.028_bb0120 article-title: Root physiological factors involved in cool-season grass response to high soil temperature publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2004.03.016 – volume: 18 start-page: 54 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2019.06.028_bb0145 article-title: Soil temperature dependent growth of cotton seedlings before emergence publication-title: Pedosphere doi: 10.1016/S1002-0160(07)60102-7 – start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2019.06.028_bb0140 article-title: Horizontal global solar radiation estimation using hybrid SVM-firefly and SVM-wavelet algorithms: a case study publication-title: Nat. Hazards – volume: 19 start-page: 372 year: 2014 ident: 10.1016/j.geoderma.2019.06.028_bb0185 article-title: Support vector machine applications in the field of hydrology: a review publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.002 – volume: 126 start-page: 181 year: 1978 ident: 10.1016/j.geoderma.2019.06.028_bb0225 article-title: The prediction of mean monthly soil temperature from mean monthly air temperature publication-title: Soil Sci. doi: 10.1097/00010694-197809000-00008 – volume: 10 start-page: 628 year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0270 article-title: Data pre-analysis and ensemble of various artificial neural networks for monthly streamflow forecasting publication-title: Water doi: 10.3390/w10050628 – volume: 13 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2019.06.028_bb0065 article-title: Sensitivity of soil respiration to moisture and temperature publication-title: J. Soil Sci. Plant Nutr. – volume: 121 start-page: 377 year: 2015 ident: 10.1016/j.geoderma.2019.06.028_bb0105 article-title: Modeling soil temperatures at different depths by using three different neural computing techniques publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1232-x – volume: 133 start-page: 911 year: 2017 ident: 10.1016/j.geoderma.2019.06.028_bb0125 article-title: Comprehensive modelling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2227-1 – year: 1998 ident: 10.1016/j.geoderma.2019.06.028_bb0005 – volume: 68 start-page: 829 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2019.06.028_bb0160 article-title: Multi-year simulation and model calibration of soil moisture and temperature profiles in till soil publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12489 – volume: 121 start-page: 197-182 year: 2004 ident: 10.1016/j.geoderma.2019.06.028_bb0175 article-title: Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.030 – year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0075 article-title: A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran publication-title: Theor. Appl. Climatol. – volume: 18 start-page: 136 year: 2000 ident: 10.1016/j.geoderma.2019.06.028_bb0080 article-title: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature publication-title: For. Ecol. Manag. – volume: 175 start-page: 37 year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0200 article-title: Wavelet neural networks and gene expression programming models to predict short-term soil temperature at different depths publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.08.012 – volume: 34 start-page: 845 issue: 6 year: 1970 ident: 10.1016/j.geoderma.2019.06.028_bb0240 article-title: Simulation of heat flow in soils publication-title: S.S.S.A. – year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0195 article-title: A modified Elman neural network with a new learning rate scheme publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.046 – volume: 270 start-page: 731 year: 2015 ident: 10.1016/j.geoderma.2019.06.028_bb0100 article-title: A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm publication-title: Appl. Math. Comput. – volume: 174 start-page: 177 year: 2017 ident: 10.1016/j.geoderma.2019.06.028_bb0010 article-title: Detecting soil temperature trends in northern Iran from 1993 to 2016 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2017.07.010 – volume: 338 start-page: 67 year: 2019 ident: 10.1016/j.geoderma.2019.06.028_bb0045 article-title: Estimation of soil temperature from meteorological data using different machine learning models publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.044 – volume: 113 start-page: 481 issue: 3–4 year: 2013 ident: 10.1016/j.geoderma.2019.06.028_bb0245 article-title: Spatiotemporal modelling of monthly soil temperature using artificial neural networks publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-012-0807-7 – volume: 76 start-page: 76 issue: 2 year: 2017 ident: 10.1016/j.geoderma.2019.06.028_bb0020 article-title: Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6395-1 – volume: 337 start-page: 893 year: 2019 ident: 10.1016/j.geoderma.2019.06.028_bb0070 article-title: Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.044 – volume: 396 start-page: 128 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0255 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – volume: 313 start-page: 241 year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0110 article-title: Soil temperature increase in eastern Australia for the past 50 years publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.015 – start-page: 968 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0030 article-title: Research on hydrology time series prediction based on grey theory and epsilon-support vector regression – volume: 17 start-page: 4831 year: 2012 ident: 10.1016/j.geoderma.2019.06.028_bb0050 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2012.05.010 – start-page: 251 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2019.06.028_bb0130 article-title: On estimating soil surface temperature profiles publication-title: Energ. Buildings doi: 10.1016/S0378-7788(01)00089-5 – volume: 52 start-page: 49 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2019.06.028_bb0180 article-title: Comparison of temperature effects on soil respiration and bacterial and fungal growth rates publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2004.10.002 – volume: 1 start-page: 36 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2019.06.028_bb0250 article-title: Firefly algorithm: recent advances and applications publication-title: I. J. Swarm Intelligence. doi: 10.1504/IJSI.2013.055801 – volume: 17 start-page: 453 issue: 6 year: 1976 ident: 10.1016/j.geoderma.2019.06.028_bb0230 article-title: Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(76)90022-4 – volume: 813 start-page: 1 issue: 813 year: 2014 ident: 10.1016/j.geoderma.2019.06.028_bb0155 article-title: Non-linear calibration models for near infrared spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.12.002 – volume: 330 start-page: 52 year: 2018 ident: 10.1016/j.geoderma.2019.06.028_bb0205 article-title: Non-tuned data intelligent model for soil temperature estimation: A new approach publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.030 – volume: 273 start-page: 32 year: 2016 ident: 10.1016/j.geoderma.2019.06.028_bb0115 article-title: Soil temperature dynamics at the catchment scale publication-title: Geoderma doi: 10.1016/j.geoderma.2016.03.011 – volume: 21 start-page: 819 year: 2007 ident: 10.1016/j.geoderma.2019.06.028_bb0170 article-title: A recurrent support vector regression model in rainfall forecasting publication-title: Hydrol. Process. doi: 10.1002/hyp.6323 – volume: 9 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2019.06.028_bb0260 article-title: Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates publication-title: Arab. J. Geosci. doi: 10.1007/s12517-016-2388-8 – volume: 21 start-page: 541 issue: 8 year: 2001 ident: 10.1016/j.geoderma.2019.06.028_bb0035 article-title: Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth publication-title: Tree Physiol. doi: 10.1093/treephys/21.8.541 – volume: 105 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0235 article-title: Bagging for robust non-linear multivariate calibration of spectroscopy publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.10.004 – volume: 124 start-page: 150 year: 2016 ident: 10.1016/j.geoderma.2019.06.028_bb0150 article-title: Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.03.025 – volume: 35 start-page: 83 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0025 article-title: The use of artifcial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey publication-title: Turk. J. Agric. For. – volume: 508 start-page: 356 year: 2014 ident: 10.1016/j.geoderma.2019.06.028_bb0015 article-title: SVR-based prediction of evaporation combined with chaotic approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.008 – volume: 14 start-page: 115 issue: 2 year: 1975 ident: 10.1016/j.geoderma.2019.06.028_bb0190 article-title: Effect of temperature on soil water diffusivity publication-title: Geoderma doi: 10.1016/0016-7061(75)90070-1 – volume: 132 start-page: 91 year: 1992 ident: 10.1016/j.geoderma.2019.06.028_bb0085 article-title: Estimation of bare soil evaporation using skin temperature measurements publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90174-T – volume: 29 start-page: 2895 issue: 8 year: 2015 ident: 10.1016/j.geoderma.2019.06.028_bb0090 article-title: Optimal remediation design of unconfined contaminated aquifers based on the finite element method and a modified firefly algorithm publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0976-0 – volume: 17 start-page: 766 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2019.06.028_bb0265 article-title: Significance of transients in soil temperature series publication-title: Pedosphere doi: 10.1016/S1002-0160(07)60092-7 – year: 2014 ident: 10.1016/j.geoderma.2019.06.028_bb0220 article-title: Short-term forecasting of soil temperature using artificial neural network publication-title: Meteorol. Appl. – volume: 59 start-page: 972 year: 2008 ident: 10.1016/j.geoderma.2019.06.028_bb0055 article-title: An improved force-restore method for soil temperature prediction publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01060.x – volume: 118 start-page: 465 year: 2014 ident: 10.1016/j.geoderma.2019.06.028_bb0095 article-title: Modeling daily soil temperature using data-driven models and spatial distribution publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-1065-z – volume: vol. 9 start-page: 97 year: 1981 ident: 10.1016/j.geoderma.2019.06.028_bb0210 article-title: The effect of water potential on decomposition processes in soils – volume: 110 start-page: 135 year: 2011 ident: 10.1016/j.geoderma.2019.06.028_bb0215 article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region publication-title: Meteorog. Atmos. Phys. doi: 10.1007/s00703-010-0110-z |
| SSID | ssj0017020 |
| Score | 2.542389 |
| Snippet | Root zone temperature is one of the most important soil characteristics, controlling many of the physical, chemical and biological processes in the soil.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 152 |
| SubjectTerms | air temperature algorithms artificial intelligence climatic factors Firefly algorithm germination Iran Krill herd algorithm Meteorological parameters regression analysis relative humidity root zone temperature soil depth solar radiation vapor pressure deficit wind speed |
| Title | Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature |
| URI | https://dx.doi.org/10.1016/j.geoderma.2019.06.028 https://www.proquest.com/docview/2305182741 |
| Volume | 353 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1872-6259 dateEnd: 20221115 omitProxy: true ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6259 dateEnd: 20221115 omitProxy: true ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-6259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: AKRWK dateStart: 19670901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBW8xua12eQYiqUq9mSht3WTbNqUNiltevW3O5NsiorQg8eEzBJmh2--ZWe-IeRBAUn2uRMZQcJtw_UTF3GQGUoFQSJTZsYeNie_jbzh2H2ZsEmL9JteGCyr1NhfY3qF1vpNT3uzt8oy7PG1PA7pCIPSYc4EO9hdjlMMHj93ZR4WN7U0o-UZ-PW3LuE57BEOHKv0h6yg0vHEqex_J6hfUF3ln8EJOdbEkYb1v52SlsrPyFE4XWvxDHVOPsKdzCYtUhplhZHleJOuErpUpZypba3LTAsAiqUu5KFyMS3WWTlbbigwWIqyG0hj8yndFNmConiVVl6-IOPB03t_aOgJCkbsuKw0lHRiGZmWlBAwkWPKIFGVhheyODi7JMC-AltKQD1LxspT3ARwBJPU5hGkLeeStPMiV1eE-mbEbZmAjZu6bsp9xbzITFMZM5tLi3cIa9wmYi0vjlMuFqKpI5uLxt0C3S2woM72O6S3s1vVAht7LYJmV8SPUBGQBfba3jfbKMDNeDkic1VsNwKOYgzOWkCwrv-x_g05xKe6WfGWtMv1Vt0BaymjbhWWXXIQPr8OR18XSvAs |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN5UPagH4zO-XROvWB67LBybRlNfPdWkt3WBpdK00LT06m93BpZGjYkHr8AQMjv55psw8w0hNxpIciC8yAoT4VosSBjiILe0DsNEpdyOfRxOfun7vVf2OOTDFuk2szDYVmmwv8b0Cq3NlbbxZnuWZTjj6_gC0hEGpce94RrZYNwVWIHdfqz6PBxhG21Gx7fw8S9jwmM4JNw4VgkQOWEl5Ilr2X_PUD-wukpA97tkxzBH2qk_bo-0dL5PtjujuVHP0AfkrbPS2aRFSqOssLIcf6XrhE51qd71shZmpgUgxdR08lA1GRXzrHyfLihQWIq6G8hj8xFdFNmEonqVkV4-JK_3d4NuzzIrFKzYY7y0tPJiFdmOUhAxkWerMNGViBfSOCheEqBfoasUwJ6jYu1rYQM6gknqigjylndE1vMi18eEBnYkXJWADUsZS0WguR_ZaapicLpyxAnhjdtkbPTFcc3FRDaNZGPZuFuiuyV21LnBCWmv7Ga1wsafFmFzKvJbrEhIA3_aXjfHKMHN-HdE5bpYLiTUYhyKLWBYp_94_xXZ7A1enuXzQ__pjGzhnXpy8Zysl_OlvgAKU0aXVYh-Aql18cE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+bio-inspired+metaheuristic+optimisation+algorithms+for+estimating+soil+temperature&rft.jtitle=Geoderma&rft.au=Moazenzadeh%2C+Roozbeh&rft.au=Mohammadi%2C+Babak&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=353&rft.spage=152&rft.epage=171&rft_id=info:doi/10.1016%2Fj.geoderma.2019.06.028&rft.externalDocID=S001670611832353X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |